Network Working Group                                     R. Koodli, Ed.
Request for Comments: 4068                         Nokia Research Center
Category: Experimental                                         July 2005


                    Fast Handovers for Mobile IPv6

Status of This Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  Mobile IPv6 enables a Mobile Node to maintain its connectivity to the
  Internet when moving from one Access Router to another, a process
  referred to as handover.  During handover, there is a period during
  which the Mobile Node is unable to send or receive packets because of
  link switching delay and IP protocol operations.  This "handover
  latency" resulting from standard Mobile IPv6 procedures, namely
  movement detection, new Care of Address configuration, and Binding
  Update, is often unacceptable to real-time traffic such as Voice over
  IP.  Reducing the handover latency could be beneficial to non-real-
  time, throughput-sensitive applications as well.  This document
  specifies a protocol to improve handover latency due to Mobile IPv6
  procedures.  This document does not address improving the link
  switching latency.


















Koodli, Ed.                   Experimental                      [Page 1]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
  2.  Terminology. . . . . . . . . . . . . . . . . . . . . . . . . .  3
  3.  Protocol Overview. . . . . . . . . . . . . . . . . . . . . . .  5
      3.1.  Addressing the Handover Latency. . . . . . . . . . . . .  5
      3.2.  Protocol Operation . . . . . . . . . . . . . . . . . . .  7
      3.3.  Protocol Operation of Network-initiated Handover . . . .  9
  4.  Protocol Details . . . . . . . . . . . . . . . . . . . . . . . 10
  5.  Miscellaneous. . . . . . . . . . . . . . . . . . . . . . . . . 15
      5.1.  Handover Capability Exchange . . . . . . . . . . . . . . 15
      5.2.  Determining New Care of Address. . . . . . . . . . . . . 15
      5.3.  Packet Loss. . . . . . . . . . . . . . . . . . . . . . . 15
      5.4.  DAD Handling . . . . . . . . . . . . . . . . . . . . . . 16
      5.5.  Fast or Erroneous Movement . . . . . . . . . . . . . . . 16
  6.  Message Formats. . . . . . . . . . . . . . . . . . . . . . . . 17
      6.1.  New Neighborhood Discovery Messages. . . . . . . . . . . 17
            6.1.1. Router Solicitation for Proxy Advertisement
                   (RtSolPr) . . . . . . . . . . . . . . . . . . . . 17
            6.1.2. Proxy Router Advertisement (PrRtAdv). . . . . . . 20
      6.2.  Inter-Access Router Messages . . . . . . . . . . . . . . 23
            6.2.1. Handover Initiate (HI). . . . . . . . . . . . . . 23
            6.2.2. Handover Acknowledge (HAck) . . . . . . . . . . . 25
      6.3.  New Mobility Header Messages . . . . . . . . . . . . . . 27
            6.3.1. Fast Binding Update (FBU) . . . . . . . . . . . . 27
            6.3.2. Fast Binding Acknowledgment (FBack) . . . . . . . 28
            6.3.3. Fast Neighbor Advertisement (FNA) . . . . . . . . 30
      6.4.  New Options. . . . . . . . . . . . . . . . . . . . . . . 31
            6.4.1. IP Address Option . . . . . . . . . . . . . . . . 32
            6.4.2. New Router Prefix Information Option. . . . . . . 33
            6.4.3. Link-Layer Address (LLA) Option . . . . . . . . . 34
            6.4.4. Mobility Header Link-Layer Address (MH-LLA)
                   Option. . . . . . . . . . . . . . . . . . . . . . 35
            6.4.5. Neighbor Advertisement Acknowledgment (NAACK) . . 35
  7.  Configurable Parameters. . . . . . . . . . . . . . . . . . . . 36
  8.  Security Considerations. . . . . . . . . . . . . . . . . . . . 37
  9.  IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 38
  10. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . 39
  11. Normative References . . . . . . . . . . . . . . . . . . . . . 39
  12. Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 39











Koodli, Ed.                   Experimental                      [Page 2]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


1.  Introduction

  Mobile IPv6 [3] describes the protocol operations for a mobile node
  to maintain connectivity to the Internet during its handover from one
  access router to another.  These operations involve movement
  detection, IP address configuration, and location update.  The
  combined handover latency is often sufficient to affect real-time
  applications.  Throughput-sensitive applications can also benefit
  from reducing this latency.  This document describes a protocol to
  reduce the handover latency.

  This specification addresses the following problem: how to allow a
  mobile node to send packets as soon as it detects a new subnet link,
  and how to deliver packets to a mobile node as soon as its attachment
  is detected by the new access router.  The protocol defines IP
  protocol messages necessary for its operation regardless of link
  technology.  It does this without depending on specific link-layer
  features while allowing link-specific customizations.  By definition,
  this specification considers handovers that interwork with Mobile IP:
  once attached to its new access router, an MN engages in Mobile IP
  operations including Return Routability [3].  There are no special
  requirements for a mobile node to behave differently with respect to
  its standard Mobile IP operations.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [1].  The use
  of the term, "silently ignore" is not defined in RFC 2119.  However,
  the term is used in this document and can be similarly construed.

  The following terminology and abbreviations are used in this
  document.  The reference handover scenario is illustrated in
  Figure 1.

     Mobile Node (MN)
           A Mobile IPv6 host.

     Access Point (AP)
           A Layer 2 device connected to an IP subnet that offers
           wireless connectivity to an MN.  An Access Point Identifier
           (AP-ID) refers to the AP's L2 address.  Sometimes, AP-ID is
           also referred to as a Base Station Subsystem ID (BSSID).

     Access Router (AR)
           The MN's default router.




Koodli, Ed.                   Experimental                      [Page 3]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


     Previous Access Router (PAR)
           The MN's default router prior to its handover.

     New Access Router (NAR)
           The MN's default router subsequent to its handover.

     Previous CoA (PCoA)
           The MN's Care of Address valid on PAR's subnet.

     New CoA (NCoA)
           The MN's Care of Address valid on NAR's subnet.

     Handover
           A process of terminating existing connectivity and obtaining
           new IP connectivity.

     Router Solicitation for Proxy Advertisement (RtSolPr)
           A message from the MN to the PAR requesting information for
           a potential handover.

     Proxy Router Advertisement (PrRtAdv)
           A message from the PAR to the MN that provides information
           about neighboring links facilitating expedited movement
           detection.  The message also acts as a trigger for network-
           initiated handover.

     (AP-ID, AR-Info) tuple
           Contains an access router's L2 and IP addresses, and the
           prefix valid on the interface to which the Access Point
           (identified by AP-ID) is attached.  The triplet [Router's L2
           address, Router's IP address, Prefix] is called "AR-Info".

     Assigned Addressing
           A particular type of NCoA configuration in which the NAR
           assigns an IPv6 address for the MN.  The method by which NAR
           manages its address pool is not specified in this document.

     Fast Binding Update (FBU)
           A message from the MN instructing its PAR to redirect its
           traffic (toward NAR).

     Fast Binding Acknowledgment (FBack)
           A message from the PAR in response to an FBU.








Koodli, Ed.                   Experimental                      [Page 4]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


     Fast Neighbor Advertisement (FNA)
           A message from the MN to the NAR to announce attachment, and
           to confirm the use of NCoA when the MN has not received an
           FBACK.

     Handover Initiate (HI)
           A message from the PAR to the NAR regarding an MN's
           handover.

     Handover Acknowledge (HAck)
           A message from the NAR to the PAR as a response to HI.

            v            +------------+
          +-+            |  Previous  |        <
          | | ---------- |   Access   | ------ > ----\
          +-+            |   Router   |        <      \
              MN         |   (PAR)    |                \
           |             +------------+            +---------------+
           |                   ^            IP     | Correspondent |
           |                   |         Network   |  Node         |
           V                   |                   +---------------+
                               v                        /
            v            +------------+                /
          +-+            |    New     |        <      /
          | | ---------- |   Access   | ------ > ----/
          +-+            |   Router   |        <
             MN          |   (NAR)    |
                         +------------+

              Figure 1: Reference Scenario for Handover

3.  Protocol Overview

3.1.  Addressing the Handover Latency

  The ability to immediately send packets from a new subnet link
  depends on the "IP connectivity" latency, which in turn depends on
  the movement detection latency and new CoA configuration latency.
  Once an MN is IP-capable on the new subnet link, it can send a
  Binding Update to its Home Agent and one or more correspondents.
  Once its correspondents successfully process the Binding Update,
  which typically involves the Return Routability procedure, the MN can
  receive packets at the new CoA.  So, the ability to receive packets
  from correspondents directly at its new CoA depends on the Binding
  Update latency as well as the IP connectivity latency.






