Network Working Group                                        B. Thompson
Request for Comments: 4170                                      T. Koren
BCP: 110                                                         D. Wing
Category: Best Current Practice                            Cisco Systems
                                                          November 2005


            Tunneling Multiplexed Compressed RTP (TCRTP)

Status of This Memo

  This document specifies an Internet Best Current Practices for the
  Internet Community, and requests discussion and suggestions for
  improvements.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This document describes a method to improve the bandwidth utilization
  of RTP streams over network paths that carry multiple Real-time
  Transport Protocol (RTP) streams in parallel between two endpoints,
  as in voice trunking.  The method combines standard protocols that
  provide compression, multiplexing, and tunneling over a network path
  for the purpose of reducing the bandwidth used when multiple RTP
  streams are carried over that path.























Thompson, et al.         Best Current Practice                  [Page 1]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


Table of Contents

  1. Introduction ....................................................3
     1.1. Is Bandwidth Costly? .......................................3
     1.2. Overview of Protocols ......................................3
     1.3. Document Focus .............................................4
     1.4. Choice of Enhanced CRTP ....................................4
     1.5. Reducing TCRTP Overhead ....................................4
  2. Protocol Operation and Recommended Extensions ...................4
     2.1. Models .....................................................5
     2.2. Header Compression: ECRTP ..................................5
          2.2.1. Synchronizing ECRTP States ..........................5
          2.2.2. Out-of-Order Packets ................................6
     2.3. Multiplexing: PPP Multiplexing .............................6
          2.3.1. PPP Multiplex Transmitter Modifications for
                 Tunneling ...........................................7
          2.3.2. Tunneling Inefficiencies ............................8
     2.4. Tunneling: L2TP ............................................8
          2.4.1. Tunneling and DiffServ ..............................9
     2.5. Encapsulation Formats ......................................9
  3. Bandwidth Efficiency ...........................................10
     3.1. Multiplexing Gains ........................................10
     3.2. Packet Loss Rate ..........................................10
     3.3. Bandwidth Calculation for Voice and Video Applications ....10
          3.3.1. Voice Bandwidth Calculation Example ................12
          3.3.2. Voice Bandwidth Comparison Table ...................13
          3.3.3. Video Bandwidth Calculation Example ................13
          3.3.4. TCRTP over ATM .....................................14
          3.3.5. TCRTP over Non-ATM Networks ........................14
  4. Example Implementation of TCRTP ................................15
     4.1. Suggested PPP and L2TP Negotiation for TCRTP ..............17
     4.2. PPP Negotiation TCRTP .....................................17
          4.2.1. LCP Negotiation ....................................17
          4.2.2. IPCP Negotiation ...................................18
     4.3. L2TP Negotiation ..........................................19
          4.3.1. Tunnel Establishment ...............................19
          4.3.2. Session Establishment ..............................19
          4.3.3. Tunnel Tear Down ...................................20
  5. Security Considerations ........................................20
  6. Acknowledgements ...............................................21
  7. References .....................................................21
     7.1. Normative References ......................................21
     7.2. Informative References ....................................22








Thompson, et al.         Best Current Practice                  [Page 2]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


1.  Introduction

  This document describes a way to combine existing protocols for
  compression, multiplexing, and tunneling to save bandwidth for some
  RTP applications.

1.1.  Is Bandwidth Costly?

  On certain links, such as customer access links, the cost of
  bandwidth is widely acknowledged to be a significant concern.
  protocols such as CRTP (Compressed RTP, [CRTP]) are well suited to
  help bandwidth inefficiencies of protocols such as VoIP over these
  links.

  Unacknowledged by many, however, is the cost of long-distance WAN
  links.  While some voice-over-packet technologies such as Voice over
  ATM (VoAAL2, [I.363.2]) and Voice over MPLS provide bandwidth
  efficiencies (because both technologies lack IP, UDP, and RTP
  headers), neither VoATM nor VoMPLS provide direct access to voice-
  over-packet services available to Voice over IP.  Thus, goals of WAN
  link cost reduction are met at the expense of lost interconnection
  opportunities to other networks.

  TCRTP solves the VoIP bandwidth discrepancy, especially for large,
  voice-trunking applications.

1.2.  Overview of Protocols

  Header compression is accomplished using Enhanced CRTP (ECRTP,
  [ECRTP]).  ECRTP is an enhancement to classical CRTP [CRTP] that
  works better over long delay links, such as the end-to-end tunneling
  links described in this document.  This header compression reduces
  the IP, UDP, and RTP headers.

  Multiplexing is accomplished using PPP Multiplexing [PPP-MUX].

  Tunneling PPP is accomplished by using L2TP [L2TPv3].

  CRTP operates link-by-link; that is, to achieve compression over
  multiple router hops, CRTP must be employed twice on each router --
  once on ingress, again on egress.  In contrast, TCRTP described in
  this document does not require any additional per-router processing
  to achieve header compression.  Instead, headers are compressed end-
  to-end, saving bandwidth on all intermediate links.







