Network Working Group                                             L. Zhu
Request for Comments: 4121                                 K. Jaganathan
Updates: 1964                                                  Microsoft
Category: Standards Track                                     S. Hartman
                                                                    MIT
                                                              July 2005


                       The Kerberos Version 5
  Generic Security Service Application Program Interface (GSS-API)
                        Mechanism: Version 2

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This document defines protocols, procedures, and conventions to be
  employed by peers implementing the Generic Security Service
  Application Program Interface (GSS-API) when using the Kerberos
  Version 5 mechanism.

  RFC 1964 is updated and incremental changes are proposed in response
  to recent developments such as the introduction of Kerberos
  cryptosystem framework.  These changes support the inclusion of new
  cryptosystems, by defining new per-message tokens along with their
  encryption and checksum algorithms based on the cryptosystem
  profiles.














Zhu, et al.                 Standards Track                     [Page 1]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


Table of Contents

  1. Introduction ....................................................2
  2. Key Derivation for Per-Message Tokens ...........................4
  3. Quality of Protection ...........................................4
  4. Definitions and Token Formats ...................................5
     4.1. Context Establishment Tokens ...............................5
          4.1.1. Authenticator Checksum ..............................6
     4.2. Per-Message Tokens .........................................9
          4.2.1. Sequence Number .....................................9
          4.2.2. Flags Field .........................................9
          4.2.3. EC Field ...........................................10
          4.2.4. Encryption and Checksum Operations .................10
          4.2.5. RRC Field ..........................................11
          4.2.6. Message Layouts ....................................12
     4.3. Context Deletion Tokens ...................................13
     4.4. Token Identifier Assignment Considerations ................13
  5. Parameter Definitions ..........................................14
     5.1. Minor Status Codes ........................................14
          5.1.1. Non-Kerberos-specific Codes ........................14
          5.1.2. Kerberos-specific Codes ............................15
     5.2. Buffer Sizes ..............................................15
  6. Backwards Compatibility Considerations .........................15
  7. Security Considerations ........................................16
  8. Acknowledgements................................................17
  9. References .....................................................18
     9.1. Normative References ......................................18
     9.2. Informative References ....................................18

1.  Introduction

  [RFC3961] defines a generic framework for describing encryption and
  checksum types to be used with the Kerberos protocol and associated
  protocols.

  [RFC1964] describes the GSS-API mechanism for Kerberos Version 5.  It
  defines the format of context establishment, per-message and context
  deletion tokens, and uses algorithm identifiers for each cryptosystem
  in per-message and context deletion tokens.

  The approach taken in this document obviates the need for algorithm
  identifiers.  This is accomplished by using the same encryption
  algorithm, specified by the crypto profile [RFC3961] for the session
  key or subkey that is created during context negotiation, and its
  required checksum algorithm.  Message layouts of the per-message
  tokens are therefore revised to remove algorithm indicators and to
  add extra information to support the generic crypto framework
  [RFC3961].



Zhu, et al.                 Standards Track                     [Page 2]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


  Tokens transferred between GSS-API peers for security context
  establishment are also described in this document.  The data elements
  exchanged between a GSS-API endpoint implementation and the Kerberos
  Key Distribution Center (KDC) [RFC4120] are not specific to GSS-API
  usage and are therefore defined within [RFC4120] rather than this
  specification.

  The new token formats specified in this document MUST be used with
  all "newer" encryption types [RFC4120] and MAY be used with
  encryption types that are not "newer", provided that the initiator
  and acceptor know from the context establishment that they can both
  process these new token formats.

  "Newer" encryption types are those which have been specified along
  with or since the new Kerberos cryptosystem specification [RFC3961],
  as defined in section 3.1.3 of [RFC4120].  The list of not-newer
  encryption types is as follows [RFC3961]:

          Encryption Type             Assigned Number
        ----------------------------------------------
         des-cbc-crc                        1
         des-cbc-md4                        2
         des-cbc-md5                        3
         des3-cbc-md5                       5
         des3-cbc-sha1                      7
         dsaWithSHA1-CmsOID                 9
         md5WithRSAEncryption-CmsOID       10
         sha1WithRSAEncryption-CmsOID      11
         rc2CBC-EnvOID                     12
         rsaEncryption-EnvOID              13
         rsaES-OAEP-ENV-OID                14
         des-ede3-cbc-Env-OID              15
         des3-cbc-sha1-kd                  16
         rc4-hmac                          23

  Conventions used in this document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  The term "little-endian order" is used for brevity to refer to the
  least-significant-octet-first encoding, while the term "big-endian
  order" is for the most-significant-octet-first encoding.