Koodli, Ed.                   Experimental                      [Page 5]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  The protocol enables an MN to quickly detect that it has moved to a
  new subnet by providing the new access point and the associated
  subnet prefix information when the MN is still connected to its
  current subnet (i.e., PAR in Figure 1).  For instance, an MN may
  discover available access points using link-layer specific mechanisms
  (i.e., a "scan" in WLAN) and then request subnet information
  corresponding to one or more of those discovered access points.  The
  MN may do this after performing router discovery or at any time while
  connected to its current router.  The result of resolving an
  identifier associated with an access point is a [AP-ID, AR-Info]
  tuple, which an MN can use in readily detecting movement:  when
  attachment to an access point with AP-ID takes place, the MN knows
  the corresponding new router's coordinates including its prefix, IP
  address, and L2 address.  The "Router Solicitation for Proxy
  Advertisement (RtSolPr)" and "Proxy Router Advertisement (PrRtAdv)"
  messages (see Section 6.1) are used for aiding movement detection.

  Through the RtSolPr and PrRtAdv messages, the MN also formulates a
  prospective new CoA (NCoA) when it is still present on the PAR's
  link.  Hence, the latency due to new prefix discovery subsequent to
  handover is eliminated.  Furthermore, this prospective address can be
  used immediately after attaching to the new subnet link (i.e., NAR's
  link) when the MN has received a "Fast Binding Acknowledgment
  (FBack)" message prior to its movement.  If it moves without
  receiving an FBack, the MN can still start using NCoA after
  announcing its attachment through a "Fast Neighbor Advertisement
  (FNA)" message.  NAR responds to FNA if the tentative address is
  already in use thereby reducing NCoA configuration latency.  Under
  some limited conditions in which the probability of address collision
  is considered insignificant, it may be possible to use NCoA
  immediately after attaching to the new link.  Even so, all
  implementations MUST support and SHOULD use the mechanism specified
  in this document to avoid potential address conflicts.

  To reduce the Binding Update latency, the protocol specifies a tunnel
  between the Previous CoA (PCoA) and the NCoA.  An MN sends a "Fast
  Binding Update" message to its Previous Access Router to establish
  this tunnel.  When feasible, the MN SHOULD send an FBU from PAR's
  link.  Otherwise, it should be sent immediately after attachment to
  NAR has been detected.  Subsequent sections describe the protocol
  mechanics.  As a result, PAR begins tunneling packets arriving for
  PCoA to NCoA.  Such a tunnel remains active until the MN completes
  the Binding Update with its correspondents.  In the opposite
  direction, the MN SHOULD reverse tunnel packets to PAR until it
  completes the Binding Update.  PAR SHOULD forward the inner packet in
  the tunnel to its destination (i.e., to the MN's correspondent).
  Such a reverse tunnel ensures that packets containing PCoA as a
  source IP address are not dropped due to ingress filtering.  Readers



Koodli, Ed.                   Experimental                      [Page 6]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  may observe that even though the MN is IP-capable on the new link, it
  cannot use NCoA directly with its correspondents without the
  correspondents first establishing a binding cache entry (for NCoA).
  Forwarding support for PCoA is provided through a reverse tunnel
  between the MN and the PAR.

  Setting up a tunnel alone does not ensure that the MN receives
  packets as soon as it is attached to a new subnet link, unless the
  NAR can detect the MN's presence.  A neighbor discovery operation
  involving a neighbor's address resolution (i.e., Neighbor
  Solicitation and Neighbor Advertisement) typically results in
  considerable delay, sometimes lasting multiple seconds.  For
  instance, when arriving packets trigger NAR to send Neighbor
  Solicitation before the MN attaches, subsequent retransmissions of
  address resolution are separated by a default period of one second
  each.  To circumvent this delay, an MN announces its attachment
  through the FNA message that allows the NAR to consider MN to be
  reachable.  If there is no existing entry, FNA allows NAR to create
  one.  If NAR already has an entry, FNA updates the entry while taking
  potential address conflicts into consideration.  Through tunnel
  establishment for PCoA and fast advertisement, the protocol provides
  expedited forwarding of packets to the MN.

  The protocol also provides the following important functionalities.
  The access routers can exchange messages to confirm that a proposed
  NCoA is acceptable.  For instance, when an MN sends an FBU from PAR's
  link, FBack can be delivered after the NAR considers the NCoA
  acceptable for use.  This is especially useful when addresses are
  assigned by the access router.  The NAR can also rely on its trust
  relationship with PAR before providing forwarding support for the MN.
  That is, it may create a forwarding entry for the NCoA subject to
  "approval" from PAR which it trusts.  Finally, the access routers
  could transfer network-resident contexts, such as access control,
  QoS, and header compression, in conjunction with handover.  For these
  operations, the protocol provides "Handover Initiate (HI)" and
  "Handover Acknowledge (HAck)" messages.  Both of these messages MUST
  be supported and SHOULD be used.  The access routers MUST have
  necessary security association established by means outside the scope
  of this document.

3.2.  Protocol Operation

  The protocol begins when an MN sends an RtSolPr to its access router
  to resolve one or more Access Point Identifiers to subnet-specific
  information.  In response, the access router (e.g., PAR in Figure 1)
  sends a PrRtAdv message containing one or more [AP-ID, AR-Info]
  tuples.  The MN may send a RtSolPr at any convenient time, for
  instance as a response to some link-specific event (a "trigger") or



Koodli, Ed.                   Experimental                      [Page 7]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  simply after performing router discovery.  However, the expectation
  is that prior to sending RtSolPr, the MN will have discovered the
  available APs by link-specific methods.  The RtSolPr and PrRtAdv
  messages do not establish any state at the access router; their
  packet formats are defined in Section 6.1.

  With the information provided in the PrRtAdv message, the MN
  formulates a prospective NCoA and sends an FBU message when a link-
  specific handover event occurs.  The purpose of the FBU is to
  authorize PAR to bind PCoA to NCoA, so that arriving packets can be
  tunneled to the new location of the MN.  Whenever feasible, the FBU
  SHOULD be sent from PAR's link.  For instance, an internal link-
  specific trigger could enable FBU transmission from the previous
  link.  When it is not feasible, the FBU is sent from the new link.
  Care must be taken to ensure that the NCoA used in FBU does not
  conflict with an address already in use by some other node on the
  link.  For this, FBU encapsulation within FNA MUST be implemented and
  SHOULD be used (see below) when the FBU is sent from NAR's link.

  The format and semantics of FBU processing are specified in Section
  6.3.1.

  Depending on whether an FBack is received on the previous link (which
  clearly depends on whether the FBU was sent in the first place),
  there are two modes of operation.

  1. The MN receives an FBack on the previous link.  This means that
     packet tunneling is already in progress by the time the MN
     handovers to NAR.  The MN SHOULD send FNA immediately after
     attaching to NAR, so that arriving and buffered packets can be
     forwarded to the MN right away.

     Before sending an FBack to an MN, PAR can determine whether the
     NCoA is acceptable to the NAR through the exchange of HI and HAck
     messages.  When assigned addressing (i.e., addresses are assigned
     by the router) is used, the proposed NCoA in the FBU is carried in
     HI, and the NAR MAY assign the proposed NCoA.  Such an assigned
     NCoA MUST be returned in HAck, and the PAR MUST in turn provide
     the assigned NCoA in the FBack.  If there is an assigned NCoA
     returned in the FBack, the MN MUST use the assigned address (and
     not the proposed address in the FBU) upon attaching to NAR.

  2. The MN does not receive the FBack on the previous link because the
     MN has not sent the FBU or the MN has left the link after sending
     the FBU (which itself may be lost), but before receiving an FBack.
     Without receiving an FBack in the latter case, the MN cannot
     ascertain whether PAR has successfully processed the FBU.  Hence,
     it (re)sends an FBU as soon as it attaches to NAR.  To enable NAR



Koodli, Ed.                   Experimental                      [Page 8]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


     to forward packets immediately (when FBU has been processed) and
     to allow NAR to verify whether NCoA is acceptable, the MN SHOULD
     encapsulate the FBU in the FNA.  If NAR detects that NCoA is in
     use when processing the FNA, for instance while creating a
     neighbor entry, it MUST discard the inner FBU packet and send a
     Router Advertisement with the "Neighbor Advertisement Acknowledge
     (NAACK)" option in which NAR MAY include an alternate IP address
     for the MN to use.  This discarding avoids the rare and
     undesirable outcome that results from address collision.  Detailed
     FNA processing rules are specified in Section 6.3.3.