Thompson, et al.         Best Current Practice                  [Page 3]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


1.3.  Document Focus

  This document is primarily concerned with bandwidth savings for Voice
  over IP (VoIP) applications over high-delay networks.  However, the
  combinations of protocols described in this document can be used to
  provide similar bandwidth savings for other RTP applications such as
  video, and bandwidth savings are included for a sample video
  application.

1.4.  Choice of Enhanced CRTP

  CRTP [CRTP] describes the use of RTP header compression on an
  unspecified link layer transport, but typically PPP is used.  For
  CRTP to compress headers, it must be implemented on each PPP link.  A
  lot of context is required to successfully run CRTP, and memory and
  processing requirements are high, especially if multiple hops must
  implement CRTP to save bandwidth on each of the hops.  At higher line
  rates, CRTP's processor consumption becomes prohibitively expensive.

  To avoid the per-hop expense of CRTP, a simplistic solution is to use
  CRTP with L2TP to achieve end-to-end CRTP.  However, as described in
  [ECRTP], CRTP is only suitable for links with low delay and low loss.
  However, once multiple router hops are involved, CRTP's expectation
  of low delay and low loss can no longer be met.  Further, packets can
  arrive out of order.

  Therefore, this document describes the use of Enhanced CRTP [ECRTP],
  which supports high delay, both packet loss, and misordering between
  the compressor and decompressor.

1.5.  Reducing TCRTP Overhead

  If only one stream is tunneled (L2TP) and compressed (ECRTP), there
  are little bandwidth savings.  Multiplexing is helpful to amortize
  the overhead of the tunnel header over many RTP payloads.  The
  multiplexing format proposed by this document is PPP multiplexing
  [PPP-MUX].  See Section 2.3 for details.

2.  Protocol Operation and Recommended Extensions

  This section describes how to combine three protocols: Enhanced CRTP,
  PPP Multiplexing, and L2TP Tunneling, to save bandwidth for RTP
  applications such as Voice over IP.








Thompson, et al.         Best Current Practice                  [Page 4]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


2.1.  Models

  TCRTP can typically be implemented in two ways.  The most
  straightforward is to implement TCRTP in the gateways terminating the
  RTP streams:

      [voice gateway]---[voice gateway]
                      ^
                      |
                TCRTP over IP

  Another way TCRTP can be implemented is with an external
  concentration device.  This device could be placed at strategic
  places in the network and could dynamically create and destroy TCRTP
  sessions without the participation of RTP-generating endpoints.

      [voice GW]\                                   /[voice GW]
      [voice GW]---[concentrator]---[concentrator]---[voice GW]
      [voice GW]/                                   \[voice GW]
                 ^                ^                ^
                 |                |                |
            RTP over IP     TCRTP over IP     RTP over IP

  Such a design also allows classical CRTP [CRTP] to be used on links
  with only a few active flows per link (where TCRTP isn't efficient;
  see Section 3):

      [voice GW]\                                   /[voice GW]
      [voice GW]---[concentrator]---[concentrator]---[voice GW]
      [voice GW]/                                   \[voice GW]
                 ^                ^                ^
                 |                |                |
          CRTP over IP     TCRTP over IP     RTP over IP

2.2.  Header Compression: ECRTP

  As described in [ECRTP], classical CRTP [CRTP] is not suitable over
  long-delay WAN links commonly used when tunneling, as proposed by
  this document.  Thus, ECRTP should be used instead of CRTP.

2.2.1.  Synchronizing ECRTP States

  When the compressor receives an RTP packet that has an unpredicted
  change in the RTP header, the compressor should send a COMPRESSED_UDP
  packet (described in [ECRTP]) to synchronize the ECRTP decompressor
  state.  The COMPRESSED_UDP packet updates the RTP context in the
  decompressor.




Thompson, et al.         Best Current Practice                  [Page 5]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


  To ensure delivery of updates of context variables, COMPRESSED_UDP
  packets should be delivered using the robust operation described in
  [ECRTP].

  Because the "twice" algorithm described in [ECRTP] relies on UDP
  checksums, the IP stack on the RTP transmitter should transmit UDP
  checksums.  If UDP checksums are not used, the ECRTP compressor
  should use the CRTP Headers checksum described in [ECRTP].

2.2.2.  Out-of-Order Packets

  Tunneled transport does not guarantee ordered delivery of packets.
  Therefore, the ECRTP decompressor must operate correctly in the
  presence of out of order packets.

  The order of packets for RTP is determined by the RTP sequence
  number.  To add robustness in case of packet loss or packet
  reordering, ECRTP sends short deltas together with the full value
  when updating context variables, and repeats the updates in N
  packets, where N is an engineered constant tuned to the kind of pipe
  ECRTP is used for.

  By contrast, [ROHC] compresses out the sequence number and another
  layer is necessary for [ROHC] to handle out-of-order delivery of
  packets over a tunnel [REORDER].

2.3.  Multiplexing: PPP Multiplexing

  Both CRTP and ECRTP require a layer two protocol that allows
  identifying different protocols.  [PPP] is suited for this.

