Network Working Group                                           J. Viega
Request for Comments: 4106                         Secure Software, Inc.
Category: Standards Track                                      D. McGrew
                                                    Cisco Systems, Inc.
                                                              June 2005


                The Use of Galois/Counter Mode (GCM)
            in IPsec Encapsulating Security Payload (ESP)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This memo describes the use of the Advanced Encryption Standard (AES)
  in Galois/Counter Mode (GCM) as an IPsec Encapsulating Security
  Payload (ESP) mechanism to provide confidentiality and data origin
  authentication.  This method can be efficiently implemented in
  hardware for speeds of 10 gigabits per second and above, and is also
  well-suited to software implementations.

Table of Contents

  1. Introduction ....................................................2
     1.1. Conventions Used in This Document ..........................2
  2. AES-GCM .........................................................3
  3. ESP Payload Data ................................................3
     3.1. Initialization Vector (IV) .................................3
     3.2. Ciphertext .................................................4
  4. Nonce Format ....................................................4
  5. AAD Construction ................................................5
  6. Integrity Check Value (ICV) .....................................5
  7. Packet Expansion ................................................6
  8. IKE Conventions .................................................6
     8.1. Keying Material and Salt Values ............................6
     8.2. Phase 1 Identifier .........................................6
     8.3. Phase 2 Identifier .........................................7
     8.4. Key Length Attribute .......................................7



Viega & McGrew              Standards Track                     [Page 1]

RFC 4106                        GCM ESP                        June 2005


  9. Test Vectors ....................................................7
  10. Security Considerations ........................................7
  11. Design Rationale ...............................................8
  12. IANA Considerations ............................................8
  13. Acknowledgements ...............................................9
  14. Normative References ...........................................9
  15. Informative References .........................................9

1.  Introduction

  This document describes the use of AES in GCM mode (AES-GCM) as an
  IPsec ESP mechanism for confidentiality and data origin
  authentication.  We refer to this method as AES-GCM-ESP.  This
  mechanism is not only efficient and secure, but it also enables
  high-speed implementations in hardware.  Thus, AES-GCM-ESP allows
  IPsec connections that can make effective use of emerging 10-gigabit
  and 40-gigabit network devices.

  Counter mode (CTR) has emerged as the preferred encryption method for
  high-speed implementations.  Unlike conventional encryption modes
  such as Cipher Block Chaining (CBC) and Cipher Block Chaining Message
  Authentication Code (CBC-MAC), CTR can be efficiently implemented at
  high data rates because it can be pipelined.  The ESP CTR protocol
  describes how this mode can be used with IPsec ESP [RFC3686].

  Unfortunately, CTR provides no data origin authentication, and thus
  the ESP CTR standard requires the use of a data origin authentication
  algorithm in conjunction with CTR.  This requirement is problematic,
  because none of the standard data origin authentication algorithms
  can be efficiently implemented for high data rates.  GCM solves this
  problem, because under the hood, it combines CTR mode with a secure,
  parallelizable, and efficient authentication mechanism.

  This document does not cover implementation details of GCM.  Those
  details can be found in [GCM], along with test vectors.

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].










Viega & McGrew              Standards Track                     [Page 2]

RFC 4106                        GCM ESP                        June 2005


2.  AES-GCM

  GCM is a block cipher mode of operation providing both
  confidentiality and data origin authentication.  The GCM
  authenticated encryption operation has four inputs: a secret key, an
  initialization vector (IV), a plaintext, and an input for additional
  authenticated data (AAD).  It has two outputs, a ciphertext whose
  length is identical to the plaintext, and an authentication tag.  In
  the following, we describe how the IV, plaintext, and AAD are formed
  from the ESP fields, and how the ESP packet is formed from the
  ciphertext and authentication tag.

  ESP also defines an IV.  For clarity, we refer to the AES-GCM IV as a
  nonce in the context of AES-GCM-ESP.  The same nonce and key
  combination MUST NOT be used more than once.