  The scenario in which an MN sends an FBU and receives an FBack on
  PAR's link is illustrated in Figure 2.  For convenience, this
  scenario is characterized as "predictive" mode of operation.  The
  scenario in which the MN sends an FBU from NAR's link is illustrated
  in Figure 3.  For convenience, this scenario is characterized as a
  "reactive" mode of operation.  Note that the reactive mode also
  includes the case in which an FBU has been sent from PAR's link but
  an FBack has not been received yet.

  Finally, the PrRtAdv message may be sent unsolicited (i.e., without
  the MN first sending a RtSolPr).  This mode is described in Section
  3.3.

3.3.  Protocol Operation of Network-initiated Handover

  In some wireless technologies, the handover control may reside in the
  network even though the decision to undergo handover may be mutually
  arrived at between the MN and the network.  In these networks, the
  PAR can send an unsolicited PrRtAdv containing the link layer
  address, IP address, and subnet prefixes of the NAR when the network
  decides that a handover is imminent.  The MN MUST process this
  PrRtAdv to configure a new care of address on the new subnet, and
  MUST send an FBU to PAR prior to switching to the new link.  After
  transmitting PrRtAdv, the PAR MUST continue to forward packets to the
  MN on its current link until the FBU is received.  The rest of the
  operation is the same as that described in Section 3.2.

  The unsolicited PrRtAdv also allows the network to inform the MN
  about geographically adjacent subnets without the MN having to
  explicitly request that information.  This can reduce the amount of
  wireless traffic required for the MN to obtain a neighborhood
  topology map of links and subnets.  Such usage of PrRtAdv is
  decoupled from the actual handover; see Section 6.1.2.







Koodli, Ed.                   Experimental                      [Page 9]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


             MN                    PAR                  NAR
              |                     |                    |
              |------RtSolPr------->|                    |
              |<-----PrRtAdv--------|                    |
              |                     |                    |
              |------FBU----------->|--------HI--------->|
              |                     |<------HAck---------|
              |          <--FBack---|--FBack--->         |
              |                     |                    |
           disconnect             forward                |
              |                   packets===============>|
              |                     |                    |
              |                     |                    |
          connect                   |                    |
              |                     |                    |
              |--------- FNA --------------------------->|
              |<=================================== deliver packets
              |                                          |

                 Figure 2: "Predictive" Fast Handover

4.  Protocol Details

  All descriptions refer to Figure 1.

  After discovering one or more nearby access points, the MN sends
  RtSolPr to resolve access point identifiers to subnet router
  information.  This is convenient to do after performing router
  discovery.  However, the MN can send RtSolPr at any time, e.g., when
  one or more new access points are discovered.  The MN can also send
  RtSolPr more than once during its attachment to PAR.  The trigger for
  sending RtSolPr can originate from a link-specific event, such as the
  promise of a better signal strength from another access point coupled
  with fading signal quality with the current access point.  Such
  events, often broadly referred to as "L2 triggers", are outside the
  scope of this document.  Nevertheless, they serve as events that
  invoke this protocol.  For instance, when a "link up" indication is
  obtained on the new link, protocol messages (e.g., FNA) can be
  immediately transmitted.  Implementations SHOULD make use of such
  triggers whenever possible.











Koodli, Ed.                   Experimental                     [Page 10]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


             MN                    PAR                  NAR
              |                     |                    |
              |------RtSolPr------->|                    |
              |<-----PrRtAdv--------|                    |
              |                     |                    |
           disconnect               |                    |
              |                     |                    |
              |                     |                    |
           connect                  |                    |
              |------FNA[FBU]-------|------------------->|
              |                     |<-----FBU-----------|
              |                     |------FBack-------->|
              |                   forward                |
              |                   packets===============>|
              |                     |                    |
              |<=================================== deliver packets
              |                                          |

                  Figure 3: "Reactive" Fast Handover

  The RtSolPr message contains one or more AP-IDs.  A wildcard requests
  all available tuples.

  As a response to RtSolPr, PAR sends a PrRtAdv message that indicates
  one of the following possible conditions.

  1. If the PAR does not have an entry corresponding to the new access
     point, it MUST respond indicating that the new access point is
     unknown.  The MN MUST stop fast handover protocol operations on
     the current link.  The MN MAY send an FBU from its new link.

  2. If the new access point is connected to the PAR's current
     interface (to which MN is attached), the PAR MUST respond with a
     Code value indicating that the new access point is connected to
     the current interface, but not send any prefix information.  This
     scenario could arise, for example, when several wireless access
     points are bridged into a wired network.  No further protocol
     action is necessary.

  3. If the new access point is known and the PAR has information about
     it, then PAR MUST respond indicating that the new access point is
     known and supply the [AP-ID, AR-Info] tuple.  If the new access
     point is known, but does not support fast handover, the PAR MUST
     indicate this with Code 3 (See Section 6.1.2).







Koodli, Ed.                   Experimental                     [Page 11]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  4. If a wildcard is supplied as an identifier for the new access
     point, the PAR SHOULD supply neighborhood [AP-ID, AR-Info] tuples
     that are subject to path MTU restrictions (i.e., provide any `n'
     tuples without exceeding the link MTU).

  When further protocol action is necessary, some implementations MAY
  choose to begin buffering copies of incoming packets at the PAR.  If
  such FIFO buffering is used, the PAR MUST continue forwarding the
  packets to PCoA (i.e., buffer and forward).  Such buffering can be
  useful when the MN leaves without sending the FBU message from the
  PAR's link.  The PAR SHOULD stop buffering after processing the FBU
  message.  The size of the buffer is an implementation-specific
  consideration.

  The method by which Access Routers exchange information about their
  neighbors, and thereby allow construction of Proxy Router
  Advertisements with information about neighboring subnets is outside
  the scope of this document.

  The RtSolPr and PrRtAdv messages MUST be implemented by an MN and an
  access router that supports fast handovers.  However, when the
  parameters necessary for the MN to send packets immediately upon
  attaching to the NAR are supplied by the link layer handover
  mechanism itself, use of above messages is optional on such links.

  After a PrRtAdv message is processed, the MN sends an FBU at a time
  determined by link-specific events, and includes the proposed NCoA.
  The MN SHOULD send the FBU from PAR's link whenever "anticipation" of
  handover is feasible.  When anticipation is not feasible or when it
  has not received an FBack, the MN sends an FBU immediately after
  attaching to NAR's link.  This FBU SHOULD be encapsulated in an FNA
  message.  The encapsulation allows the NAR to discard the (inner) FBU
  packet if an address conflict is detected as a result of (outer) FNA
  packet processing (see FNA processing below).  In response to the
  FBU, the PAR establishes a binding between PCoA ("Home Address") and
  NCoA, and sends the FBack to the MN.  Prior to establishing this
  binding, PAR SHOULD send an HI message to NAR, and receive HAck in
  response.  To determine the NAR's address for the HI message, the PAR
  can perform the longest prefix match of NCoA (in FBU) with the prefix
  list of neighboring access routers.  When the source IP address of
  the FBU is PCoA, i.e., the FBU is sent from the PAR's link, and the
  HI message MUST have a Code value set to 0; see Section 6.2.1.  When
  the source IP address of the FBU is not PCoA, i.e., the FBU is sent
  from the NAR's link, the HI message MUST have a Code value of 1; see
  Section 6.2.1.






Koodli, Ed.                   Experimental                     [Page 12]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  The HI message contains the PCoA, Link-Layer Address, and the NCoA of
  the MN.  In response to processing an HI message with Code 0, the NAR

  1. determines whether NCoA supplied in the HI message is a valid
     address for use.  If it is, the NAR starts proxying [6] the
     address for PROXY_ND_LIFETIME during which the MN is expected to
     connect to the NAR.  The NAR MAY use the Link-Layer Address to
     verify whether a corresponding IP address exists in its forwarding
     tables.

  2. allocates NCoA for the MN when assigned addressing is used,
     creates a proxy neighbor cache entry, and begins defending it.
     The NAR MAY allocate the NCoA proposed in HI.

  3. MAY create a host route entry for PCoA in case NCoA cannot be
     accepted or assigned.  This host route entry SHOULD be implemented
     such that until the MN's presence is detected, either through
     explicit announcement by the MN or by other means, arriving
     packets do not invoke neighbor discovery.  The NAR MAY also set up
     a reverse tunnel to the PAR in this case.