  When CRTP is used inside of a tunnel, the header compression
  associated with CRTP will reduce the size of the IP, UDP, and IP
  headers of the IP packet carried in the tunnel.  However, the tunnel
  itself has overhead due to its IP header and the tunnel header (the
  information necessary to identify the tunneled payload).  One way to
  reduce the overhead of the IP header and tunnel header is to
  multiplex multiple RTP payloads in a single tunneled packet.

  [PPP-MUX] describes an encapsulation that combines multiple PPP
  payloads into one multiplexed payload.  PPP multiplexing allows any
  supported PPP payload type to be multiplexed.  This multiplexed frame
  is then carried as a single PPPMUX payload in the IP tunnel.  This
  allows multiple RTP payloads to be carried in a single IP tunnel
  packet and allows the overhead of the uncompressed IP and tunnel
  headers to be amortized over multiple RTP payloads.





Thompson, et al.         Best Current Practice                  [Page 6]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


  During PPP establishment of the TCRTP tunnel, only LCP and IPCP (for
  header compression) are required -- IP addresses do not need to be
  negotiated, nor is authentication necessary.  See Section 4.1 for
  details.

2.3.1.  PPP Multiplex Transmitter Modifications for Tunneling

  Section 1.2 of [PPP-MUX] describes an example transmitter procedure
  that can be used to implement a PPP Multiplex transmitter.  The
  transmission procedure described in this section includes a parameter
  MAX-SF-LEN that is used to limit the maximum size of a PPP Multiplex
  frame.

  There are two reasons for limiting the size of a PPP Multiplex frame.
  First, a PPPMUX frame should never exceed the Maximum Receive Unit
  (MRU) of a physical link.  Second, when a PPP session and its
  associated flow control are bound to a physical link, the MAX-SF-LEN
  parameter forms an upper limit on the amount of time a multiplex
  packet can be held before being transmitted.  When flow control for
  the PPP Multiplex transmitter is bound to a physical link, the clock
  rate of the physical link can be used to pull frames from the PPP
  Multiplex transmitter.

  This type of flow control limits the maximum amount of time a PPP
  multiplex frame can be held before being transmitted to MAX-SF-LEN /
  Link Speed.

  Tunnel interfaces are typically not bound to physical interfaces.
  Because of this, a tunnel interface has no well-known transmission
  rate associated with it.  This means that flow control in the PPPMUX
  transmitter cannot rely on the clock of a physical link to pull
  frames from the multiplex transmitter.  Instead, a timer must be used
  to limit the amount of time a PPPMUX frame can be held before being
  transmitted.  The timer along with the MAX-SF-LEN parameter should be
  used to limit the amount of time a PPPMUX frame is held before being
  transmitted.

  The following extensions to the PPPMUX transmitter logic should be
  made for use with tunnels.  The flow control logic of the PPP
  transmitter should be modified to collect incoming payloads until one
  of two events has occurred:

         (1)  a specific number of octets, MAX-SF-LEN, has arrived at
              the multiplexer, or

         (2)  a timer, called T, has expired.





Thompson, et al.         Best Current Practice                  [Page 7]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


  When either condition is satisfied, the multiplexed PPP payload is
  transmitted.

  The purpose of MAX-SF-LEN is to ensure that a PPPMUX payload does not
  exceed the MTU size of any of the possible physical links that the
  tunnel can be associated with.  The value of MAX-SF-LEN should be
  less than or equal to the minimum of MRU-2 (maximum size of length
  field) and 16,383 (14 bits) for all possible physical interfaces that
  the tunnel may be associated with.

  The timer T provides an upper delay bound for tunnel interfaces.
  Timer T is reset whenever a multiplexed payload is sent to the next
  encapsulation layer.  The behavior of this timer is similar to AAL2's
  Timer_CU described in [I.363.2].  Each PPPMUX transmitter should have
  its own Timer T.

  The optimal values for T will vary depending upon the rate at which
  payloads are expected to arrive at the multiplexer and the delay
  budget for the multiplexing function.  For voice applications, the
  value of T would typically be 5-10 milliseconds.

2.3.2.  Tunneling Inefficiencies

  To get reasonable bandwidth efficiency using multiplexing within an
  L2TP tunnel, multiple RTP streams should be active between the source
  and destination of an L2TP tunnel.

  If the source and destination of the L2TP tunnel are the same as the
  source and destination of the ECRTP sessions, then the source and
  destination must have multiple active RTP streams to get any benefit
  from multiplexing.

  Because of this limitation, TCRTP is mostly useful for applications
  where many RTP sessions run between a pair of RTP endpoints.  The
  number of simultaneous RTP sessions required to reduce the header
  overhead to the desired level depends on the size of the L2TP header.
  A smaller L2TP header will result in fewer simultaneous RTP sessions
  being required to produce bandwidth efficiencies similar to CRTP.