  Because reusing an nonce/key combination destroys the security
  guarantees of AES-GCM mode, it can be difficult to use this mode
  securely when using statically configured keys.  For safety's sake,
  implementations MUST use an automated key management system, such as
  the Internet Key Exchange (IKE) [RFC2409], to ensure that this
  requirement is met.

3.  ESP Payload Data

  The ESP Payload Data is comprised of an eight-octet initialization
  vector (IV), followed by the ciphertext.  The payload field, as
  defined in [RFC2406], is structured as shown in Figure 1, along with
  the ICV associated with the payload.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Initialization Vector                    |
  |                            (8 octets)                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Ciphertext (variable)                   ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 1: ESP Payload Encrypted with AES-GCM.

3.1.  Initialization Vector (IV)

  The AES-GCM-ESP IV field MUST be eight octets.  For a given key, the
  IV MUST NOT repeat.  The most natural way to implement this is with a
  counter, but anything that guarantees uniqueness can be used, such as



Viega & McGrew              Standards Track                     [Page 3]

RFC 4106                        GCM ESP                        June 2005


  a linear feedback shift register (LFSR).  Note that the encrypter can
  use any IV generation method that meets the uniqueness requirement,
  without coordinating with the decrypter.

3.2.  Ciphertext

  The plaintext input to AES-GCM is formed by concatenating the
  plaintext data described by the Next Header field with the Padding,
  the Pad Length, and the Next Header field.  The Ciphertext field
  consists of the ciphertext output from the AES-GCM algorithm.  The
  length of the ciphertext is identical to that of the plaintext.

  Implementations that do not seek to hide the length of the plaintext
  SHOULD use the minimum amount of padding required, which will be less
  than four octets.

4.  Nonce Format

  The nonce passed to the GCM-AES encryption algorithm has the
  following layout:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Salt                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Initialization Vector                     |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                         Figure 2: Nonce Format

  The components of the nonce are as follows:

  Salt
     The salt field is a four-octet value that is assigned at the
     beginning of the security association, and then remains constant
     for the life of the security association.  The salt SHOULD be
     unpredictable (i.e., chosen at random) before it is selected, but
     need not be secret.  We describe how to set the salt for a
     Security Association established via the Internet Key Exchange in
     Section 8.1.

  Initialization Vector
     The IV field is described in Section 3.1.






Viega & McGrew              Standards Track                     [Page 4]

RFC 4106                        GCM ESP                        June 2005


5.  AAD Construction

  The authentication of data integrity and data origin for the SPI and
  (Extended) Sequence Number fields is provided without encryption.
  This is done by including those fields in the AES-GCM Additional
  Authenticated Data (AAD) field.  Two formats of the AAD are defined:
  one for 32-bit sequence numbers, and one for 64-bit extended sequence
  numbers.  The format with 32-bit sequence numbers is shown in Figure
  3, and the format with 64-bit extended sequence numbers is shown in
  Figure 4.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               SPI                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     32-bit Sequence Number                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 3: AAD Format with 32-bit Sequence Number

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               SPI                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 64-bit Extended Sequence Number               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 4: AAD Format with 64-bit Extended Sequence Number

6.  Integrity Check Value (ICV)

  The ICV consists solely of the AES-GCM Authentication Tag.
  Implementations MUST support a full-length 16-octet ICV, and MAY
  support 8 or 12 octet ICVs, and MUST NOT support other ICV lengths.
  Although ESP does not require that an ICV be present, AES-GCM-ESP
  intentionally does not allow a zero-length ICV.  This is because GCM
  provides no integrity protection whatsoever when used with a zero-
  length Authentication Tag.










Viega & McGrew              Standards Track                     [Page 5]

RFC 4106                        GCM ESP                        June 2005


7.  Packet Expansion

  The IV adds an additional eight octets to the packet, and the ICV
  adds an additional 8, 12, or 16 octets.  These are the only sources
  of packet expansion, other than the 10-13 octets taken up by the ESP
  SPI, Sequence Number, Padding, Pad Length, and Next Header fields (if
  the minimal amount of padding is used).

