Network Working Group                                           C. Monia
Request for Comments: 4172                                    Consultant
Category: Standards Track                                  R. Mullendore
                                                                 McDATA
                                                          F. Travostino
                                                                 Nortel
                                                               W. Jeong
                                                        Troika Networks
                                                             M. Edwards
                                                      Adaptec (UK) Ltd.
                                                         September 2005


   iFCP - A Protocol for Internet Fibre Channel Storage Networking

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This document specifies an architecture and a gateway-to-gateway
  protocol for the implementation of fibre channel fabric functionality
  over an IP network.  This functionality is provided through TCP
  protocols for fibre channel frame transport and the distributed
  fabric services specified by the fibre channel standards.  The
  architecture enables internetworking of fibre channel devices through
  gateway-accessed regions with the fault isolation properties of
  autonomous systems and the scalability of the IP network.

Table of Contents

  1.  Introduction..................................................  4
      1.1.  Conventions used in This Document.......................  4
            1.1.1.  Data Structures Internal to an Implementation...  4
      1.2.  Purpose of This Document................................  4
  2.  iFCP Introduction.............................................  4
      2.1.  Definitions.............................................  5
  3.  Fibre Channel Communication Concepts..........................  7
      3.1.  The Fibre Channel Network...............................  8



Monia, et al.               Standards Track                     [Page 1]

RFC 4172           Internet Fibre Channel Networking      September 2005


      3.2.  Fibre Channel Network Topologies........................  9
            3.2.1.  Switched Fibre Channel Fabrics.................. 11
            3.2.2.  Mixed Fibre Channel Fabric...................... 12
      3.3.  Fibre Channel Layers and Link Services.................. 12
            3.3.1.  Fabric-Supplied Link Services................... 13
      3.4.  Fibre Channel Nodes..................................... 14
      3.5.  Fibre Channel Device Discovery.......................... 14
      3.6.  Fibre Channel Information Elements...................... 15
      3.7.  Fibre Channel Frame Format.............................. 15
            3.7.1.  N_PORT Address Model............................ 16
      3.8.  Fibre Channel Transport Services........................ 17
      3.9.  Login Processes......................................... 18
  4.  The iFCP Network Model........................................ 18
      4.1.  iFCP Transport Services................................. 21
            4.1.1.  Fibre Channel Transport Services Supported by
                    iFCP............................................ 21
      4.2.  iFCP Device Discovery and Configuration Management...... 21
      4.3.  iFCP Fabric Properties.................................. 22
            4.3.1.  Address Transparency............................ 22
            4.3.2.  Configuration Scalability....................... 23
            4.3.3.  Fault Tolerance................................. 23
      4.4.  The iFCP N_PORT Address Model........................... 24
      4.5.  Operation in Address Transparent Mode................... 25
            4.5.1.  Transparent Mode Domain ID Management........... 26
            4.5.2.  Incompatibility with Address Translation Mode... 26
      4.6.  Operation in Address Translation Mode................... 27
            4.6.1.  Inbound Frame Address Translation............... 28
            4.6.2.  Incompatibility with Address Transparent Mode... 29
  5.  iFCP Protocol................................................. 29
      5.1.  Overview ............................................... 29
            5.1.1.  iFCP Transport Services......................... 29
            5.1.2.  iFCP Support for Link Services.................. 30
      5.2.  TCP Stream Transport of iFCP Frames..................... 30
            5.2.1.  iFCP Session Model.............................. 30
            5.2.2.  iFCP Session Management......................... 31
            5.2.3.  Terminating iFCP Sessions....................... 39
      5.3.  Fibre Channel Frame Encapsulation....................... 40
            5.3.1.  Encapsulation Header Format..................... 41
            5.3.2.  SOF and EOF Delimiter Fields.................... 44
            5.3.3.  Frame Encapsulation............................. 45
            5.3.4.  Frame De-encapsulation.......................... 46
  6.  TCP Session Control Messages.................................. 47
      6.1.  Connection Bind (CBIND)................................. 50
      6.2.  Unbind Connection (UNBIND).............................. 52
      6.3.  LTEST -- Test Connection Liveness....................... 54
  7.  Fibre Channel Link Services................................... 55
      7.1.  Special Link Service Messages........................... 56
      7.2.  Link Services Requiring Payload Address Translation..... 58



Monia, et al.               Standards Track                     [Page 2]

RFC 4172           Internet Fibre Channel Networking      September 2005


      7.3.  Fibre Channel Link Services Processed by iFCP........... 61
            7.3.1.  Special Extended Link Services.................. 63
            7.3.2.  Special FC-4 Link Services...................... 83
      7.4.  FLOGI Service Parameters Supported by an iFCP Gateway... 84
  8.  iFCP Error Detection.......................................... 86
      8.1.  Overview................................................ 86
      8.2.  Stale Frame Prevention.................................. 86
            8.2.1.  Enforcing R_A_TOV Limits........................ 86
  9.  Fabric Services Supported by an iFCP Implementation........... 88
      9.1.  F_PORT Server........................................... 88
      9.2.  Fabric Controller....................................... 89
      9.3.  Directory/Name Server................................... 89
      9.4.  Broadcast Server........................................ 89
            9.4.1.  Establishing the Broadcast Configuration........ 90
            9.4.2.  Broadcast Session Management.................... 91
            9.4.3.  Standby Global Broadcast Server................. 91
  10. iFCP Security................................................. 91
      10.1. Overview................................................ 91
      10.2. iFCP Security Threats and Scope......................... 92
            10.2.1. Context......................................... 92
            10.2.2. Security Threats................................ 92
            10.2.3. Interoperability with Security Gateways......... 93
            10.2.4. Authentication.................................. 93
            10.2.5. Confidentiality................................. 93
            10.2.6. Rekeying........................................ 93
            10.2.7. Authorization................................... 94
            10.2.8. Policy Control.................................. 94
            10.2.9. iSNS Role....................................... 94
      10.3. iFCP Security Design.................................... 94
            10.3.1. Enabling Technologies........................... 94
            10.3.2. Use of IKE and IPsec............................ 96
            10.3.3. Signatures and Certificate-Based Authentication. 98
      10.4. iSNS and iFCP Security.................................. 99
      10.5. Use of iSNS to Distribute Security Policy............... 99
      10.6. Minimal Security Policy for an iFCP Gateway............. 99
  11. Quality of Service Considerations.............................100
      11.1. Minimal Requirements....................................100
      11.2. High Assurance..........................................100
  12. IANA Considerations...........................................101
  13. Normative References..........................................101
  14. Informative References........................................103
  Appendix A.  iFCP Support for Fibre Channel Link Services.........105
      A.1.  Basic Link Services.....................................105
      A.2.  Pass-Through Link Services..............................105
      A.3.  Special Link Services...................................107
  Appendix B.  Supporting the Fibre Channel Loop Topology...........108
      B.1.  Remote Control of a Public Loop.........................108
  Acknowledgements..................................................109



Monia, et al.               Standards Track                     [Page 3]

RFC 4172           Internet Fibre Channel Networking      September 2005


1.  Introduction

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, RFC 2119
  [RFC2119].

  Unless specified otherwise, numeric quantities are given as decimal
  values.

  All diagrams that portray bit and byte ordering, including the
  depiction of structures defined by fibre channel standards, adhere to
  the IETF conventions whereby bit 0 is the most significant bit and
  the first addressable byte is in the upper left corner.  This IETF
  convention differs from that used for INCITS T11 fibre channel
  standards, in which bit 0 is the least significant bit.

1.1.1.  Data Structures Internal to an Implementation

  To facilitate the specification of required behavior, this document
  may define and refer to internal data structures within an iFCP
  implementation.  Such structures are intended for explanatory
  purposes only and need not be instantiated within an implementation
  as described in this specification.

1.2.  Purpose of This Document

  This is a standards-track document that specifies a protocol for the
  implementation of fibre channel transport services on a TCP/IP
  network.  Some portions of this document contain material from
  standards controlled by INCITS T10 and T11.  This material is
  included here for informational purposes only.  The authoritative
  information is given in the appropriate NCITS standards document.

  The authoritative portions of this document specify the mapping of
  standards-compliant fibre channel protocol implementations to TCP/IP.
  This mapping includes sections of this document that describe the
  "iFCP Protocol" (see Section 5).

2.  iFCP Introduction

  iFCP is a gateway-to-gateway protocol that provides fibre channel
  fabric services to fibre channel devices over a TCP/IP network.  iFCP
  uses TCP to provide congestion control, error detection, and
  recovery.  iFCP's primary objective is to allow interconnection and




Monia, et al.               Standards Track                     [Page 4]

RFC 4172           Internet Fibre Channel Networking      September 2005


  networking of existing fibre channel devices at wire speeds over an
  IP network.

  The protocol and method of frame address translation described in
  this document permit the attachment of fibre channel storage devices
  to an IP-based fabric by means of transparent gateways.

  The protocol achieves this transparency by allowing normal fibre
  channel frame traffic to pass through the gateway directly, with
  provisions, where necessary, for intercepting and emulating the
  fabric services required by a fibre channel device.

2.1.  Definitions

  Terms needed to describe the concepts presented in this document are
  presented here.

  Address-translation mode -- A mode of gateway operation in which the
     scope of N_PORT fabric addresses, for locally attached devices,
     are local to the iFCP gateway region in which the devices reside.

  Address-transparent mode -- A mode of gateway operation in which the
     scope of N_PORT fabric addresses, for all fibre channel devices,
     are unique to the bounded iFCP fabric to which the gateway
     belongs.

  Bounded iFCP Fabric -- The union of two or more gateway regions
     configured to interoperate in address-transparent mode.

  DOMAIN_ID -- The value contained in the high-order byte of a 24-bit
     N_PORT fibre channel address.

  F_PORT -- The interface used by an N_PORT to access fibre channel
     switched-fabric functionality.

  Fabric -- From [FC-FS]: "The entity that interconnects N_PORTs
     attached to it and is capable of routing frames by using only the
     address information in the fibre channel frame."

  Fabric Port -- The interface through which an N_PORT accesses a fibre
     channel fabric.  The type of fabric port depends on the fibre
     channel fabric topology.  In this specification, all fabric port
     interfaces are considered functionally equivalent.

  FC-2 -- The fibre channel transport services layer, described in
     [FC-FS].





Monia, et al.               Standards Track                     [Page 5]

RFC 4172           Internet Fibre Channel Networking      September 2005


  FC-4 -- The fibre channel mapping of an upper-layer protocol, such as
     [FCP-2], the fibre channel to SCSI mapping.

  Fibre Channel Device -- An entity implementing the functionality
     accessed through an FC-4 application protocol.

  Fibre Channel Network -- A native fibre channel fabric and all
     attached fibre channel nodes.

  Fibre Channel Node -- A collection of one or more N_PORTs controlled
     by a level above the FC-2 layer.  A node is attached to a fibre
     channel fabric by means of the N_PORT interface, described in
     [FC-FS].

  Gateway Region -- The portion of an iFCP fabric accessed through an
     iFCP gateway by a remotely attached N_PORT.  Fibre channel devices
     in the region consist of all those locally attached to the
     gateway.

  iFCP -- The protocol discussed in this document.

  iFCP Frame -- A fibre channel frame encapsulated in accordance with
     the FC Frame Encapsulation Specification [ENCAP] and this
     specification.

  iFCP Portal -- An entity representing the point at which a logical or
     physical iFCP device is attached to the IP network.  The network
     address of the iFCP portal consists of the IP address and TCP port
     number to which a request is sent when the TCP connection is
     created for an iFCP session (see Section 5.2.1).

  iFCP Session -- An association comprised of a pair of N_PORTs and a
     TCP connection that carries traffic between them.  An iFCP session
     may be created as the result of a PLOGI fibre channel login
     operation.

  iSNS -- The server functionality and IP protocol that provide storage
     name services in an iFCP network.  Fibre channel name services are
     implemented by an iSNS name server, as described in [ISNS].

  Locally Attached Device -- With respect to a gateway, a fibre channel
     device accessed through the fibre channel fabric to which the
     gateway is attached.

  Logical iFCP Device -- The abstraction representing a single fibre
     channel device as it appears on an iFCP network.





Monia, et al.               Standards Track                     [Page 6]

RFC 4172           Internet Fibre Channel Networking      September 2005


  N_PORT -- An iFCP or fibre channel entity representing the interface
     to fibre channel device functionality.  This interface implements
     the fibre channel N_PORT semantics, specified in [FC-FS].  Fibre
     channel defines several variants of this interface that depend on
     the fibre channel fabric topology.  As used in this document, the
     term applies equally to all variants.

  N_PORT Alias --  The N_PORT address assigned by a gateway to
     represent a remote N_PORT accessed via the iFCP protocol.

  N_PORT fabric address -- The address of an N_PORT within the fibre
     channel fabric.

  N_PORT ID -- The address of a locally attached N_PORT within a
     gateway region.  N_PORT IDs are assigned in accordance with the
     fibre channel rules for address assignment, specified in [FC-FS].

  N_PORT Network Address -- The address of an N_PORT in the iFCP
     fabric.  This address consists of the IP address and TCP port
     number of the iFCP Portal and the N_PORT ID of the locally
     attached fibre channel device.

  Port Login (PLOGI) -- The fibre channel Extended Link Service (ELS)
     that establishes an iFCP session through the exchange of
     identification and operation parameters between an originating
     N_PORT and a responding N_PORT.

  Remotely Attached Device -- With respect to a gateway, a fibre
     channel device accessed from the gateway by means of the iFCP
     protocol.

  Unbounded iFCP Fabric -- The union of two or more gateway regions
     configured to interoperate in address-translation mode.

3.  Fibre Channel Communication Concepts

  Fibre channel is a frame-based, serial technology designed for peer-
  to-peer communication between devices at gigabit speeds and with low
  overhead and latency.

  This section contains a discussion of the fibre channel concepts that
  form the basis for the iFCP network architecture and protocol
  described in this document.  Readers familiar with this material may
  skip to Section 4.







Monia, et al.               Standards Track                     [Page 7]

RFC 4172           Internet Fibre Channel Networking      September 2005


  Material presented in this section is drawn from the following T11
  specifications:

  -- The Fibre Channel Framing and Signaling Interface, [FC-FS]

  -- Fibre Channel Switch Fabric -2, [FC-SW2]

  -- Fibre Channel Generic Services, [FC-GS3]

  -- Fibre Channel Fabric Loop Attachment, [FC-FLA]

  The reader will find an in-depth treatment of the technology in
  [KEMCMP] and [KEMALP].

3.1.  The Fibre Channel Network

  The fundamental entity in fibre channel is the fibre channel network.
  Unlike a layered network architecture, a fibre channel network is
  largely specified by functional elements and the interfaces between
  them.  As shown in Figure 1, these consist, in part, of the
  following:

  a) N_PORTs -- The end points for fibre channel traffic.  In the FC
     standards, N_PORT interfaces have several variants, depending on
     the topology of the fabric to which they are attached.  As used in
     this specification, the term applies to any one of the variants.

  b) FC Devices -- The fibre channel devices to which the N_PORTs
     provide access.

  c) Fabric Ports -- The interfaces within a fibre channel network that
     provide attachment for an N_PORT.  The types of fabric port depend
     on the fabric topology and are discussed in Section 3.2.

  d) The network infrastructure for carrying frame traffic between
     N_PORTs.

  e) Within a switched or mixed fabric (see Section 3.2), a set of
     auxiliary servers, including a name server for device discovery
     and network address resolution.  The types of service depend on
     the network topology.










Monia, et al.               Standards Track                     [Page 8]

RFC 4172           Internet Fibre Channel Networking      September 2005


        +--------+   +--------+          +--------+  +--------+
        |  FC    |   |  FC    |          |  FC    |  |  FC    |
        | Device |   | Device |<-------->| Device |  | Device |
        |........|   |........|          |........|  |........|
        | N_PORT |   | N_PORT |          | N_PORT |  | N_PORT |
        +---+----+   +----+---+          +----+---+  +----+---+
            |             |                   |           |
        +---+----+   +----+---+          +----+---+  +----+---+
        | Fabric |   | Fabric |          | Fabric |  | Fabric |
        | Port   |   | Port   |          | Port   |  | Port   |
        +========+===+========+==========+========+==+========+
        |                        Fabric                       |
        |                          &                          |
        |                     Fabric Services                 |
        +-----------------------------------------------------+

                  Figure 1. A Fibre Channel Network

  The following sections describe fibre channel network topologies and
  give an overview of the fibre channel communications model.

3.2.  Fibre Channel Network Topologies

  The principal fibre channel network topologies consist of the
  following:

  a) Arbitrated Loop -- A series of N_PORTs connected together in
     daisy-chain fashion.  In [FC-FS], loop-connected N_PORTs are
     referred to as NL_PORTs.  Data transmission between NL_PORTs
     requires arbitration for control of the loop in a manner similar
     to that of a token ring network.

  b) Switched Fabric --  A network consisting of switching elements, as
     described in Section 3.2.1.

  c) Mixed Fabric -- A network consisting of switches and "fabric-
     attached" loops.  A description can be found in [FC-FLA].  A
     loop-attached N_PORT (NL_PORT) is connected to the loop through an
     L_PORT and accesses the fabric by way of an FL_PORT.












Monia, et al.               Standards Track                     [Page 9]

RFC 4172           Internet Fibre Channel Networking      September 2005


  Depending on the topology, the N_PORT and its means of network
  attachment may be one of the following:

        FC Network
        Topology         Network Interface   N_PORT Variant
        ---------------  -----------------   --------------
        Loop             L_PORT              NL_PORT

        Switched         F_PORT              N_PORT

        Mixed            FL_PORT via L_PORT  NL_PORT

                         F_PORT              N_PORT

  The differences in each N_PORT variant and its corresponding fabric
  port are confined to the interactions between them.  To an external
  N_PORT, all fabric ports are transparent, and all remote N_PORTs are
  functionally identical.

































Monia, et al.               Standards Track                    [Page 10]

RFC 4172           Internet Fibre Channel Networking      September 2005


3.2.1.  Switched Fibre Channel Fabrics

  An example of a multi-switch fibre channel fabric is shown in Figure
  2.

               +----------+          +----------+
               |    FC    |          |  FC      |
               |   Device |          | Device   |
               |..........|          |..........|
               |   N_PORT |<........>| N_PORT   |
               +----+-----+          +-----+----+
                    |                      |
               +----+-----+          +-----+----+
               | F_PORT   |          | F_PORT   |
     ==========+==========+==========+==========+==============
               |  FC      |          | FC       |
               |  Switch  |          | Switch   |
               +----------+          +----------+ Fibre Channel
               |Inter-    |          |Inter-    |   Fabric
               |Switch    |          |Switch    |
               |Interface |          |Interface |
               +-----+----+          +-----+----+
                     |                     |
                     |                     |
               +-----+----+----------+-----+----+
               |Inter-    |          |Inter-    |
               |Switch    |          |Switch    |
               |Interface |          |Interface |
               +----------+          +----------+
               |            FC Switch           |
               |                                |
               +--------------------------------+

           Figure 2. Multi-Switch Fibre Channel Fabric

  The interface between switch elements is either a proprietary
  interface or the standards-compliant E_PORT interface, which is
  described by the FC-SW2 specification, [FC-SW2].













Monia, et al.               Standards Track                    [Page 11]

RFC 4172           Internet Fibre Channel Networking      September 2005


3.2.2.   Mixed Fibre Channel Fabric

  A mixed fabric contains one or more arbitrated loops connected to a
  switched fabric as shown in Figure 3.

               +----------+          +----------+   +---------+
               |    FC    |          |  FC      |   |  FC     |
               |   Device |          | Device   |   | Device  |
               |..........| FC       |..........|   |.........|
               |   N_PORT |<........>| NL_PORT  +---+ NL_PORT |
               +----+-----+ Traffic  +-----+----+   +----+----+
                    |                      |   FC Loop   |
               +----+-----+          +-----+----+        |
               | F_PORT   |          | FL_PORT  +--------+
               |          |          |          |
     ==========+==========+==========+==========+==============
               |  FC      |          | FC       |
               |  Switch  |          | Switch   |
               +----------+          +----------+
               |Inter-    |          |Inter-    |
               |Switch    |          |Switch    |
               |Interface |          |Interface |
               +-----+----+          +-----+----+
                     |                     |
                     |                     |
               +-----+----+----------+-----+----+
               |Inter-    |          |Inter-    |
               |Switch    |          |Switch    |
               |Interface |          |Interface |
               +----------+          +----------+
               |            FC Switch           |
               |                                |
               +--------------------------------+

              Figure 3. Mixed Fibre Channel Fabric

  As noted previously, the protocol for communications between peer
  N_PORTs is independent of the fabric topology, N_PORT variant, and
  type of fabric port to which an N_PORT is attached.

3.3.  Fibre Channel Layers and Link Services

  A fibre channel consists of the following layers:

     FC-0 -- The interface to the physical media.

     FC-1 -- The encoding and decoding of data and out-of-band physical
     link control information for transmission over the physical media.



Monia, et al.               Standards Track                    [Page 12]

RFC 4172           Internet Fibre Channel Networking      September 2005


     FC-2 -- The transfer of frames, sequences, and Exchanges
     comprising protocol information units.

     FC-3 -- Common Services.

     FC-4 -- Application protocols such as the fibre channel protocol
     for SCSI (FCP).

  In addition to the layers defined above, a fibre channel defines a
  set of auxiliary operations, some of which are implemented within the
  transport layer fabric, called link services.  These are required in
  order to manage the fibre channel environment, establish
  communications with other devices, retrieve error information,
  perform error recovery, and provide other similar services.  Some
  link services are executed by the N_PORT.  Others are implemented
  internally within the fabric.  These internal services are described
  in the next section.

3.3.1.  Fabric-Supplied Link Services

  Servers that are internal to a switched fabric handle certain classes
  of Link Service requests and service-specific commands.  The servers
  appear as N_PORTs located at the 'well-known' N_PORT fabric addresses
  specified in [FC-FS].  Service requests use the standard fibre
  channel mechanisms for N_PORT-to-N_PORT communications.

  All switched fabrics must provide the following services:

     Fabric F_PORT server -- Services N_PORT requests to access the
     fabric for communications.

     Fabric Controller -- Provides state change information to inform
     other FC devices when an N_PORT exits or enters the fabric (see
     Section 3.5).

     Directory/Name Server - Allows N_PORTs to register information in
     a database, retrieve information about other N_PORTs, and to
     discover other devices as described in Section 3.5.

  A switched fabric may also implement the following optional services:

     Broadcast Address/Server -- Transmits single-frame, class 3
     sequences to all N_PORTs.

     Time Server -- Intended for the management of fabric-wide
     expiration timers or elapsed time values; not intended for precise
     time synchronization.




Monia, et al.               Standards Track                    [Page 13]

RFC 4172           Internet Fibre Channel Networking      September 2005


     Management Server - Collects and reports management information,
     such as link usage, error statistics, link quality, and similar
     items.

     Quality of Service Facilitator - Performs fabric-wide bandwidth
     and latency management.

3.4.  Fibre Channel Nodes

  A fibre channel node has one or more fabric-attached N_PORTs.  The
  node and its N_PORTs have the following associated identifiers:

  a) A worldwide-unique identifier for the node.

  b) A worldwide-unique identifier for each N_PORT associated with the
     node.

  c) For each N_PORT attached to a fabric, a 24-bit fabric-unique
     address with the properties defined in Section 3.7.1.  The fabric
     address is the address to which frames are sent.