2.4.  Tunneling: L2TP

  L2TP tunnels should be used to tunnel the ECRTP payloads end to end.
  L2TP includes methods for tunneling messages used in PPP session
  establishment, such as NCP.  This allows [IPCP-HC] to negotiate ECRTP
  compression/decompression parameters.






Thompson, et al.         Best Current Practice                  [Page 8]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


2.4.1.  Tunneling and DiffServ

  RTP streams may be marked with Expedited Forwarding (EF) bits, as
  described in [EF-PHB].  When such a packet is tunneled, the tunnel
  header must also be marked for the same EF bits, as required by
  [EF-PHB].  It is important to not mix EF and non-EF traffic in the
  same EF-marked multiplexed tunnel.

2.5.  Encapsulation Formats

  The packet format for an RTP packet, compressed with RTP header
  compression as defined in ECRTP, is:

       +---------+---------+-------------+-----------------------+
       |         |   MSTI  |             |                       |
       | Context |         |     UDP     |                       |
       |   ID    |   Link  |   Checksum  |       RTP Data        |
       |         | Sequence|             |                       |
       |  (1-2)  |   (1)   |     (0-2)   |                       |
       +---------+---------+-------------+-----------------------+

  The packet format of a multiplexed PPP packet as defined by [PPP-MUX]
  is:

       +-------+---+------+-------+-----+   +---+------+-------+-----+
       | Mux   |P L|      |       |     |   |P L|      |       |     |
       | PPP   |F X|Len1  |  PPP  |     |   |F X|LenN  |  PPP  |     |
       | Prot. |F T|      | Prot. |Info1| ~ |F T|      | Prot. |InfoN|
       | Field |          | Field1|     |   |          |FieldN |     |
       | (1)   |1-2 octets| (0-2) |     |   |1-2 octets| (0-2) |     |
       +-------+----------+-------+-----+   +----------+-------+-----+

  The combined format used for TCRTP with a single payload is all of
  the above packets concatenated.  Here is an example with one payload:

       +------+-------+----------+-------+-------+-----+-------+----+
       | IP   | Mux   |P L|      |       |       | MSTI|       |    |
       |header| PPP   |F X|Len1  |  PPP  |Context|     | UDP   |RTP |
       | (20) | Proto |F T|      | Proto |  ID   | Link| Cksum |Data|
       |      | Field |          | Field1|       | Seq |       |    |
       |      | (1)   |1-2 octets| (0-2) | (1-2) | (1) | (0-2) |    |
       +------+-------+----------+-------+-------+-----+-------+----+
              |<------------- IP payload ------------------------->|
                      |<----- PPPmux payload --------------------->|

  If the tunnel contains multiplexed traffic, multiple "PPPMux
  payload"s are transmitted in one IP packet.




Thompson, et al.         Best Current Practice                  [Page 9]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


3.  Bandwidth Efficiency

  The expected bandwidth efficiency attainable with TCRTP depends upon
  a number of factors.  These factors include multiplexing gain,
  expected packet loss rate across the network, and rates of change of
  specific fields within the IP and RTP headers.  This section also
  describes how TCRTP significantly enhances bandwidth efficiency for
  voice over IP over ATM.

3.1.  Multiplexing Gains

  Multiplexing reduces the overhead associated with the layer 2 and
  tunnel headers.  Increasing the number of CRTP payloads combined into
  one multiplexed PPP payload increases multiplexing gain.  As traffic
  increases within a tunnel, more payloads are combined in one
  multiplexed payload.  This will increase multiplexing gain.

3.2.  Packet Loss Rate

  Loss of a multiplexed packet causes packet loss for all of the flows
  within the multiplexed packet.

  When the expected loss rate in a tunnel is relatively low (less than
  perhaps 5%), the robust operation (described in [ECRTP]) should be
  sufficient to ensure delivery of state changes.  This robust
  operation is characterized by a parameter N, which means that the
  probability of more than N adjacent packets getting lost on the
  tunnel is small.

  A value of N=1 will protect against the loss of a single packet
  within a compressed session, at the expense of bandwidth.  A value of
  N=2 will protect against the loss of two packets in a row within a
  compressed session and so on.  Higher values of N have higher
  bandwidth penalties.

  The optimal value of N will depend on the loss rate in the tunnel.
  If the loss rate is high (above perhaps 5%), more advanced techniques
  must be employed.  Those techniques are beyond the scope of this
  document.

3.3.  Bandwidth Calculation for Voice and Video Applications

  The following formula uses the factors described above to model per-
  flow bandwidth usage for both voice and video applications.  These
  variables are defined:






Thompson, et al.         Best Current Practice                 [Page 10]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


  SOV-TCRTP, unit: octet.  Per-payload overhead of ECRTP and the
         multiplexed PPP header.  This value does not include
         additional overhead for updating IP ID or the RTP Time Stamp
         fields (see [ECRTP] for details on IP ID).  The value assumes
         the use of the COMPRESSED_RTP payload type.  It consists of 1
         octet for the ECRTP context ID, 1 octet for COMPRESSED_RTP
         flags, 2 octets for the UDP checksum, 1 octet for PPP protocol
         ID, and 1 octet for the multiplexed PPP length field.  The
         total is 6 octets.