Zhu, et al.                 Standards Track                     [Page 3]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


2.  Key Derivation for Per-Message Tokens

  To limit the exposure of a given key, [RFC3961] adopted "one-way"
  "entropy-preserving" derived keys, from a base key or protocol key,
  for different purposes or key usages.

  This document defines four key usage values below that are used to
  derive a specific key for signing and sealing messages from the
  session key or subkey [RFC4120] created during the context
  establishment.

          Name                         Value
        -------------------------------------
         KG-USAGE-ACCEPTOR-SEAL         22
         KG-USAGE-ACCEPTOR-SIGN         23
         KG-USAGE-INITIATOR-SEAL        24
         KG-USAGE-INITIATOR-SIGN        25

  When the sender is the context acceptor, KG-USAGE-ACCEPTOR-SIGN is
  used as the usage number in the key derivation function for deriving
  keys to be used in MIC tokens (as defined in section 4.2.6.1).
  KG-USAGE-ACCEPTOR-SEAL is used for Wrap tokens (as defined in section
  4.2.6.2).  Similarly, when the sender is the context initiator,
  KG-USAGE-INITIATOR-SIGN is used as the usage number in the key
  derivation function for MIC tokens, while KG-USAGE-INITIATOR-SEAL is
  used for Wrap tokens.  Even if the Wrap token does not provide for
  confidentiality, the same usage values specified above are used.

  During the context initiation and acceptance sequence, the acceptor
  MAY assert a subkey in the AP-REP message.  If the acceptor asserts a
  subkey, the base key is the acceptor-asserted subkey and subsequent
  per-message tokens MUST be flagged with "AcceptorSubkey", as
  described in section 4.2.2.  Otherwise, if the initiator asserts a
  subkey in the AP-REQ message, the base key is this subkey;  if the
  initiator does not assert a subkey, the base key is the session key
  in the service ticket.

3.  Quality of Protection

  The GSS-API specification [RFC2743] provides Quality of Protection
  (QOP) values that can be used by applications to request a certain
  type of encryption or signing.  A zero QOP value is used to indicate
  the "default" protection; applications that do not use the default
  QOP are not guaranteed to be portable across implementations, or even
  to inter-operate with different deployment configurations of the same
  implementation.  Using a different algorithm than the one for which
  the key is defined may not be appropriate.  Therefore, when the new
  method in this document is used, the QOP value is ignored.



Zhu, et al.                 Standards Track                     [Page 4]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


  The encryption and checksum algorithms in per-message tokens are now
  implicitly defined by the algorithms associated with the session key
  or subkey.  Therefore, algorithm identifiers as described in
  [RFC1964] are no longer needed and are removed from the new token
  headers.

4.  Definitions and Token Formats

  This section provides terms and definitions, as well as descriptions
  for tokens specific to the Kerberos Version 5 GSS-API mechanism.

4.1.  Context Establishment Tokens

  All context establishment tokens emitted by the Kerberos Version 5
  GSS-API mechanism SHALL have the framing described in section 3.1 of
  [RFC2743], as illustrated by the following pseudo-ASN.1 structures:

        GSS-API DEFINITIONS ::=

        BEGIN

        MechType ::= OBJECT IDENTIFIER
        -- representing Kerberos V5 mechanism

        GSSAPI-Token ::=
        -- option indication (delegation, etc.) indicated within
        -- mechanism-specific token
        [APPLICATION 0] IMPLICIT SEQUENCE {
                thisMech MechType,
                innerToken ANY DEFINED BY thisMech
                   -- contents mechanism-specific
                   -- ASN.1 structure not required
                }

        END

  The innerToken field starts with a two-octet token-identifier
  (TOK_ID) expressed in big-endian order, followed by a Kerberos
  message.