  4. provides the status of the handover request in the Handover
     Acknowledge (HAck) message.

  When the Code value in HI is 1, NAR MUST skip the above operations
  since it would have performed those operations during FNA processing.
  However, it SHOULD be prepared to process any other options that may
  be defined in the future.  Sending an HI message with Code 1 allows
  NAR to validate the neighbor cache entry it creates for the MN during
  FNA processing.  That is, NAR can make use of the knowledge that its
  trusted peer (i.e., PAR) has a trust relationship with the MN.

  If HAck contains an assigned NCoA, the FBack MUST include it, and the
  MN MUST use the address provided in the FBack.  The PAR MAY send the
  FBack to the previous link to facilitate faster reception in the
  event that the MN is still present.  The result of the FBU and FBack
  processing is that PAR begins tunneling the MN's packets to NCoA.  If
  the MN does not receive an FBack message even after retransmitting
  the FBU for FBU_RETRIES, it must assume that fast handover support is
  not available and stop the protocol operation.

  When the MN establishes link connectivity with the NAR, it SHOULD
  send a Fast Neighbor Advertisement (FNA) message (see 6.3.3).  If the
  MN has not received an FBack by the time the FNA is being sent, it
  SHOULD encapsulate the FBU in the FNA and send them together.






Koodli, Ed.                   Experimental                     [Page 13]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  When the NCoA corresponding to the FNA message is acceptable, the NAR
  MUST

  1. delete its proxy neighbor cache entry, if any is present.

  2. create a neighbor cache entry and set its state to REACHABLE
     without overwriting an existing entry for a different layer 2
     address.

  3. forward any buffered packets.

  4. enable the host route entry for PCoA, if any is present.

  When the NCoA corresponding to the FNA message is not acceptable, the
  NAR MUST

  1. discard the inner (FBU) packet.

  2. send a Router Advertisement with the NAACK option in which it MAY
     include an alternate NCoA for use.  This message MUST be sent to
     the source IP address present in the FNA using the same Layer 2
     address present in the FNA.

  If the MN receives a Router Advertisement with a NAACK option, it
  MUST use the IP address, if any, provided in the NAACK option.
  Otherwise, the MN should configure another NCoA.  Subsequently, the
  MN SHOULD send an FBU using the new CoA.  As a special case, the
  address supplied in NAACK could be PCoA itself, in which case the MN
  MUST NOT send any more FBUs.

  Once the MN has confirmed its NCoA, it SHOULD send a Neighbor
  Advertisement message.  This message allows MN's neighbors to update
  their neighbor cache entries with the MN's addresses.

  Just as in Mobile IPv6, the PAR sets the 'R' bit in the Prefix
  Information option, and includes its 128 bit global address in the
  router advertisements.  This allows the mobile nodes to learn the
  PAR's global IPv6 address.  The MN reverse tunnels its packets to the
  same global address of PAR.  The tunnel end-point addresses must be
  configured accordingly.  When PAR receives a reverse tunneled packet,
  it must verify if a secure binding exists for the MN identified by
  PCoA in the tunneled packet, before forwarding the packet.









Koodli, Ed.                   Experimental                     [Page 14]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


5.  Miscellaneous

5.1.  Handover Capability Exchange

  The MN expects a PrRtAdv in response to its RtSolPr message.  If the
  MN does not receive a PrRtAdv message even after RTSOLPR_RETRIES, it
  must assume that PAR does not support the fast handover protocol and
  stop sending RtSolPr messages.

  Even if an MN's current access router is capable of fast handover,
  the new access router to which the MN attaches may be incapable of
  fast handover.  This is indicated to the MN during "runtime", through
  the PrRtAdv message with a Code value of 3 (see Section 6.1.2).

5.2.  Determining New Care of Address

  Typically, the MN formulates its prospective NCoA using the
  information provided in a PrRtAdv message and sends the FBU.  The PAR
  MUST use the NCoA present in the FBU in its HI message.  The NAR MUST
  verify if the NCoA present in HI is already in use.  In any case, NAR
  MUST respond to HI using a HAck, in which it may include another NCoA
  to use, especially when assigned address configuration is used.  If
  there is a CoA present in HAck, the PAR MUST include it in the FBack
  message.

  If a PrRtAdv message carries an NCoA, the MN MUST use it as its
  prospective NCoA.

5.3.  Packet Loss

  Handover involves link switching, which may not be exactly
  coordinated with fast handover signaling.  Furthermore, the arrival
  pattern of packets is dependent on many factors, including
  application characteristics, network queuing behaviors, etc.  Hence,
  packets may arrive at the NAR before the MN is able to establish its
  link there.  These packets will be lost unless they are buffered by
  the NAR.  Similarly, if the MN attaches to the NAR and then sends an
  FBU message, packets arriving at the PAR will be lost unless they are
  buffered.  This protocol provides an option to indicate a request for
  buffering at the NAR in the HI message.  When the PAR requests this
  feature (for the MN), it SHOULD also provide its own support for
  buffering.









Koodli, Ed.                   Experimental                     [Page 15]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


5.4.  DAD Handling

  Duplicate Address Detection (DAD) was defined in [7] to avoid address
  duplication on links when stateless address auto-configuration is
  used.  The use of DAD to verify the uniqueness of an IPv6 address
  configured through stateless auto-configuration adds delays to a
  handover.

  The probability of an interface identifier duplication on the same
  subnet is very low, however it cannot be ignored.  In this document,
  certain precautions are proposed to minimize the effects of a
  duplicate address occurrence.

  In some cases, the NAR may already have the knowledge required to
  assess whether the MN's address is a duplicate before the MN moves to
  the new subnet.  For example, the NAR can have a list of all nodes on
  its subnet, perhaps for access control, and by searching this list,
  it can confirm whether the MN's address is a duplicate.  The result
  of this search is sent back to the PAR in the HAck message.  If such
  knowledge is not available at the NAR, it may indicate this by not
  confirming the NCoA in the HAck message.  The NAR may also indicate
  this in the NAACK option in response to the FNA message.  In such
  cases, the MN would have to follow the address configuration
  procedure according to [6] after attaching to the NAR.

5.5.  Fast or Erroneous Movement

  Although this specification is for fast handover, the protocol is
  limited in terms of how fast an MN can move.  Ping-Pong is a special
  case of fast movement, where an MN moves between the same two access
  points rapidly.  Another instance of the same problem is erroneous
  movement, i.e., the MN receives information prior to a handover that
  it is moving to a new access point, but it is either moved to a
  different one or it aborts movement altogether.  All of the above
  behaviors are usually the result of link layer idiosyncrasies and
  thus are often resolved at the link layer itself.

  IP layer mobility, however, introduces its own limits.  IP layer
  handovers should occur at a rate suitable for the MN to update the
  binding of, at least, its HA and preferably that of every CN with
  which it is in communication.  An MN that moves faster than necessary
  for this signaling to complete, which may be a few seconds, may start
  losing packets.  The signaling cost over the air interface and in the
  network may increase significantly, especially in the case of rapid
  movement between several access routers.  To avoid the signaling
  overhead, the following measures are suggested.





Koodli, Ed.                   Experimental                     [Page 16]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  An MN returning to the PAR before updating the necessary bindings
  when present on the NAR MUST send a Fast Binding Update with the Home
  Address equal to the MN's PCoA and a lifetime of zero to the PAR.
  The MN should have a security association with the PAR since it
  performed a fast handover to the NAR.  The PAR, upon receiving this
  Fast Binding Update, will check its set of outgoing (temporary fast
  handover) tunnels.  If it finds a match, it SHOULD tear down that
  tunnel (i.e., stop forwarding packets for this MN and start
  delivering packets directly to the node instead).  The MN SHOULD NOT
  attempt to use any of the fast handover mechanisms described in this
  specification and SHOULD revert back to standard Mobile IPv6.

  Temporary tunnels for the purpose of fast handovers should use short
  lifetimes (a small number of seconds or less).  The lifetime of such
  tunnels should be enough to allow an MN to update all its active
  bindings.  The default lifetime of the tunnel should be the same as
  the lifetime value in the FBU message.

  The effect of erroneous movement is typically limited to the loss of
  packets since routing can change and the PAR may forward packets
  toward another router before the MN actually connects to that router.
  If the MN discovers itself on an unanticipated access router, a Fast
  Binding Update to the PAR SHOULD be sent.  Since Fast Binding Updates
  are authenticated, they supercede the existing binding and packets
  MUST be redirected to the newly confirmed location of the MN.