  POV-TCRTP, unit: octet.  Per-packet overhead of tunneled ECRTP.  This
         is the overhead for the tunnel header and the multiplexed PPP
         payload type.  This value is 20 octets for the IP header, 4
         octets for the L2TPv3 header and 1 octet for the multiplexed
         PPP protocol ID.  The total is 25 octets.

  TRANSMIT-LENGTH, unit: milliseconds.  The average duration of a
         transmission (such as a talk spurt for voice streams).

  SOV-TSTAMP, unit: octet.  Additional per-payload overhead of the
         COMPRESSED_UDP header that includes the absolute time stamp
         field.  This value includes 1 octet for the extra flags field
         in the COMPRESSED_UDP header and 4 octets for the absolute
         time stamp, for a total of 5 octets.

  SOV-IPID, unit: octet.  Additional per-payload overhead of the
         COMPRESSED_UDP header that includes the absolute IPID field.
         This value includes 2 octets for the absolute IPID.  This
         value also includes 1 octet for the extra flags field in the
         COMPRESSED_UDP header.  The total is 3 octets.

  IPID-RATIO, unit: integer values 0 or 1.  Indicates the frequency at
         which IPID will be updated by the compressor.  If IPID is
         changing randomly and thus always needs to be updated, then
         the value is 1.  If IPID is changing by a fixed constant
         amount between payloads of a flow, then IPID-RATIO will be 0.
         The value of this variable does not consider the IPID value at
         the beginning of a voice or video transmission, as that is
         considered by the variable TRANSMIT-LENGTH.  The
         implementation of the sending IP stack and RTP application
         controls this behavior.  See Section 1.1.

  NREP, unit: integer (usually a number between 1 and 3).  This is the
         number of times an update field will be repeated in ECRTP
         headers to increase the delivery rate between the compressor
         and decompressor.  For this example, we will assume NREP=2.

  PAYLOAD-SIZE, unit: octets.  The size of the RTP payload in octets.



Thompson, et al.         Best Current Practice                 [Page 11]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


  MUX-SIZE, unit: count.  The number of PPP payloads multiplexed into
         one multiplexed PPP payload.

  SAMPLE-PERIOD, unit: milliseconds.  The average delay between
         transmissions of voice or video payloads for each flow in the
         multiplex.  For example, in voice applications the value of
         this variable would be 10ms if all calls have a 10ms sample
         period.

  The formula is:

    SOV-TOTAL = SOV-TCRTP + SOV-TSTAMP * (NREP * SAMPLE-PERIOD /
                TRANSMIT-LENGTH) + SOV-IPID * IPID-RATIO

    BANDWIDTH = ((PAYLOAD-SIZE + SOV-TOTAL + (POV-TCRTP / MUX-SIZE)) *
                8) / SAMPLE-PERIOD)

  The results are:

    BANDWIDTH, unit: kilobits per second.  The average amount of
              bandwidth used per voice or video flow.

    SOV-TOTAL = The total amount of per-payload overhead associated
                with tunneled ECRTP.  It includes the per-payload
                overhead of ECRTP and PPP, timestamp update overhead,
                and IPID update overhead.

3.3.1.  Voice Bandwidth Calculation Example

  To create an example for a voice application using the above
  formulas, we will assume the following usage scenario.  Compressed
  voice streams using G.729 compression with a 20 millisecond
  packetization period.  In this scenario, VAD is enabled and the
  average talk spurt length is 1500 milliseconds.  The IPID field is
  changing randomly between payloads of streams.  There is enough
  traffic in the tunnel to allow 3 multiplexed payloads.  The following
  values apply:

       SAMPLE-PERIOD      = 20 milliseconds
       TRANSMIT-LENGTH    = 1500 milliseconds
       IPID-RATIO         = 1
       PAYLOAD-SIZE       = 20 octets
       MUX-SIZE           = 3

  For this example, per call bandwidth is 16.4 kbits/sec.  Classical
  CRTP over a single HDLC link using the same factors as above yields
  12.4 kbits/sec.




Thompson, et al.         Best Current Practice                 [Page 12]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


  The effect of IPID can have a large effect on per call bandwidth.  If
  the above example is recalculated using an IPID-RATIO of 0, then the
  per call bandwidth is reduced to 13.8 kbits/sec.  Classical CRTP over
  a single HDLC link, using these same factors, yields 11.2 kbits/call.

3.3.2.  Voice Bandwidth Comparison Table

  The bandwidth values are as follows when using 5 simultaneous calls,
  no voice activity detection (VAD), G.729 with 20ms packetization
  interval, and not considering RTCP overhead:

      Normal VoIP over PPP:            124 kbps
      with classical CRTP on a link:    50 kbps (savings: 59%)
      with TCRTP over PPP:              62 kbps (savings: 50%)
      with TCRTP over AAL5:             85 kbps (savings: 31%)

3.3.3.  Video Bandwidth Calculation Example

  Since TCRTP can be used to save bandwidth on any type of RTP
  encapsulated flow, it can be used to save bandwidth for video
  applications.  This section documents an example of TCRTP-based
  bandwidth savings for MPEG-2 encoded video.