  Following are the TOK_ID values used in the context establishment
  tokens:

         Token               TOK_ID Value in Hex
        -----------------------------------------
         KRB_AP_REQ            01 00
         KRB_AP_REP            02 00
         KRB_ERROR             03 00



Zhu, et al.                 Standards Track                     [Page 5]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


  Where Kerberos message KRB_AP_REQUEST, KRB_AP_REPLY, and KRB_ERROR
  are defined in [RFC4120].

  If an unknown token identifier (TOK_ID) is received in the initial
  context establishment token, the receiver MUST return
  GSS_S_CONTINUE_NEEDED major status, and the returned output token
  MUST contain a KRB_ERROR message with the error code
  KRB_AP_ERR_MSG_TYPE [RFC4120].

4.1.1.  Authenticator Checksum

  The authenticator in the KRB_AP_REQ message MUST include the optional
  sequence number and the checksum field.  The checksum field is used
  to convey service flags, channel bindings, and optional delegation
  information.

  The checksum type MUST be 0x8003.  When delegation is used, a
  ticket-granting ticket will be transferred in a KRB_CRED message.
  This ticket SHOULD have its forwardable flag set.  The EncryptedData
  field of the KRB_CRED message [RFC4120] MUST be encrypted in the
  session key of the ticket used to authenticate the context.

  The authenticator checksum field SHALL have the following format:

      Octet        Name      Description
     -----------------------------------------------------------------
      0..3         Lgth    Number of octets in Bnd field;  Represented
                           in little-endian order;  Currently contains
                           hex value 10 00 00 00 (16).
      4..19        Bnd     Channel binding information, as described in
                           section 4.1.1.2.
      20..23       Flags   Four-octet context-establishment flags in
                           little-endian order as described in section
                           4.1.1.1.
      24..25       DlgOpt  The delegation option identifier (=1) in
                           little-endian order [optional].  This field
                           and the next two fields are present if and
                           only if GSS_C_DELEG_FLAG is set as described
                           in section 4.1.1.1.
      26..27       Dlgth   The length of the Deleg field in
                           little-endian order [optional].
      28..(n-1)    Deleg   A KRB_CRED message (n = Dlgth + 28)
                           [optional].
      n..last      Exts    Extensions [optional].

  The length of the checksum field MUST be at least 24 octets when
  GSS_C_DELEG_FLAG is not set (as described in section 4.1.1.1), and at
  least 28 octets plus Dlgth octets when GSS_C_DELEG_FLAG is set.  When



Zhu, et al.                 Standards Track                     [Page 6]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


  GSS_C_DELEG_FLAG is set, the DlgOpt, Dlgth, and Deleg fields of the
  checksum data MUST immediately follow the Flags field.  The optional
  trailing octets (namely the "Exts" field) facilitate future
  extensions to this mechanism.  When delegation is not used, but the
  Exts field is present, the Exts field starts at octet 24 (DlgOpt,
  Dlgth and Deleg are absent).

  Initiators that do not support the extensions MUST NOT include more
  than 24 octets in the checksum field (when GSS_C_DELEG_FLAG is not
  set) or more than 28 octets plus the KRB_CRED in the Deleg field
  (when GSS_C_DELEG_FLAG is set).  Acceptors that do not understand the

  Extensions MUST ignore any octets past the Deleg field of the
  checksum data (when GSS_C_DELEG_FLAG is set) or past the Flags field
  of the checksum data (when GSS_C_DELEG_FLAG is not set).

4.1.1.1.  Checksum Flags Field

  The checksum "Flags" field is used to convey service options or
  extension negotiation information.

  The following context establishment flags are defined in [RFC2744].

          Flag Name              Value
        ---------------------------------
         GSS_C_DELEG_FLAG           1
         GSS_C_MUTUAL_FLAG          2
         GSS_C_REPLAY_FLAG          4
         GSS_C_SEQUENCE_FLAG        8
         GSS_C_CONF_FLAG           16
         GSS_C_INTEG_FLAG          32

  Context establishment flags are exposed to the calling application.
  If the calling application desires a particular service option, then
  it requests that option via GSS_Init_sec_context() [RFC2743].  If the
  corresponding return state values [RFC2743] indicate that any of the
  above optional context level services will be active on the context,
  the corresponding flag values in the table above MUST be set in the
  checksum Flags field.

  Flag values 4096..524288 (2^12, 2^13, ..., 2^19) are reserved for use
  with legacy vendor-specific extensions to this mechanism.