6.  Message Formats

  All the ICMPv6 messages have a common Type specified in [4].  The
  messages are distinguished based on the Subtype field (see below).
  The values for the Subtypes are specified in Section 9.  For all the
  ICMPv6 messages, the checksum is defined in [2].

6.1.  New Neighborhood Discovery Messages

6.1.1.  Router Solicitation for Proxy Advertisement (RtSolPr)

  Mobile Nodes send Router Solicitation for Proxy Advertisement in
  order to prompt routers for Proxy Router Advertisements.  All the
  Link-Layer Address options have the format defined in 6.4.3.











Koodli, Ed.                   Experimental                     [Page 17]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |     Code      |          Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Subtype     |   Reserved    |          Identifier           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Options ...
  +-+-+-+-+-+-+-+-+-+-+-+-

      Figure 4: Router Solicitation for Proxy (RtSolPr) Message

  IP Fields:

     Source Address
                    An IP address assigned to the sending interface.

     Destination Address
                    The address of the Access Router or the all routers
                    multicast address.

     Hop Limit      255.  See RFC 2461.

     Authentication Header
                    If a Security Association for the IP Authentication
                    Header exists between the sender and the
                    destination address, then the sender SHOULD include
                    this header.  See RFC 2402 [5].

  ICMP Fields:

     Type           The Experimental Mobility Protocol Type.  See [4].


     Code           0

     Checksum       The ICMPv6 checksum.

     Subtype        2

     Reserved       MUST be set to zero by the sender and ignored by
                    the receiver.

     Identifier     MUST be set by the sender so that replies can be
                    matched to this Solicitation.






Koodli, Ed.                   Experimental                     [Page 18]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  Valid Options:

     Source Link-Layer Address
                    When known, the Link-Layer Address of the sender
                    SHOULD be included using the Link-Layer Address
                    option.  See the LLA option format below.

     New Access Point Link-Layer Address
                    The Link-Layer Address or identification of the
                    access point for which the MN requests routing
                    advertisement information.  It MUST be included in
                    all RtSolPr messages.  More than one such address
                    or identifier can be present.  This field can also
                    be a wildcard address with all bits set to zero.

  Future versions of this protocol may define new option types.
  Receivers MUST silently ignore any options that they do not recognize
  and continue processing the rest of the message.

  Including the source LLA option allows the receiver to record the
  sender's L2 address so that neighbor discovery can be avoided when
  the receiver needs to send packets back to the sender (of the RtSolPr
  message).

  When a wildcard is used for a New Access Point LLA, no other New
  Access Point LLA options must be present.

  A Proxy Router Advertisement (PrRtAdv) message should be received by
  the MN in response to a RtSolPr.  If such a message is not received
  in a timely manner (no less than twice the typical round trip time
  (RTT) over the access link or 100 milliseconds if RTT is not known),
  it SHOULD resend the RtSolPr message.  Subsequent retransmissions can
  be up to RTSOLPR_RETRIES, but MUST use an exponential backoff in
  which the timeout period (i.e., 2xRTT or 100 milliseconds) is doubled
  prior to each instance of retransmission.  If Proxy Router
  Advertisement is not received by the time the MN disconnects from the
  PAR, the MN SHOULD send an FBU immediately after configuring a new
  CoA.

  When RtSolPr messages are sent more than once, they MUST be rate
  limited with MAX_RTSOLPR_RATE per second.  During each use of a
  RtSolPr, exponential backoff is used for retransmissions.









Koodli, Ed.                   Experimental                     [Page 19]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


6.1.2.  Proxy Router Advertisement (PrRtAdv)

  Access routers send Proxy Router Advertisement messages gratuitously
  if the handover is network-initiated or as a response to a RtSolPr
  message from an MN, providing the Link-Layer Address, IP address, and
  subnet prefixes of neighboring routers.  All the Link-Layer Address
  options have the format defined in Section 6.4.3.

  IP Fields:

     Source Address
                    MUST be the Link-Local Address assigned to the
                    interface from which this message is sent.

     Destination Address
                    The Source Address of an invoking Router
                    Solicitation for a Proxy Advertisement or the
                    address of the node the Access Router is
                    instructing to handover.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |     Code      |          Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Subtype     |   Reserved    |          Identifier           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Options ...
  +-+-+-+-+-+-+-+-+-+-+-+-

        Figure 5: Proxy Router Advertisement (PrRtAdv) Message

     Hop Limit      255.  See RFC 2461 [6].


     Authentication Header
                    If a Security Association for the IP Authentication
                    Header exists between the sender and the
                    destination address, the sender SHOULD include this
                    header.  See RFC 2402 [5].

  ICMP Fields:

     Type           The Experimental Mobility Protocol Type.  See RFC
                    4065 [4].

     Code           0, 1, 2, 3 or 4.  See below.




Koodli, Ed.                   Experimental                     [Page 20]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


     Checksum       The ICMPv6 checksum.

     Subtype        3

     Reserved       MUST be set to zero by the sender and ignored by
                    the receiver.

     Identifier     Copied from the Router Solicitation for Proxy
                    Advertisement or set to Zero if unsolicited.

  Valid Options in the following order:

     Source Link-Layer Address
                    When known, the Link-Layer Address of the sender
                    SHOULD be included using the Link-Layer Address
                    option.  See the LLA option format below.

     New Access Point Link-Layer Address
                    The Link-Layer Address or identification of the
                    access point is copied from the RtSolPr message.
                    This option MUST be present.

     New Router's Link-Layer Address
                    The Link-Layer Address of the Access Router for
                    which this message is proxied.  This option MUST be
                    included when Code is 0 or 1.

     New Router's IP Address
                    The IP address of NAR.  This option MUST be
                    included when Code is 0 or 1.

     New Router Prefix Information Option.
                    Specifies the prefix of the Access Router for which
                    the message is proxied and is used for address
                    auto-configuration.  This option MUST be included
                    when Code is 0 or 1.  However, when this prefix is
                    the same as that used in the New Router's IP
                    Address option (above), the Prefix Information
                    option need not be present.

     New CoA Option
                    MAY be present when a PrRtAdv is sent unsolicited.
                    PAR MAY compute a new CoA using NAR's prefix
                    information and the MN's L2 address, or by any
                    other means.






Koodli, Ed.                   Experimental                     [Page 21]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  Future versions of this protocol may define new option types.
  Receivers MUST silently ignore any options they do not recognize and
  continue processing the message.

  Currently, Code values 0, 1, 2, 3 and 4 are defined.

  A Proxy Router Advertisement with Code 0 means that the MN should use
  the [AP-ID, AR-Info] tuple (present in the options above) for
  movement detection and NCoA formulation.  In this case, the Option-
  Code field in the New Access Point LLA option is 1, reflecting the
  LLA of the access point for which the rest of the options are
  related.  Multiple tuples may be present.

  A Proxy Router Advertisement with Code 1 means that the message is
  sent unsolicited.  If a New CoA option is present following the New
  Router Prefix Information option, the MN SHOULD use the supplied NCoA
  and send the FBU immediately or else stand to lose service.  This
  message acts as a network-initiated handover trigger; see Section
  3.3.  The Option-Code field in the New Access Point LLA option (see
  below) in this case is 1 reflecting the LLA of the access point for
  which the rest of the options are related.

  A Proxy Router Advertisement with Code 2 means that no new router
  information is present.  Each New Access Point LLA option contains an
  Option-Code value (described below) that indicates a specific
  outcome.

     -  When the Option-Code field in the New Access Point LLA option
        is 5, handover to that access point does not require a change
        of CoA.  No other options are required in this case.

     -  When the Option-Code field in the New Access Point LLA option
        is 6, the PAR is not aware of the Prefix Information requested.
        The MN SHOULD attempt to send an FBU as soon as it regains
        connectivity with the NAR.  No other options are required in
        this case.

     -  When the Option-Code field in the New Access Point LLA option
        is 7, it means that the NAR does not support fast handover.
        The MN MUST stop fast handover protocol operations.  No other
        options are required in this case.

  A Proxy Router Advertisement with Code 3 means that new router
  information is only present for a subset of access points requested.
  The Option-Code field values (defined above including a value of 1)
  distinguish different outcomes for individual access points.





Koodli, Ed.                   Experimental                     [Page 22]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  A Proxy Router Advertisement with Code 4 means that the subnet
  information regarding neighboring access points is sent unsolicited,
  but the message is not a handover trigger, unlike when the message is
  sent with Code 1.  Multiple tuples may be present.