8.  IKE Conventions

  This section describes the conventions used to generate keying
  material and salt values, for use with AES-GCM-ESP, using the
  Internet Key Exchange (IKE) [RFC2409] protocol.  The identifiers and
  attributes needed to negotiate a security association using AES-GCM-
  ESP are also defined.

8.1.  Keying Material and Salt Values

  IKE makes use of a pseudo-random function (PRF) to derive keying
  material.  The PRF is used iteratively to derive keying material of
  arbitrary size, called KEYMAT.  Keying material is extracted from the
  output string without regard to boundaries.

  The size of the KEYMAT for the AES-GCM-ESP MUST be four octets longer
  than is needed for the associated AES key.  The keying material is
  used as follows:

  AES-GCM-ESP with a 128 bit key
     The KEYMAT requested for each AES-GCM key is 20 octets.  The first
     16 octets are the 128-bit AES key, and the remaining four octets
     are used as the salt value in the nonce.

  AES-GCM-ESP with a 192 bit key
     The KEYMAT requested for each AES-GCM key is 28 octets.  The first
     24 octets are the 192-bit AES key, and the remaining four octets
     are used as the salt value in the nonce.

  AES-GCM-ESP with a 256 bit key
     The KEYMAT requested for each AES GCM key is 36 octets.  The first
     32 octets are the 256-bit AES key, and the remaining four octets
     are used as the salt value in the nonce.

8.2.  Phase 1 Identifier

  This document does not specify the conventions for using AES-GCM for
  IKE Phase 1 negotiations.  For AES-GCM to be used in this manner, a
  separate specification is needed, and an Encryption Algorithm
  Identifier needs to be assigned.  Implementations SHOULD use an IKE



Viega & McGrew              Standards Track                     [Page 6]

RFC 4106                        GCM ESP                        June 2005


  Phase 1 cipher that is at least as strong as AES-GCM.  The use of AES
  CBC [RFC3602] with the same key size used by AES-GCM-ESP is
  RECOMMENDED.

8.3.  Phase 2 Identifier

  For IKE Phase 2 negotiations, IANA has assigned three ESP Transform
  Identifiers for AES-GCM with an eight-byte explicit IV:

     18 for AES-GCM with an 8 octet ICV;
     19 for AES-GCM with a 12 octet ICV; and
     20 for AES-GCM with a 16 octet ICV.

8.4.  Key Length Attribute

  Because the AES supports three key lengths, the Key Length attribute
  MUST be specified in the IKE Phase 2 exchange [RFC2407].  The Key
  Length attribute MUST have a value of 128, 192, or 256.

9.  Test Vectors

  Appendix B of [GCM] provides test vectors that will assist
  implementers with AES-GCM mode.

10.  Security Considerations

  GCM is provably secure against adversaries that can adaptively choose
  plaintexts, ciphertexts, ICVs, and the AAD field, under standard
  cryptographic assumptions (roughly, that the output of the underlying
  cipher, under a randomly chosen key, is indistinguishable from a
  randomly selected output).  Essentially, this means that, if used
  within its intended parameters, a break of GCM implies a break of the
  underlying block cipher.  The proof of security for GCM is available
  in [GCM].

  The most important security consideration is that the IV never repeat
  for a given key.  In part, this is handled by disallowing the use of
  AES-GCM when using statically configured keys, as discussed in
  Section 2.

  When IKE is used to establish fresh keys between two peer entities,
  separate keys are established for the two traffic flows.  If a
  different mechanism is used to establish fresh keys (one that
  establishes only a single key to encrypt packets), then there is a
  high probability that the peers will select the same IV values for
  some packets.  Thus, to avoid counter block collisions, ESP





Viega & McGrew              Standards Track                     [Page 7]

RFC 4106                        GCM ESP                        June 2005


  implementations that permit use of the same key for encrypting and
  decrypting packets with the same peer MUST ensure that the two peers
  assign different salt values to the security association (SA).

  The other consideration is that, as with any encryption mode, the
  security of all data protected under a given security association
  decreases slightly with each message.

  To protect against this problem, implementations MUST generate a
  fresh key before encrypting 2^64 blocks of data with a given key.
  Note that it is impossible to reach this limit when using 32-bit
  Sequence Numbers.