Zhu, et al.                 Standards Track                     [Page 7]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


  All other flag values not specified herein are reserved for future
  use.  Future revisions of this mechanism may use these reserved flags
  and may rely on implementations of this version to not use such flags
  in order to properly negotiate mechanism versions.  Undefined flag
  values MUST be cleared by the sender, and unknown flags MUST be
  ignored by the receiver.

4.1.1.2.  Channel Binding Information

  These tags are intended to be used to identify the particular
  communications channel for which the GSS-API security context
  establishment tokens are intended, thus limiting the scope within
  which an intercepted context establishment token can be reused by an
  attacker (see [RFC2743], section 1.1.6).

  When using C language bindings, channel bindings are communicated to
  the GSS-API using the following structure [RFC2744]:

        typedef struct gss_channel_bindings_struct {
           OM_uint32       initiator_addrtype;
           gss_buffer_desc initiator_address;
           OM_uint32       acceptor_addrtype;
           gss_buffer_desc acceptor_address;
           gss_buffer_desc application_data;
        } *gss_channel_bindings_t;

  The member fields and constants used for different address types are
  defined in [RFC2744].

  The "Bnd" field contains the MD5 hash of channel bindings, taken over
  all non-null components of bindings, in order of declaration.
  Integer fields within channel bindings are represented in little-
  endian order for the purposes of the MD5 calculation.

  In computing the contents of the Bnd field, the following detailed
  points apply:

  (1) For purposes of MD5 hash computation, each integer field and
      input length field SHALL be formatted into four octets, using
      little-endian octet ordering.

  (2) All input length fields within gss_buffer_desc elements of a
      gss_channel_bindings_struct even those which are zero-valued,
      SHALL be included in the hash calculation.  The value elements of
      gss_buffer_desc elements SHALL be dereferenced, and the resulting
      data SHALL be included within the hash computation, only for the
      case of gss_buffer_desc elements having non-zero length
      specifiers.



Zhu, et al.                 Standards Track                     [Page 8]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


  (3) If the caller passes the value GSS_C_NO_BINDINGS instead of a
      valid channel binding structure, the Bnd field SHALL be set to 16
      zero-valued octets.

  If the caller to GSS_Accept_sec_context [RFC2743] passes in
  GSS_C_NO_CHANNEL_BINDINGS [RFC2744] as the channel bindings, then the
  acceptor MAY ignore any channel bindings supplied by the initiator,
  returning success even if the initiator did pass in channel bindings.

  If the application supplies, in the channel bindings, a buffer with a
  length field larger than 4294967295 (2^32 - 1), the implementation of
  this mechanism MAY choose to reject the channel bindings altogether,
  using major status GSS_S_BAD_BINDINGS [RFC2743].  In any case, the
  size of channel-binding data buffers that can be used (interoperable,
  without extensions) with this specification is limited to 4294967295
  octets.

4.2.  Per-Message Tokens

  Two classes of tokens are defined in this section: (1) "MIC" tokens,
  emitted by calls to GSS_GetMIC() and consumed by calls to
  GSS_VerifyMIC(), and (2) "Wrap" tokens, emitted by calls to
  GSS_Wrap() and consumed by calls to GSS_Unwrap().

  These new per-message tokens do not include the generic GSS-API token
  framing used by the context establishment tokens.  These new tokens
  are designed to be used with newer crypto systems that can have
  variable-size checksums.

4.2.1.  Sequence Number

  To distinguish intentionally-repeated messages from maliciously-
  replayed ones, per-message tokens contain a sequence number field,
  which is a 64 bit integer expressed in big-endian order.  After
  sending a GSS_GetMIC() or GSS_Wrap() token, the sender's sequence
  numbers SHALL be incremented by one.

4.2.2.  Flags Field

  The "Flags" field is a one-octet integer used to indicate a set of
  attributes for the protected message.  For example, one flag is
  allocated as the direction-indicator, thus preventing the acceptance
  of the same message sent back in the reverse direction by an
  adversary.







Zhu, et al.                 Standards Track                     [Page 9]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


  The meanings of bits in this field (the least significant bit is bit
  0) are as follows:

         Bit    Name             Description
        --------------------------------------------------------------
         0   SentByAcceptor   When set, this flag indicates the sender
                              is the context acceptor.  When not set,
                              it indicates the sender is the context
                              initiator.
         1   Sealed           When set in Wrap tokens, this flag
                              indicates confidentiality is provided
                              for.  It SHALL NOT be set in MIC tokens.
         2   AcceptorSubkey   A subkey asserted by the context acceptor
                              is used to protect the message.