  To create an example for a video application using the above
  formulas, we will assume the following usage scenario.  RTP
  encapsulation of MPEG System and Transport Streams is performed as
  described in RFC 2250.  Frames for MPEG-2 encoded video are sent
  continuously, so the TRANSMIT-LENGTH variable in the bandwidth
  formula is essentially infinite.  The IPID field is changing randomly
  between payloads of streams.  There is enough traffic in the tunnel
  to allow 3 multiplexed payloads.  The following values apply:

       SAMPLE-PERIOD      = 2.8 milliseconds
       TRANSMIT-LENGTH    = infinite
       IPID-RATIO         = 1
       PAYLOAD-SIZE       = 1316 octets
       MUX-SIZE           = 3

  For this example, per flow bandwidth is 3.8 Mbits/sec.  MPEG video
  with no header compression, using the same factors as above, yields
  3.9 Mbits/sec.  While TCRTP does provide some bandwidth savings for
  video, the ratio of transmission headers to payload is so small that
  the bandwidth savings are insignificant.








Thompson, et al.         Best Current Practice                 [Page 13]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


3.3.4.  TCRTP over ATM

  IP transport over AAL5 causes a quantizing effect on bandwidth
  utilization due to the packets always being multiples of ATM cells.

  For example, the payload size for G.729 using 10 millisecond
  packetization intervals is 10 octets.  This is much smaller than the
  payload size of an ATM cell (48 octets).  When classical CRTP [CRTP]
  is used on a link-by-link basis, the IP overhead to payload ratio is
  quite good.  However, AAL5 encapsulation and its cell padding always
  force the minimum payload size to be one ATM cell, which results in
  poor bandwidth utilization.

  Instead of wasting this padding, the multiplexing of TCRTP allows
  this previously wasted space in the ATM cell to contain useful data.
  This is one of the main reasons why multiplexing has such a large
  effect on bandwidth utilization with Voice over IP over ATM.

  This multiplexing efficiency of TCRTP is similar to AAL2 sub-cell
  multiplexing described in [I.363.2].  Unlike AAL2 sub-cell
  multiplexing, however, TCRTP's multiplexing efficiency isn't limited
  to only ATM networks.

3.3.5.  TCRTP over Non-ATM Networks

  When TCRTP is used with other layer 2 encapsulations that do not have
  a minimum PDU size, the benefit of multiplexing is not as great.

  Depending upon the exact overhead of the layer 2 encapsulation, the
  benefit of multiplexing might be slightly better or worse than link-
  by-link CRTP header compression.  The per-payload overhead of CRTP
  tunneling is either 4 or 6 octets.  If classical CRTP plus layer 2
  overhead is greater than this amount, TCRTP multiplexing will consume
  less bandwidth than classical CRTP when the outer IP header is
  amortized over a large number of payloads.

  The payload breakeven point can be determined by the following
  formula:

    POV-L2 * MUX-SIZE >= POV-L2 + POV-TUNNEL + POV-PPPMUX + SOV-PPPMUX
         * MUX-SIZE

  Where:

    POV-L2, unit: octet.  Layer 2 packet overhead: 5 octets for HDLC
         encapsulation





Thompson, et al.         Best Current Practice                 [Page 14]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


    POV-TUNNEL, unit: octet.  Packet overhead due to tunneling: 24
         octets IP header and L2TPv3 header

    POV-PPPMUX, unit: octet.  Packet overhead for the multiplexed PPP
         protocol ID: 1 octet

    SOV-PPPMUX, unit: octet.  Per-payload overhead of PPPMUX, which is
         comprised of the payload length field and the ECRTP protocol
         ID.  The value of SOV-PPPMUX is typically 1, 2, or 3.

  If using HDLC as the layer 2 protocol, the breakeven point (using the
  above formula) is when MUX-SIZE = 7.  Thus 7 voice or video flows
  need to be multiplexed to make TCRTP as bandwidth-efficient as link-
  by-link CRTP compression.

4.  Example Implementation of TCRTP

  This section describes an example implementation of TCRTP.
  Implementations of TCRTP may be done in many ways as long as the
  requirements of the associated RFCs are met.