  When a wildcard AP identifier is supplied in the RtSolPr message, the
  PrRtAdv message should include any `n' [Access Point Identifier,
  Link-Layer Address option, Prefix Information Option] tuples
  corresponding to the PAR's neighborhood.

6.2.  Inter-Access Router Messages

6.2.1.  Handover Initiate (HI)

  The Handover Initiate (HI) is an ICMPv6 message sent by an Access
  Router (typically PAR) to another Access Router (typically NAR) to
  initiate the process of a MN's handover.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |     Code      |          Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Subtype     |S|U| Reserved  |          Identifier           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Options ...
  +-+-+-+-+-+-+-+-+-+-+-+-

               Figure 6: Handover Initiate (HI) Message

  IP Fields:

     Source Address
                    The IP address of the PAR.

     Destination Address
                    The IP address of the NAR.

     Hop Limit      255.  See RFC 2461 [6].

      Authentication Header
                    The authentication header MUST be used when this
                    message is sent.  See RFC 2402 [5].








Koodli, Ed.                   Experimental                     [Page 23]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  ICMP Fields:

     Type           The Experimental Mobility Protocol Type.  See RFC
                    4065 [4].

     Code           0 or 1.  See below

     Checksum       The ICMPv6 checksum.

     Subtype        4

     S flag         Assigned address configuration flag.  When set,
                    this message requests a new CoA to be returned by
                    the destination.  May be set when Code = 0.  MUST
                    be 0 when Code = 1.

     U flag         Buffer flag.  When set, the destination SHOULD
                    buffer any packets moving toward the node indicated
                    in the options of this message.  Used when Code =
                    0, SHOULD be set to 0 when Code = 1.

     Reserved       MUST be set to zero by the sender and ignored by
                    the receiver.

     Identifier     MUST be set by the sender so replies can be matched
                    to this message.

  Valid Options:

     Link-Layer Address of MN
                    The Link-Layer Address of the MN that is undergoing
                    handover to the destination (i.e., NAR).  This
                    option MUST be included so that the destination can
                    recognize the MN.

     Previous Care of Address
                    The IP address used by the MN while attached to the
                    originating router.  This option SHOULD be included
                    so that a host route can be established if
                    necessary.

     New Care of Address
                    The IP address the MN wishes to use when connected
                    to the destination.  When the `S' bit is set, the
                    NAR MAY assign this address.






Koodli, Ed.                   Experimental                     [Page 24]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  The PAR uses a Code value of 0 when it processes an FBU with PCoA as
  a source IP address.  The PAR uses a Code value of 1 when it
  processes an FBU whose source IP address is not PCoA.

  If a Handover Acknowledge (HAck) message is not received as a
  response in a short time period (no less than twice the typical RTT
  between source and destination, or 100 milliseconds if RTT is not
  known), the Handover Initiate SHOULD be resent.  Subsequent
  retransmissions can be up to HI_RETRIES, but MUST use exponential
  backoff in which the timeout period (i.e., 2xRTT or 100 milliseconds)
  is doubled during each instance of retransmission.

6.2.2.  Handover Acknowledge (HAck)

  The Handover Acknowledgment message is a new ICMPv6 message that MUST
  be sent (typically by NAR to PAR) as a reply to the Handover Initiate
  message.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |     Code      |          Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Subtype     |    Reserved   |          Identifier           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Options ...
  +-+-+-+-+-+-+-+-+-+-+-+-

             Figure 7: Handover Acknowledge (HAck) Message

  IP Fields:

     Source Address
                    Copied from the destination address of the Handover
                    Initiate Message to which this message is a
                    response.

     Destination Address
                    Copied from the source address of the Handover
                    Initiate Message to which this message is a
                    response.

     Hop Limit      255.  See RFC 2461 [6].

     Authentication Header
                    The authentication header MUST be used when this
                    message is sent.  See RFC 2402 [5].




Koodli, Ed.                   Experimental                     [Page 25]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  ICMP Fields:

     Type           The Experimental Mobility Protocol Type.  See RFC
                    4065 [4].

     Code
                      0: Handover Accepted, NCoA valid
                      1: Handover Accepted, NCoA not valid
                      2: Handover Accepted, NCoA in use
                      3: Handover Accepted, NCoA assigned
                         (used in Assigned addressing)
                      4: Handover Accepted, NCoA not assigned
                         (used in Assigned addressing)
                    128: Handover Not Accepted, reason unspecified
                    129: Administratively prohibited
                    130: Insufficient resources

     Checksum       The ICMPv6 checksum.

     Subtype        5

     Reserved       MUST be set to zero by the sender and ignored by
                    the receiver.

     Identifier     Copied from the corresponding field in the Handover
                    Initiate message to which this message is a
                    response.

  Valid Options:

     New Care of Address
                    If the S flag in the Handover Initiate message is
                    set, this option MUST be used to provide NCoA the
                    MN should use when connected to this router.  This
                    option MAY be included, even when the `S' bit is
                    not set, e.g., Code 2 above.

  Upon receiving an HI message, the NAR MUST respond with a Handover
  Acknowledge message.  If the `S' flag is set in the HI message, the
  NAR SHOULD include the New Care of Address option and a Code 3.

  The NAR MAY provide support for PCoA (instead of accepting or
  assigning NCoA), establish a host route entry for PCoA, and set up a
  tunnel to the PAR to forward MN's packets sent with PCoA as a source
  IP address.  This host route entry SHOULD be used to forward packets
  once the NAR detects that the particular MN is attached to its link.





Koodli, Ed.                   Experimental                     [Page 26]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  When responding to an HI message containing a Code value 1, the Code
  values 1, 2, and 4 in the HAck message are not relevant.

  Finally, the new access router can always refuse handover, in which
  case it should indicate the reason in one of the available Code
  values.

6.3.  New Mobility Header Messages

  Mobile IPv6 uses a new IPv6 header type called Mobility Header [3].
  The Fast Binding Update, Fast Binding Acknowledgment, and Fast
  Neighbor Advertisement messages use the Mobility Header.

6.3.1.  Fast Binding Update (FBU)

  The Fast Binding Update message is identical to the Mobile IPv6
  Binding Update (BU) message.  However, the processing rules are
  slightly different.

                                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                   |          Sequence #           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |A|H|L|K|        Reserved       |           Lifetime            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   .                                                               .
   .                        Mobility options                       .
   .                                                               .
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 8: Fast Binding Update (FBU) Message

  IP fields:

     Source Address
                    The PCoA or NCoA

     Destination Address
                    The IP address of the Previous Access Router

     A flag       MUST be set to one to request that PAR send a Fast
                    Binding Acknowledgment message.

     H flag       MUST be set to one.  See RFC 3775 [3].

     L flag       See RFC 3775 [3].




Koodli, Ed.                   Experimental                     [Page 27]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


     K flag       See RFC 3775 [3].

     Reserved       This field is unused.  MUST be set zero.

     Sequence Number
                    See RFC 3775 [3].

     Lifetime       See RFC 3775 [3].

     Mobility Options
                    MUST contain an alternate CoA option set to the
                    NCoA when an FBU is sent from PAR's link.

  The MN sends an FBU message any time after receiving a PrRtAdv
  message.  If the MN moves prior to receiving a PrRtAdv message, it
  SHOULD send an FBU to the PAR after configuring NCoA on the NAR
  according to Neighbor Discovery and IPv6 Address Configuration
  protocols.

  The source IP address is PCoA when the FBU is sent from PAR's link,
  and the source IP address is NCoA when sent from NAR's link.  When
  the FBU is sent from NAR's link, it SHOULD be encapsulated within an
  FNA.

  The FBU MUST also include the Home Address Option, and the Home
  Address is PCoA.  An FBU message MUST be protected so that PAR is
  able to determine that the FBU message is sent by a genuine MN.

6.3.2.  Fast Binding Acknowledgment (FBack)

  The Fast Binding Acknowledgment message is sent by the PAR to
  acknowledge receipt of a Fast Binding Update message in which the 'A'
  bit is set.  The Fast Binding Acknowledgment message SHOULD NOT be
  sent to the MN before the PAR receives a HAck message from the NAR.
  The Fast Binding Acknowledgment MAY also be sent to the MN on the old
  link.















Koodli, Ed.                   Experimental                     [Page 28]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


                                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                   |    Status     |K|  Reserved   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Sequence #          |           Lifetime            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   .                                                               .
   .                        Mobility options                       .
   .                                                               .
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 9: Fast Binding Acknowledgment (FBack) Message

  IP fields:

     Source Address
                    The IP address of the Previous Access Router.