  The rest of available bits are reserved for future use and MUST be
  cleared.  The receiver MUST ignore unknown flags.

4.2.3.  EC Field

  The "EC" (Extra Count) field is a two-octet integer field expressed
  in big-endian order.

  In Wrap tokens with confidentiality, the EC field SHALL be used to
  encode the number of octets in the filler, as described in section
  4.2.4.

  In Wrap tokens without confidentiality, the EC field SHALL be used to
  encode the number of octets in the trailing checksum, as described in
  section 4.2.4.

4.2.4.  Encryption and Checksum Operations

  The encryption algorithms defined by the crypto profiles provide for
  integrity protection [RFC3961].  Therefore, no separate checksum is
  needed.

  The result of decryption can be longer than the original plaintext
  [RFC3961] and the extra trailing octets are called "crypto-system
  residue" in this document.  However, given the size of any plaintext
  data, one can always find a (possibly larger) size, such that when
  padding the to-be-encrypted text to that size, there will be no
  crypto-system residue added [RFC3961].

  In Wrap tokens that provide for confidentiality, the first 16 octets
  of the Wrap token (the "header", as defined in section 4.2.6), SHALL
  be appended to the plaintext data before encryption.  Filler octets
  MAY be inserted between the plaintext data and the "header."  The



Zhu, et al.                 Standards Track                    [Page 10]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


  values and size of the filler octets are chosen by implementations,
  such that there SHALL be no crypto-system residue present after the
  decryption.  The resulting Wrap token is {"header" |
  encrypt(plaintext-data | filler | "header")}, where encrypt() is the
  encryption operation (which provides for integrity protection)
  defined in the crypto profile [RFC3961], and the RRC field (as
  defined in section 4.2.5) in the to-be-encrypted header contains the
  hex value 00 00.

  In Wrap tokens that do not provide for confidentiality, the checksum
  SHALL be calculated first over the to-be-signed plaintext data, and
  then over the first 16 octets of the Wrap token (the "header", as
  defined in section 4.2.6).  Both the EC field and the RRC field in
  the token header SHALL be filled with zeroes for the purpose of
  calculating the checksum.  The resulting Wrap token is {"header" |
  plaintext-data | get_mic(plaintext-data | "header")}, where get_mic()
  is the checksum operation for the required checksum mechanism of the
  chosen encryption mechanism defined in the crypto profile [RFC3961].

  The parameters for the key and the cipher-state in the encrypt() and
  get_mic() operations have been omitted for brevity.

  For MIC tokens, the checksum SHALL be calculated as follows: the
  checksum operation is calculated first over the to-be-signed
  plaintext data, and then over the first 16 octets of the MIC token,
  where the checksum mechanism is the required checksum mechanism of
  the chosen encryption mechanism defined in the crypto profile
  [RFC3961].

  The resulting Wrap and MIC tokens bind the data to the token header,
  including the sequence number and the direction indicator.

4.2.5.  RRC Field

  The "RRC" (Right Rotation Count) field in Wrap tokens is added to
  allow the data to be encrypted in-place by existing SSPI (Security
  Service Provider Interface) [SSPI] applications that do not provide
  an additional buffer for the trailer (the cipher text after the in-
  place-encrypted data) in addition to the buffer for the header (the
  cipher text before the in-place-encrypted data).  Excluding the first
  16 octets of the token header, the resulting Wrap token in the
  previous section is rotated to the right by "RRC" octets.  The net
  result is that "RRC" octets of trailing octets are moved toward the
  header.

  Consider the following as an example of this rotation operation:
  Assume that the RRC value is 3 and the token before the rotation is
  {"header" | aa | bb | cc | dd | ee | ff | gg | hh}.  The token after



Zhu, et al.                 Standards Track                    [Page 11]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


  rotation would be {"header" | ff | gg | hh | aa | bb | cc | dd | ee
  }, where {aa | bb | cc |...| hh} would be used to indicate the octet
  sequence.

  The RRC field is expressed as a two-octet integer in big-endian
  order.