  Here is the path an RTP packet takes in this implementation:





























Thompson, et al.         Best Current Practice                 [Page 15]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


        +-------------------------------+             ^
        |          Application          |             |
        +-------------------------------+             |
        |              RTP              |             |
        +-------------------------------+        Application and
        |              UDP              |            IP stack
        +-------------------------------+             |
        |              IP               |             |
        +-------------------------------+             V
                        |
                        |  IP forwarding
                        |
        +-------------------------------+             ^
        |             ECRTP             |             |
        +-------------------------------+             |
        |            PPPMUX             |             |
        +-------------------------------+          Tunnel
        |             PPP               |         Interface
        +-------------------------------+             |
        |             L2TP              |             |
        +-------------------------------+             |
        |              IP               |             |
        +-------------------------------+             V
                        |
                        |  IP forwarding
                        |
        +-------------------------------+             ^
        |            Layer 2            |             |
        +-------------------------------+          Physical
        |            Physical           |          Interface
        +-------------------------------+             V

  A protocol stack is configured to create an L2TP tunnel interface to
  a destination host.  The tunnel is configured to negotiate the PPP
  connection (using NCP IPCP) with ECRTP header compression and PPPMUX.
  IP forwarding is configured to route RTP packets to this tunnel.  The
  destination UDP port number could distinguish RTP packets from non-
  RTP packets.

  The transmitting application gathers the RTP data from one source,
  and formats an RTP packet.  Lower level application layers add UDP
  and IP headers to form a complete IP packet.

  The RTP packets are routed to the tunnel interface where headers are
  compressed, payloads are multiplexed, and then the packets are
  tunneled to the destination host.





Thompson, et al.         Best Current Practice                 [Page 16]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


  The operation of the receiving node is the same as the transmitting
  node in reverse.

4.1.  Suggested PPP and L2TP Negotiation for TCRTP

  This section describes the necessary PPP and LT2P negotiations
  necessary for establishing a PPP connection and L2TP tunnel with L2TP
  header compression.  The negotiation is between two peers: Peer1 and
  Peer2.

4.2.  PPP Negotiation TCRTP

  The Point-to-Point Protocol is described in [PPP].

4.2.1.  LCP Negotiation

  Link Control Processing (LCP) is described in [PPP].

4.2.1.1.  Link Establishment

             Peer1                       Peer2
             -----                       -----
    Configure-Request (no options) ->
                                    <- Configure-Ack
                                    <- Configure-Request (no options)
    Configure-Ack                  ->

4.2.1.2.  Link Tear Down

       Terminate-Request              ->
                                       <- Terminate-Ack




















Thompson, et al.         Best Current Practice                 [Page 17]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


4.2.2.  IPCP Negotiation

  The protocol exchange here is described in [IPHCOMP], [PPP], and
  [ECRTP].

             Peer1                       Peer2
             -----                       -----
    Configure-Request              ->
      Options:
      IP-Compression-Protocol
        Use protocol 0x61
        and sub-parameters
        as described in
        [IPCP-HC] and [ECRTP]
                                    <- Configure-Ack
                                    <- Configure-Request
                                         Options:
                                         IP-Compression-Protocol
                                           Use protocol 0x61
                                           and sub-parameters
                                           as described in
                                           [IPCP-HC] and [ECRTP]
    Configure-Ack                  ->




























Thompson, et al.         Best Current Practice                 [Page 18]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


4.3.  L2TP Negotiation

  L2TP is described in [L2TPv3].

4.3.1.  Tunnel Establishment

             Peer1                       Peer2
             -----                       -----
    SCCRQ                          ->
      Mandatory AVP's:
      Message Type
      Protocol Version
      Host Name
      Framing Capabilities
      Assigned Tunnel ID
                                    <- SCCRP
                                         Mandatory AVP's:
                                         Message Type
                                         Protocol Version
                                         Host Name
                                         Framing Capabilities
                                         Assigned Tunnel ID
    SCCCN                          ->
    Mandatory AVP's:
      Message Type
                                    <- ZLB

4.3.2.  Session Establishment

             Peer1                       Peer2
             -----                       -----
    ICRQ                           ->
      Mandatory AVP's:
      Message Type
      Assigned Session ID
      Call Serial Number
                                        <- ICRP
                                         Mandatory AVP's:
                                         Message Type
                                         Assigned Session ID
    ICCN                           ->
      Mandatory AVP's:
      Message Type
      Tx (Connect Speed)
      Framing Type
                                    <- ZLB





Thompson, et al.         Best Current Practice                 [Page 19]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


4.3.3.  Tunnel Tear Down

             Peer1                       Peer2
             -----                       -----
    StopCCN                        ->
      Mandatory AVP's:
      Message Type
      Assigned Tunnel ID
      Result Code
                                    <- ZLB

5.  Security Considerations

  This document describes a method for combining several existing
  protocols that implement compression, multiplexing, and tunneling of
  RTP streams.  Attacks on the component technologies of TCRTP include
  attacks on RTP/RTCP headers and payloads carried within a TCRTP
  session, attacks on the compressed headers, attacks on the
  multiplexing layer, or attacks on the tunneling negotiation or
  transport.  The security issues associated individually with each of
  those component technologies are addressed in their respective
  specifications, [ECRTP], [PPP-MUX], [L2TPv3], along with the security
  considerations for RTP itself [RTP].

  However, there may be additional security considerations arising from
  the use of these component technologies together.  For example, there
  may be an increased risk of unintended misdelivery of packets from
  one stream in the multiplex to another due to a protocol malfunction
  or data error because the addressing information is more condensed.
  This is particularly true if the tunnel is transmitted over a link-
  layer protocol that allows delivery of packets containing bit errors,
  in combination with a tunnel transport layer option that does not
  checksum all of the payload.