  Each worldwide-unique identifier is a 64-bit binary quantity with the
  format defined in [FC-FS].

3.5.  Fibre Channel Device Discovery

  In a switched or mixed fabric, fibre channel devices and changes in
  the device configuration may be discovered by means of services
  provided by the fibre channel Name Server and Fabric Controller.

  The Name Server provides registration and query services that allow a
  fibre channel device to register its presence on the fabric and to
  discover the existence of other devices.  For example, one type of
  query obtains the fabric address of an N_PORT from its 64-bit
  worldwide-unique name.  The full set of supported fibre channel name
  server queries is specified in [FC-GS3].

  The Fabric Controller complements the static discovery capabilities
  provided by the Name Server through a service that dynamically alerts
  a fibre channel device whenever an N_PORT is added or removed from
  the configuration.  A fibre channel device receives these
  notifications by subscribing to the service as specified in [FC-FS].









Monia, et al.               Standards Track                    [Page 14]

RFC 4172           Internet Fibre Channel Networking      September 2005


3.6.  Fibre Channel Information Elements

  The fundamental element of information in fibre channel is the frame.
  A frame consists of a fixed header and up to 2112 bytes of payload
  with the structure described in Section 3.7.  The maximum frame size
  that may be transmitted between a pair of fibre channel devices is
  negotiable up to the payload limit, based on the size of the frame
  buffers in each fibre channel device and the path maximum
  transmission unit (MTU) supported by the fabric.

  Operations involving the transfer of information between N_PORT pairs
  are performed through 'Exchanges'.  In an Exchange, information is
  transferred in one or more ordered series of frames, referred to as
  Sequences.

  Within this framework, an upper layer protocol is defined in terms of
  transactions carried by Exchanges.  In turn, each transaction
  consists of protocol information units, each of which is carried by
  an individual Sequence within an Exchange.

3.7.  Fibre Channel Frame Format

  A fibre channel frame consists of a header, payload and 32-bit CRC
  bracketed by SOF and EOF delimiters.  The header contains the control
  information necessary to route frames between N_PORTs and manage
  Exchanges and Sequences.  The following diagram gives a schematic
  view of the frame.
























Monia, et al.               Standards Track                    [Page 15]

RFC 4172           Internet Fibre Channel Networking      September 2005


              Bit  0                          31
                  +-----------------------------+
           Word 0 |   Start-of-frame Delimiter  |
                  +-----+-----------------------+<----+
                  |     | Destination N_PORT    |     |
                1 |     | Fabric Address (D_ID) |     |
                  |     |  (24 bits)            |     |
                  +-----+-----------------------+   24-byte
                  |     | Source N_PORT         |   Frame
                2 |     | Fabric Address (S_ID) |   Header
                  |     | (24 bits)             |     |
                  +-----+-----------------------+     |
                3 |    Control information for  |     |
                . |    frame type, Exchange     |     |
                . |    management, IU           |     |
                . |    segmentation and         |     |
                6 |    re-assembly              |     |
                  +-----------------------------+<----+
                7 |                             |
                . |        Frame payload        |
                . |       (0 - 2112 bytes)      |
                . |                             |
                . |                             |
                . |                             |
                  +-----------------------------+
                . |            CRC              |
                  +-----------------------------+
                n |    End-of-Frame Delimiter   |
                  +-----------------------------+

               Figure 4. Fibre Channel Frame Format

  The source and destination N_PORT fabric addresses embedded in the
  S_ID and D_ID fields represent the physical addresses of originating
  and receiving N_PORTs, respectively.

3.7.1.  N_PORT Address Model

  N_PORT fabric addresses are 24-bit values with the following format,
  defined by the fibre channel specification [FC-FS]:

           Bit   0         7 8         15 16       23
                +-----------+------------+----------+
                | Domain ID | Area ID    |  Port ID |
                +-----------+------------+----------+

                Figure 5. Fibre Channel Address Format




Monia, et al.               Standards Track                    [Page 16]

RFC 4172           Internet Fibre Channel Networking      September 2005


  A fibre channel device acquires an address when it logs into the
  fabric.  Such addresses are volatile and subject to change based on
  modifications in the fabric configuration.

  In a fibre channel fabric, each switch element has a unique Domain ID
  assigned by the principal switch.  The value of the Domain ID ranges
  from 1 to 239 (0xEF).  Each switch element, in turn, administers a
  block of addresses divided into area and port IDs.  An N_PORT
  connected to an F_PORT receives a unique fabric address, consisting
  of the switch's Domain ID concatenated with switch-assigned area and
  port IDs.

  A loop-attached NL_PORT (see Figure 3) obtains the Port ID component
  of its address during the loop initialization process described in
  [FC-AL2].  The area and domain IDs are supplied by the fabric when
  the fabric login (FLOGI) is executed.

3.8.  Fibre Channel Transport Services

  N_PORTs communicate by means of the following classes of service,
  which are specified in the fibre channel standard ([FC-FS]):

     Class 1 - A dedicated physical circuit connecting two N_PORTs.

     Class 2 - A frame-multiplexed connection with end-to-end flow
     control and delivery confirmation.

     Class 3 - A frame-multiplexed connection with no provisions for
     end-to-end flow control or delivery confirmation.

     Class 4 -- A connection-oriented service, based on a virtual
     circuit model, providing confirmed delivery with bandwidth and
     latency guarantees.

     Class 6 -- A reliable multicast service derived from class 1.

  Classes 2 and 3 are the predominant services supported by deployed
  fibre channel storage and clustering systems.

  Class 3 service is similar to UDP or IP datagram service.  Fibre
  channel storage devices using this class of service rely on the ULP
  implementation to detect and recover from transient device and
  transport errors.

  For class 2 and class 3 service, the fibre channel fabric is not
  required to provide in-order delivery of frames unless it is
  explicitly requested by the frame originator (and supported by the
  fabric).  If ordered delivery is not in effect, it is the



Monia, et al.               Standards Track                    [Page 17]

RFC 4172           Internet Fibre Channel Networking      September 2005


  responsibility of the frame recipient to reconstruct the order in
  which frames were sent, based on information in the frame header.

3.9.  Login Processes

  The Login processes are FC-2 operations that allow an N_PORT to
  establish the operating environment necessary to communicate with the
  fabric, other N_PORTs, and ULP implementations accessed via the
  N_PORT.  Three login operations are supported:

  a) Fabric Login (FLOGI) -- An operation whereby the N_PORT registers
     its presence on the fabric, obtains fabric parameters, such as
     classes of service supported, and receives its N_PORT address,

  b) Port Login (PLOGI) -- An operation by which an N_PORT establishes
     communication with another N_PORT.

  c) Process Login (PRLOGI) -- An operation that establishes the
     process-to-process communications associated with a specific FC-4
     ULP, such as FCP-2, the fibre channel SCSI mapping.

  Since N_PORT addresses are volatile, an N_PORT originating a login
  (PLOGI) operation executes a Name Server query to discover the fibre
  channel address of the remote device.  A common query type involves
  use of the worldwide-unique name of an N_PORT to obtain the 24-bit
  N_PORT fibre channel address to which the PLOGI request is sent.

4.  The iFCP Network Model

  The iFCP protocol enables the implementation of fibre channel fabric
  functionality on an IP network in which IP components and technology
  replace the fibre channel switching and routing infrastructure
  described in Section 3.2.

  The example of Figure 6 shows a fibre channel network with attached
  devices.  Each device accesses the network through an N_PORT
  connected to an interface whose behavior is specified in [FC-FS] or
  [FC-AL2].  In this case, the N_PORT represents any of the variants
  described in Section 3.2.  The interface to the fabric may be an
  L_PORT, F_PORT, or FL_PORT.

  Within the fibre channel device domain, addressable entities consist
  of other N_PORTs and fibre channel devices internal to the network
  that perform the fabric services defined in [FC-GS3].







Monia, et al.               Standards Track                    [Page 18]

RFC 4172           Internet Fibre Channel Networking      September 2005


                     Fibre Channel Network
                 +--------+        +--------+
                 |  FC    |        |  FC    |
                 | Device |        | Device |
                 |........| FC     |........| Fibre Channel
                 | N_PORT |<......>| N_PORT | Device Domain
                 +---+----+ Traffic+----+---+       ^
                     |                  |           |
                 +---+----+        +----+---+       |
                 | Fabric |        | Fabric |       |
                 | Port   |        | Port   |       |
       ==========+========+========+========+==============
                 |       FC Network &       |       |
                 |     Fabric Services      |       v
                 |                          | Fibre Channel
                 +--------------------------+ Network Domain

                   Figure 6. A Fibre Channel Network

           Gateway Region                   Gateway Region
      +--------+  +--------+           +--------+  +--------+
      |   FC   |  |  FC    |           |   FC   |  |   FC   |
      | Device |  | Device |           | Device |  | Device |  Fibre
      |........|  |........| FC        |........|  |........|  Channel
      | N_PORT |  | N_PORT |<.........>| N_PORT |  | N_PORT |  Device
      +---+----+  +---+----+ Traffic   +----+---+  +----+---+  Domain
          |           |                     |           |         ^
      +---+----+  +---+----+           +----+---+  +----+---+     |
      | F_PORT |  | F_PORT |           | F_PORT |  | F_PORT |     |
     =+========+==+========+===========+========+==+========+==========
      |    iFCP Layer      |<--------->|     iFCP Layer     |     |
      |....................|     ^     |....................|     |
      |     iFCP Portal    |     |     |     iFCP Portal    |     v
      +--------+-----------+     |     +----------+---------+    IP
           iFCP|Gateway      Control          iFCP|Gateway      Network
               |              Data                |
               |                                  |
               |                                  |
               |<------Encapsulated Frames------->|
               |      +------------------+        |
               |      |                  |        |
               +------+    IP Network    +--------+
                      |                  |
                      +------------------+

                    Figure 7. An iFCP Fabric Example





Monia, et al.               Standards Track                    [Page 19]

RFC 4172           Internet Fibre Channel Networking      September 2005


  One example of an equivalent iFCP fabric is shown in Figure 7.  The
  fabric consists of two gateway regions, each accessed by a single
  iFCP gateway.

  Each gateway contains two standards-compliant F_PORTs and an iFCP
  Portal for attachment to the IP network.  Fibre channel devices in
  the region are those locally connected to the iFCP fabric through the
  gateway fabric ports.

  Looking into the fabric port, the gateway appears as a fibre channel
  switch element.  At this interface, remote N_PORTs are presented as
  fabric-attached devices.  Conversely, on the IP network side, the
  gateway presents each locally connected N_PORT as a logical fibre
  channel device.

  Extrapolating to the general case, each gateway region behaves like
  an autonomous system whose configuration is invisible to the IP
  network and other gateway regions.  Consequently, in addition to the
  F_PORT shown in the example, a gateway implementation may
  transparently support the following fibre channel interfaces:

     Inter-Switch Link -- A fibre channel switch-to-switch interface
     used to access a region containing fibre channel switch elements.
     An implementation may support the E_PORT defined by [FC-SW2] or
     one of the proprietary interfaces provided by various fibre
     channel switch vendors.  In this case, the gateway acts as a
     border switch connecting the gateway region to the IP network.

     FL_PORT -- An interface that provides fabric access for loop-
     attached fibre channel devices, as specified in [FC-FLA].

     L_PORT -- An interface through which a gateway may emulate the
     fibre channel loop environment specified in [FC-AL2].  As
     discussed in appendix B, the gateway presents remotely accessed
     N_PORTS as loop-attached devices.

  The manner in which these interfaces are provided by a gateway is
  implementation specific and therefore beyond the scope of this
  document.

  Although each region is connected to the IP network through one
  gateway, a region may incorporate multiple gateways for added
  performance and fault tolerance if the following conditions are met:

  a) The gateways MUST coordinate the assignment of N_PORT IDs and
     aliases so that each N_PORT has one and only one address.





Monia, et al.               Standards Track                    [Page 20]

RFC 4172           Internet Fibre Channel Networking      September 2005


  b) All iFCP traffic between a given remote and local N_PORT pair MUST
     flow through the same iFCP session (see Section 5.2.1).  However,
     iFCP sessions to a given remotely attached N_PORT need not
     traverse the same gateway.

  Coordinating address assignments and managing the flow of traffic is
  implementation specific and outside the scope of this specification.

4.1.  iFCP Transport Services

  N_PORT to N_PORT communications that traverse a TCP/IP network
  require the intervention of the iFCP layer within the gateway.  This
  consists of the following operations:

  a) Execution of the frame-addressing and -mapping functions described
     in Section 4.4.

  b) Encapsulation of fibre channel frames for injection into the
     TCP/IP network and de-encapsulation of fibre channel frames
     received from the TCP/IP network.

  c) Establishment of an iFCP session in response to a PLOGI directed
     to a remote device.

  Section 4.4 discusses the iFCP frame-addressing mechanism and the way
  that it is used to achieve communications transparency between
  N_PORTs.

4.1.1.  Fibre Channel Transport Services Supported by iFCP

  An iFCP fabric supports Class 2 and Class 3 fibre channel transport
  services, as specified in [FC-FS].  An iFCP fabric does not support
  Class 4, Class 6, or Class 1 (dedicated connection) service.  An
  N_PORT discovers the classes of transport services supported by the
  fabric during fabric login.

4.2.  iFCP Device Discovery and Configuration Management

  An iFCP implementation performs device discovery and iFCP fabric
  management through the Internet Storage Name Service defined in
  [ISNS].  Access to an iSNS server is required to perform the
  following functions:

  a) Emulate the services provided by the fibre channel name server
     described in Section 3.3.1, including a mechanism for
     asynchronously notifying an N_PORT of changes in the iFCP fabric
     configuration.




Monia, et al.               Standards Track                    [Page 21]

RFC 4172           Internet Fibre Channel Networking      September 2005


  b) Aggregate gateways into iFCP fabrics for interoperation.

  c) Segment an iFCP fabric into fibre channel zones through the
     definition and management of device discovery scopes, referred to
     as 'discovery domains'.

  d) Store and distribute security policies, as described in Section
     10.2.9.

  e) Implementation of the fibre channel broadcast mechanism.

4.3.  iFCP Fabric Properties

  A collection of iFCP gateways may be configured for interoperation as
  either a bounded or an unbounded iFCP fabric.

  Gateways in a bounded iFCP fabric operate in address transparent
  mode, as described in Section 4.5.  In this mode, the scope of a
  fibre channel N_PORT address is fabric-wide and is derived from
  domain IDs issued by the iSNS server from a common pool.  As
  discussed in Section 4.3.2, the maximum number of domain IDs allowed
  by the fibre channel limits the configuration of a bounded iFCP
  fabric.

  Gateways in an unbounded iFCP fabric operate in address translation
  mode as described in Section 4.6.  In this mode, the scope of an
  N_PORT address is local to a gateway region.  For fibre channel
  traffic between regions, the translation of frame-embedded N_PORT
  addresses is performed by the gateway.  As discussed below, the
  number of switch elements and gateways in an unbounded iFCP fabric
  may exceed the limits of a conventional fibre channel fabric.

  All iFCP gateways MUST support unbounded iFCP fabrics.  Support for
  bounded iFCP fabrics is OPTIONAL.

  The decision to support bounded iFCP fabrics in a gateway
  implementation depends on the address transparency, configuration
  scalability, and fault tolerance considerations given in the
  following sections.

4.3.1.  Address Transparency

  Although iFCP gateways in an unbounded fabric will convert N_PORT
  addresses in the frame header and payload of standard link service
  messages, a gateway cannot convert such addresses in the payload of
  vendor- or user-specific fibre channel frame traffic.





Monia, et al.               Standards Track                    [Page 22]

RFC 4172           Internet Fibre Channel Networking      September 2005


  Consequently, although both bounded and unbounded iFCP fabrics
  support standards-compliant FC-4 protocol implementations and link
  services used by mainstream fibre channel applications, a bounded
  iFCP fabric may also support vendor- or user-specific protocol and
  link service implementations that carry N_PORT IDs in the frame
  payload.

4.3.2.  Configuration Scalability

  The scalability limits of a bounded fabric configuration are a
  consequence of the fibre channel address allocation policy discussed
  in Section 3.7.1.  As noted, a bounded iFCP fabric using this address
  allocation scheme is limited to a combined total of 239 gateways and
  fibre channel switch elements.  As the system expands, the network
  may grow to include many switch elements and gateways, each of which
  controls a small number of devices.  In this case, the limitation in
  switch and gateway count may become a barrier to extending and fully
  integrating the storage network.

  Since N_PORT fibre channel addresses in an unbounded iFCP fabric are
  not fabric-wide, the limits imposed by fibre channel address
  allocation only apply within the gateway region.  Across regions, the
  number of iFCP gateways, fibre channel devices, and switch elements
  that may be internetworked are not constrained by these limits.  In
  exchange for improved scalability, however, implementations must
  consider the incremental overhead of address conversion, as well as
  the address transparency issues discussed in Section 4.3.1.

4.3.3.  Fault Tolerance

  In a bounded iFCP fabric, address reassignment caused by a fault or
  reconfiguration, such as the addition of a new gateway region, may
  cascade to other regions, causing fabric-wide disruption as new
  N_PORT addresses are assigned.  Furthermore, before a new gateway can
  be merged into the fabric, its iSNS server must be slaved to the iSNS
  server in the bounded fabric to centralize the issuance of domain
  IDs.  In an unbounded iFCP fabric, coordinating the iSNS databases
  requires only that the iSNS servers exchange client attributes with
  one another.

  A bounded iFCP fabric also has an increased dependency on the
  availability of the iSNS server, which must act as the central
  address assignment authority.  If connectivity with the server is
  lost, new DOMAIN_ID values cannot be automatically allocated as
  gateways and fibre channel switch elements are added.






Monia, et al.               Standards Track                    [Page 23]

RFC 4172           Internet Fibre Channel Networking      September 2005


4.4.  The iFCP N_PORT Address Model

  This section discusses iFCP extensions to the fibre channel
  addressing model of Section 3.7.1, which are required for the
  transparent routing of frames between locally and remotely attached
  N_PORTs.

  In the iFCP protocol, an N_PORT is represented by the following
  addresses:

  a) A 24-bit N_PORT ID.  The fibre channel N_PORT address of a locally
     attached device.  Depending on the gateway addressing mode, the
     scope is local either to a region or to a bounded iFCP fabric.  In
     either mode, communications between N_PORTs in the same gateway
     region use the N_PORT ID.

  b) A 24-bit N_PORT alias.  The fibre channel N_PORT address assigned
     by each gateway operating in address translation mode to identify
     a remotely attached N_PORT.  Frame traffic is intercepted by an
     iFCP gateway and directed to a remotely attached N_PORT by means
     of the N_PORT alias.  The address assigned by each gateway is
     unique within the scope of the gateway region.

  c) An N_PORT network address.  A tuple consisting of the gateway IP
     address, TCP port number, and N_PORT ID.  The N_PORT network
     address identifies the source and destination N_PORTs for fibre
     channel traffic on the IP network.

  To provide transparent communications between a remote and local
  N_PORT, a gateway MUST maintain an iFCP session descriptor (see
  Section 5.2.2.2) reflecting the association between the fibre channel
  address representing the remote N_PORT and the remote device's N_PORT
  network address.  To establish this association, the iFCP gateway
  assigns and manages fibre channel N_PORT fabric addresses as
  described in the following paragraphs.

  In an iFCP fabric, the iFCP gateway performs the address assignment
  and frame routing functions of an FC switch element.  Unlike an FC
  switch, however, an iFCP gateway must also direct frames to external
  devices attached to remote gateways on the IP network.

  In order to be transparent to FC devices, the gateway must deliver
  such frames using only the 24-bit destination address in the frame
  header.  By exploiting its control of address allocation and access
  to frame traffic entering or leaving the gateway region, the gateway
  is able to achieve the necessary transparency.





Monia, et al.               Standards Track                    [Page 24]

RFC 4172           Internet Fibre Channel Networking      September 2005


  N_PORT addresses within a gateway region may be allocated in one of
  two ways:

  a) Address Translation Mode - A mode of N_PORT address assignment in
     which the scope of an N_PORT fibre channel address is unique to
     the gateway region.  The address of a remote device is represented
     in that gateway region by its gateway-assigned N_PORT alias.

  b) Address Transparent Mode - A mode of N_PORT address assignment in
     which the scope of an N_PORT fibre channel address is unique
     across the set of gateway regions comprising a bounded iFCP
     fabric.

  In address transparent mode, gateways within a bounded fabric
  cooperate in the assignment of addresses to locally attached N_PORTs.
  Each gateway in control of a region is responsible for obtaining and
  distributing unique domain IDs from the address assignment authority,
  as described in Section 4.5.1.  Consequently, within the scope of a
  bounded fabric, the address of each N_PORT is unique.  For that
  reason, gateway-assigned aliases are not required for representing
  remote N_PORTs.

  All iFCP implementations MUST support operations in address
  translation mode.  Implementation of address transparent mode is
  OPTIONAL but, of course, must be provided if bounded iFCP fabric
  configurations are to be supported.

  The mode of gateway operation is settable in an implementation-
  specific manner.  The implementation MUST NOT:

  a) allow the mode to be changed after the gateway begins processing
     fibre channel frame traffic,

  b) permit operation in more than one mode at a time, or

  c) establish an iFCP session with a gateway that is not in the same
     mode.

4.5.  Operation in Address Transparent Mode

  The following considerations and requirements apply to this mode of
  operation:

  a) iFCP gateways in address transparent mode will not interoperate
     with iFCP gateways that are not in address transparent mode.






Monia, et al.               Standards Track                    [Page 25]

RFC 4172           Internet Fibre Channel Networking      September 2005


  b) When interoperating with locally attached fibre channel switch
     elements, each iFCP gateway MUST assume control of DOMAIN_ID
     assignments in accordance with the appropriate fibre channel
     standard or vendor-specific protocol specification.  As described
     in Section 4.5.1, DOMAIN_ID values that are assigned to FC
     switches internal to the gateway region must be issued by the iSNS
     server.

  c) When operating in address transparent Mode, fibre channel address
     translation SHALL NOT take place.

  When operating in address transparent mode, however, the gateway MUST
  establish and maintain the context of each iFCP session in accordance
  with Section 5.2.2.

4.5.1.  Transparent Mode Domain ID Management

  As described in Section 4.5, each gateway and fibre channel switch in
  a bounded iFCP fabric has a unique domain ID.  In a gateway region
  containing fibre channel switch elements, each element obtains a
  domain ID by querying the principal switch as described in [FC-SW2]
  -- in this case, the iFCP gateway itself.  The gateway, in turn,
  obtains domain IDs on demand from the iSNS name server acting as the
  central address allocation authority.  In effect, the iSNS server
  assumes the role of principal switch for the bounded fabric.  In that
  case, the iSNS database contains:

  a) The definition for one or more bounded iFCP fabrics, and

  b) For each bounded fabric, a worldwide-unique name identifying each
     gateway in the fabric.  A gateway in address transparent mode MUST
     reside in one, and only one, bounded fabric.

  As the Principal Switch within the gateway region, an iFCP gateway in
  address transparent mode SHALL obtain domain IDs for use in the
  gateway region by issuing the appropriate iSNS query, using its
  worldwide name.