  The rotation count value is chosen by the sender based on
  implementation details.  The receiver MUST be able to interpret all
  possible rotation count values, including rotation counts greater
  than the length of the token.

4.2.6.  Message Layouts

  Per-message tokens start with a two-octet token identifier (TOK_ID)
  field, expressed in big-endian order.  These tokens are defined
  separately in the following sub-sections.

4.2.6.1.  MIC Tokens

  Use of the GSS_GetMIC() call yields a token (referred as the MIC
  token in this document), separate from the user data being protected,
  which can be used to verify the integrity of that data as received.
  The token has the following format:

        Octet no   Name        Description
        --------------------------------------------------------------
        0..1     TOK_ID     Identification field.  Tokens emitted by
                            GSS_GetMIC() contain the hex value 04 04
                            expressed in big-endian order in this
                            field.
        2        Flags      Attributes field, as described in section
                            4.2.2.
        3..7     Filler     Contains five octets of hex value FF.
        8..15    SND_SEQ    Sequence number field in clear text,
                            expressed in big-endian order.
        16..last SGN_CKSUM  Checksum of the "to-be-signed" data and
                            octet 0..15, as described in section 4.2.4.

  The Filler field is included in the checksum calculation for
  simplicity.










Zhu, et al.                 Standards Track                    [Page 12]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


4.2.6.2.  Wrap Tokens

  Use of the GSS_Wrap() call yields a token (referred as the Wrap token
  in this document), which consists of a descriptive header, followed
  by a body portion that contains either the input user data in
  plaintext concatenated with the checksum, or the input user data
  encrypted.  The GSS_Wrap() token SHALL have the following format:

        Octet no   Name        Description
        --------------------------------------------------------------
         0..1     TOK_ID    Identification field.  Tokens emitted by
                            GSS_Wrap() contain the hex value 05 04
                            expressed in big-endian order in this
                            field.
         2        Flags     Attributes field, as described in section
                            4.2.2.
         3        Filler    Contains the hex value FF.
         4..5     EC        Contains the "extra count" field, in big-
                            endian order as described in section 4.2.3.
         6..7     RRC       Contains the "right rotation count" in big-
                            endian order, as described in section
                            4.2.5.
         8..15    SND_SEQ   Sequence number field in clear text,
                            expressed in big-endian order.
         16..last Data      Encrypted data for Wrap tokens with
                            confidentiality, or plaintext data followed
                            by the checksum for Wrap tokens without
                            confidentiality, as described in section
                            4.2.4.

4.3.  Context Deletion Tokens

  Context deletion tokens are empty in this mechanism.  Both peers to a
  security context invoke GSS_Delete_sec_context() [RFC2743]
  independently, passing a null output_context_token buffer to indicate
  that no context_token is required.  Implementations of
  GSS_Delete_sec_context() should delete relevant locally-stored
  context information.

4.4.  Token Identifier Assignment Considerations

  Token identifiers (TOK_ID) from 0x60 0x00 through 0x60 0xFF inclusive
  are reserved and SHALL NOT be assigned.  Thus, by examining the first
  two octets of a token, one can tell unambiguously if it is wrapped
  with the generic GSS-API token framing.






Zhu, et al.                 Standards Track                    [Page 13]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


5.  Parameter Definitions

  This section defines parameter values used by the Kerberos V5 GSS-API
  mechanism.  It defines interface elements that support portability,
  and assumes use of C language bindings per [RFC2744].

5.1.  Minor Status Codes

  This section recommends common symbolic names for minor_status values
  to be returned by the Kerberos V5 GSS-API mechanism.  Use of these
  definitions will enable independent implementers to enhance
  application portability across different implementations of the
  mechanism defined in this specification.  (In all cases,
  implementations of GSS_Display_status() will enable callers to
  convert minor_status indicators to text representations.)  Each
  implementation should make available, through include files or other
  means, a facility to translate these symbolic names into the concrete
  values that a particular GSS-API implementation uses to represent the
  minor_status values specified in this section.

  This list may grow over time and the need for additional minor_status
  codes, specific to particular implementations, may arise.  However,
  it is recommended that implementations should return a minor_status
  value as defined on a mechanism-wide basis within this section when
  that code accurately represents reportable status rather than using a
  separate, implementation-defined code.