  The opportunity for malicious misdirection may be increased, relative
  to that for a single RTP stream transported by itself, because
  addressing information must be unencrypted for the header compression
  and multiplexing layers to function.

  The primary defense against misdelivery is to make the data unusable
  to unintended recipients through cryptographic techniques.  The basic
  method for encryption provided in the RTP specification [RTP] is not
  suitable because it encrypts the RTP and RTCP headers along with the
  payload.  However, the RTP specification also allows alternative
  approaches to be defined in separate profile or payload format
  specifications wherein only the payload portion of the packet would
  be encrypted; therefore, header compression may be applied to the
  encrypted packets.  One such profile, [SRTP], provides more



Thompson, et al.         Best Current Practice                 [Page 20]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


  sophisticated and complete methods for encryption and message
  authentication than the basic approach in [RTP].  Additional methods
  may be developed in the future.  Appropriate cryptographic protection
  should be incorporated into all TCRTP applications.

6.  Acknowledgements

  The authors would like to thank the authors of RFC 2508, Stephen
  Casner and Van Jacobson, and the authors of RFC 2507, Mikael
  Degermark, Bjorn Nordgren, and Stephen Pink.

  The authors would also like to thank Dana Blair, Alex Tweedley, Paddy
  Ruddy, Francois Le Faucheur, Tim Gleeson, Matt Madison, Hussein
  Salama, Mallik Tatipamula, Mike Thomas, Mark Townsley, Andrew
  Valencia, Herb Wildfeuer, J. Martin Borden, John Geevarghese, and
  Shoou Yiu.

7.  References

7.1.  Normative References

  [PPP-MUX] Pazhyannur, R., Ali, I., and C. Fox, "PPP Multiplexing",
            RFC 3153, August 2001.

  [ECRTP]   Koren, T., Casner, S., Geevarghese, J., Thompson, B., and
            P. Ruddy, "Enhanced Compressed RTP (CRTP) for Links with
            High Delay, Packet Loss and Reordering", RFC 3545, July
            2003.

  [CRTP]    Casner, S. and V. Jacobson, "Compressing IP/UDP/RTP Headers
            for Low-Speed Serial Links", RFC 2508, February 1999.

  [IPHCOMP] Degermark, M., Nordgren, B., and S. Pink, "IP Header
            Compression", RFC 2507, February 1999.

  [IPCP-HC] Engan, M., Casner, S., Bormann, C., and T. Koren, "IP
            Header Compression over PPP", RFC 3544, July 2003.

  [RTP]     Schulzrinne, H.,  Casner, S., Frederick, R., and V.
            Jacobson, "RTP: A Transport Protocol for Real-Time
            Applications", STD 64, RFC 3550, July 2003.

  [L2TPv3]  Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling
            Protocol - Version 3 (L2TPv3)", RFC 3931, March 2005.

  [I.363.2] ITU-T, "B-ISDN ATM Adaptation layer specification: Type 2
            AAL", I.363.2, September 1997.




Thompson, et al.         Best Current Practice                 [Page 21]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


  [EF-PHB]  Davie, B., Charny, A., Bennet, J.C., Benson, K., Le Boudec,
            J., Courtney, W., Davari, S., Firoiu, V., and D. Stiliadis,
            "An Expedited Forwarding PHB (Per-Hop Behavior)", RFC 3246,
            March 2002.

  [PPP]     Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51,
            RFC 1661, July 1994.

7.2.  Informative References

  [SRTP]    Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
            Norrman, "The Secure Real-time Transport Protocol (SRTP)",
            RFC 3711, March 2004.

  [REORDER] G. Pelletier, L. Jonsson, K. Sandlund, "RObust Header
            Compression (ROHC): ROHC over Channels that can Reorder
            Packets", Work in Progress, June 2004.

  [ROHC]    Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
            Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le, K.,
            Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K., Wiebke,
            T., Yoshimura, T., and H. Zheng, "RObust Header Compression
            (ROHC): Framework and four profiles: RTP, UDP, ESP, and
            uncompressed ", RFC 3095, July 2001.



























Thompson, et al.         Best Current Practice                 [Page 22]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


Authors' Addresses

  Bruce Thompson
  170 West Tasman Drive
  San Jose, CA  95134-1706
  United States of America

  Phone: +1 408 527 0446
  EMail: [email protected]


  Tmima Koren
  170 West Tasman Drive
  San Jose, CA  95134-1706
  United States of America

  Phone: +1 408 527 6169
  EMail: [email protected]


  Dan Wing
  170 West Tasman Drive
  San Jose, CA  95134-1706
  United States of America

  EMail: [email protected]

























Thompson, et al.         Best Current Practice                 [Page 23]

RFC 4170          Tunneling Multiplexed Compressed RTP     November 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Thompson, et al.         Best Current Practice                 [Page 24]