  Note that, for each message, GCM calls the block cipher once for each
  full 16-octet block in the payload, once for any remaining octets in
  the payload, and one additional time for computing the ICV.

  Clearly, smaller ICV values are more likely to be subject to forgery
  attacks.  Implementations SHOULD use as large a size as reasonable.

11.  Design Rationale

  This specification was designed to be as similar to the AES-CCM ESP
  [CCM-ESP] and AES-CTR ESP [RFC3686] mechanisms as reasonable, while
  promoting simple, efficient implementations in both hardware and
  software.  We re-use the design and implementation experience from
  those standards.

  The major difference with CCM is that the CCM ESP mechanism requires
  an 11-octet nonce, whereas the GCM ESP mechanism requires using a
  12-octet nonce.  GCM is specially optimized to handle the 12-octet
  nonce case efficiently.  Nonces of other lengths would cause
  unnecessary, additional complexity and delays, particularly in
  hardware implementations.  The additional octet of nonce is used to
  increase the size of the salt.

12.  IANA Considerations

  IANA has assigned three ESP Transform Identifiers for AES-GCM with an
  eight-byte explicit IV:

     18 for AES-GCM with an 8 octet ICV;
     19 for AES-GCM with a 12 octet ICV; and
     20 for AES-GCM with a 16 octet ICV.







Viega & McGrew              Standards Track                     [Page 8]

RFC 4106                        GCM ESP                        June 2005


13.  Acknowledgements

  This work is closely modeled after Russ Housley's AES-CCM transform
  [CCM-ESP].  Portions of this document are directly copied from that
  work in progress.  We thank Russ for his support of this work.

  Additionally, the GCM mode of operation was originally conceived as
  an improvement to Carter-Wegman Counter (CWC) mode [CWC], the first
  unencumbered block cipher mode capable of supporting high-speed
  authenticated encryption.

14.  Normative References

  [GCM]      McGrew, D. and J. Viega, "The Galois/Counter Mode of
             Operation (GCM)", Submission to NIST. http://
             csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/
             gcm-spec.pdf, January 2004.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2406]  Kent, S. and R. Atkinson, "IP Encapsulating Security
             Payload (ESP)", RFC 2406, November 1998.

  [RFC2407]  Piper, D., "The Internet IP Security Domain of
             Interpretation for ISAKMP", RFC 2407, November 1998.

  [RFC3602]  Frankel, S., Glenn, R. and S. Kelly, "The AES-CBC Cipher
             Algorithm and Its Use with IPsec", RFC 3602, September
             2003.

15.  Informative References

  [CCM-ESP]  Housley, R., "Using AES CCM Mode With IPsec ESP", Work In
             Progress.

  [CWC]      Kohno, T., Viega, J. and D. Whiting, "CWC: A high-
             performance conventional authenticated encryption mode",
             Fast Software Encryption. http://eprint.iacr.org/
             2003/106.pdf, February 2004.

  [RFC2409]  Harkins, D. and D. Carrel, "The Internet Key Exchange
             (IKE)", RFC 2409, November 1998.

  [RFC3686]  Housley, R., "Using Advanced Encryption Standard (AES)
             Counter Mode With IPsec Encapsulating Security Payload
             (ESP)", RFC 3686, January 2004.




Viega & McGrew              Standards Track                     [Page 9]

RFC 4106                        GCM ESP                        June 2005


Authors' Addresses

  John Viega
  Secure Software, Inc.
  4100 Lafayette Center Dr., Suite 100
  Chantilly, VA  20151
  US

  Phone: (703) 814 4402
  EMail: [email protected]


  David A. McGrew
  Cisco Systems, Inc.
  510 McCarthy Blvd.
  Milpitas, CA  95035
  US

  Phone: (408) 525 8651
  EMail: [email protected]
  URI:   http://www.mindspring.com/~dmcgrew/dam.htm






























Viega & McGrew              Standards Track                    [Page 10]

RFC 4106                        GCM ESP                        June 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Viega & McGrew              Standards Track                    [Page 11]