5.1.1.  Non-Kerberos-specific Codes

        GSS_KRB5_S_G_BAD_SERVICE_NAME
                /* "No @ in SERVICE-NAME name string" */
        GSS_KRB5_S_G_BAD_STRING_UID
                /* "STRING-UID-NAME contains nondigits" */
        GSS_KRB5_S_G_NOUSER
                /* "UID does not resolve to username" */
        GSS_KRB5_S_G_VALIDATE_FAILED
                /* "Validation error" */
        GSS_KRB5_S_G_BUFFER_ALLOC
                /* "Couldn't allocate gss_buffer_t data" */
        GSS_KRB5_S_G_BAD_MSG_CTX
                /* "Message context invalid" */
        GSS_KRB5_S_G_WRONG_SIZE
                /* "Buffer is the wrong size" */
        GSS_KRB5_S_G_BAD_USAGE
                /* "Credential usage type is unknown" */
        GSS_KRB5_S_G_UNKNOWN_QOP
                /* "Unknown quality of protection specified" */




Zhu, et al.                 Standards Track                    [Page 14]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


5.1.2.  Kerberos-specific Codes

        GSS_KRB5_S_KG_CCACHE_NOMATCH
                /* "Client principal in credentials does not match
                   specified name" */
        GSS_KRB5_S_KG_KEYTAB_NOMATCH
                /* "No key available for specified service
                   principal" */
        GSS_KRB5_S_KG_TGT_MISSING
                /* "No Kerberos ticket-granting ticket available" */
        GSS_KRB5_S_KG_NO_SUBKEY
                /* "Authenticator has no subkey" */
        GSS_KRB5_S_KG_CONTEXT_ESTABLISHED
                /* "Context is already fully established" */
        GSS_KRB5_S_KG_BAD_SIGN_TYPE
                /* "Unknown signature type in token" */
        GSS_KRB5_S_KG_BAD_LENGTH
                /* "Invalid field length in token" */
        GSS_KRB5_S_KG_CTX_INCOMPLETE
                /* "Attempt to use incomplete security context" */

5.2.  Buffer Sizes

  All implementations of this specification MUST be capable of
  accepting buffers of at least 16K octets as input to GSS_GetMIC(),
  GSS_VerifyMIC(), and GSS_Wrap().  They MUST also be capable of
  accepting the output_token generated by GSS_Wrap() for a 16K octet
  input buffer as input to GSS_Unwrap().  Implementations SHOULD
  support 64K octet input buffers, and MAY support even larger input
  buffer sizes.

6.  Backwards Compatibility Considerations

  The new token formats defined in this document will only be
  recognized by new implementations.  To address this, implementations
  can always use the explicit sign or seal algorithm in [RFC1964] when
  the key type corresponds to not "newer" enctypes.  As an alternative,
  one might retry sending the message with the sign or seal algorithm
  explicitly defined as in [RFC1964].  However, this would require
  either the use of a mechanism such as [RFC2478] to securely negotiate
  the method, or the use of an out-of-band mechanism to choose the
  appropriate mechanism.  For this reason, it is RECOMMENDED that the
  new token formats defined in this document SHOULD be used only if
  both peers are known to support the new mechanism during context
  negotiation because of, for example, the use of "new" enctypes.






Zhu, et al.                 Standards Track                    [Page 15]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


  GSS_Unwrap() or GSS_VerifyMIC() can process a message token as
  follows: it can look at the first octet of the token header, and if
  it is 0x60, then the token must carry the generic GSS-API pseudo
  ASN.1 framing.  Otherwise, the first two octets of the token contain
  the TOK_ID that uniquely identify the token message format.

7.  Security Considerations

  Channel bindings are validated by the acceptor.  The acceptor can
  ignore the channel bindings restriction supplied by the initiator and
  carried in the authenticator checksum, if (1) channel bindings are
  not used by GSS_Accept_sec_context [RFC2743], and (2) the acceptor
  does not prove to the initiator that it has the same channel bindings
  as the initiator (even if the client requested mutual
  authentication).  This limitation should be considered by designers
  of applications that would use channel bindings, whether to limit the
  use of GSS-API contexts to nodes with specific network addresses, to
  authenticate other established, secure channels using Kerberos
  Version 5, or for any other purpose.