                    Destination Address
                    The NCoA

     Status         8-bit unsigned integer indicating the disposition
                    of the Fast Binding Update.  Values of the Status
                    field that are less than 128 indicate that the
                    Binding Update was accepted by the receiving node.
                    The following such Status values are currently
                    defined:

                    0 Fast Binding Update accepted
                    1 Fast Binding Update accepted but NCoA is
                      invalid.  Use NCoA supplied in "alternate" CoA

                    Values of the Status field that are greater than or
                    equal to 128 indicate that the Binding Update was
                    rejected by the receiving node.  The following such
                    Status values are currently defined:

                    128 Reason unspecified
                    129 Administratively prohibited
                    130 Insufficient resources
                    131 Incorrect interface identifier length

     `K' flag       See RFC 3775 [3].

     Reserved       An unused field.  MUST be set to zero.





Koodli, Ed.                   Experimental                     [Page 29]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


     Sequence Number
                    Copied from the FBU message for use by the MN in
                    matching this acknowledgment with an outstanding
                    FBU.

     Lifetime       The granted lifetime in seconds for which the
                    sender of this message will retain a binding for
                    traffic redirection.

     Mobility Options
                    MUST contain an "alternate" CoA if Status is 1.

6.3.3.  Fast Neighbor Advertisement (FNA)

  A MN sends a Fast Neighbor Advertisement to announce itself to the
  NAR.  When the Mobility Header Type is FNA, the Payload Proto field
  may be set to IPv6 to assist FBU encapsulation.

                                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                   |            Reserved           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   .                                                               .
   .                        Mobility Options                       .
   .                                                               .
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 10: Fast Neighbor Advertisement (FNA) Message

  IP fields:

     Source Address
                    NCoA

     Destination Address
                    NAR's IP Address

     Mobility Options
                    MUST contain the Mobility Header Link-Layer Address
                    of the MN in the MH-LLA option format.  See Section
                    6.4.4.

  The MN sends a Fast Neighbor Advertisement to the NAR, as soon as it
  regains connectivity on the new link.  Arriving or buffered packets
  can be immediately forwarded.  If NAR is proxying NCoA, it creates a
  neighbor cache entry in REACHABLE state.  If there is no entry, it
  creates one and sets it to REACHABLE.  If there is an entry in the
  INCOMPLETE state without a Link-Layer Address, it sets it to



Koodli, Ed.                   Experimental                     [Page 30]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  REACHABLE.  During the process of creating a neighbor cache entry,
  NAR can also detect if NCoA is in use, thus avoiding address
  collisions.  Since the FBU is encapsulated within the FNA when sent
  from NAR's link, NAR drops the FBU if it detects a collision.

  The combination of NCoA (present in source IP address) and the Link-
  Layer Address (present as a Mobility Option) SHOULD be used to
  distinguish the MN from other nodes.

6.4.  New Options

  All the options are of the form shown in Figure 11.

  The Type values are defined from the Neighbor Discovery options
  space.  The Length field is in units of 8 octets, except for the
  Mobility Header Link-Layer Address option, whose Length field is in
  units of octets in accordance with Section 6.2 in [3].  Option-Code
  provides additional information for each of the options (See
  individual options below).

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |  Option-Code  |               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                              ...                              ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 11: Option Format






















Koodli, Ed.                   Experimental                     [Page 31]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


6.4.1.  IP Address Option

  This option is sent in the Proxy Router Advertisement, the Handover
  Initiate, and Handover Acknowledge messages.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Type     |    Length     | Option-Code   | Prefix Length |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Reserved                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |                                                               |
  +                          IPv6 Address                         +
  |                                                               |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 12: IPv6 Address Option

     Type           17

     Length         The size of this option in 8 octets including the
                    Type, Option-Code, and Length fields.

     Option-Code    1   Old Care-of Address
                    2   New Care-of Address
                    3   NAR's IP address

     Prefix Length
                    The Length of the IPv6 Address Prefix.

     Reserved       MUST be set to zero by the sender and MUST be
                    ignored by the receiver.

     IPv6 Address   The IP address for the unit defined by the Type
                    field.











Koodli, Ed.                   Experimental                     [Page 32]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


6.4.2.  New Router Prefix Information Option

  This option is sent in the PrRtAdv message to provide the prefix
  information valid on the NAR.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Type     |    Length     |  Option-Code  | Prefix Length |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Reserved                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |                                                               |
  +                            Prefix                             +
  |                                                               |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 13: New Router Prefix Information Option

     Type           18

     Length         The size of this option in 8 octets including the
                    Type, Option-Code, and Length fields.

     Option-Code    0

     Prefix Length
                    8-bit unsigned integer.  The number of leading bits
                    in the Prefix that are valid.  The value ranges
                    from 0 to 128.

     Reserved       MUST be set to zero by the sender and MUST be
                    ignored by the receiver.

     Prefix         An IP address or a prefix of an IP address.  The
                    Prefix Length field contains the number of valid
                    leading bits in the prefix.  The bits in the prefix
                    after the prefix length are reserved and MUST be
                    initialized to zero by the sender and ignored by
                    the receiver.







Koodli, Ed.                   Experimental                     [Page 33]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


6.4.3.  Link-Layer Address (LLA) Option

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Type       |    Length     |  Option-Code  |      LLA...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 14: Link-Layer Address Option

     Type           19

     Length         The size of this option in 8 octets including the
                    Type, Option-Code, and Length fields.

     Option-Code
                    0  wildcard requesting resolution for all nearby
                       access points
                    1  Link-Layer Address of the New Access Point
                    2  Link-Layer Address of the MN
                    3  Link-Layer Address of the NAR (i.e., Proxied
                       Originator)
                    4  Link-Layer Address of the source of the RtSolPr
                       or PrRtAdv message
                    5  The access point identified by the LLA belongs
                       to the current interface of the router
                    6  No prefix information available for the access
                       point identified by the LLA
                    7  No fast handovers support available for the
                       access point identified by the LLA

     LLA            The variable length Link-Layer Address.

  Depending on the size of the individual LLA option, appropriate
  padding MUST be used to ensure that the entire option size is a
  multiple of 8 octets.

  The New Access Point Link-Layer Address contains the Link-Layer
  Address of the access point for which handover is about to be
  attempted.  This is used in the Router Solicitation for the Proxy
  Advertisement message.

  The MN Link-Layer Address option contains the Link-Layer Address of
  an MN.  It is used in the Handover Initiate message.

  The NAR (i.e., Proxied Originator) Link-Layer Address option contains
  the Link-Layer Address of the Access Router to which the Proxy Router
  Solicitation message refers.



Koodli, Ed.                   Experimental                     [Page 34]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


6.4.4.  Mobility Header Link-Layer Address (MH-LLA) Option

  This option is identical to the LLA option, but is carried in the
  Mobility Header messages (i.e., FNA).  In the future, other Mobility
  Header messages may also make use of this option.  For instance,
  including this option in FBU allows PAR to obtain the MN's LLA
  readily.  The format of the option when the LLA is 6 bytes is shown
  in Figure 15.  When the LLA size is different, the option MUST be
  aligned appropriately.  See Section 6.2 in [3].

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  |      Type     |    Length     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Option-Code   |    Pad0=0     |         LLA                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             LLA                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 15: Mobility Header Link-Layer Address Option

     Type           7

     Length         The size of this option in octets not including the
                    Type, Length, and Option-Code fields.

     Option-Code    2 Link-Layer Address of the MN

     LLA            The variable length Link-Layer Address.

6.4.5.  Neighbor Advertisement Acknowledgment (NAACK)

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     | Option-Code   |     Status    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Reserved                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 16: Neighbor Advertisement Acknowledgment Option

     Type           20







Koodli, Ed.                   Experimental                     [Page 35]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


     Length         8-bit unsigned integer.  Length of the option, in 8
                    octets.  The length is 1 when NCoA is not supplied.
                    The length is 3 when NCoA is supplied (immediately
                    following the Reserved field).

     Option-Code    0

     Status         8-bit unsigned integer indicating the disposition
                    of the Fast Neighbor Advertisement message.  The
                    following Status values are currently defined:

                      1   The New CoA is invalid.
                      2   The New CoA is invalid; use the supplied CoA.
                          The New CoA MUST be present following the
                          Reserved field.
                    128   Link Layer Address unrecognized.