4.5.2.  Incompatibility with Address Translation Mode

  Except for the session control frames specified in Section 6, iFCP
  gateways in address transparent mode SHALL NOT originate or accept
  frames that do not have the TRP bit set to one in the iFCP flags
  field of the encapsulation header (see Section 5.3.1).  The iFCP
  gateway SHALL immediately terminate all iFCP sessions with the iFCP
  gateway from which it receives such frames.





Monia, et al.               Standards Track                    [Page 26]

RFC 4172           Internet Fibre Channel Networking      September 2005


4.6.  Operation in Address Translation Mode

  This section describes the process for managing the assignment of
  addresses within a gateway region that is part of an unbounded iFCP
  fabric, including the modification of FC frame addresses embedded in
  the frame header for frames sent and received from remotely attached
  N_PORTs.

  As described in Section 4.4, the scope of N_PORT addresses in this
  mode is local to the gateway region.  A principal switch within the
  gateway region, possibly the iFCP gateway itself, oversees the
  assignment of such addresses, in accordance with the rules specified
  in [FC-FS] and [FC-FLA].

  The assignment of N_PORT addresses to locally attached devices is
  controlled by the switch element to which the device is connected.

  The assignment of N_PORT addresses for remotely attached devices is
  controlled by the gateway by which the remote device is accessed.  In
  this case, the gateway MUST assign a locally significant N_PORT alias
  to be used in place of the N_PORT ID assigned by the remote gateway.
  The N_PORT alias is assigned during device discovery, as described in
  Section 5.2.2.1.

  To perform address conversion and to enable the appropriate routing,
  the gateway MUST establish an iFCP session and generate the
  information required to map each N_PORT alias to the appropriate
  TCP/IP connection context and N_PORT ID of the remotely accessed
  N_PORT.  These mappings are created and updated by means specified in
  Section 5.2.2.2.  As described in that section, the required mapping
  information is represented by the iFCP session descriptor reproduced
  in Figure 8.

                     +-----------------------+
                     |TCP Connection Context |
                     +-----------------------+
                     |  Local N_PORT ID      |
                     +-----------------------+
                     |  Remote N_PORT ID     |
                     +-----------------------+
                     |  Remote N_PORT Alias  |
                     +-----------------------+

     Figure 8. iFCP Session Descriptor (from Section 5.2.2.2)







Monia, et al.               Standards Track                    [Page 27]

RFC 4172           Internet Fibre Channel Networking      September 2005


  Except for frames comprising special link service messages (see
  Section 7.2), outbound frames are encapsulated and sent without
  modification.  Address translation is deferred until receipt from the
  IP network, as specified in Section 4.6.1.

4.6.1.  Inbound Frame Address Translation

  For inbound frames received from the IP network, the receiving
  gateway SHALL reference the session descriptor to fill in the D_ID
  field with the destination N_PORT ID and the S_ID field with the
  N_PORT alias it assigned.  The translation process for inbound frames
  is shown in Figure 9.

       Network Format of Inbound Frame
  +--------------------------------------------+            iFCP
  |          FC Encapsulation Header           |           Session
  +--------------------------------------------+           Descriptor
  |            SOF Delimiter Word              |              |
  +========+===================================+              V
  |        |         D_ID Field                |     +--------+-----+
  +--------+-----------------------------------+     | Lookup source|
  |        |         S_ID Field                |     | N_PORT Alias |
  +--------+-----------------------------------+     | and          |
  |        Control Information, Payload,       |     | destination  |
  |        and FC CRC                          |     | N_PORT ID    |
  |                                            |     +--------+-----+
  |                                            |              |
  |                                            |              |
  +============================================+              |
  |         EOF Delimiter Word                 |              |
  +--------------------------------------------+              |
                                                              |
                                                              |
  Frame after Address Translation and De-encapsulation        |
  +--------+-----------------------------------+              |
  |        |  Destination N_PORT ID            |<-------------+
  +--------+-----------------------------------+              |
  |        |  Source N_PORT Alias              |<-------------+
  +--------+-----------------------------------+
  |                                            |
  |        Control information, Payload,       |
  |        and FC CRC                          |
  +--------------------------------------------+

           Figure 9. Inbound Frame Address Translation






Monia, et al.               Standards Track                    [Page 28]

RFC 4172           Internet Fibre Channel Networking      September 2005


  The receiving gateway SHALL consider the contents of the S_ID and
  D_ID fields to be undefined when received.  After replacing these
  fields, the gateway MUST recalculate the FC CRC.

4.6.2.  Incompatibility with Address Transparent Mode

  iFCP gateways in address translation mode SHALL NOT originate or
  accept frames that have the TRP bit set to one in the iFCP flags
  field of the encapsulation header.  The iFCP gateway SHALL
  immediately abort all iFCP sessions with the iFCP gateway from which
  it receives frames such as those described in Section 5.2.3.

5.  iFCP Protocol

5.1.  Overview

5.1.1.  iFCP Transport Services

  The main function of the iFCP protocol layer is to transport fibre
  channel frame images between locally and remotely attached N_PORTs.

  When transporting frames to a remote N_PORT, the iFCP layer
  encapsulates and routes the fibre channel frames comprising each
  fibre channel Information Unit via a predetermined TCP connection for
  transport across the IP network.

  When receiving fibre channel frame images from the IP network, the
  iFCP layer de-encapsulates and delivers each frame to the appropriate
  N_PORT.

  The iFCP layer processes the following types of traffic:

  a) FC-4 frame images associated with a fibre channel application
     protocol.

  b) FC-2 frames comprising fibre channel link service requests and
     responses.

  c) Fibre channel broadcast frames.

  d) iFCP control messages required to set up, manage, or terminate an
     iFCP session.

  For FC-4 N_PORT traffic and most FC-2 messages, the iFCP layer never
  interprets the contents of the frame payload.

  iFCP does interpret and process iFCP control messages and certain
  link service messages, as described in Section 5.1.2.



Monia, et al.               Standards Track                    [Page 29]

RFC 4172           Internet Fibre Channel Networking      September 2005


5.1.2.  iFCP Support for Link Services

  iFCP must intervene in the processing of those fibre channel link
  service messages that contain N_PORT addresses in the message payload
  or that require other special handling, such as an N_PORT login
  request (PLOGI).

  In the former case, an iFCP gateway operating in address translation
  mode MUST supplement the payload with additional information that
  enables the receiving gateway to convert such embedded N_PORT
  addresses to its frame of reference.

  For out bound fibre channel frames comprising such a link service,
  the iFCP layer creates the supplemental information based on frame
  content, modifies the frame payload, and then transmits the resulting
  fibre channel frame with supplemental data through the appropriate
  TCP connection.

  For incoming iFCP frames containing supplemented fibre channel link
  service frames, iFCP must interpret the frame, including any
  supplemental information, modify the frame content, and forward the
  resulting frame to the destination N_PORT for further processing.

  Section 7.1 describes the processing of these link service messages
  in detail.

5.2.  TCP Stream Transport of iFCP Frames

5.2.1.  iFCP Session Model

  An iFCP session consists of the pair of N_PORTs comprising the
  session endpoints joined by a single TCP/IP connection.  No more than
  one iFCP session SHALL exist between a given pair of N_PORTs.

  An N_PORT is identified by its network address, consisting of:

  a) the N_PORT ID assigned by the gateway to which the N_PORT is
     locally attached, and

  b) the iFCP Portal address, consisting of its IP address and TCP port
     number.

  Because only one iFCP session may exist between a pair of N_PORTs,
  the iFCP session is uniquely identified by the network addresses of
  the session end points.

  TCP connections that may be used for iFCP sessions between pairs of
  iFCP portals are either "bound" or "unbound".  An unbound connection



Monia, et al.               Standards Track                    [Page 30]

RFC 4172           Internet Fibre Channel Networking      September 2005


  is a TCP connection that is not actively supporting an iFCP session.
  A gateway implementation MAY establish a pool of unbound connections
  to reduce the session setup time.  Such pre-existing TCP connections
  between iFCP Portals remain unbound and uncommitted until allocated
  to an iFCP session through a CBIND message (see Section 6.1).

  When the iFCP layer creates an iFCP session, it may select an
  existing unbound TCP connection or establish a new TCP connection and
  send the CBIND message down that TCP connection.  This allocates the
  TCP connection to that iFCP session.

5.2.2.  iFCP Session Management

  This section describes the protocols and data structures required to
  establish and terminate an iFCP session.

5.2.2.1.  The Remote N_PORT Descriptor

  In order to establish an iFCP session, an iFCP gateway MUST maintain
  information allowing it to locate a remotely attached N_PORT.  For
  explanatory purposes, such information is assumed to reside in a
  descriptor with the format shown in Figure 10.

                   +--------------------------------+
                   |  N_PORT Worldwide Unique Name  |
                   +--------------------------------+
                   |  iFCP Portal Address           |
                   +--------------------------------+
                   |  N_PORT ID of Remote N_PORT    |
                   +--------------------------------+
                   |  N_PORT Alias                  |
                   +--------------------------------+

                   Figure 10. Remote N_PORT Descriptor

  Each descriptor aggregates the following information about a remotely
  attached N_PORT:

     N_PORT Worldwide Unique Name -- 64-bit N_PORT worldwide name as
     specified in [FC-FS].  A Remote N_PORT descriptor is uniquely
     identified by this parameter.

     iFCP Portal Address -- The IP address and TCP port number
     referenced when creation of the TCP connection associated with an
     iFCP session is requested.

     N_PORT ID --  N_PORT fibre channel address assigned to the remote
     device by the remote iFCP gateway.



Monia, et al.               Standards Track                    [Page 31]

RFC 4172           Internet Fibre Channel Networking      September 2005


     N_PORT Alias -- N_PORT fibre channel address assigned to the
     remote device by the 'local' iFCP gateway when it operates in
     address translation mode.

  An iFCP gateway SHALL have one and only one descriptor for each
  remote N_PORT it accesses.  If a descriptor does not exist, one SHALL
  be created using the information returned by an iSNS name server
  query.  Such queries may result from:

  a) a fibre channel Name Server request originated by a locally
     attached N_PORT (see Sections 3.5 and 9.3), or

  b) a CBIND request received from a remote fibre channel device (see
     Section 5.2.2.2).

  When creating a descriptor in response to an incoming CBIND request,
  the iFCP gateway SHALL perform an iSNS name server query using the
  worldwide port name of the remote N_PORT in the SOURCE N_PORT NAME
  field within the CBIND payload.  The descriptor SHALL be filled in
  using the query results.

  After creating the descriptor, a gateway operating in address
  translation mode SHALL create and add the 24-bit N_PORT alias.

5.2.2.1.1.  Updating a Remote N_PORT Descriptor

  A Remote N_PORT descriptor SHALL only be updated as the result of an
  iSNS query to obtain information for the specified worldwide port
  name or from information returned by an iSNS state change
  notification.  Following such an update, a new N_PORT alias SHALL NOT
  be assigned.

  Before such an update, the contents of a descriptor may have become
  stale because of an event that invalidated or triggered a change in
  the N_PORT network address of the remote device, such as a fabric
  reconfiguration or the device's removal or replacement.

  A collateral effect of such an event is that a fibre channel device
  that has been added or whose N_PORT ID has changed will have no
  active N_PORT logins.  Consequently, FC-4 traffic directed to such an
  N_PORT, because of a stale descriptor, will be rejected or discarded.

  Once the originating N_PORT learns of the reconfiguration, usually
  through the name server state change notification mechanism,
  information returned in the notification or the subsequent name
  server lookup needed to reestablish the iFCP session will
  automatically purge such stale data from the gateway.




Monia, et al.               Standards Track                    [Page 32]

RFC 4172           Internet Fibre Channel Networking      September 2005


5.2.2.1.2.  Deleting a Remote N_PORT Descriptor

  Deleting a remote N_PORT descriptor is equivalent to freeing up the
  corresponding N_PORT alias for reuse.  Consequently, the descriptor
  MUST NOT be deleted while there are any iFCP sessions that reference
  the remote N_PORT.

  Descriptors eligible for deletion should be removed based on a last
  in, first out policy.

5.2.2.2.  Creating an iFCP Session

  An iFCP session may be in one of the following states:

     OPEN  --  The session state in which fibre channel frame images
     may be sent and received.

     OPEN PENDING -- The session state after a gateway has issued a
     CBIND request but no response has yet been received.  No fibre
     channel frames may be sent.

  The session may be initiated in response to a PLOGI ELS (see Section
  7.3.1.7) or for any other implementation-specific reason.

  The gateway SHALL create the iFCP session as follows:

  a) Locate the remote N_PORT descriptor corresponding to the session
     end point.  If the session is created in order to forward a fibre
     channel frame, then the session endpoint may be obtained by
     referencing the remote N_PORT alias contained in the frame header
     D_ID field.  If no descriptor exists, an iFCP session SHALL NOT be
     created.

  b) Allocate a TCP connection to the gateway to which the remote
     N_PORT is locally attached.  An implementation may use an existing
     connection in the Unbound state, or a new connection may be
     created and placed in the Unbound state.

     When a connection is created, the IP address and TCP Port number
     SHALL be obtained by referencing the remote N_PORT descriptor as
     specified in Section 5.2.2.1.

  c) If the TCP connection cannot be allocated or cannot be created due
     to limited resources, the gateway SHALL terminate session
     creation.






Monia, et al.               Standards Track                    [Page 33]

RFC 4172           Internet Fibre Channel Networking      September 2005


  d) If the TCP connection is aborted for any reason before the iFCP
     session enters the OPEN state, the gateway SHALL respond in
     accordance with Section 5.2.3 and MAY terminate the attempt to
     create a session or MAY try to establish the TCP connection again.

  e) The gateway SHALL then issue a CBIND session control message (see
     Section 6.1) and place the session in the OPEN PENDING state.

  f) If a CBIND response is returned with a status other than "Success"
     or "iFCP session already exists", the session SHALL be terminated,
     and the TCP connection returned to the Unbound state.

  g) A CBIND STATUS of "iFCP session already exists" indicates that the
     remote gateway has concurrently initiated a CBIND request to
     create an iFCP session between the same pair of N_PORTs.  A
     gateway receiving such a response SHALL terminate this attempt and
     process the incoming CBIND request in accordance with Section
     5.2.2.3.

  h) In response to a CBIND STATUS of "Success", the gateway SHALL
     place the session in the OPEN state.

  Once the session is placed in the OPEN state, an iFCP session
  descriptor SHALL be created, containing the information shown in
  Figure 11:

                       +-----------------------+
                       |TCP Connection Context |
                       +-----------------------+
                       |  Local N_PORT ID      |
                       +-----------------------+
                       |  Remote N_PORT ID     |
                       +-----------------------+
                       |  Remote N_PORT Alias  |
                       +-----------------------+

                    Figure 11. iFCP Session Descriptor

     TCP Connection Context -- Information required to identify the TCP
     connection associated with the iFCP session.

     Local N_PORT ID --  N_PORT ID of the locally attached fibre
     channel device.

     Remote N_PORT ID -- N_PORT ID assigned to the remote device by the
     remote gateway.





Monia, et al.               Standards Track                    [Page 34]

RFC 4172           Internet Fibre Channel Networking      September 2005


     Remote N_PORT Alias -- Alias assigned to the remote N_PORT by the
     local gateway when it operates in address translation mode.  If in
     this mode, the gateway SHALL copy this parameter from the Remote
     N_PORT descriptor.  Otherwise, it is not filled in.

5.2.2.3.  Responding to a CBIND Request

  The gateway receiving a CBIND request SHALL respond as follows:

  a) If the receiver has a duplicate iFCP session in the OPEN PENDING
     state, then the receiving gateway SHALL compare the Source N_PORT
     Name in the incoming CBIND payload with the Destination N_PORT
     Name.

  b) If the Source N_PORT Name is greater, the receiver SHALL issue a
     CBIND response of "Success" and SHALL place the session in the
     OPEN state.

  c) If the Source N_PORT Name is less, the receiver shall issue a
     CBIND RESPONSE of Failed - N_PORT session already exists.  The
     state of the receiver-initiated iFCP session SHALL BE unchanged.

  d) If there is no duplicate iFCP session in the OPEN PENDING state,
     the receiving gateway SHALL issue a CBIND response.  If a status
     of Success is returned, the receiving gateway SHALL create the
     iFCP session and place it in the OPEN state.  An iFCP session
     descriptor SHALL be created as described in Section 5.2.2.2.

  e) If a remote N_PORT descriptor does not exist, one SHALL be created
     and filled in as described in Section 5.2.2.1.

5.2.2.4.  Monitoring iFCP Connectivity

  During extended periods of inactivity, an iFCP session may be
  terminated due to a hardware failure within the gateway or through
  loss of TCP/IP connectivity.  The latter may occur when the session
  traverses a stateful intermediate device, such as a NA(P)T box or
  firewall, that detects and purges connections it believes are unused.

  To test session liveness, expedite the detection of connectivity
  failures, and avoid spontaneous connection termination, an iFCP
  gateway may maintain a low level of session activity and monitor the
  session by requesting that the remote gateway periodically transmit
  the LTEST message described in Section 6.3.  All iFCP gateways SHALL
  support liveness testing as described in this specification.






Monia, et al.               Standards Track                    [Page 35]

RFC 4172           Internet Fibre Channel Networking      September 2005


  A gateway requests the LTEST heartbeat by specifying a non-zero value
  for the LIVENESS TEST INTERVAL in the CBIND request or response
  message as described in Section 6.1.  If both gateways seek to
  monitor liveness, each must set the LIVENESS TEST INTERVAL in the
  CBIND request or response.

  Upon receiving such a request, the gateway providing the heartbeat
  SHALL transmit LTEST messages at the specified interval.  The first
  message SHALL be sent as soon as the iFCP session enters the OPEN
  state.  LTEST messages SHALL NOT be sent when the iFCP session is not
  in the OPEN state.

  An iFCP session SHALL be terminated as described in Section 5.2.3 if:

  a) the contents of the LTEST message are incorrect, or

  b) an LTEST message is not received within twice the specified
     interval or the iFCP session has been quiescent for longer than
     twice the specified interval.

  The gateway to receive the LTEST message SHALL measure the interval
  for the first expected LTEST message from when the session is placed
  in the OPEN state.  Thereafter, the interval SHALL be measured
  relative to the last LTEST message received.

  To maximize liveness test coverage, LTEST messages SHOULD flow
  through all the gateway components used to enter and retrieve fibre
  channel frames from the IP network, including the mechanisms for
  encapsulating and de-encapsulating fibre channel frames.

  In addition to monitoring a session, information in the LTEST message
  encapsulation header may also be used to compute an estimate of
  network propagation delay, as described in Section 8.2.1.  However,
  the propagation delay limit SHALL NOT be enforced for LTEST traffic.

5.2.2.5.  Use of TCP Features and Settings

  This section describes ground rules for the use of TCP features in an
  iFCP session.  The core TCP protocol is defined in [RFC793].  TCP
  implementation requirements and guidelines are specified in
  [RFC1122].










Monia, et al.               Standards Track                    [Page 36]

RFC 4172           Internet Fibre Channel Networking      September 2005


  +-----------+------------+--------------+------------+------------+
  | Feature   | Applicable |  RFC         |  Peer-Wise | Requirement|
  |           | RFCs       |  Status      |  Agreement | Level      |
  |           |            |              |  Required? |            |
  +===========+============+==============+============+============+
  | Keep Alive| [RFC1122]  |  None        |  No        | Should not |
  |           |(discussion)|              |            | use        |
  +-----------+------------+--------------+------------+------------+
  | Tiny      | [RFC896]   |  Standard    |  No        | Should not |
  | Segment   |            |              |            | use        |
  | Avoidance |            |              |            |            |
  | (Nagle)   |            |              |            |            |
  +-----------+------------+--------------+------------+------------+
  | Window    | [RFC1323]  |  Proposed    |  No        | Should use |
  | Scale     |            |  Standard    |            |            |
  +-----------+------------+--------------+------------+------------+
  | Wrapped   | [RFC1323]  |  Proposed    |  No        | SHOULD use |
  | Sequence  |            |  Standard    |            |            |
  | Protection|            |              |            |            |
  | (PAWS)    |            |              |            |            |
  +-----------+------------+--------------+------------+------------+

                Table 1. Usage of Optional TCP Features

  The following sections describe these options in greater detail.

5.2.2.5.1.  Keep Alive

  Keep Alive speeds the detection and cleanup of dysfunctional TCP
  connections by sending traffic when a connection would otherwise be
  idle.  The issues are discussed in [RFC1122].

  In order to test the device more comprehensively, fibre channel
  applications, such as storage, may implement an equivalent keep alive
  function at the FC-4 level.  Alternatively, periodic liveness test
  messages may be issued as described in Section 5.2.2.4.  Because of
  these more comprehensive end-to-end mechanisms and the considerations
  described in [RFC1122], keep alive at the transport layer should not
  be implemented.

5.2.2.5.2.  'Tiny' Segment Avoidance (Nagle)

  The Nagle algorithm described in [RFC896] is designed to avoid the
  overhead of small segments by delaying transmission in order to
  agglomerate transfer requests into a large segment.  In iFCP, such
  small transfers often contain I/O requests.  The transmission delay
  of the Nagle algorithm may decrease I/O throughput.  Therefore, the
  Nagle algorithm should not be used.



Monia, et al.               Standards Track                    [Page 37]

RFC 4172           Internet Fibre Channel Networking      September 2005


5.2.2.5.3.  Window Scale

  Window scaling, as specified in [RFC1323], allows full use of links
  with large bandwidth - delay products and should be supported by an
  iFCP implementation.

5.2.2.5.4.  Wrapped Sequence Protection (PAWS)

  TCP segments are identified with 32-bit sequence numbers.  In
  networks with large bandwidth - delay products, it is possible for
  more than one TCP segment with the same sequence number to be in
  flight.  In iFCP, receipt of such a sequence out of order may cause
  out-of-order frame delivery or data corruption.  Consequently, this
  feature SHOULD be supported as described in [RFC1323].





