  Session key types are selected by the KDC.  Under the current
  mechanism, no negotiation of algorithm types occurs, so server-side
  (acceptor) implementations cannot request that clients not use
  algorithm types not understood by the server.  However,
  administrators can control what enctypes can be used for session keys
  for this mechanism by controlling the set of the ticket session key
  enctypes which the KDC is willing to use in tickets for a given
  acceptor principal.  Therefore, the KDC could be given the task of
  limiting session keys for a given service to types actually supported
  by the Kerberos and GSSAPI software on the server.  This has a
  drawback for cases in which a service principal name is used for both
  GSSAPI-based and non-GSSAPI-based communication (most notably the
  "host" service key), if the GSSAPI implementation does not understand
  (for example) AES [RFC3962], but the Kerberos implementation does.
  This means that AES session keys cannot be issued for that service
  principal, which keeps the protection of non-GSSAPI services weaker
  than necessary.  KDC administrators desiring to limit the session key
  types to support interoperability with such GSSAPI implementations
  should carefully weigh the reduction in protection offered by such
  mechanisms against the benefits of interoperability.











Zhu, et al.                 Standards Track                    [Page 16]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


8.  Acknowledgements

  Ken Raeburn and Nicolas Williams corrected many of our errors in the
  use of generic profiles and were instrumental in the creation of this
  document.

  The text for security considerations was contributed by Nicolas
  Williams and Ken Raeburn.

  Sam Hartman and Ken Raeburn suggested the "floating trailer" idea,
  namely the encoding of the RRC field.

  Sam Hartman and Nicolas Williams recommended the replacing our
  earlier key derivation function for directional keys with different
  key usage numbers for each direction as well as retaining the
  directional bit for maximum compatibility.

  Paul Leach provided numerous suggestions and comments.

  Scott Field, Richard Ward, Dan Simon, Kevin Damour, and Simon
  Josefsson also provided valuable inputs on this document.

  Jeffrey Hutzelman provided comments and clarifications for the text
  related to the channel bindings.

  Jeffrey Hutzelman and Russ Housley suggested many editorial changes.

  Luke Howard provided implementations of this document for the Heimdal
  code base, and helped inter-operability testing with the Microsoft
  code base, together with Love Hornquist Astrand.  These experiments
  formed the basis of this document.

  Martin Rex provided suggestions of TOK_ID assignment recommendations,
  thus the token tagging in this document is unambiguous if the token
  is wrapped with the pseudo ASN.1 header.

  John Linn wrote the original Kerberos Version 5 mechanism
  specification [RFC1964], of which some text has been retained.













Zhu, et al.                 Standards Track                    [Page 17]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2743]  Linn, J., "Generic Security Service Application Program
             Interface Version 2, Update 1", RFC 2743, January 2000.

  [RFC2744]  Wray, J., "Generic Security Service API Version 2:
             C-bindings", RFC 2744, January 2000.

  [RFC1964]  Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC
             1964, June 1996.

  [RFC3961]  Raeburn, K., "Encryption and Checksum Specifications for
             Kerberos 5", RFC 3961, February 2005.

  [RFC4120]  Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
             Kerberos Network Authentication Service (V5)", RFC 4120,
             July 2005.

9.2.  Informative References

  [SSPI]     Leach, P., "Security Service Provider Interface",
             Microsoft Developer Network (MSDN), April 2003.

  [RFC3962]  Raeburn, K., "Advanced Encryption Standard (AES)
             Encryption for Kerberos 5", RFC 3962, February 2005.

  [RFC2478]  Baize, E. and D. Pinkas, "The Simple and Protected GSS-API
             Negotiation Mechanism", RFC 2478, December 1998.


















Zhu, et al.                 Standards Track                    [Page 18]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


Authors' Addresses

  Larry Zhu
  One Microsoft Way
  Redmond, WA 98052 - USA

  EMail: [email protected]


  Karthik Jaganathan
  One Microsoft Way
  Redmond, WA 98052 - USA

  EMail: [email protected]


  Sam Hartman
  Massachusetts Institute of Technology
  77 Massachusetts Avenue
  Cambridge, MA 02139 - USA

  EMail: [email protected]





























Zhu, et al.                 Standards Track                    [Page 19]

RFC 4121               Kerberos Version 5 GSS-API              July 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Zhu, et al.                 Standards Track                    [Page 20]