     Reserved       MUST be set to zero by the sender and MUST be
                    ignored by the receiver.

  The NAR responds to the FNA with the NAACK option to notify the MN to
  use a different NCoA if there is address collision.  If the NCoA is
  invalid, the Router Advertisement MUST use the NCoA as the
  destination address but use the L2 address present in the FNA.  The
  MN SHOULD use the NCoA if it is supplied with the NAACK option.  If
  the NAACK indicates that the Link-Layer Address is unrecognized, the
  MN MUST NOT use the NCoA or PCoA and SHOULD start the process of
  acquiring an NCoA at the NAR immediately.

  New option types may be defined in the future.

7.  Configurable Parameters

     Parameter Name       Default Value            Definition
     -------------------  ----------------------   -------
     RTSOLPR_RETRIES      3                        Section 6.1.1
     MAX_RTSOLPR_RATE     3                        Section 6.1.1
     FBU_RETRIES          3                        Section 4
     PROXY_ND_LIFETIME    1.5 seconds              Section 6.2.2
     HI_RETRIES           3                        Section 6.2.1











Koodli, Ed.                   Experimental                     [Page 36]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


8.  Security Considerations

  The following security vulnerabilities are identified, and suggested
  solutions are mentioned.

  1. Insecure FBU: In this case, packets meant for one address could be
     stolen, or redirected to some unsuspecting node.  This concern is
     the same as that in an MN and Home Agent relationship.

     Hence, the PAR MUST ensure that the FBU packet arrived from a node
     that legitimately owns the PCoA.  The access router and its hosts
     may use any available mechanism to establish a security
     association that MUST be used to secure FBU.  The current version
     of this protocol does not specify how this security association is
     established.  However, future work may specify this security
     association establishment.

     If an access router can ensure that the source IP address in an
     arriving packet could only have originated from the node whose
     Link-Layer Address is in the router's neighbor cache, then a bogus
     node cannot use a victim's IP address for malicious redirection of
     traffic.  Such an operation is recommended at least on neighbor
     discovery messages including the RtSolPr message.

  2. Secure FBU, malicious or inadvertent redirection: In this case,
     the FBU is secured, but the target of binding happens to be an
     unsuspecting node due to inadvertent operation or malicious
     intent.  This vulnerability can lead to an MN with a genuine
     security association with its access router redirecting traffic to
     an incorrect address.

     However, the target of malicious traffic redirection is limited to
     an interface on an access router with which the PAR has a security
     association.  The PAR MUST verify that the NCoA to which PCoA is
     being bound actually belongs to NAR's prefix.  To do this, HI and
     HAck message exchanges are to be used.  When NAR accepts NCoA in
     HI (with Code = 0), it proxies NCoA so that any arriving packets
     are not sent on the link until the MN attaches and announces
     itself through FNA.  Therefore, any inadvertent or malicious
     redirection to a host is avoided.  It is still possible to jam
     NAR's buffer with redirected traffic.  However, since NAR's
     handover state corresponding to NCoA has a finite (and short)
     lifetime corresponding to a small multiple of anticipated handover
     latency, the extent of this vulnerability is arguably small.

  3. Sending an FBU from NAR's link: A malicious node may send an FBU
     from NAR's link providing an unsuspecting node's address as NCoA.
     Since the FBU is encapsulated in the FNA, NAR should detect the



Koodli, Ed.                   Experimental                     [Page 37]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


     collision with an address in use when processing the FNA, and then
     drop the FBU.  When NAR is unable to detect address collisions,
     there is a vulnerability that redirection can affect an
     unsuspecting node.

9.  IANA Considerations

  This document defines four new experimental ICMPv6 messages that use
  the Experimental Mobility Protocol ICMPv6 format [4].  These four new
  Subtype value assignments out of the Experimental Mobility Protocol
  Subtype Registry [4] have been assigned as follows:

     Subtype    Description              Reference
     -------    -----------              ---------
     2          RtSolPr                  Section 6.1.1
     3          PrRtAdv                  Section 6.1.2
     4          HI                       Section 6.2.1
     5          HAck                     Section 6.2.2

  This document defines four new Neighbor Discovery [6] options that
  have received Type assignments from IANA.

     Option-Type     Description              Reference
     -----------     -----------              ---------
     17              IP Address Option        Section 6.4.1
     18              New Router Prefix
                     Information Option       Section 6.4.2
     19              Link-Layer Address
                     Option                   Section 6.4.3
     20              Neighbor Advertisement
                     Acknowledgment Option    Section 6.4.5

  This document defines three new Mobility Header messages that have
  received type allocations from the Mobility Header Types registry at
  http://www.iana.org/assignments/mobility-parameters:

  1. Fast Binding Update, described in Section 6.3.1

  2. Fast Binding Acknowledgment, described in Section 6.3.2, and

  3. Fast Neighbor Advertisement, described in Section 6.3.3.

  This document defines a new Mobility Option which has received type
  assignments from the Mobility Options Type registry at
  http://www.iana.org/assignments/mobility-parameters:

  1. Mobility Header Link-Layer Address option, described in Section
     6.4.4.



Koodli, Ed.                   Experimental                     [Page 38]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


10.  Acknowledgments

  The editor would like to thank all those who have provided feedback
  on this specification, but can only mention a few here:  Martin
  Andre, Vijay Devarapalli, Youn-Hee Han, Emil Ivov, Suvidh Mathur,
  Koshiro Mitsuya, Gabriel Montenegro, Takeshi Ogawa, Sun Peng, YC
  Peng, Domagoj Premec, and Jonathan Wood.  The editor would like to
  acknowledge a contribution from James Kempf to improve this
  specification.  The editor would also like to thank the [mipshop]
  working group chair Gabriel Montenegro and the erstwhile [mobile ip]
  working group chairs Basavaraj Patil and Phil Roberts for providing
  much support for this work.

11.  Normative References

  [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [2]  Conta, A. and S. Deering, "Internet Control Message Protocol
       (ICMPv6) for the Internet Protocol Version 6 (IPv6)
       Specification", RFC 2463, December 1998.

  [3]  Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in
       IPv6", RFC 3775, June 2004.

  [4]  Kempf, J., "Instructions for Seamoby and Experimental Mobility
       Protocol IANA Allocations", RFC 4065, July 2005.

  [5]  Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402,
       November 1998.

  [6]  Narten, T., Nordmark, E., and W. Simpson, "Neighbor Discovery
       for IP Version 6 (IPv6)", RFC 2461, December 1998.

  [7]  Thomson, S. and T. Narten, "IPv6 Stateless Address
       Autoconfiguration", RFC 2462, December 1998.

12.  Contributors

  This document originated in the fast handover design team effort.
  The members of this design team in alphabetical order were:  Gopal
  Dommety, Karim El-Malki, Mohammed Khalil, Charles Perkins, Hesham
  Soliman, George Tsirtsis, and Alper Yegin.








Koodli, Ed.                   Experimental                     [Page 39]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  The design team member's contact information:

  Gopal Dommety
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA 95134

  Phone:+1 408 525 1404
  EMail: [email protected]


  Karim El Malki
  Ericsson Radio Systems AB
  LM Ericssons Vag. 8
  126 25 Stockholm
  SWEDEN

  Phone:  +46 8 7195803
  Fax:    +46 8 7190170
  EMail: [email protected]


  Mohamed Khalil
  Nortel Networks

  EMail: [email protected]


  Charles E. Perkins
  Communications Systems Lab
  Nokia Research Center
  313 Fairchild Drive
  Mountain View, California 94043
  USA

  Phone:  +1-650 625-2986
  Fax:  +1 650 625-2502
  EMail:  [email protected]


  Hesham Soliman
  Flarion Technologies

  EMail: [email protected]







Koodli, Ed.                   Experimental                     [Page 40]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


  George Tsirtsis
  Flarion Technologies

  EMail: [email protected]


  Alper E. Yegin
  Samsung Advanced Institute of Technology
  75 West Plumeria Drive
  San Jose, CA 95134
  USA

  Phone: +1 408 544 5656
  EMail: [email protected]

Author's Address

  Rajeev Koodli, Editor
  Nokia Research Center
  313 Fairchild Drive
  Mountain View, CA 94043 USA

  Phone: +1 650 625 2359
  Fax: +1 650 625 2502
  EMail: [email protected]


























Koodli, Ed.                   Experimental                     [Page 41]

RFC 4068             Fast Handovers for Mobile IPv6            July 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Koodli, Ed.                   Experimental                     [Page 42]