Monia, et al.               Standards Track                    [Page 38]

RFC 4172           Internet Fibre Channel Networking      September 2005


5.2.3.  Terminating iFCP Sessions

  iFCP sessions SHALL be terminated in response to one of the events in
  Table 2:

  +-------------------------------------------+---------------------+
  |                Event                      |     iFCP Sessions   |
  |                                           |     to Terminate    |
  +===========================================+=====================+
  | PLOGI terminated with LS_RJT response     | Peer N_PORT         |
  +-------------------------------------------+---------------------+
  | State change notification indicating      | All iFCP Sessions   |
  | N_PORT removal or reconfiguration.        | from the            |
  |                                           | reconfigured N_PORT |
  +-------------------------------------------+---------------------+
  | LOGO ACC response from peer N_PORT        | Peer N_PORT         |
  +-------------------------------------------+---------------------+
  | ACC response to LOGO ELS sent to F_PORT   | All iFCP sessions   |
  | server (D_ID = 0xFF-FF-FE) (fabric        | from the originating|
  | logout)                                   | N_PORT              |
  +-------------------------------------------+---------------------+
  | Implicit N_PORT LOGO as defined in        | All iFCP sessions   |
  | [FC-FS]                                   | from the N_PORT     |
  |                                           | logged out          |
  +-------------------------------------------+---------------------+
  | LTEST Message Error (see Section 5.2.2.4) | Peer N_PORT         |
  +-------------------------------------------+---------------------+
  | Non fatal encapsulation error as          | Peer N_PORT         |
  | specified in Section 5.3.3                |                     |
  +-------------------------------------------+---------------------+
  | Failure of the TCP connection associated  | Peer N_PORT         |
  | with the iFCP session                     |                     |
  +-------------------------------------------+---------------------+
  | Receipt of an UNBIND session control      | Peer N_PORT         |
  | message                                   |                     |
  +-------------------------------------------+---------------------+
  | Gateway enters the Unsynchronized state   | All iFCP sessions   |
  | (see Section 8.2.1)                       |                     |
  +-------------------------------------------+---------------------+
  | Gateway detects incorrect address mode    | All iFCP sessions   |
  | to peer gateway(see Section 4.6.2)        | with peer gateway   |
  +-------------------------------------------+---------------------+

                  Table 2. Session Termination Events







Monia, et al.               Standards Track                    [Page 39]

RFC 4172           Internet Fibre Channel Networking      September 2005


  If a session is being terminated due to an incorrect address mode
  with the peer gateway, the TCP connection SHALL be aborted by means
  of a connection reset (RST) without performing an UNBIND.  Otherwise,
  if the TCP connection is still open following the event, the gateway
  SHALL shut down the connection as follows:

  a) Stop sending fibre channel frames over the TCP connection.

  b) Discard all incoming traffic, except for an UNBIND session control
     message.

  c) If an UNBIND message is received at any time, return a response in
     accordance with Section 6.2.

  d) If session termination was not triggered by an UNBIND message,
     issue the UNBIND session control message, as described in Section
     6.2.

  e) If the UNBIND message completes with a status of Success, the TCP
     connection MAY remain open at the discretion of either gateway and
     may be kept in a pool of unbound connections in order to speed up
     the creation of a new iFCP session.

     If the UNBIND fails for any reason, the TCP connection MUST be
     terminated.  In this case, the connection SHOULD be aborted with a
     connection reset (RST).

  For each terminated session, the session descriptor SHALL be deleted.
  If a session was terminated by an event other than an implicit LOGO
  or a LOGO ACC response, the gateway shall issue a LOGO to the locally
  attached N_PORT on behalf of the remote N_PORT.

  To recover resources, either gateway may spontaneously close an
  unbound TCP connection at any time.  If a gateway terminates a
  connection with a TCP close operation, the peer gateway MUST respond
  by executing a TCP close.

5.3.  Fibre Channel Frame Encapsulation

  This section describes the iFCP encapsulation of fibre channel
  frames.  The encapsulation complies with the common encapsulation
  format defined in [ENCAP], portions of which are included here for
  convenience.








Monia, et al.               Standards Track                    [Page 40]

RFC 4172           Internet Fibre Channel Networking      September 2005


  The format of an encapsulated frame is shown below:

                    +--------------------+
                    |       Header       |
                    +--------------------+-----+
                    |        SOF         |   f |
                    +--------------------+ F r |
                    |  FC frame content  | C a |
                    +--------------------+   m |
                    |        EOF         |   e |
                    +--------------------+-----+

                  Figure 12. Encapsulation Format

  The encapsulation consists of a 7-word header, an SOF delimiter word,
  the FC frame (including the fibre channel CRC), and an EOF delimiter
  word.  The header and delimiter formats are described in the
  following sections.

5.3.1.  Encapsulation Header Format

  W|------------------------------Bit------------------------------|
  o|                                                               |
  r|                    1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3|
  d|0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1|
   +---------------+---------------+---------------+---------------+
  0|   Protocol#   |    Version    |  -Protocol#   |   -Version    |
   +---------------+---------------+---------------+---------------+
  1|                  Reserved (must be zero)                      |
   +---------------+---------------+---------------+---------------+
  2| LS_COMMAND_ACC|  iFCP Flags   |     SOF       |      EOF      |
   +-----------+---+---------------+-----------+---+---------------+
  3|   Flags   |   Frame Length    |   -Flags  |   -Frame Length   |
   +-----------+-------------------+-----------+-------------------+
  4|                      Time Stamp [integer]                     |
   +---------------------------------------------------------------+
  5|                      Time Stamp [fraction]                    |
   +---------------------------------------------------------------+
  6|                              CRC                              |
   +---------------------------------------------------------------+

                Figure 13. Encapsulation Header Format

  Common Encapsulation Fields:

  Protocol#            IANA-assigned protocol number identifying the
                       protocol using the encapsulation.  For iFCP, the
                       value assigned by [ENCAP] is 2.



Monia, et al.               Standards Track                    [Page 41]

RFC 4172           Internet Fibre Channel Networking      September 2005


  Version              Encapsulation version, as specified in [ENCAP].

  -Protocol#           Ones complement of the Protocol#.

  -Version             Ones complement of the version.

  Flags                Encapsulation flags (see 5.3.1.1).

  Frame Length         Contains the length of the entire FC
                       Encapsulated frame, including the FC
                       Encapsulation Header and the FC frame (including
                       SOF and EOF words) in units of 32-bit words.

  -Flags               Ones complement of the Flags field.

  -Frame Length        Ones complement of the Frame Length field.

  Time Stamp [integer] Integer component of the frame time stamp, as
                       specified in [ENCAP].

  Time Stamp           Fractional component of the time stamp,
  [fraction]           as specified in [ENCAP].

  CRC                  Header CRC.  MUST be valid for iFCP.

  The time stamp fields are used to enforce the limit on the lifetime
  of a fibre channel frame as described in Section 8.2.1.

  iFCP-Specific Fields:

  LS_COMMAND_ACC       For a special link service ACC response to be
                       processed by iFCP, the LS_COMMAND_ACC field
                       SHALL contain a copy of bits 0 through 7 of the
                       LS_COMMAND to which the ACC applies.  Otherwise,
                       the LS_COMMAND_ACC field SHALL be set to zero.

  iFCP Flags           iFCP-specific flags (see below).

  SOF                  Copy of the SOF delimiter encoding (see Section
                       5.3.2).

  EOF                  Copy of the EOF delimiter encoding (see Section
                       5.3.2).








Monia, et al.               Standards Track                    [Page 42]

RFC 4172           Internet Fibre Channel Networking      September 2005


  The iFCP flags word has the following format:

       |------------------------Bit----------------------------|
       |                                                       |
       |   8      9     10     11     12     13     14    15   |
       +------+------+------+------+------+------+------+------+
       |             Reserved             | SES  | TRP  |  SPC |
       +------+------+------+------+------+------+------+------+

                      Figure 14. iFCP Flags Word

  iFCP Flags:

  SES         1 = Session control frame (TRP and SPC MUST be 0)

  TRP         1 = Address transparent mode enabled

              0 = Address translation mode enabled

  SPC         1 = Frame is part of a link service message requiring
                  special processing by iFCP prior to forwarding to the
                  destination N_PORT.

5.3.1.1.  Common Encapsulation Flags

  The iFCP usage of the common encapsulation flags defined in [ENCAP]
  is shown in Figure 15:

        |------------------------Bit--------------------------|
        |                                                     |
        |    0        1        2        3        4        5   |
        +--------------------------------------------+--------+
        |                  Reserved                  |  CRCV  |
        +--------------------------------------------+--------+

              Figure 15. iFCP Common Encapsulation Flags

  For iFCP, the CRC field MUST be valid, and CRCV MUST be set to one.













Monia, et al.               Standards Track                    [Page 43]

RFC 4172           Internet Fibre Channel Networking      September 2005


5.3.2.  SOF and EOF Delimiter Fields

  The format of the delimiter fields is shown below.

  W|------------------------------Bit------------------------------|
  o|                                                               |
  r|                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3|
  d|0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1|
   +---------------+---------------+---------------+---------------+
  0|      SOF      |      SOF      |     -SOF      |     -SOF      |
   +---------------+---------------+---------------+---------------+
  1|                                                               |
   +-----                   FC frame content                  -----+
   |                                                               |
   +---------------+---------------+---------------+---------------+
  n|      EOF      |      EOF      |     -EOF      |     -EOF      |
   +---------------+---------------+---------------+---------------+

               Figure 16. FC Frame Encapsulation Format

  SOF (bits 0-7 and bits 8-15 in word 0):  iFCP uses the following
  subset of the SOF fields specified in [ENCAP].  For convenience,
  these are reproduced in Table 3.  The authoritative encodings should
  be obtained from [ENCAP].

                          +-------+----------+
                          |  FC   |          |
                          |  SOF  | SOF Code |
                          +-------+----------+
                          | SOFi2 |   0x2D   |
                          | SOFn2 |   0x35   |
                          | SOFi3 |   0x2E   |
                          | SOFn3 |   0x36   |
                          +-------+----------+

      Table 3. Translation of FC SOF Values to SOF Field Contents

  -SOF (bits 16-23 and 24-31 in word 0): The -SOF fields contain the
  ones complement the value in the SOF fields.

  EOF (bits 0-7 and 8-15 in word n):  iFCP uses the following subset of
  EOF fields specified in [ENCAP].  For convenience, these are
  reproduced in Table 4.  The authoritative encodings should be
  obtained from [ENCAP].







Monia, et al.               Standards Track                    [Page 44]

RFC 4172           Internet Fibre Channel Networking      September 2005


                          +-------+----------+
                          |  FC   |          |
                          |  EOF  | EOF Code |
                          +-------+----------+
                          | EOFn  |   0x41   |
                          | EOFt  |   0x42   |
                          +-------+----------+

      Table 4. Translation of FC EOF Values to EOF Field Contents

  -EOF (bits 16-23 and 24-31 in word n): The -EOF fields contain the
  ones complement the value in the EOF fields.

  iFCP implementations SHALL place a copy of the SOF and EOF delimiter
  codes in the appropriate header fields.

5.3.3.  Frame Encapsulation

  A fibre channel Frame to be encapsulated MUST first be validated as
  described in [FC-FS].  Any frames received from a locally attached
  fibre channel device that do not pass the validity tests in [FC-FS]
  SHALL be discarded by the gateway.

  If the frame is a PLOGI ELS, the creation of an iFCP session, as
  described in Section 7.3.1.7, may precede encapsulation.  Once the
  session has been created, frame encapsulation SHALL proceed as
  follows.

  The S_ID and D_ID fields in the frame header SHALL be referenced to
  look up the iFCP session descriptor (see Section 5.2.2.2).  If no
  iFCP session descriptor exists, the frame SHALL be discarded.

  Frame types submitted for encapsulation and forwarding on the IP
  network SHALL have one of the SOF delimiters in Table 3 and an EOF
  delimiter from Table 4.  Other valid frame types MUST be processed
  internally by the gateway as specified in the appropriate fibre
  channel specification.

  If operating in address translation mode and processing a special
  link service message requiring the inclusion of supplemental data,
  the gateway SHALL format the frame payload and add the supplemental
  information specified in Section 7.1.  The gateway SHALL then
  calculate a new FC CRC on the reformatted frame.

  Otherwise, the frame contents SHALL NOT be modified and the gateway
  MAY encapsulate and transmit the frame image without recalculating
  the FC CRC.




Monia, et al.               Standards Track                    [Page 45]

RFC 4172           Internet Fibre Channel Networking      September 2005


  The frame originator MUST then create and fill in the header and the
  SOF and EOF delimiter words, as specified in Sections 5.3.1 and
  5.3.2.

5.3.4.  Frame De-encapsulation

  The receiving gateway SHALL perform de-encapsulation as follows:

  Upon receiving the encapsulated frame, the gateway SHALL check the
  header CRC.  If the header CRC is valid, the receiving gateway SHALL
  check the iFCP flags field.  If one of the error conditions in Table
  5 is detected, the gateway SHALL handle the error as specified in
  Section 5.2.3.

     +------------------------------+-------------------------+
     |      Condition               |      Error Type         |
     +==============================+=========================+
     | Header CRC Invalid           | Encapsulation error     |
     +------------------------------+-------------------------+
     | SES = 1, TRP or SPC not 0    | Encapsulation error     |
     +------------------------------+-------------------------+
     | SES = 0, TRP set incorrectly | Incorrect address mode  |
     +------------------------------+-------------------------+

                Table 5. Encapsulation Header Errors

  The receiving gateway SHALL then verify the frame propagation delay
  as described in Section 8.2.1.  If the propagation delay is too long,
  the frame SHALL be discarded.  Otherwise, the gateway SHALL check the
  SOF and EOF in the encapsulation header.  A frame SHALL be discarded
  if it has an SOF code that is not in Table 3 or an EOF code that is
  not in Table 4.

  The gateway SHALL then de-encapsulate the frame as follows:

  a) Check the FC CRC and discard the frame if the CRC is invalid.

  b) If operating in address translation mode, replace the S_ID field
     with the N_PORT alias of the frame originator, and the D_ID with
     the N_PORT ID, of the frame recipient.  Both parameters SHALL be
     obtained from the iFCP session descriptor.

  c) If processing a special link service message, replace the frame
     with a copy whose payload has been modified as specified in
     Section 7.1.






Monia, et al.               Standards Track                    [Page 46]

RFC 4172           Internet Fibre Channel Networking      September 2005


  The de-encapsulated frame SHALL then be forwarded to the N_PORT
  specified in the D_ID field.  If the frame contents have been
  modified by the receiving gateway, a new FC CRC SHALL be calculated.

6.  TCP Session Control Messages

  TCP session control messages are used to create and manage an iFCP
  session as described in Section 5.2.2.  They are passed between peer
  iFCP Portals and are only processed within the iFCP layer.

  The message format is based on the fibre channel extended link
  service message template shown below.

   Word
     0<--Bits-->7 8<---------------Bits------------------------>31
    +------------+------------------------------------------------+
   0| R_CTL      |            D_ID [0x00 00 00]                   |
    |[Req = 0x22]| [Destination of extended link Service request] |
    |[Rep = 0x23]|                                                |
    +------------+------------------------------------------------+
   1| CS_CTL     |            S_ID [0x00 00 00]                   |
    | [0x0]      | [Source of extended link service request]      |
    +------------+------------------------------------------------+
   2|TYPE [0x1]  |               F_CTL [0]                        |
    +------------+------------------+-----------------------------+
   3|SEQ_ID      | DF_CTL [0x00]    |          SEQ_CNT [0x00]     |
    |[0x0]       |                  |                             |
    +------------+------------------+-----------------------------+
   4|         OX_ID [0x0000]        |          RX_ID_[0x0000]     |
    +-------------------------------+-----------------------------+
   5|                           Parameter                         |
    |                         [ 00 00 00 00 ]                     |
    +-------------------------------------------------------------+
   6|                        LS_COMMAND                           |
    |                [Session Control Command Code]               |
    +-------------------------------------------------------------+
   7|                                                             |
   .|             Additional Session Control Parameters           |
   .|                      ( if any )                             |
   n|                                                             |
    +=============================================================+
   n|                    Fibre Channel CRC                        |
   +|                                                             |
   1+=============================================================+

            Figure 17. Format of Session Control Message





Monia, et al.               Standards Track                    [Page 47]

RFC 4172           Internet Fibre Channel Networking      September 2005


  The LS_COMMAND value for the response remains the same as that used
  for the request.

  The session control frame is terminated with a fibre channel CRC.
  The frame SHALL be encapsulated and de-encapsulated according to the
  rules specified in Section 5.3.

  The encapsulation header for the link Service frame carrying a
  session control message SHALL be set as follows:

  Encapsulation Header Fields:

     LS_COMMAND_ACC       0

     iFCP Flags           SES = 1

                          TRP = 0

                          INT = 0

     SOF code             SOFi3 encoding (0x2E)

     EOF code             EOFt encoding (0x42)

  The encapsulation time stamp words SHALL be set as described for each
  message type.

  The SOF and EOF delimiter words SHALL be set based on the SOF and EOF
  codes specified above.






















Monia, et al.               Standards Track                    [Page 48]

RFC 4172           Internet Fibre Channel Networking      September 2005


  Table 6 lists the values assigned to byte 0 of the LS_COMMAND field
  for iFCP session control messages.

  +--------------+-------------------------+----------+-------------+
  | LS_COMMAND   |       Function          | Mnemonic | iFCP        |
  | field, byte 0|                         |          | Support     |
  +--------------+-------------------------+----------+-------------+
  |    0xE0      |    Connection Bind      |  CBIND   |  REQUIRED   |
  +--------------+-------------------------+----------+-------------+
  |    0xE4      |    Unbind Connection    |  UNBIND  |  REQUIRED   |
  +--------------+-------------------------+----------+-------------+
  |    0xE5      | Test Connection Liveness|  LTEST   |  REQUIRED   |
  +--------------+-------------------------+----------+-------------+
  | 0x01-0x7F    |    Vendor-Specific      |          |             |
  +--------------+-------------------------+----------+-------------+
  |    0x00      | Reserved -- Unassignable|          |             |
  +--------------+-------------------------+----------+-------------+
  | All other    |    Reserved             |          |             |
  | values       |                         |          |             |
  +--------------+-------------------------+----------+-------------+

       Table 6. Session Control LS_COMMAND Field, Byte 0 Values





























Monia, et al.               Standards Track                    [Page 49]

RFC 4172           Internet Fibre Channel Networking      September 2005


6.1.  Connection Bind (CBIND)

  As described in Section 5.2.2.2, the CBIND message and response are
  used to bind an N_PORT login to a specific TCP connection and
  establish an iFCP session.  In the CBIND request message, the source
  and destination N_PORTs are identified by their worldwide port names.
  The time stamp words in the encapsulation header SHALL be set to zero
  in the request and response message frames.

  The following shows the format of the CBIND request.

     +------+------------+------------+-----------+----------+
     | Word |   Byte 0   |   Byte 1   |   Byte 2  |  Byte 3  |
     +------+------------+------------+-----------+----------+
     | 0    | Cmd = 0xE0 |   0x00     |   0x00    |  0x00    |
     +------+------------+------------+-----------+----------+
     | 1    |  LIVENESS TEST INTERVAL | Addr Mode | iFCP Ver |
     |      |        (Seconds)        |           |          |
     +------+-------------------------+-----------+----------+
     | 2    |                  USER INFO                     |
     +------+------------+------------+-----------+----------+
     | 3    |                                                |
     +------+              SOURCE N_PORT NAME                |
     | 4    |                                                |
     +------+------------------------------------------------+
     | 5    |                                                |
     +------+              DESTINATION N_PORT NAME           |
     | 6    |                                                |
     +------+------------------------------------------------+

  Addr Mode:             The addressing mode of the originating
                         gateway.  0 = Address Translation mode;
                         1 = Address Transparent mode.

  iFCP Ver:              iFCP version number.  SHALL be set to 1.

  LIVENESS TEST          If non-zero, requests that the receiving
  INTERVAL:              gateway transmit an LTEST message at the
                         specified interval in seconds.  If set to
                         zero, LTEST messages SHALL NOT be sent.

  USER INFO:             Contains any data desired by the requestor.
                         This information MUST be echoed by the
                         recipient in the CBIND response message.

  SOURCE N_PORT NAME:    The Worldwide Port Name (WWPN) of the N_PORT
                         locally attached to the gateway originating
                         the CBIND request.



Monia, et al.               Standards Track                    [Page 50]

RFC 4172           Internet Fibre Channel Networking      September 2005


  DESTINATION N_PORT     The Worldwide Port Name (WWPN) of the
  NAME:                  N_PORT locally attached to the gateway
                         receiving the CBIND request.

  The following shows the format of the CBIND response.

        +------+------------+------------+-----------+----------+
        | Word |   Byte 0   |   Byte 1   |   Byte 2  |  Byte 3  |
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0xE0 |   0x00     |   0x00    |  0x00    |
        +------+------------+------------+-----------+----------+
        | 1    |  LIVENESS TEST INTERVAL | Addr Mode | iFCP Ver |
        |      |      (Seconds)          |           |          |
        +------+-------------------------+-----------+----------+
        | 2    |                  USER INFO                     |
        +------+------------+------------+-----------+----------+
        | 3    |                                                |
        +------+               SOURCE N_PORT NAME               |
        | 4    |                                                |
        +------+------------------------------------------------+
        | 5    |                                                |
        +------+              DESTINATION N_PORT NAME           |
        | 6    |                                                |
        +------+-------------------------+----------------------+
        | 7    |        Reserved         |     CBIND Status     |
        +------+-------------------------+----------------------+
        | 8    |        Reserved         |  CONNECTION HANDLE   |
        +------+-------------------------+----------------------+

                          Total Length = 36

  Addr Mode:             The address translation mode of the
                         responding gateway.  0 = Address
                         Translation mode, 1 = Address Transparent
                         mode.

  iFCP Ver:              iFCP version number.  Shall be set to 1.

  LIVENESS TEST          If non-zero, requests that the gateway
  INTERVAL:              receiving the CBIND RESPONSE transmit an
                         LTEST message at the specified interval in
                         seconds.  If zero, LTEST messages SHALL NOT
                         be sent.

  USER INFO:             Echoes the value received in the USER INFO
                         field of the CBIND request message.





Monia, et al.               Standards Track                    [Page 51]

RFC 4172           Internet Fibre Channel Networking      September 2005


  SOURCE N_PORT NAME:    Contains the Worldwide Port Name (WWPN) of
                         the N_PORT locally attached to the gateway
                         issuing the CBIND request.

  DESTINATION N_PORT     Contains the Worldwide Port Name (WWPN) of
  NAME:                  the N_PORT locally attached to the gateway
                         issuing the CBIND response.

  CBIND STATUS:          Indicates success or failure of the CBIND
                         request.  CBIND values are shown below.

  CONNECTION HANDLE:     Contains a value assigned by the gateway to
                         identify the connection.  The connection
                         handle is required when the UNBIND
                         request is issued.

  CBIND Status       Description
  ------------       -----------

      0              Success
    1 - 15           Reserved
      16             Failed - Unspecified Reason
      17             Failed - No such device
      18             Failed - iFCP session already exists
      19             Failed - Lack of resources
      20             Failed - Incompatible address translation mode
      21             Failed - Incorrect protocol version number
      22             Failed - Gateway not Synchronized (see Section
                     8.2)
      Others         Reserved

6.2.  Unbind Connection (UNBIND)

  UNBIND is used to terminate an iFCP session and disassociate the TCP
  connection as described in Section 5.2.3.

  The UNBIND message is transmitted over the connection that is to be
  unbound.  The time stamp words in the encapsulation header shall be
  set to zero in the request and response message frames.












Monia, et al.               Standards Track                    [Page 52]

RFC 4172           Internet Fibre Channel Networking      September 2005


  The following is the format of the UNBIND request message.

        +------+------------+------------+-----------+----------+
        | Word |   Byte 0   |   Byte 1   |   Byte 2  |  Byte 3  |
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0xE4 |   0x00     |   0x00    |  0x00    |
        +------+------------+------------+-----------+----------+
        | 1    |                  USER INFO                     |
        +------+------------+------------+-----------+----------+
        | 2    |       Reserved          |  CONNECTION HANDLE   |
        +------+------------+------------+----------------------+
        | 3    |                  Reserved                      |
        +------+------------+------------+-----------+----------+
        | 4    |                  Reserved                      |
        +------+------------+------------+-----------+----------+

  USER INFO              Contains any data desired by the requestor.
                         This information MUST be echoed by the
                         recipient in the UNBIND response message.

  CONNECTION HANDLE:     Contains the gateway-assigned value from
                         the CBIND request.

  The following shows the format of the UNBIND response message.

        +------+------------+------------+-----------+----------+
        | Word |   Byte 0   |   Byte 1   |   Byte 2  |  Byte 3  |
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0xE4 |   0x00     |   0x00    |  0x00    |
        +------+------------+------------+-----------+----------+
        | 1    |                  USER INFO                     |
        +------+------------+------------+-----------+----------+
        | 2    |       Reserved          |  CONNECTION HANDLE   |
        +------+------------+------------+-----------+----------+
        | 3    |                  Reserved                      |
        +------+------------+------------+-----------+----------+
        | 4    |                  Reserved                      |
        +------+------------+------------+-----------+----------+
        | 5    |         Reserved        |     UNBIND STATUS    |
        +------+------------+------------+-----------+----------+

  USER INFO              Echoes the value received in the USER INFO
                         field of the UNBIND request message.

  CONNECTION HANDLE:     Echoes the CONNECTION HANDLE specified in
                         the UNBIND request message.





Monia, et al.               Standards Track                    [Page 53]

RFC 4172           Internet Fibre Channel Networking      September 2005


  UNBIND STATUS:         Indicates the success or failure of the
                         UNBIND request as follows:

        Unbind Status      Description
        -------------      -----------

                 0         Successful - No other status
              1 - 15       Reserved
                16         Failed - Unspecified Reason
                18         Failed - Connection ID Invalid
              Others       Reserved

6.3.  LTEST -- Test Connection Liveness

  The LTEST message is sent at the interval specified in the CBIND
  request or response payload.  The LTEST encapsulation time stamp
  SHALL be set as described in Section 8.2.1 and may be used by the
  receiver to compute an estimate of propagation delay.  However, the
  propagation delay limit SHALL NOT be enforced.

        +------+------------+------------+-----------+----------+
        | Word |   Byte 0   |   Byte 1   |   Byte 2  |  Byte 3  |
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0xE5 |   0x00     |   0x00    |  0x00    |
        +------+------------+------------+-----------+----------+
        | 1    |  LIVENESS TEST INTERVAL |        Reserved      |
        |      |        (Seconds)        |                      |
        +------+-------------------------+----------------------+
        | 2    |                   COUNT                        |
        +------+------------+------------+-----------+----------+
        | 3    |                                                |
        +------+              SOURCE N_PORT NAME                |
        | 4    |                                                |
        +------+------------------------------------------------+
        | 5    |                                                |
        +------+              DESTINATION N_PORT NAME           |
        | 6    |                                                |
        +------+------------------------------------------------+

  LIVENESS TEST          Copy of the LIVENESS TEST INTERVAL
  INTERVAL:              specified in the CBIND request or reply
                         message.

  COUNT:                 Monotonically increasing value, initialized
                         to 0 and incremented by one for each
                         successive LTEST message.





Monia, et al.               Standards Track                    [Page 54]

RFC 4172           Internet Fibre Channel Networking      September 2005


  SOURCE N_PORT NAME:    Contains a copy of the SOURCE N_PORT NAME
                         specified in the CBIND request.

  DESTINATION N_PORT     Contains a copy of the DESTINATION N_PORT
  NAME:                  NAME specified in the CBIND request.

7.  Fibre Channel Link Services

  Link services provide a set of fibre channel functions that allow a
  port to send control information or request another port to perform a
  specific control function.

  There are three types of link services:

  a) Basic

  b) Extended

  c) ULP-specific (FC-4)

  Each link service message (request and reply) is carried by a fibre
  channel sequence and can be segmented into multiple frames.

  The iFCP layer is responsible for transporting link service messages
  across the IP network.  This includes mapping link service messages
  appropriately from the domain of the fibre channel transport to that
  of the IP network.  This process may require special processing and
  the inclusion of supplemental data by the iFCP layer.

  Each link service MUST be processed according to one of the following
  rules:

  a) Pass-through - The link service message and reply MUST be
     delivered to the receiving N_PORT by the iFCP protocol layer
     without altering the message payload.  The link service message
     and reply are not processed by the iFCP protocol layer.

  b) Special -  Applies to a link service reply or request requiring
     the intervention of the iFCP layer before forwarding to the
     destination N_PORT.  Such messages may contain fibre channel
     addresses in the payload or may require other special processing.

  c) Rejected - When issued by a locally attached N_PORT, the specified
     link service request MUST be rejected by the iFCP gateway.  The
     gateway SHALL return an LS_RJT response with a Reason Code of 0x0B
     (Command Not Supported), and a Reason Code Explanation of 0x0 (No
     Additional Explanation).




Monia, et al.               Standards Track                    [Page 55]

RFC 4172           Internet Fibre Channel Networking      September 2005


  This section describes the processing for special link services,
  including the manner in which supplemental data is added to the
  message payload.

  Appendix A enumerates all link services and the iFCP processing
  policy that applies to each.

7.1.  Special Link Service Messages

  Special link service messages require the intervention of the iFCP
  layer before forwarding to the destination N_PORT.  Such intervention
  is required in order to:

  a) service any link service message that requires special handling,
     such as a PLOGI, and

  b) service any link service message that has an N_PORT address in the
     payload in address translation mode only .

  Unless the link service description specifies otherwise, support for
  each special link service is MANDATORY.

  Such messages SHALL be transmitted in a fibre channel frame with the
  format shown in Figure 18 for extended link services or Figure 19 for
  FC-4 link services.


























Monia, et al.               Standards Track                    [Page 56]

RFC 4172           Internet Fibre Channel Networking      September 2005


   Word
     0<---Bit-->7 8<-------------------------------------------->31
    +------------+------------------------------------------------+
   0| R_CTL      |                     D_ID                       |
    |[Req = 0x22]|[Destination of extended link Service request]  |
    |[Rep = 0x23]|                                               |
    +------------+------------------------------------------------+
   1| CS_CTL     |                     S_ID                       |
    |            | [Source of extended link service request]      |
    +------------+------------------------------------------------+
   2| TYPE       |                     F_CTL                      |
    | [0x01]     |                                                |
    +------------+------------------+-----------------------------+
   3| SEQ_ID     |        DF_CTL    |          SEQ_CNT            |
    +------------+------------------+-----------------------------+
   4|          OX_ID                |             RX_ID           |
    +-------------------------------+-----------------------------+
   5|                         Parameter                           |
    |                      [ 00 00 00 00 ]                        |
    +-------------------------------------------------------------+
   6|                         LS_COMMAND                          |
    |               [Extended Link Service Command Code]          |
    +-------------==----------------------------------------------+
   7|                                                             |
   .|             Additional Service Request Parameters           |
   .|                      ( if any )                             |
   n|                                                             |
    +-------------------------------------------------------------+

         Figure 18. Format of an Extended Link Service Frame





















Monia, et al.               Standards Track                    [Page 57]

RFC 4172           Internet Fibre Channel Networking      September 2005


   Word
     0<---Bit-->7 8<-------------------------------------------->31
    +------------+------------------------------------------------+
   0| R_CTL      |                     D_ID                       |
    |[Req = 0x32]|   [Destination of FC-4 link Service request]   |
    |[Rep = 0x33]|                                                |
    +------------+------------------------------------------------+
   1| CS_CTL     |                     S_ID                       |
    |            |    [Source of FC-4 link service request]       |
    +------------+------------------------------------------------+
   2| TYPE       |                     F_CTL                      |
    | (FC-4      |                                                |
    |  specific) |                                                |
    +------------+------------------+-----------------------------+
   3| SEQ_ID     |        DF_CTL    |          SEQ_CNT            |
    +------------+------------------+-----------------------------+
   4|         OX_ID                 |             RX_ID           |
    +-------------------------------+-----------------------------+
   5|                        Parameter                            |
    |                     [ 00 00 00 00 ]                         |
    +-------------------------------------------------------------+
   6|                        LS_COMMAND                           |
    |               [FC-4 Link Service Command Code]              |
    +-------------------------------------------------------------+
   7|                                                             |
   .|             Additional Service Request Parameters           |
   .|                      ( if any )                             |
   n|                                                             |
    +-------------------------------------------------------------+

           Figure 19. Format of an FC-4 Link Service Frame

7.2.  Link Services Requiring Payload Address Translation

  This section describes the handling for link service frames
  containing N_PORT addresses in the frame payload.  Such addresses
  SHALL only be translated when the gateway is operating in address
  translation mode.  When operating in address transparent mode, these
  addresses SHALL NOT be translated, and such link service messages
  SHALL NOT be sent as special frames unless other processing by the
  iFCP layer is required.

  Supplemental data includes information required by the receiving
  gateway to convert an N_PORT address in the payload to an N_PORT
  address in the receiving gateway's address space.  The following
  rules define the manner in which such supplemental data shall be
  packaged and referenced.




Monia, et al.               Standards Track                    [Page 58]

RFC 4172           Internet Fibre Channel Networking      September 2005


  For an N_PORT address field, the gateway originating the frame MUST
  set the value in the payload to identify the address translation type
  as follows:

     0x00 00 01 - The gateway receiving the frame from the IP network
     MUST replace the contents of the field with the N_PORT alias of
     the frame originator.  This translation type MUST be used when the
     address to be converted is that of the source N_PORT.

     0x00 00 02 - The gateway receiving the frame from the IP network
     MUST replace the contents of the field with the N_PORT ID of the
     destination N_PORT.  This translation type MUST be used when the
     address to be converted is that of the destination N_PORT

     0x00 00 03 - The gateway receiving the frame from the IP network
     MUST reference the specified supplemental data to set the field
     contents.  The supplemental information is the 64-bit worldwide
     identifier of the N_PORT, as set forth in the fibre channel
     specification [FC-FS].  If not otherwise part of the link service
     payload, this information MUST be appended in accordance with the
     applicable link service description.  Unless specified otherwise,
     this translation type SHALL NOT be used if the address to be
     converted corresponds to that of the frame originator or
     recipient.

  Since fibre channel addressing rules prohibit the assignment of
  fabric addresses with a domain ID of 0, the above codes will never
  correspond to valid N_PORT fabric IDs.

  If the sending gateway cannot obtain the worldwide identifier of an
  N_PORT, the gateway SHALL terminate the request with an LS_RJT
  message as described in [FC-FS].  The Reason Code SHALL be set to
  0x07 (protocol error), and the Reason Explanation SHALL be set to
  0x1F (Invalid N_PORT identifier).

  Supplemental data is sent with the link service request or ACC frames
  in one of the following ways:

  a) By appending the necessary data to the end of the link service
     frame.

  b) By extending the sequence with additional frames.

  In the first case, a new frame SHALL be created whose length includes
  the supplemental data.  The procedure for extending the link service
  sequence with additional frames is dependent on the link service
  type.




Monia, et al.               Standards Track                    [Page 59]

RFC 4172           Internet Fibre Channel Networking      September 2005


  For each field requiring address translation, the receiving gateway
  SHALL reference the translation type encoded in the field and replace
  it with the N_PORT address as shown in Table 7.

        +------------------+------------------------------------+
        |    Translation   |          N_PORT Translation        |
        |    Type Code     |                                    |
        +------------------+------------------------------------+
        | 0x00 00 01       | Replace field contents with N_PORT |
        |                  | alias of frame originator.         |
        +------------------+------------------------------------+
        | 0x00 00 02       | Replace field contents with N_PORT |
        |                  | ID of frame recipient.             |
        +------------------+------------------------------------+
        |                  | Lookup N_PORT via iSNS query.      |
        |                  | If locally attached, replace with  |
        | 0x00 00 03       | N_PORT ID.                         |
        |                  | If remotely attached, replace with |
        |                  | N_PORT alias from remote N_PORT.   |
        |                  | descriptor (see Section 5.2.2.1).  |
        +------------------+------------------------------------+

                Table 7. Link Service Address Translation

  For translation type 3, the receiving gateway SHALL obtain the
  information needed to fill in the field in the link service frame
  payload by converting the specified N_PORT worldwide identifier to a
  gateway IP address and N_PORT ID.  This information MUST be obtained
  through an iSNS name server query.  If the query is unsuccessful, the
  gateway SHALL terminate the request with an LS_RJT response message
  as described in [FC-FS].  The Reason Code SHALL be set to 0x07
  (protocol error), and the Reason Explanation SHALL be set to 0x1F
  (Invalid N_PORT identifier).

  After applying the supplemental data, the receiving gateway SHALL
  forward the resulting link service frames to the destination N_PORT
  with the supplemental information removed.














Monia, et al.               Standards Track                    [Page 60]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.  Fibre Channel Link Services Processed by iFCP

  The following Extended and FC-4 Link Service Messages must receive
  special processing.

        Extended Link Service            LS_COMMAND   Mnemonic
        Messages                         ----------   --------
        ----------------------
        Abort Exchange                  0x06 00 00 00 ABTX
        Discover Address                0x52 00 00 00 ADISC
        Discover Address Accept         0x02 00 00 00 ADISC ACC
        FC Address Resolution           0x55 00 00 00 FARP-REPLY
        Protocol Reply
        FC Address Resolution           0x54 00 00 00 FARP-REQ
        Protocol Request
        Logout                          0x05 00 00 00 LOGO
        Port Login                      0x30 00 00 00 PLOGI
        Read Exchange Concise           0x13 00 00 00 REC
        Read Exchange Concise           0x02 00 00 00 REC ACC
        Accept
        Read Exchange Status Block      0x08 00 00 00 RES
        Read Exchange Status Block      0x02 00 00 00 RES ACC
        Accept
        Read Link Error Status          0x0F 00 00 00 RLS
        Block
        Read Sequence Status Block      0x09 00 00 00 RSS
        Reinstate Recovery              0x12 00 00 00 RRQ
        Qualifier
        Request Sequence                0x0A 00 00 00 RSI
        Initiative
        Scan Remote Loop                0x7B 00 00 00 SRL
        Third Party Process Logout      0x24 00 00 00 TPRLO
        Third Party Process Logout      0x02 00 00 00 TPRLO ACC
        Accept

        FC-4 Link Service Messages       LS_COMMAND   Mnemonic
        --------------------------       ----------   --------
        FCP Read Exchange Concise       0x13 00 00 00 FCP REC
        FCP Read Exchange Concise       0x02 00 00 00 FCP REC
        Accept                                        ACC

  Each encapsulated fibre channel frame that is part of a special link
  service MUST have the SPC bit set to one in the iFCP FLAGS field of
  the encapsulation header, as specified in Section 5.3.1.  If an ACC
  link service response requires special processing, the responding
  gateway SHALL place a copy of LS_COMMAND bits 0 through 7, from the





Monia, et al.               Standards Track                    [Page 61]

RFC 4172           Internet Fibre Channel Networking      September 2005


  link service request frame, in the LS_COMMAND_ACC field of the ACC
  encapsulation header.  Supplemental data (if any) MUST be appended as
  described in the following section.

  The format of each special link service message, including
  supplemental data, where applicable, is shown in the following
  sections.  Each description shows the basic format, as specified in
  the applicable FC standard, followed by supplemental data as shown in
  the example below.

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    |                  LS_COMMAND                    |
        +------+------------+------------+-----------+----------+
        | 1    |                                                |
        | .    |                                                |
        | .    |          Link Service Frame Payload            |
        |      |                                                |
        | n    |                                                |
        +======+============+============+===========+==========+
        | n+1  |                                                |
        |  .   |            Supplemental Data                   |
        |  .   |               (if any)                         |
        | n+k  |                                                |
        +======+================================================+

              Figure 20. Special Link Service Frame Payload























Monia, et al.               Standards Track                    [Page 62]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.  Special Extended Link Services

  The following sections define extended link services for which
  special processing is required.

7.3.1.1.  Abort Exchange (ABTX)

     ELS Format:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x6  |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    | RRQ Status |     Exchange Originator S_ID      |
        +------+------------+------------+-----------+----------+
        | 2    |   OX_ID of Tgt exchange | RX_ID of tgt exchange|
        +------+------------+------------+-----------+----------+
        | 3-10 |  Optional association header (32 bytes         |
        +======+============+============+===========+==========+

        Fields Requiring       Translation   Supplemental Data
        Address Translation     Type (see      (type 3 only)
        -------------------    Section 7.2)     ------------
                               -----------

        Exchange Originator        1, 2              N/A
        S_ID

        Other Special Processing:

           None.



















Monia, et al.               Standards Track                    [Page 63]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.2.  Discover Address (ADISC)

     Format of ADISC ELS:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x52 |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    | Reserved   |  Hard address of ELS Originator   |
        +------+------------+------------+-----------+----------+
        | 2-3  |     Port Name of Originator                    |
        +------+------------+------------+-----------+----------+
        | 4-5  |     Node Name of originator                    |
        +------+------------+------------+-----------+----------+
        | 6    |  Rsvd      |  N_PORT ID  of ELS Originator     |
        +======+============+============+===========+==========+

        Fields Requiring       Translation    Supplemental Data
        Address Translation     Type (see       (type 3 only)
        -------------------    Section 7.2)     -------------
                               ------------

        N_PORT ID of ELS            1                N/A
        Originator

        Other Special Processing:

           The Hard Address of the ELS originator SHALL be set to 0.






















Monia, et al.               Standards Track                    [Page 64]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.3.  Discover Address Accept (ADISC ACC)

     Format of ADISC ACC ELS:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x20 |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    | Reserved   |  Hard address of ELS Originator   |
        +------+------------+------------+-----------+----------+
        | 2-3  |     Port Name of Originator                    |
        +------+------------+------------+-----------+----------+
        | 4-5  |     Node Name of originator                    |
        +------+------------+------------+-----------+----------+
        | 6    |  Rsvd      |  N_PORT ID of ELS Originator      |
        +======+============+============+===========+==========+

        Fields Requiring       Translation    Supplemental Data
        Address Translation     Type (see       (type 3 only)
        -------------------    Section 7.2)     -------------
                               ------------

        N_PORT ID of ELS            1                N/A
        Originator

        Other Special Processing:

           The Hard Address of the ELS originator SHALL be set to 0.






















Monia, et al.               Standards Track                    [Page 65]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.4.  FC Address Resolution Protocol Reply (FARP-REPLY)

  The FARP-REPLY ELS is used in conjunction with the FARP-REQ ELS (see
  Section 7.3.1.5) to perform the address resolution services required
  by the FC-VI protocol [FC-VI] and the fibre channel mapping of IP and
  ARP specified in RFC 2625 [RFC2625].

     Format of FARP-REPLY ELS:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x55 |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    | Match Addr |  Requesting N_PORT Identifier     |
        |      | Code Points|                                   |
        +------+------------+------------+-----------+----------+
        | 2    | Responder  |  Responding N_PORT Identifier     |
        |      | Action     |                                   |
        +------+------------+------------+-----------+----------+
        | 3-4  |     Requesting N_PORT Port_Name                |
        +------+------------+------------+-----------+----------+
        | 5-6  |     Requesting N_PORT Node_Name                |
        +------+------------+------------+-----------+----------+
        | 7-8  |     Responding N_PORT Port_Name                |
        +------+------------+------------+-----------+----------+
        | 9-10 |     Responding N_PORT Node_Name                |
        +------+------------+------------+-----------+----------+
        | 11-14|     Requesting N_PORT IP Address               |
        +------+------------+------------+-----------+----------+
        | 15-18|     Responding N_PORT IP Address               |
        +======+============+============+===========+==========+

        Fields Requiring       Translation    Supplemental Data
        Address Translation     Type (see       (type 3 only)
        -------------------    Section 7.2)   -----------------
                               ------------

        Requesting N_PORT           2                N/A
        Identifier

        Responding N_PORT           1                N/A
        Identifier

        Other Special Processing:

           None.




Monia, et al.               Standards Track                    [Page 66]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.5.  FC Address Resolution Protocol Request (FARP-REQ)

  The FARP-REQ ELS is used in conjunction with the FC-VI protocol
  [FC-VI] and IP-to-FC mapping of RFC 2625 [RFC2625] to perform IP and
  FC address resolution in an FC fabric.  The FARP-REQ ELS is usually
  directed to the fabric broadcast server at well-known address
  0xFF-FF-FF for retransmission to all attached N_PORTs.

  Section 9.4 describes the iFCP implementation of FC broadcast server
  functionality in an iFCP fabric.

     Format of FARP_REQ ELS:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x54 |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    | Match Addr |  Requesting N_PORT Identifier     |
        |      | Code Points|                                   |
        +------+------------+------------+-----------+----------+
        | 2    | Responder  |  Responding N_PORT Identifier     |
        |      | Action     |                                   |
        +------+------------+------------+-----------+----------+
        | 3-4  |     Requesting N_PORT Port_Name                |
        +------+------------+------------+-----------+----------+
        | 5-6  |     Requesting N_PORT Node_Name                |
        +------+------------+------------+-----------+----------+
        | 7-8  |     Responding N_PORT Port_Name                |
        +------+------------+------------+-----------+----------+
        | 9-10 |     Responding N_PORT Node_Name                |
        +------+------------+------------+-----------+----------+
        | 11-14|     Requesting N_PORT IP Address               |
        +------+------------+------------+-----------+----------+
        | 15-18|     Responding N_PORT IP Address               |
        +======+============+============+===========+==========+

        Fields Requiring       Translation   Supplemental Data
        Address Translation     Type (see      (type 3 only)
        -------------------    Section 7.2)  -----------------
                               -----------

        Requesting N_PORT           3        Requesting N_PORT
        Identifier                           Port Name

        Responding N_PORT           3        Responding N_PORT
        Identifier                           Port Name




Monia, et al.               Standards Track                    [Page 67]

RFC 4172           Internet Fibre Channel Networking      September 2005


        Other Special Processing:

           None.

7.3.1.6.  Logout (LOGO) and LOGO ACC

     ELS Format:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x5  |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    | Rsvd       |     N_PORT ID being logged out    |
        +------+------------+------------+-----------+----------+
        | 2-3  |  Port name of the LOGO originator (8 bytes)    |
        +======+============+============+===========+==========+

  This ELS SHALL always be sent as a special ELS regardless of the
  translation mode in effect.

        Fields Requiring       Translation   Supplemental Data
        Address Translation     Type (see      (type 3 only)
        -------------------    Section 7.2)   ---------------
                               -----------

        N_PORT ID Being             1               N/A
        Logged Out

        Other Special Processing:

           See Section 5.2.3.

7.3.1.7.  Port Login (PLOGI) and PLOGI ACC

  A PLOGI ELS establishes fibre channel communications between two
  N_PORTs and triggers the creation of an iFCP session if one does not
  exist.

  The PLOGI request and ACC response carry information identifying the
  originating N_PORT, including a specification of its capabilities.
  If the destination N_PORT accepts the login request, it sends an
  Accept response (an ACC frame with PLOGI payload) specifying its
  capabilities.  This exchange establishes the operating environment
  for the two N_PORTs.






Monia, et al.               Standards Track                    [Page 68]

RFC 4172           Internet Fibre Channel Networking      September 2005


  The following figure is duplicated from [FC-FS], and shows the PLOGI
  message format for both the request and Accept (ACC) response.  An
  N_PORT will reject a PLOGI request by transmitting an LS_RJT message
  containing no payload.

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x3  |   0x00     |    0x00   |   0x00   |
        |      | Acc = 0x2  |            |           |          |
        +------+------------+------------+-----------+----------+
        | 1-4  |            Common Service Parameters           |
        +------+------------+------------+-----------+----------+
        | 5-6  |            N_PORT Name                         |
        +------+------------+------------+-----------+----------+
        | 7-8  |            Node Name                           |
        +------+------------+------------+-----------+----------+
        | 9-12 |            Class 1 Service Parameters          |
        +------+------------+------------+-----------+----------+
        |13-17 |            Class 2 Service Parameters          |
        +------+------------+------------+-----------+----------+
        |18-21 |            Class 3 Service Parameters          |
        +------+------------+------------+-----------+----------+
        |22-25 |            Class 4 Service Parameters          |
        +------+------------+------------+-----------+----------+
        |26-29 |            Vendor Version Level                |
        +======+============+============+===========+==========+

           Figure 21. Format of PLOGI Request and ACC Payloads

  Details of the above fields, including common and class-based service
  parameters, can be found in [FC-FS].

  Special Processing

     As specified in Section 5.2.2.2, a PLOGI request addressed to a
     remotely attached N_PORT MUST cause the creation of an iFCP
     session if one does not exist.  Otherwise, the PLOGI and PLOGI ACC
     payloads MUST be passed through without modification to the
     destination N_PORT using the existing iFCP session.  In either
     case, the SPC bit must be set in the frame encapsulation header as
     specified in 5.3.3.

     If the CBIND to create the iFCP session fails, the issuing gateway
     SHALL terminate the PLOGI with an LS_RJT response.  The Reason
     Code and Reason Code Explanation SHALL be selected from Table 8
     based on the CBIND failure status.




Monia, et al.               Standards Track                    [Page 69]

RFC 4172           Internet Fibre Channel Networking      September 2005


     +---------------+-------------------+---------------------+
     | CBIND Failure | LS_RJT Reason     | LS_RJT Reason Code  |
     | Status        | Code              | Explanation         |
     +===============+===================+=====================+
     | Unspecified   | Unable to Perform | No Additional       |
     | Reason (16)   | Command Request   | Explanation (0x00)  |
     |               | (0x09)            |                     |
     +---------------+-------------------+---------------------+
     | No Such       | Unable to Perform | Invalid N_PORT      |
     | Device (17)   | Command Request   | Name (0x0D)         |
     |               | (0x09)            |                     |
     +---------------+-------------------+---------------------+
     | Lack of       | Unable to Perform | Insufficient        |
     | Resources (19)| Command Request   | Resources to Support|
     |               | (0x09)            | Login (0x29)        |
     +---------------+-------------------+---------------------+
     | Incompatible  | Unable to Perform | No Additional       |
     | Address       | Command Request   | Explanation (0x00)  |
     | Translation   | (0x09)            |                     |
     | Mode (20)     |                   |                     |
     +---------------+-------------------+---------------------+
     | Incorrect iFCP| Unable to Perform | No Additional       |
     | Protocol      | Command Request   | Explanation (0x00)  |
     | version Number| (0x09)            |                     |
     | (21)          |                   |                     |
     +---------------+-------------------+---------------------+
     | Gateway Not   | Unable to Perform | No Additional       |
     | Synchronized  | Command Request   | Explanation (0x00)  |
     | (22)          | (0x09)            |                     |
     +---------------+-------------------+---------------------+

          Table 8. PLOGI LS_RJT Status for CBIND Failures



















Monia, et al.               Standards Track                    [Page 70]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.8.  Read Exchange Concise (REC)

     Link Service Request Format:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  |Bits 16-24 |Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x13 |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    | Rsvd       |     Exchange Originator S_ID      |
        +------+------------+------------+-----------+----------+
        | 2    |          OX_ID          |         RX_ID        |
        +======+============+============+===========+==========+
        | 3-4  |Port Name of the Exchange Originator (8 bytes)  |
        |      |   (present only for translation type 3)        |
        +======+============+============+===========+==========+

        Fields Requiring       Translation   Supplemental Data
        Address Translation     Type (see      (type 3 only)
        -------------------    Section 7.2)  -----------------
                               -----------

        Exchange Originator    1, 2, or 3    Port Name of the
        S_ID                                 Exchange Originator

        Other Special Processing:

           None.























Monia, et al.               Standards Track                    [Page 71]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.9.  Read Exchange Concise Accept (REC ACC)

     Format of REC ACC Response:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  |Bits 16-24 |Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Acc = 0x02 |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    |          OX_ID          |         RX_ID        |
        +------+------------+------------+-----------+----------+
        | 2    | Rsvd       | Originator Address Identifier     |
        +------+------------+------------+-----------+----------+
        | 3    | Rsvd       | Responder Address Identifier      |
        +------+------------+------------+-----------+----------+
        | 4    |       FC4VALUE  (FC-4-Dependent Value)         |
        +------+------------+------------+-----------+----------+
        | 5    |       E_STAT (Exchange Status)                 |
        +======+============+============+===========+==========+
        | 6-7  |Port Name of the Exchange Originator (8 bytes)  |
        +======+============+============+===========+==========+
        | 8-9  |Port Name of the Exchange Responder (8 bytes)   |
        +======+============+============+===========+==========+

        Fields Requiring       Translation     Supplemental Data
        Address Translation     Type (see       (type 3 only)
        -------------------    Section 7.2)    ------------------
                               -----------

        Originator Address     1, 2, or 3      Port Name of the
        Identifier                             Exchange Originator

        Responder Address      1, 2, or 3      Port Name of the
        Identifier                             Exchange Responder

  When supplemental data is required, the frame SHALL always be
  extended by 4 words as shown above.  If the translation type for the
  Originator Address Identifier or the Responder Address Identifier is
  1 or 2, the corresponding 8-byte port name SHALL be set to all zeros.

        Other Special Processing:

           None.








Monia, et al.               Standards Track                    [Page 72]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.10.  Read Exchange Status Block (RES)

     ELS Format:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x13 |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    | Rsvd       |     Exchange Originator S_ID      |
        +------+------------+------------+-----------+----------+
        | 2    |          OX_ID          |         RX_ID        |
        +------+------------+------------+-----------+----------+
        | 3-10 |  Association Header (may be optionally req**d)  |
        +======+============+============+===========+==========+
        | 11-12| Port Name of the Exchange Originator (8 bytes) |
        +======+============+============+===========+==========+

        Fields Requiring       Translation     Supplemental Data
        Address Translation     Type (see       (type 3 only)
        -------------------    Section 7.2)    ------------------
                               -----------

        Exchange Originator    1, 2, or 3      Port Name of the
        S_ID                                   Exchange Originator

        Other Special Processing:

           None.






















Monia, et al.               Standards Track                    [Page 73]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.11.  Read Exchange Status Block Accept (RES ACC)

     Format of ELS Accept Response:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Acc = 0x02 |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    |          OX_ID          |         RX_ID        |
        +------+------------+------------+-----------+----------+
        | 2    | Rsvd       | Exchange Originator N_PORT ID     |
        +------+------------+------------+-----------+----------+
        | 3    | Rsvd       | Exchange Responder N_PORT ID      |
        +------+------------+------------+-----------+----------+
        | 4    |          Exchange Status Bits                  |
        +------+------------+------------+-----------+----------+
        | 5    |               Reserved                         |
        +------+------------+------------+-----------+----------+
        | 6-n  |    Service Parameters and Sequence Statuses    |
        |      |    as described in [FC-FS]                     |
        +======+============+============+===========+==========+
        |n+1-  | Port Name of the Exchange Originator (8 bytes) |
        |n+2   |                                                |
        +======+============+============+===========+==========+
        |n+3-  | Port Name of the Exchange Responder (8 bytes)  |
        |n+4   |                                                |
        +======+============+============+===========+==========+

        Fields Requiring       Translation     Supplemental Data
        Address Translation     Type (see        (type 3 only)
        -------------------    Section 7.2)    ------------------
                               -----------

        Exchange Originator    1, 2, or 3      Port Name of the
        N_PORT ID                              Exchange Originator

        Exchange Responder     1, 2, or 3      Port Name of the
        N_PORT ID                              Exchange Responder

  When supplemental data is required, the ELS SHALL be extended by 4
  words as shown above.  If the translation type for the Exchange
  Originator N_PORT ID or the Exchange Responder N_PORT ID is 1 or 2,
  the corresponding 8-byte port name SHALL be set to all zeros.

        Other Special Processing:

           None.



Monia, et al.               Standards Track                    [Page 74]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.12.  Read Link Error Status (RLS)

     ELS Format:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x0F |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    | Rsvd       |     N_PORT Identifier             |
        +======+============+============+===========+==========+
        | 2-3  |           Port Name of the N_PORT (8 bytes)    |
        +======+============+============+===========+==========+

        Fields Requiring       Translation     Supplemental Data
        Address Translation     Type (see       (type 3 only)
        -------------------    Section 7.2)    -----------------
                               -----------

        N_PORT Identifier      1, 2, or 3      Port Name of the
                                               N_PORT

        Other Special Processing:

           None.


























Monia, et al.               Standards Track                    [Page 75]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.13.  Read Sequence Status Block (RSS)

     ELS Format:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x09 |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    | SEQ_ID     |     Exchange Originator S_ID      |
        +------+------------+------------+-----------+----------+
        | 2    |          OX_ID          |         RX_ID        |
        +======+============+============+===========+==========+
        | 3-4  |Port Name of the Exchange Originator (8 bytes)  |
        +======+============+============+===========+==========+

        Fields Requiring       Translation    Supplemental Data
        Address Translation     Type (see        (type 3 only)
        -------------------    Section 7.2)   ------------------
                               -----------

        Exchange Originator    1, 2, or 3     Port Name of the
        S_ID                                  Exchange Originator

        Other Special Processing:

           None.
























Monia, et al.               Standards Track                    [Page 76]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.14.  Reinstate Recovery Qualifier (RRQ)

     ELS Format:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x12 |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    | Rsvd       |     Exchange Originator S_ID      |
        +------+------------+------------+-----------+----------+
        | 2    |          OX_ID          |         RX_ID        |
        +------+------------+------------+-----------+----------+
        | 3-10 |  Association Header (may be optionally req**d)  |
        +======+============+============+===========+==========+

        Fields Requiring       Translation   Supplemental Data
        Address Translation     Type (see      (type 3 only)
        -------------------    Section 7.2)  ------------------
                               -----------

        Exchange Originator      1 or 2             N/A
        S_ID

        Other Special Processing:

            None.
























Monia, et al.               Standards Track                    [Page 77]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.15.  Request Sequence Initiative (RSI)

     ELS Format:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x0A |   0x00     |    0x00   |   0x00   |
        +------+------------+------------+-----------+----------+
        | 1    | Rsvd       |     Exchange Originator S_ID      |
        +------+------------+------------+-----------+----------+
        | 2    |          OX_ID          |         RX_ID        |
        +------+------------+------------+-----------+----------+
        | 3-10 |  Association Header (may be optionally req**d)  |
        +======+============+============+===========+==========+

        Fields Requiring       Translation   Supplemental Data
        Address Translation     Type (see      (type 3 only)
        -------------------    Section 7.2)   ------------------
                               -----------

        Exchange Originator      1 or 2             N/A
        S_ID

        Other Special Processing:

           None.
























Monia, et al.               Standards Track                    [Page 78]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.16.  Scan Remote Loop (SRL)

  SRL allows a remote loop to be scanned to detect changes in the
  device configuration.  Any changes will trigger a fibre channel state
  change notification and subsequent update of the iSNS database.

     ELS Format:

        +------+------------+------------+-----------+----------+
        | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
        +------+------------+------------+-----------+----------+
        | 0    | Cmd = 0x7B |           Reserved                |
        +------+------------+------------+-----------+----------+
        | 1    | Flag       | Address Identifier of the FL_PORT |
        |      |            | (see B.1)                         |
        +======+============+============+===========+==========+
        | 2-3  | Worldwide Name of the Remote FL_PORT           |
        +======+============+============+===========+==========+

        Fields Requiring       Translation   Supplemental Data
        Address Translation     Type (see      (type 3 only)
        -------------------    Section 7.2)  ------------------
                               -----------

        Address Identifier         3         Worldwide Name of
        of the FL_PORT                       the Remote FL_PORT

  Other Special Processing:

     The D_ID field is the address of the Domain Controller associated
     with the remote loop.  The format of the Domain Controller address
     is the hex 'FF FC' || Domain_ID, where Domain_ID is the gateway-
     assigned alias representing the remote gateway or switch element
     being queried.  After translation by the remote gateway, the D_ID
     identifies the gateway or switch element to be scanned within the
     remote gateway region.

     The FLAG field defines the scope of the SRL.  If set to 0, all
     loop port interfaces on the given switch element or gateway are
     scanned.  If set to one, the loop port interface on the gateway or
     switch element to be scanned MUST be specified in bits 8 through
     31.

     If the Flag field is zero, the SRL request SHALL NOT be sent as a
     special ELS.






Monia, et al.               Standards Track                    [Page 79]

RFC 4172           Internet Fibre Channel Networking      September 2005


     If the Domain_ID represents a remote switch or gateway and an iFCP
     session to the remote Domain Controller does not exist, the
     requesting gateway SHALL create the iFCP session.

7.3.1.17.  Third Party Process Logout (TPRLO)

  TPRLO provides a mechanism for an N_PORT (third party) to remove one
  or more process login sessions that exist between the destination
  N_PORT and other N_PORTs specified in the command.  This command
  includes one or more TPRLO LOGOUT PARAMETER PAGEs, each of which,
  when combined with the destination N_PORT, identifies a process login
  to be terminated by the command.

  +--------+------------+--------------------+----------------------+
  | Word   | Bits 0-7   |     Bits 8-15      |     Bits 16 - 31     |
  +--------+------------+--------------------+----------------------+
  | 0      | Cmd = 0x24 | Page Length (0x10) |    Payload Length    |
  +--------+------------+--------------------+----------------------+
  | 1      |          TPRLO Logout Parameter Page 0                 |
  +--------+--------------------------------------------------------+
  | 5      |          TPRLO Logout Parameter Page 1                 |
  +--------+--------------------------------------------------------+
                           ....
  +--------+--------------------------------------------------------+
  |(4*n)+1 |          TPRLO Logout Parameter Page n                 |
  +--------+--------------------------------------------------------+

                    Figure 22. Format of TPRLO ELS

  Each TPRLO parameter page contains parameters identifying one or more
  image pairs and may be associated with a single FC-4 protocol type
  that is common to all FC-4 protocol types between the specified image
  pair or global to all specified image pairs.  The format of a TPRLO
  page requiring address translation is shown in Figure 23.  Additional
  information on TPRLO can be found in [FC-FS].
















Monia, et al.               Standards Track                    [Page 80]

RFC 4172           Internet Fibre Channel Networking      September 2005


     +------+------------+------------+-----------+----------+
     | Word | Bits 0-7   | Bits 8-15  |       Bits 16-31     |
     +------+------------+------------+-----------+----------+
     | 0    | TYPE Code  | TYPE CODE  |                      |
     |      | or         | EXTENSION  |      TPRLO Flags     |
     |      | Common SVC |            |                      |
     |      | Parameters |            |                      |
     +------+------------+------------+-----------+----------+
     | 1    |         Third Party Process Associator         |
     +------+------------+------------+-----------+----------+
     | 2    |         Responder Process Associator           |
     +------+------------+------------+-----------+----------+
     | 3    | Reserved   | Third Party Originator N_PORT ID  |
     +======+============+============+===========+==========+
     | 4-5  | Worldwide Name of Third Party Originator       |
     |      | N_PORT                                         |
     +------+------------------------------------------------+

       Figure 23. Format of an Augmented TPRLO Parameter Page

  The TPRLO flags that affect supplemented ELS processing are as
  follows:

  Bit 18:   Third party Originator N_PORT Validity.  When set to one,
            this bit indicates that word 3, bits 8-31 (Third Party
            Originator N_PORT ID), are meaningful.

  Bit 19:   Global Process logout.  When set to one, this bit indicates
            that all image pairs for all N_PORTs of the specified FC-4
            protocol shall be invalidated.  When the value of this bit
            is one, only one logout parameter page is permitted in the
            TPRLO payload.

  If bit 18 has a value of zero and bit 19 has a value of one in the
  TPRLO flags field, then the ELS SHALL NOT be sent as a special ELS.

  Otherwise, the originating gateway SHALL process the ELS as follows:

  a) The first word of the TPRLO payload SHALL NOT be modified.

  b) Each TPRLO parameter page shall be extended by two words as shown
     in Figure 23.









Monia, et al.               Standards Track                    [Page 81]

RFC 4172           Internet Fibre Channel Networking      September 2005


  c) If word 0, bit 18 (Third Party Originator N_PORT ID validity), in
     the TPRLO flags field has a value of one, then the sender shall
     place the worldwide port name of the fibre channel device's N_PORT
     in the extension words.  The N_PORT ID SHALL be set to 3.
     Otherwise, the contents of the extension words and the Third Party
     Originator N_PORT ID SHALL be set to zero.

  d) The ELS originator SHALL set the SPC bit in the encapsulation
     header of each augmented frame comprising the ELS (see Section
     5.3.1).

  e) If the ELS contains a single TPRLO parameter page, the originator
     SHALL increase the frame length as necessary to include the
     extended parameter page.

  f) If the ELS to be augmented contains multiple TPRLO parameter
     pages, the FC frames created to contain the augmented ELS payload
     SHALL NOT exceed the maximum frame size that can be accepted by
     the destination N_PORT.

     Each fibre channel frame SHALL contain an integer number of
     extended TPRLO parameter pages.  The maximum number of extended
     TPRLO parameter pages in a frame SHALL be limited to the number
     that can be held without exceeding the above upper limit.  New
     frames resulting from the extension of the TPRLO pages to include
     the supplemental data SHALL be created by extending the SEQ_CNT in
     the fibre channel frame header.  The SEQ_ID SHALL NOT be modified.

  The gateway receiving the augmented TPRLO ELS SHALL generate ELS
  frames to be sent to the destination N_PORT by copying word 0 of the
  ELS payload and processing each augmented parameter page as follows:

  a) If word 0, bit 18, has a value of one, create a parameter page by
     copying words 0 through 2 of the augmented parameter page.  The
     Third Party Originator N_PORT ID in word 3 shall be generated by
     referencing the supplemental data as described in Section 7.2.

  b) If word 0, bit 18, has a value of zero, create a parameter page by
     copying words 0 through 3 of the augmented parameter page.

  The size of each frame to be sent to the destination N_PORT MUST NOT
  exceed the maximum frame size that the destination N_PORT can accept.
  The sequence identifier in each frame header SHALL be copied from the
  augmented ELS, and the sequence count SHALL be monotonically
  increasing.






Monia, et al.               Standards Track                    [Page 82]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.1.18.  Third Party Logout Accept (TPRLO ACC)

  The format of the TPRLO ACC frame is shown in Figure 24.

  +--------+------------+--------------------+----------------------+
  | Word   |  Bits 0-7  |     Bits 8-15      |     Bits 16 - 31     |
  +--------+------------+--------------------+----------------------+
  | 0      | Cmd = 0x2  | Page Length (0x10) |    Payload Length    |
  +--------+------------+--------------------+----------------------+
  | 1      |          TPRLO Logout Parameter Page 0                 |
  +--------+--------------------------------------------------------+
  | 5      |          TPRLO Logout Parameter Page 1                 |
  +--------+--------------------------------------------------------+
                           ....
  +--------+--------------------------------------------------------+
  |(4*n)+1 |          TPRLO Logout Parameter Page n                 |
  +--------+--------------------------------------------------------+

                 Figure 24. Format of TPRLO ACC ELS

  The format of the parameter page and rules for parameter page
  augmentation are as specified in Section 7.3.1.17.

7.3.2.  Special FC-4 Link Services

  The following sections define FC-4 link services for which special
  processing is required.

7.3.2.1.  FC-4 Link Services Defined by FCP

  The format of FC-4 link service frames defined by FCP can be found in
  [FCP-2].

7.3.2.1.1.  FCP Read Exchange Concise (FCP REC)

  The payload format for this link service is identical to the REC
  extended link service specified in Section 7.3.1.8 and SHALL be
  processed as described in that section.  The FC-4 version will become
  obsolete in [FCP-2].  However, in order to support devices
  implemented against early revisions of FCP-2, an iFCP gateway MUST
  support both versions.










Monia, et al.               Standards Track                    [Page 83]

RFC 4172           Internet Fibre Channel Networking      September 2005


7.3.2.1.2.  FCP Read Exchange Concise Accept (FCP REC ACC)

  The payload format for this link service is identical to the REC ACC
  extended link service specified in Section 7.3.1.9 and SHALL be
  processed as described in that section.  The FC-4 version will become
  obsolete in [FCP-2].  However, in order to support devices
  implemented against earlier revisions of FCP-2, an iFCP gateway MUST
  support both versions.

7.4.  FLOGI Service Parameters Supported by an iFCP Gateway

  The FLOGI ELS is issued by an N_PORT that wishes to access the fabric
  transport services.

  The format of the FLOGI request and FLOGI ACC payloads are identical
  to the PLOGI request and ACC payloads described in Section 7.3.1.7.

     +------+------------+------------+-----------+----------+
     | Word | Bits 0-7   | Bits 8-15  |Bits 16-24 |Bits 25-31|
     +------+------------+------------+-----------+----------+
     | 0    | Cmd = 0x4  |   0x00     |    0x00   |   0x00   |
     |      | Acc = 0x2  |            |           |          |
     +------+------------+------------+-----------+----------+
     | 1-4  |            Common Service Parameters           |
     +------+------------+------------+-----------+----------+
     | 5-6  |            N_PORT Name                         |
     +------+------------+------------+-----------+----------+
     | 7-8  |            Node Name                           |
     +------+------------+------------+-----------+----------+
     | 9-12 |            Class 1 Service Parameters          |
     +------+------------+------------+-----------+----------+
     |13-17 |            Class 2 Service Parameters          |
     +------+------------+------------+-----------+----------+
     |18-21 |            Class 3 Service Parameters          |
     +------+------------+------------+-----------+----------+
     |22-25 |            Class 4 Service Parameters          |
     +------+------------+------------+-----------+----------+
     |26-29 |            Vendor Version Level                |
     +======+============+============+===========+==========+

          Figure 25. FLOGI Request and ACC Payload Format

  A full description of each parameter is given in [FC-FS].

  This section tabulates the protocol-dependent service parameters
  supported by a fabric port attached to an iFCP gateway.





Monia, et al.               Standards Track                    [Page 84]

RFC 4172           Internet Fibre Channel Networking      September 2005


  The service parameters carried in the payload of an FLOGI extended
  link service request MUST be set in accordance with Table 9.

     +-----------------------------------------+---------------+
     |                                         | Fabric Login  |
     |          Service Parameter              |    Class      |
     |                                         +---+---+---+---+
     |                                         | 1 | 2 | 3 | 4 |
     +-----------------------------------------+---+---+---+---+
     | Class Validity                          | n | M | M | n |
     +-----------------------------------------+---+---+---+---+
     | Service Options                         |               |
     +-----------------------------------------+---+---+---+---+
     |   Intermix Mode                         | n | n | n | n |
     +-----------------------------------------+---+---+---+---+
     |   Stacked Connect-Requests              | n | n | n | n |
     +-----------------------------------------+---+---+---+---+
     |   Sequential Delivery                   | n | M | M | n |
     +-----------------------------------------+---+---+---+---+
     |   Dedicated Simplex                     | n | n | n | n |
     +-----------------------------------------+---+---+---+---+
     |   Camp On                               | n | n | n | n |
     +-----------------------------------------+---+---+---+---+
     |   Buffered Class 1                      | n | n | n | n |
     +-----------------------------------------+---+---+---+---+
     |   Priority                              | n | n | n | n |
     +-----------------------------------------+---+---+---+---+
     | Initiator/Recipient Control             |               |
     +-----------------------------------------+---+---+---+---+
     |   Clock Synchronization ELS Capable     | n | n | n | n |
     +-----------------------------------------+---+---+---+---+

             Table 9. FLOGI Service Parameter Settings

  Notes:

     1) "n" indicates a parameter or capability that is not supported
        by the iFCP protocol.

     2) "M" indicates an applicable parameter that MUST be supported by
        an iFCP gateway.










Monia, et al.               Standards Track                    [Page 85]

RFC 4172           Internet Fibre Channel Networking      September 2005


8.  iFCP Error Detection

8.1.  Overview

  This section specifies provisions for error detection and recovery in
  addition to those in [FC-FS], which continue to be available in the
  iFCP network environment.

8.2.  Stale Frame Prevention

  Recovery from fibre channel protocol error conditions requires that
  frames associated with a failed or aborted exchange drain from the
  fabric before exchange resources can be safely reused.

  Since a fibre channel fabric may not preserve frame order, there is
  no deterministic way to purge such frames.  Instead, the fabric
  guarantees that frame the lifetime will not exceed a specific limit
  (R_A_TOV).

  R_A_TOV is defined in [FC-FS] as "the maximum transit time within a
  fabric to guarantee that a lost frame will never emerge from the
  fabric".  For example, a value of 2 x R_A_TOV is the minimum time
  that the originator of an ELS request or FC-4 link service request
  must wait for the response to that request.  The fibre channel
  default value for R_A_TOV is 10 seconds.

  An iFCP gateway SHALL actively enforce limits on R_A_TOV as described
  in Section 8.2.1.

8.2.1.  Enforcing R_A_TOV Limits

  The R_A_TOV limit on frame lifetimes SHALL be enforced by means of
  the time stamp in the encapsulation header (see Section 5.3.1) as
  described in this section.

  The budget for R_A_TOV SHOULD include allowances for the propagation
  delay through the gateway regions of the sending and receiving
  N_PORTs, plus the propagation delay through the IP network.  This
  latter component is referred to in this specification as IP_TOV.

  IP_TOV should be set well below the value of R_A_TOV specified for
  the iFCP fabric and should be stored in the iSNS server.  IP_TOV
  should be set to 50 percent of R_A_TOV.

  The following paragraphs describe the requirements for synchronizing
  gateway time bases and the rules for measuring and enforcing
  propagation delay limits.




Monia, et al.               Standards Track                    [Page 86]

RFC 4172           Internet Fibre Channel Networking      September 2005


  The protocol for synchronizing a gateway time base is SNTP [RFC2030].
  In order to ensure that all gateways are time aligned, a gateway
  SHOULD obtain the address of an SNTP-compatible time server via an
  iSNS query.  If multiple time server addresses are returned by the
  query, the servers must be synchronized and the gateway may use any
  server in the list.  Alternatively, the server may return a multicast
  group address in support of operation in Anycast mode.
  Implementation of Anycast mode is as specified in [RFC2030],
  including the precautions defined in that document.  Multicast mode
  SHOULD NOT be used.

  An SNTP server may use any one of the time reference sources listed
  in [RFC2030].  The resolution of the time reference MUST be 125
  milliseconds or better.

  Stability of the SNTP server and gateway time bases should be 100 ppm
  or better.

  With regard to its time base, the gateway is in either the
  Synchronized or Unsynchronized state.

  When in the synchronized state, the gateway SHALL

  a) set the time stamp field for each outgoing frame in accordance
     with the gateway's internal time base;

  b) check the time stamp field of each incoming frame, following
     validation of the encapsulation header CRC, as described in
     Section 5.3.4;

  c) if the incoming frame has a time stamp of 0,0 and is not one of
     the session control frames that require a 0,0 time stamp (see
     Section 6), the frame SHALL be discarded;

  d) if the incoming frame has a non-zero time stamp, the receiving
     gateway SHALL compute the absolute value of the time in flight and
     SHALL compare it against the value of IP_TOV specified for the IP
     fabric;

  e) if the result in step (d) exceeds IP_TOV, the encapsulated frame
     shall be discarded.  Otherwise, the frame shall be de-encapsulated
     as described in Section 5.3.4.

  A gateway SHALL enter the Synchronized state upon receiving a
  successful response to an SNTP query.






Monia, et al.               Standards Track                    [Page 87]

RFC 4172           Internet Fibre Channel Networking      September 2005


  A gateway shall enter the Unsynchronized state:

  a) upon power-up and before successful completion of an SNTP query,
     and

  b) whenever the gateway looses contact with the SNTP server, such
     that the gateway's time base may no longer be in alignment with
     that of the SNTP server.  The criterion for determining loss of
     contact is implementation specific.

  Following loss of contact, it is recommended that the gateway enter
  the Unsynchronized state when the estimated time base drift relative
  to the SNTP reference is greater than ten percent of the IP_TOV
  limit.  (Assuming that all timers have an accuracy of 100 ppm and
  IP_TOV equals 5 seconds, the maximum allowable loss of contact
  duration would be about 42 minutes.)

  As the result of a transition from the Synchronized to the
  Unsynchronized state, a gateway MUST abort all iFCP sessions as
  described in Section 5.2.3.  While in the Unsynchronized state, a
  gateway SHALL NOT permit the creation of new iFCP sessions.

9.  Fabric Services Supported by an iFCP Implementation

  An iFCP gateway implementation MUST support the following fabric
  services:

      N_PORT ID Value           Description             Section
      ---------------           -----------             -------
      0xFF-FF-FE             F_PORT Server              9.1

      0xFF-FF-FD             Fabric Controller          9.2

      0xFF-FF-FC             Directory/Name Server      9.3

  In addition, an iFCP gateway MAY support the FC broadcast server
  functionality described in Section 9.4.

9.1.  F_PORT Server

  The F_PORT server SHALL support the FLOGI ELS, as described in
  Section 7.4, as well as the following ELSs specified in [FC-FS]:

  a) Request for fabric service parameters (FDISC).

  b) Request for the link error status (RLS).

  c) Read Fabric Timeout Values (RTV).



Monia, et al.               Standards Track                    [Page 88]

RFC 4172           Internet Fibre Channel Networking      September 2005


9.2.  Fabric Controller

  The Fabric Controller SHALL support the following ELSs as specified
  in [FC-FS]:

  a) State Change Notification (SCN).

  b) Registered State Change Notification (RSCN).

  c) State Change Registration (SCR).

9.3.  Directory/Name Server

  The Directory/Name server provides a registration service allowing an
  N_PORT to record or query the database for information about other
  N_PORTs.  The services are defined in [FC-GS3].  The queries are
  issued as FC-4 transactions using the FC-CT command transport
  protocol specified in [FC-GS3].

  In iFCP, each name server request MUST be translated to the
  appropriate iSNS query defined in [ISNS].  The definitions of name
  server objects are specified in [FC-GS3].

  The name server SHALL support record and query operations for
  directory subtype 0x02 (Name Server) and 0x03 (IP Address Server) and
  MAY support the FC-4 specific services as defined in [FC-GS3].

9.4.  Broadcast Server

  Fibre channel frames are broadcast throughout the fabric by
  addressing them to the fibre channel broadcast server at the well-
  known fibre channel address 0xFF-FF-FF.  The broadcast server then
  replicates and delivers the frame to each attached N_PORT in all
  zones to which the originating device belongs.  Only class 3
  (datagram) service is supported.

  In an iFCP system, the fibre channel broadcast function is emulated
  by means of a two-tier architecture comprising the following
  elements:

  a) A local broadcast server residing in each iFCP gateway.  The local
     server distributes broadcast traffic within the gateway region and
     forwards outgoing broadcast traffic to a global server for
     distribution throughout the iFCP fabric.

  b) A global broadcast server that re-distributes broadcast traffic to
     the local server in each participating gateway.




Monia, et al.               Standards Track                    [Page 89]

RFC 4172           Internet Fibre Channel Networking      September 2005


  c) An iSNS discovery domain defining the scope over which broadcast
     traffic is propagated.  The discovery domain is populated with a
     global broadcast server and the set of local servers it supports.

  The local and global broadcast servers are logical iFCP devices that
  communicate using the iFCP protocol.  The servers have an N_PORT
  Network Address consisting of an iFCP portal address and an N_PORT ID
  set to the well-known fibre channel address of the FC broadcast
  server (0xFF-FF-FF).

  As noted above, an N_PORT originates a broadcast by directing frame
  traffic to the fibre channel broadcast server.  The gateway-resident
  local server distributes a copy of the frame locally and forwards a
  copy to the global server for redistribution to the local servers on
  other gateways.  The global server MUST NOT echo a broadcast frame to
  the originating local server.

9.4.1.  Establishing the Broadcast Configuration

  The broadcast configuration is managed with facilities provided by
  the iSNS server by the following means:

  a) An iSNS discovery domain is created and seeded with the network
     address of the global broadcast server N_PORT.  The global server
     is identified as such by setting the appropriate N_PORT entity
     attribute.

  b) Using the management interface, each broadcast server is preset
     with the identity of the broadcast domain.

  During power up, each gateway SHALL invoke the iSNS service to
  register its local broadcast server in the broadcast discovery
  domain.  After registration, the local server SHALL wait for the
  global broadcast server to establish an iFCP session.

  The global server SHALL register with the iSNS server as follows:

  a) The server SHALL query the iSNS name server by attribute to obtain
     the worldwide port name of the N_PORT pre-configured to provide
     global broadcast services.

  b) If the worldwide port name obtained above does not correspond to
     that of the server issuing the query, the N_PORT SHALL NOT perform
     global broadcast functions for N_PORTs in that discovery domain.

  c) Otherwise, the global server N_PORT SHALL register with the
     discovery domain and query the iSNS server to identify all
     currently registered local servers.



Monia, et al.               Standards Track                    [Page 90]

RFC 4172           Internet Fibre Channel Networking      September 2005


  d) The global broadcast server SHALL initiate an iFCP session with
     each local broadcast server in the domain.  When a new local
     server registers, the global server SHALL receive a state change
     notification and respond by initiating an iFCP session with the
     newly added server.  The gateway SHALL obtain these notifications
     using the iSNS provisions for lossless delivery.

  Upon receiving the CBIND request to initiate the iFCP session, the
  local server SHALL record the worldwide port name and N_PORT network
  address of the global server.

9.4.2.  Broadcast Session Management

  After the initial broadcast session is established, the local or
  global broadcast server MAY choose to manage the session in one of
  the following ways, depending on resource requirements and the
  anticipated level of broadcast traffic:

  a) A server MAY keep the session open continuously.  Since broadcast
     sessions are often quiescent for long periods of time, the server
     SHOULD monitor session connectivity as described in Section
     5.2.2.4.

  b) A server MAY open the broadcast session on demand only when
     broadcast traffic is to be sent.  If the session is reopened by
     the global server, the local server SHALL replace the previously
     recorded network address of the global broadcast server.

9.4.3.  Standby Global Broadcast Server

  An implementation may designate a local server to assume the duties
  of the global broadcast server in the event of a failure.  The local
  server may use the LTEST message to determine whether the global
  server is functioning and may assume control if it is not.

  When assuming control, the standby server must register with the iSNS
  server as the global broadcast server in place of the failed server
  and must install itself in the broadcast discovery domain as
  specified in steps c) and d) of Section 9.4.1.

10.  iFCP Security

10.1.  Overview

  iFCP relies upon the IPSec protocol suite to provide data
  confidentiality and authentication services, and it relies upon IKE
  as the key management protocol.  Section 10.2 describes the security
  requirements arising from iFCP's operating environment, and Section



Monia, et al.               Standards Track                    [Page 91]

RFC 4172           Internet Fibre Channel Networking      September 2005


  10.3 describes the resulting design choices, their requirement
  levels, and how they apply to the iFCP protocol.

  Detailed considerations for use of IPsec and IKE with the iFCP
  protocol can be found in [SECIPS].

10.2.  iFCP Security Threats and Scope

10.2.1.  Context

  iFCP is a protocol designed for use by gateway devices deployed in
  enterprise data centers.  Such environments typically have security
  gateways designed to provide network security through isolation from
  public networks.  Furthermore, iFCP data may have to traverse
  security gateways in order to support SAN-to-SAN connectivity across
  public networks.

10.2.2.  Security Threats

  Communicating iFCP gateways may be subjected to attacks, including
  attempts by an adversary to:

  a) acquire confidential data and identities by snooping data packets,

  b) modify packets containing iFCP data and control messages,

  c) inject new packets into the iFCP session,

  d) hijack the TCP connection carrying the iFCP session,

  e) launch denial-of-service attacks against the iFCP gateway,

  f) disrupt the security negotiation process,

  g) impersonate a legitimate security gateway, or

  h) compromise communication with the iSNS server.

  It is imperative to thwart these attacks, given that an iFCP gateway
  is the last line of defense for a whole fibre channel island, which
  may include several hosts and fibre channel switches.  To do so, the
  iFCP gateway must implement and may use confidentiality, data origin
  authentication, integrity, and replay protection on a per-datagram
  basis.  The iFCP gateway must implement and may use bi-directional
  authentication of the communication endpoints.  Finally, it must
  implement and may use a scalable approach to key management.





Monia, et al.               Standards Track                    [Page 92]

RFC 4172           Internet Fibre Channel Networking      September 2005


10.2.3.  Interoperability with Security Gateways

  Enterprise data center networks are considered mission-critical
  facilities that must be isolated and protected from all possible
  security threats.  Such networks are usually protected by security
  gateways, which, at a minimum, provide a shield against denial-of-
  service attacks.  The iFCP security architecture is capable of
  leveraging the protective services of the existing security
  infrastructure, including firewall protection, NAT and NAPT services,
  and IPSec VPN services available on existing security gateways.
  Considerations regarding intervening NAT and NAPT boxes along the
  iFCP-iSNS path can be found in [ISNS].

10.2.4.  Authentication

  iFCP is a peer-to-peer protocol.  iFCP sessions may be initiated by
  either peer gateway or both.  Consequently, bi-directional
  authentication of peer gateways must be provided in accordance with
  the requirement levels specified in Section 10.3.1.

  N_PORT identities used in the Port Login (PLOGI) process shall be
  considered authenticated if the PLOGI request is received from the
  remote gateway over a secure, IPSec-protected connection.

  There is no requirement that the identities used in authentication be
  kept confidential.

10.2.5.  Confidentiality

  iFCP traffic may traverse insecure public networks, and therefore
  implementations must have per-packet encryption capabilities to
  provide confidentiality in accordance with the requirements specified
  in Section 10.3.1.

10.2.6.  Rekeying

  Due to the high data transfer rates and the amount of data involved,
  an iFCP implementation must support the capability to rekey each
  phase 2 security association in the time intervals dictated by
  sequence number space exhaustion at a given link rate.  In the
  rekeying scenario described in [SECIPS], for example, rekeying events
  happen as often as every 27.5 seconds at a 10 Gbps rate.

  The iFCP gateway must provide the capability for forward secrecy in
  the rekeying process.






Monia, et al.               Standards Track                    [Page 93]

RFC 4172           Internet Fibre Channel Networking      September 2005


10.2.7.  Authorization

  Basic access control properties stem from the requirement that two
  communicating iFCP gateways be known to one or more iSNS servers
  before they can engage in iFCP exchanges.  The optional use of
  discovery domains [ISNS], Identity Payloads (e.g., ID_FQDNs), and
  certificate-based authentication (e.g., with X509v3 certificates)
  enables authorization schemas of increasing complexity.  The
  definition of such schemas (e.g., role-based access control) is
  outside of the scope of this specification.

10.2.8.  Policy Control

  This specification allows any and all security mechanisms in an iFCP
  gateway to be administratively disabled.  Security policies MUST
  have, at most, iFCP Portal resolution.  Administrators may gain
  control over security policies through an adequately secured
  interaction with a management interface or with iSNS.

10.2.9.  iSNS Role

  iSNS [ISNS] is an invariant in all iFCP deployments.  iFCP gateways
  MUST use iSNS for discovery services and MAY use security policies
  configured in the iSNS database as the basis for algorithm
  negotiation in IKE.  The iSNS specification defines mechanisms for
  securing communication between an iFCP gateway and iSNS server(s).
  Additionally, the specification indicates how elements of security
  policy concerning individual iFCP sessions can be retrieved from iSNS
  server(s).

10.3.  iFCP Security Design

10.3.1.  Enabling Technologies

  Applicable technology from IPsec and IKE is defined in the following
  suite of specifications:

     [RFC2401] Security Architecture for the Internet Protocol

     [RFC2402] IP Authentication Header

     [RFC2404] The Use of HMAC-SHA-1-96 within ESP and AH

     [RFC2405] The ESP DES-CBC Cipher Algorithm with Explicit IV

     [RFC2406] IP Encapsulating Security Payload





Monia, et al.               Standards Track                    [Page 94]

RFC 4172           Internet Fibre Channel Networking      September 2005


     [RFC2407] The Internet IP Security Domain of Interpretation for
     ISAKMP

     [RFC2408] Internet Security Association and Key Management
     Protocol (ISAKMP)

     [RFC2409] The Internet Key Exchange (IKE)

     [RFC2410] The NULL Encryption Algorithm and Its Use With IPSEC

     [RFC2451] The ESP CBC-Mode Cipher Algorithms

     [RFC2709] Security Model with Tunnel-mode IPsec for NAT Domains

  The implementation of IPsec and IKE is required according to the
  following guidelines.

  Support for the IP Encapsulating Security Payload (ESP) [RFC2406] is
  MANDATORY to implement.  When ESP is used, per-packet data origin
  authentication, integrity, and replay protection MUST be used.

  For data origin authentication and integrity with ESP, HMAC with SHA1
  [RFC2404] MUST be implemented, and the Advanced Encryption Standard
  [AES] in CBC MAC mode with Extended Cipher Block Chaining SHOULD be
  implemented in accordance with [AESCBC].

  For confidentiality with ESP, 3DES in CBC mode [RFC2451] MUST be
  implemented, and AES counter mode encryption [AESCTR] SHOULD be
  implemented.  NULL encryption MUST be supported as well, as defined
  in [RFC2410].  DES in CBC mode SHOULD NOT be used due to its inherent
  weakness.  Since it is known to be crackable with modest computation
  resources, it is inappropriate for use in any iFCP deployment
  scenario.

  A conforming iFCP protocol implementation MUST implement IPsec ESP
  [RFC2406] in tunnel mode [RFC2401] and MAY implement IPsec ESP in
  transport mode.

  Regarding key management, iFCP implementations MUST support IKE
  [RFC2409] for bi-directional peer authentication, negotiation of
  security associations, and key management, using the IPsec DOI.
  There is no requirement that the identities used in authentication be
  kept confidential.  Manual keying MUST NOT be used since it does not
  provide the necessary keying support.  According to [RFC2409], pre-
  shared secret key authentication is MANDATORY to implement, whereas
  certificate-based peer authentication using digital signatures MAY be
  implemented (see Section 10.3.3 regarding the use of certificates).
  [RFC2409] defines the following requirement levels for IKE Modes:



Monia, et al.               Standards Track                    [Page 95]

RFC 4172           Internet Fibre Channel Networking      September 2005


     Phase-1 Main Mode MUST be implemented.

     Phase-1 Aggressive Mode SHOULD be implemented.

     Phase-2 Quick Mode MUST be implemented.

     Phase-2 Quick Mode with key exchange payload MUST be implemented.

  With iFCP, Phase-1 Main Mode SHOULD NOT be used in conjunction with
  pre-shared keys, due to Main Mode's vulnerability to man-in-the-
  middle-attackers when group pre-shared keys are used.  In this
  scenario, Aggressive Mode SHOULD be used instead.  Peer
  authentication using the public key encryption methods outlined in
  [RFC2409] SHOULD NOT be used.

  The DOI [RFC2407] provides for several types of Identification
  Payloads.

  When used for iFCP, IKE Phase 1 exchanges MUST explicitly carry the
  Identification Payload fields (IDii and IDir).  Conforming iFCP
  implementations MUST use ID_IPV4_ADDR, ID_IPV6_ADDR (if the protocol
  stack supports IPv6), or ID_FQDN Identification Type values.  The
  ID_USER_FQDN, IP Subnet, IP Address Range, ID_DER_ASN1_DN,
  ID_DER_ASN1_GN Identification Type values SHOULD NOT be used.  The
  ID_KEY_ID Identification Type values MUST NOT be used.  As described
  in [RFC2407], the port and protocol fields in the Identification
  Payload MUST be set to zero or UDP port 500.

  When used for iFCP, IKE Phase 2 exchanges MUST explicitly carry the
  Identification Payload fields (IDci and IDcr).  Conforming iFCP
  implementations MUST use either ID_IPV4_ADDR or ID_IPV6_ADDR
  Identification Type values (according to the version of IP
  supported).  Other Identification Type values MUST NOT be used.  As
  described in Section 5.2.2, the gateway creating the iFCP session
  must query the iSNS server to determine the appropriate port on which
  to initiate the associated TCP connection.  Upon a successful IKE
  Phase 2 exchange, the IKE responder enforces the negotiated selectors
  on the IPsec SAs.  Any subsequent iFCP session creation requires the
  iFCP peer to query its iSNS server for access control (in accordance
  with the session creation requirements specified in Section 5.2.2.1).

10.3.2.  Use of IKE and IPsec

  A conforming iFCP Portal is capable of establishing one or more IKE
  Phase-1 Security Associations (SAs) to a peer iFCP Portal.  A Phase-1
  SA may be established when an iFCP Portal is initialized or may be
  deferred until the first TCP connection with security requirements is
  established.



Monia, et al.               Standards Track                    [Page 96]

RFC 4172           Internet Fibre Channel Networking      September 2005


  An IKE Phase-2 SA protects one or more TCP connections within the
  same iFCP Portal.  More specifically, the successful establishment of
  an IKE Phase-2 SA results in the creation of two uni-directional
  IPsec SAs fully qualified by the tuple <SPI, destination IP address,
  ESP>.

  These SAs protect the setup process of the underlying TCP connections
  and all their subsequent TCP traffic.  The number of TCP connections
  in an IPsec SA, as well as the number of SAs, is practically driven
  by security policy considerations (i.e., security services are
  defined at the granularity of an IPsec SA only), QoS considerations
  (e.g., multiple QoS classes within the same IPsec SA increase odds of
  packet reordering, possibly falling outside the replay window), and
  failure compartmentalization considerations.  Each of the TCP
  connections protected by an IPsec SA is either in the unbound state,
  or bound to a specific iFCP session.

  In summary, at any point in time:

     -- there exist 0..M IKE Phase-1 SAs between peer iFCP portals,

     -- each IKE Phase-1 SA has 0..N IKE Phase-2 SAs, and

     -- each IKE Phase-2 SA protects 0..Z TCP connections.

  The creation of an IKE Phase-2 SA may be triggered by a policy rule
  supplied through a management interface or by iFCP Portal properties
  registered with the iSNS server.  Similarly, the use of a Key
  Exchange payload in Quick Mode for perfect forward secrecy may be
  dictated through a management interface or by an iFCP Portal policy
  rule registered with the iSNS server.

  If an iFCP implementation makes use of unbound TCP connections, and
  such connections belong to an iFCP Portal with security requirements,
  then the unbound connections MUST be protected by an SA at all times
  just like bound connections.

  Upon receipt of an IKE Phase-2 delete message, there is no
  requirement to terminate the protected TCP connections or delete the
  associated IKE Phase-1 SA.  Since an IKE Phase-2 SA may be associated
  with multiple TCP connections, terminating these connections might in
  fact be inappropriate and untimely.

  To minimize the number of active Phase-2 SAs, IKE Phase-2 delete
  messages may be sent for Phase-2 SAs whose TCP connections have not
  handled data traffic for a while.  To minimize the use of SA





Monia, et al.               Standards Track                    [Page 97]

RFC 4172           Internet Fibre Channel Networking      September 2005


  resources while the associated TCP connections are idle, creation of
  a new SA should be deferred until new data are to be sent over the
  connections.

10.3.3.  Signatures and Certificate-Based Authentication

  Conforming iFCP implementations MAY support peer authentication via
  digital signatures and certificates.  When certificate authentication
  is chosen within IKE, each iFCP gateway needs the certificate
  credentials of each peer iFCP gateway in order to establish a
  security association with that peer.

  Certificate credentials used by iFCP gateways MUST be those of the
  machine.  Certificate credentials MAY be bound to the interface (IP
  Address or FQDN) of the iFCP gateway used for the iFCP session, or to
  the fabric WWN of the iFCP gateway itself.  Since the value of a
  machine certificate is inversely proportional to the ease with which
  an attacker can obtain one under false pretenses, it is advisable
  that the machine certificate enrollment process be strictly
  controlled.  For example, only administrators may have the ability to
  enroll a machine with a machine certificate.  User certificates
  SHOULD NOT be used by iFCP gateways for establishment of SAs
  protecting iFCP sessions.

  If the gateway does not have the peer iFCP gateway's certificate
  credentials, then it can obtain them:

  a) by using the iSNS protocol to query for the peer gateway's
     certificate(s) stored in a trusted iSNS server, or

  b) through use of the ISAKMP Certificate Request Payload (CRP)
     [RFC2408] to request the certificate(s) directly from the peer
     iFCP gateway.

  When certificate chains are long enough, IKE exchanges using UDP as
  the underlying transport may yield IP fragments, which are known to
  work poorly across some intervening routers, firewalls, and NA(P)T
  boxes.  As a result, the endpoints may be unable to establish an
  IPsec security association.

  Due to these fragmentation shortcomings, IKE is most appropriate for
  intra-domain usage.  Known solutions to the fragmentation problem
  include sending the end-entry machine certificate rather than the
  chain, reducing the size of the certificate chain, using IKE
  implementations over a reliable transport protocol (e.g., TCP)
  assisted by Path MTU discovery and code against black-holing as per
  [RFC2923], or installing network components that can properly handle
  fragments.



Monia, et al.               Standards Track                    [Page 98]

RFC 4172           Internet Fibre Channel Networking      September 2005


  IKE negotiators SHOULD check the pertinent Certificate Revocation
  List (CRL) [RFC2408] before accepting a certificate for use in IKE's
  authentication procedures.

10.4.  iSNS and iFCP Security

  iFCP implementations MUST use iSNS for discovery and management
  services.  Consequently, the security of the iSNS protocol has an
  impact on the security of iFCP gateways.  For a discussion of
  potential threats to iFCP gateways through use of iSNS, see [ISNS].

  To provide security for iFCP gateways using the iSNS protocol for
  discovery and management services, the IPSec ESP protocol in tunnel
  mode MUST be supported for iFCP gateways.  Further discussion of iSNS
  security implementation requirements is found in [ISNS].  Note that
  iSNS security requirements match those for iFCP described in Section
  10.3.

10.5.  Use of iSNS to Distribute Security Policy

  Once communication between iFCP gateways and the iSNS server has been
  secured through use of IPSec, the iFCP gateways have the capability
  to discover the security settings that they need to use (or not use)
  to protect iFCP traffic.  This provides a potential scaling advantage
  over device-by-device configuration of individual security policies
  for each iFCP gateway.  It also provides an efficient means for each
  iFCP gateway to discover the use or non-use of specific security
  capabilities by peer gateways.

  Further discussion on use of iSNS to distribute security policies is
  found in [ISNS].

10.6.  Minimal Security Policy for an iFCP Gateway

  An iFCP implementation may be able to disable security mechanisms for
  an iFCP Portal administratively through a management interface or
  through security policy elements set in the iSNS server.  As a
  consequence, IKE or IPsec security associations will not be
  established for any iFCP sessions that traverse the portal.

  For most IP networks, it is inappropriate to assume physical
  security, administrative security, and correct configuration of the
  network and all attached nodes (a physically isolated network in a
  test lab may be an exception).  Therefore, authentication SHOULD be
  used in order to provide minimal assurance that connections have
  initially been opened with the intended counterpart.  The minimal
  iFCP security policy only states that an iFCP gateway SHOULD
  authenticate its iSNS server(s) as described in [ISNS].



Monia, et al.               Standards Track                    [Page 99]

RFC 4172           Internet Fibre Channel Networking      September 2005


11.  Quality of Service Considerations

11.1.  Minimal Requirements

  Conforming iFCP protocol implementations SHALL correctly communicate
  gateway-to-gateway, even across one or more intervening best-effort
  IP regions.  The timings with which such gateway-to gateway
  communication is performed, however, will greatly depend upon BER,
  packet losses, latency, and jitter experienced throughout the best-
  effort IP regions.  The higher these parameters, the higher the gap
  measured between iFCP observed behaviors and baseline iFCP behaviors
  (i.e., as produced by two iFCP gateways directly connected to one
  another).

11.2.  High Assurance

  It is expected that many iFCP deployments will benefit from a high
  degree of assurance regarding the behavior of intervening IP regions,
  with resulting high assurance on the overall end-to-end path, as
  directly experienced by fibre channel applications.  Such assurance
  on the IP behaviors stems from the intervening IP regions supporting
  standard Quality-of-Service (QoS) techniques that are fully
  complementary to iFCP, such as:

  a) congestion avoidance by over-provisioning of the network,

  b) integrated Services [RFC1633] QoS,

  c) differentiated Services [RFC2475] QoS, and

  d) Multi-Protocol Label Switching [RFC3031].

  One may load an MPLS forwarding equivalence class (FEC) with QoS
  class significance, in addition to other considerations such as
  protection and diversity for the given path.  The complementarity and
  compatibility of MPLS with Differentiated Services is explored in
  [MPSLDS], wherein the PHB bits are copied to the EXP bits of the MPLS
  shim header.

  In the most general definition, two iFCP gateways are separated by
  one or more independently managed IP regions that implement some of
  the QoS solutions mentioned above.  A QoS-capable IP region supports
  the negotiation and establishment of a service contract specifying
  the forwarding service through the region.  Such contract and
  negotiation rules are outside the scope of this document.  In the
  case of IP regions with DiffServ QoS, the reader should refer to
  Service Level Specifications (SLS) and Traffic Conditioning
  Specifications (TCS) (as defined in [DIFTERM]).  Other aspects of a



Monia, et al.               Standards Track                   [Page 100]

RFC 4172           Internet Fibre Channel Networking      September 2005


  service contract are expected to be non-technical and thus are
  outside of the IETF scope.

  Because fibre channel Class 2 and Class 3 do not currently support
  fractional bandwidth guarantees, and because iFCP is committed to
  supporting fibre channel semantics, it is impossible for an iFCP
  gateway to infer bandwidth requirements autonomously from streaming
  fibre channel traffic.  Rather, the requirements on bandwidth or
  other network parameters need to be administratively set into an iFCP
  gateway, or into the entity that will actually negotiate the
  forwarding service on the gateway's behalf.  Depending on the QoS
  techniques available, the stipulation of a forwarding service may
  require interaction with network ancillary functions, such as
  admission control and bandwidth brokers (via RSVP or other signaling
  protocols that an IP region may accept).

  The administrator of a iFCP gateway may negotiate a forwarding
  service with IP region(s) for one, several, or all of an iFCP
  gateway's TCP sessions used by an iFCP gateway.  Alternately, this
  responsibility may be delegated to a node downstream.  Since one TCP
  connection is dedicated to each iFCP session, the traffic in an
  individual N_PORT to N_PORT session can be singled out by iFCP-
  unaware network equipment as well.

  For rendering the best emulation of fibre channel possible over IP,
  it is anticipated that typical forwarding services will specify a
  fixed amount of bandwidth, null losses, and, to a lesser degree of
  relevance, low latency and low jitter.  For example, an IP region
  using DiffServ QoS may support SLSes of this nature by applying EF
  DSCPs to the iFCP traffic.

12.  IANA Considerations

  The IANA-assigned port for iFCP traffic is port number 3420.

  An iFCP Portal may initiate a connection using any TCP port number
  consistent with its implementation of the TCP/IP stack, provided each
  port number is unique.  To prevent the receipt of stale data
  associated with a previous connection using a given port number, the
  provisions of [RFC1323], Appendix B, SHOULD be observed.

13.  Normative References

  [AESCBC]  Frankel, S. and H. Herbert, "The AES-XCBC-MAC-96 Algorithm
            and Its Use With IPsec", RFC 3566, September 2003.






Monia, et al.               Standards Track                   [Page 101]

RFC 4172           Internet Fibre Channel Networking      September 2005


  [AESCTR]  Housley, R., "Using Advanced Encryption Standard (AES)
            Counter Mode With IPsec Encapsulating Security Payload
            (ESP)", RFC 3686, January 2004.

  [ENCAP]   Weber, R., Rajagopal, M., Travostino, F., O'Donnell, M.,
            Monia, C., and M. Merhar, "Fibre Channel (FC) Frame
            Encapsulation", RFC 3643, December 2003.

  [FC-FS]   dpANS INCITS.XXX-200X, "Fibre Channel Framing and Signaling
            (FC-FS), Rev 1.70, INCITS Project 1331D, February 2002

  [FC-GS3]  dpANS X3.XXX-200X, "Fibre Channel Generic Services -3 (FC-
            GS3)", revision 7.01, INCITS Project 1356-D, November 2000

  [FC-SW2]  dpANS X3.XXX-2000X, "Fibre Channel Switch Fabric -2 (FC-
            SW2)", revision 5.2, INCITS Project 1305-D, May 2001

  [FCP-2]   dpANS T10, "Fibre Channel Protocol for SCSI, Second
            Version", revision 8, INCITS Project 1144D, September 2002

  [ISNS]    Tseng, J., Gibbons, K., Travostino, F., Du Laney, C., and
            J. Souza, "Internet Storage Name Service (iSNS)", RFC 4171,
            September 2005.

  [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2401] Kent, S. and R. Atkinson, "Security Architecture for the
            Internet Protocol", RFC 2401, November 1998.

  [RFC2402] Kent, S. and R. Atkinson, "IP Authentication Header", RFC
            2402, November 1998.

  [RFC2404] Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within
            ESP and AH", RFC 2404, November 1998.

  [RFC2406] Kent, S. and R. Atkinson, "IP Encapsulating Security
            Payload (ESP)", RFC 2406, November 1998.

  [RFC2407] Piper, D., "The Internet IP Security Domain of
            Interpretation for ISAKMP", RFC 2407, N.

  [RFC2408] Maughan, D., Schertler, M., Schneider, M., and J. Turner,
            "Internet Security Association and Key Management Protocol
            (ISAKMP)", RFC 2408, November 1998.






Monia, et al.               Standards Track                   [Page 102]

RFC 4172           Internet Fibre Channel Networking      September 2005


  [RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange
            (IKE)", RFC 2409, November 1998.

  [RFC2410] Glenn, R. and S. Kent, "The NULL Encryption Algorithm and
            Its Use With IPsec", RFC 2410, November 1998.

  [RFC2451] Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher
            Algorithms", RFC 2451, November 1998.

  [RFC793]  Postel, J., "Transmission Control Protocol", STD 7, RFC
            793, September 1981.

  [SECIPS]  Aboba, B., Tseng, J., Walker, J., Rangan, V., and F.
            Travostino, "Securing Block Storage Protocols Over IP", RFC
            3723, April 2004.

14.  Informative References

  [AES]     FIPS Publication XXX, "Advanced Encryption Standard (AES)",
            Draft, 2001, Available from
            http://csrc.nist.gov/publications/drafts/dfips-AES.pdf

  [DIFTERM] Grossman, D., "New Terminology and Clarifications for
            Diffserv", RFC 3260, April 2002.

  [FC-AL2]  dpANS X3.XXX-199X, "Fibre Channel Arbitrated Loop (FC-AL-
            2)", revision 7.0, NCITS Project 1133D, April 1999

  [FC-FLA]  TR-20-199X, "Fibre Channel Fabric Loop Attachment (FC-
            FLA)", revision 2.7, NCITS Project 1235-D, August 1997

  [FC-VI] ANSI/INCITS 357:2002, "Fibre Channel Virtual Interface
            Architecture Mapping Protocol (FC-VI)", NCITS Project
            1332-D, July 2000.

  [KEMALP]  Kembel, R., "The Fibre Channel Consultant, Arbitrated
            Loop", Robert W. Kembel, Northwest Learning Associates,
            2000, ISBN 0-931836-84-0

  [KEMCMP]  Kembel, R., "Fibre Channel, A Comprehensive Introduction",
            Northwest Learning Associates Inc., 2000, ISBN
            0-931836-84-0

  [MPSLDS]  Le Faucheur, F., Wu, L., Davie, B., Davari, S., Vaananen,
            P., Krishnan, R., Cheval, P., and J. Heinanen, "Multi-
            Protocol Label Switching (MPLS) Support of Differentiated
            Services", RFC 3270, May 2002.




Monia, et al.               Standards Track                   [Page 103]

RFC 4172           Internet Fibre Channel Networking      September 2005


  [RFC1122] Braden, R., "Requirements for Internet Hosts -
            Communication Layers", STD 3, RFC 1122, October 1989.

  [RFC1323] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
            for High Performance", RFC 1323, May 1992.

  [RFC1633] Braden, R., Clark, D., and S. Shenker, "Integrated Services
            in the Internet Architecture: an Overview", RFC 1633, June
            1994.

  [RFC2030] Mills, D., "Simple Network Time Protocol (SNTP) Version 4
            for IPv4, IPv6 and OSI", RFC 2030, October 1996.

  [RFC2405] Madson, C. and N. Doraswamy, "The ESP DES-CBC Cipher
            Algorithm With Explicit IV", RFC 2405, November 1998.

  [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
            and W. Weiss, "An Architecture for Differentiated Service",
            RFC 2475, December 1998.

  [RFC2625] Rajagopal, M., Bhagwat, R., and W. Rickard, "IP and ARP
            over Fibre Channel", RFC 2625, June 1999.

  [RFC2709] Srisuresh, P., "Security Model with Tunnel-mode IPsec for
            NAT Domains", RFC 2709, October 1999.

  [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery", RFC
            2923, September 2000.

  [RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
            Label Switching Architecture", RFC 3031, January 2001.

  [RFC896]  Nagle, J., "Congestion control in IP/TCP internetworks",
            RFC 896, January 1984.

















Monia, et al.               Standards Track                   [Page 104]

RFC 4172           Internet Fibre Channel Networking      September 2005


Appendix A.  iFCP Support for Fibre Channel Link Services

  For reference purposes, this appendix enumerates all the fibre
  channel link services and the manner in which each shall be processed
  by an iFCP implementation.  The iFCP processing policies are defined
  in Section 7.

  In the following sections, the name of a link service specific to a
  particular FC-4 protocol is prefaced by a mnemonic identifying the
  protocol.

A.1.  Basic Link Services

  The basic link services are shown in the following table:

                       Basic Link Services

     Name             Description                  iFCP Policy
     ----             -----------                  ----------

     ABTS            Abort Sequence                Transparent
     BA_ACC          Basic Accept                  Transparent
     BA_RJT          Basic Reject                  Transparent
     NOP             No Operation                  Transparent
     PRMT            Preempted                     Rejected
                                                     (Applies to
                                                     Class 1 only)
     RMC             Remove Connection             Rejected
                                                     (Applies to
                                                     Class 1 only)

A.2.  Pass-Through Link Services

  As specified in Section 7, the link service requests of Table 10 and
  the associated ACC response frames MUST be passed to the receiving
  N_PORT without altering the payload.

              Name        Description
              ----        -----------

              ADVC         Advise Credit
              CSR          Clock Synchronization Request
              CSU          Clock Synchronization Update
              ECHO         Echo
              ESTC         Estimate Credit
              ESTS         Establish Streaming
              FACT         Fabric Activate Alias_ID
              FAN          Fabric Address Notification



Monia, et al.               Standards Track                   [Page 105]

RFC 4172           Internet Fibre Channel Networking      September 2005


              FCP_RJT      FCP FC-4 Link Service Reject
              FCP SRR      FCP Sequence Retransmission
                            Request
              FDACT        Fabric Deactivate Alias_ID
              FDISC        Discover F_Port Service
                            Parameters
              FLOGI        F_Port Login
              GAID         Get Alias_ID
              LCLM         Login Control List Management
              LINIT        Loop Initialize
              LIRR         Link Incident Record
                            Registration
              LPC          Loop Port Control
              LS_RJT       Link Service Reject
              LSTS         Loop Status
              NACT         N_Port Activate Alias_ID
              NDACT        N_Port Deactivate Alias_ID
              PDISC        Discover N_Port Service
                            Parameters
              PRLI         Process Login
              PRLO         Process Logout
              QoSR         Quality of Service Request
              RCS          Read Connection Status
              RLIR         Registered Link Incident
                            Report
              RNC          Report Node Capability
              RNFT         Report Node FC-4 Types
              RNID         Request Node Identification
                            Data
              RPL          Read Port List
              RPS          Read Port Status Block
              RPSC         Report Port Speed
                            Capabilities
              RSCN         Registered State Change
                            Notification
              RTV          Read Timeout Value
              RVCS         Read Virtual Circuit Status
              SBRP         Set Bit-Error Reporting
                            Parameters
              SCN          State Change Notification
              SCR          State Change Registration
              TEST         Test
              TPLS         Test Process Login State

              Table 10. Pass-Through Link Services






Monia, et al.               Standards Track                   [Page 106]

RFC 4172           Internet Fibre Channel Networking      September 2005


A.3.  Special Link Services

  The extended and FC-4 link services of Table 11 are processed by an
  iFCP implementation as described in the sections referenced in the
  table.

        Name         Description                    Section
        ----         -----------                    -------

        ABTX         Abort Exchange                 7.3.1.1
        ADISC        Discover Address               7.3.1.2
        ADISC        Discover Address Accept        7.3.1.3
        ACC
        FARP-        Fibre Channel Address          7.3.1.4
        REPLY        Resolution Protocol
                      Reply
        FARP-        Fibre Channel Address          7.3.1.5
        REQ          Resolution Protocol
                      Request
        LOGO         N_PORT Logout                  7.3.1.6
        PLOGI        Port Login                     7.3.1.7
        REC          Read Exchange Concise          7.3.1.8
        REC ACC      Read Exchange Concise          7.3.1.9
                      Accept
        FCP REC      FCP Read Exchange             7.3.2.1.1
                      Concise (see [FCP-2])
        FCP REC      FCP Read Exchange             7.3.2.1.2
        ACC          Concise Accept (see
                      [FCP-2])
        RES          Read Exchange Status           7.3.1.10
                      Block
        RES ACC      Read Exchange Status           7.3.1.11
                      Block Accept
        RLS          Read Link Error Status         7.3.1.12
                      Block
        RRQ          Reinstate Recovery             7.3.1.14
                      Qualifier
        RSI          Request Sequence               7.3.1.15
                      Initiative
        RSS          Read Sequence Status           7.3.1.13
                      Block
        SRL          Scan Remote Loop               7.3.1.16
        TPRLO        Third Party Process            7.3.1.17
                      Logout
        TPRLO        Third Party Process            7.3.1.18
        ACC          Logout Accept

                 Table 11. Special Link Services



Monia, et al.               Standards Track                   [Page 107]

RFC 4172           Internet Fibre Channel Networking      September 2005


Appendix B.  Supporting the Fibre Channel Loop Topology

  A loop topology may be optionally supported by a gateway
  implementation in one of the following ways:

  a) By implementing the FL_PORT public loop interface specified in
     [FC-FLA].

  b) By emulating the private loop environment specified in [FC-AL2].

  Private loop emulation allows the attachment of fibre channel devices
  that do not support fabrics or public loops.  The gateway presents
  such devices to the fabric as though they were fabric-attached.
  Conversely, the gateway presents devices on the fabric, whether they
  are locally or remotely attached, as though they were connected to
  the private loop.

  Private loop support requires gateway emulation of the loop
  primitives and control frames specified in [FC-AL2].  These frames
  and primitives MUST be locally emulated by the gateway.  Loop control
  frames MUST NOT be sent over an iFCP session.

B.1.  Remote Control of a Public Loop

  A gateway MAY disclose that a remotely attached device is connected
  to a public loop.  If it does, it MUST also provide aliases
  representing the corresponding Loop Fabric Address (LFA), DOMAIN_ID,
  and FL_PORT Address Identifier through which the public loop may be
  remotely controlled.

  The LFA and FL_PORT address identifier both represent an N_PORT that
  services remote loop management requests contained in the LINIT and
  SRL extended link service messages.  To support these messages, the
  gateway MUST allocate an NL_PORT alias so that the corresponding
  alias for the LFA or FL_PORT address identifier can be derived by
  setting the Port ID component of the NL_PORT alias to zero.















Monia, et al.               Standards Track                   [Page 108]

RFC 4172           Internet Fibre Channel Networking      September 2005


Acknowledgements

  The authors are indebted to those who contributed material and who
  took the time to carefully review and critique this specification
  including David Black (EMC), Rory Bolt (Quantum/ATL), Victor Firoiu
  (Nortel), Robert Peglar (XIOtech), David Robinson (Sun), Elizabeth
  Rodriguez, Joshua Tseng (Nishan), Naoke Watanabe (HDS) and members of
  the IPS working group.  For review of the iFCP security policy, the
  authors are further indebted to the authors of the IPS security
  document [SECIPS], which include Bernard Aboba (Microsoft), Ofer
  Biran (IBM), Uri Elzer (Broadcom), Charles Kunziger (IBM), Venkat
  Rangan (Rhapsody Networks), Julian Satran (IBM), Joseph Tardo
  (Broadcom), and Jesse Walker (Intel).






































Monia, et al.               Standards Track                   [Page 109]

RFC 4172           Internet Fibre Channel Networking      September 2005


Author's Addresses

  Comments should be sent to the ips mailing list ([email protected]) or
  to the authors.

  Charles Monia
  7553 Morevern Circle
  San Jose, CA 95135

  EMail: [email protected]


  Rod Mullendore
  McDATA
  4555 Great America Pkwy
  Suite 301
  Santa Clara, CA 95054

  Phone: 408-519-3986
  EMail: [email protected]


  Franco Travostino
  Nortel
  600 Technology Park Drive
  Billerica, MA 01821 USA

  Phone: 978-288-7708
  EMail: [email protected]


  Wayland Jeong
  TROIKA Networks, Inc.
  2555 Townsgate Road, Suite 105
  Westlake Village, CA  91361

  Phone: 805-371-1377
  EMail: [email protected]


  Mark Edwards
  Adaptec (UK) Ltd.
  4th Floor, Howard House
  Queens Ave, UK.  BS8 1SD

  Phone: +44 (0)117 930 9600
  EMail: [email protected]




Monia, et al.               Standards Track                   [Page 110]

RFC 4172           Internet Fibre Channel Networking      September 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Monia, et al.               Standards Track                   [Page 111]