Network Working Group                                           M. Stapp
Request for Comments: 4030                           Cisco Systems, Inc.
Category: Standards Track                                      T. Lemon
                                                          Nominum, Inc.
                                                             March 2005


                The Authentication Suboption for the
    Dynamic Host Configuration Protocol (DHCP) Relay Agent Option

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  The Dynamic Host Configuration Protocol (DHCP) Relay Agent
  Information Option (RFC 3046) conveys information between a DHCP
  Relay Agent and a DHCP server.  This specification defines an
  authentication suboption for that option, containing a keyed hash in
  its payload.  The suboption supports data integrity and replay
  protection for relayed DHCP messages.





















Stapp & Lemon               Standards Track                     [Page 1]

RFC 4030                Authentication Suboption              March 2005


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . .   2
  2.  Requirements Terminology . . . . . . . . . . . . . . . . . .   3
  3.  DHCP Terminology . . . . . . . . . . . . . . . . . . . . . .   4
  4.  Suboption Format . . . . . . . . . . . . . . . . . . . . . .   4
  5.  Replay Detection . . . . . . . . . . . . . . . . . . . . . .   5
  6.  The Relay Identifier Field . . . . . . . . . . . . . . . . .   5
  7.  Computing Authentication Information . . . . . . . . . . . .   6
      7.1.  The HMAC-SHA1 Algorithm  . . . . . . . . . . . . . . .   6
  8.  Procedures for Sending Messages  . . . . . . . . . . . . . .   7
      8.1.  Replay Detection . . . . . . . . . . . . . . . . . . .   7
      8.2.  Packet Preparation . . . . . . . . . . . . . . . . . .   8
      8.3.  Checksum Computation . . . . . . . . . . . . . . . . .   8
      8.4.  Sending the Message  . . . . . . . . . . . . . . . . .   8
  9.  Procedures for Processing Incoming Messages  . . . . . . . .   8
      9.1.  Initial Examination  . . . . . . . . . . . . . . . . .   8
      9.2.  Replay Detection Check . . . . . . . . . . . . . . . .   9
      9.3.  Testing the Checksum . . . . . . . . . . . . . . . . .   9
  10. Relay Agent Behavior . . . . . . . . . . . . . . . . . . . .   9
      10.1. Receiving Messages from Other Relay Agents . . . . . .  10
      10.2. Sending Messages to Servers  . . . . . . . . . . . . .  10
      10.3. Receiving Messages from Servers  . . . . . . . . . . .  10
  11. DHCP Server Behavior . . . . . . . . . . . . . . . . . . . .  10
      11.1. Receiving Messages from Relay Agents . . . . . . . . .  10
      11.2. Sending Reply Messages to Relay Agents . . . . . . . .  11
  12. IANA Considerations  . . . . . . . . . . . . . . . . . . . .  11
  13. Security Considerations  . . . . . . . . . . . . . . . . . .  11
      13.1. The Key ID Field . . . . . . . . . . . . . . . . . . .  12
      13.2. Protocol Vulnerabilities . . . . . . . . . . . . . . .  12
  14. Acknowledgements . . . . . . . . . . . . . . . . . . . . . .  13
  15. References . . . . . . . . . . . . . . . . . . . . . . . . .  13
      15.1. Normative References . . . . . . . . . . . . . . . . .  13
      15.2. Informative References . . . . . . . . . . . . . . . .  13
  Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . .  14
  Full Copyright Statement . . . . . . . . . . . . . . . . . . . .  15

1.  Introduction

  DHCP (RFC 2131 [6]) provides IP addresses and configuration
  information for IPv4 clients.  It includes a relay-agent capability
  (RFC 951 [7], RFC 1542 [8]) in which processes within the network
  infrastructure receive broadcast messages from clients and forward
  them to servers as unicast messages.  In network environments such as
  DOCSIS data-over-cable and xDSL, for example, it has proven useful
  for the relay agent to add information to the DHCP message before
  forwarding it, by using the relay-agent information option (RFC 3046
  [1]).  The kind of information that relays add is often used in the



Stapp & Lemon               Standards Track                     [Page 2]

RFC 4030                Authentication Suboption              March 2005


  server's decision-making about the addresses and configuration
  parameters that the client should receive.  The way that the
  relay-agent data is used in server decision-making tends to make that
  data very important, and it highlights the importance of the trust
  relationship between the relay agent and the server.

  The existing DHCP Authentication specification (RFC 3118) [9] only
  covers communication between the DHCP client and server.  Because
  relay-agent information is added after the client has sent its
  message, the DHCP Authentication specification explicitly excludes
  relay-agent data from that authentication.

  The goal of this specification is to define methods that a relay
  agent can use to

     1.  protect the integrity of relayed DHCP messages,
     2.  provide replay protection for those messages, and
     3.  leverage existing mechanisms, such as DHCP Authentication.

  In order to meet these goals, we specify a new relay-agent suboption,
  the Authentication suboption.  The format of this suboption is very
  similar to the format of the DHCP Authentication option, and the
  specification of its cryptographic methods and hash computation is
  also similar.

  The Authentication suboption is included by relay agents that seek to
  ensure the integrity of the data they include in the Relay Agent
  option.  These relay agents are configured with the parameters
  necessary for generating cryptographic checksums of the data in the
  DHCP messages that they forward to DHCP servers.  A DHCP server
  configured to process the Authentication suboption uses the
  information in the suboption to verify the checksum in the suboption
  and continues processing the relay agent information option only if
  the checksum is valid.  If the DHCP server sends a response, it
  includes an Authentication suboption in its response message.  Relay
  agents test the checksums in DHCP server responses to decide whether
  to forward the responses.

2.  Requirements Terminology

  In this document, the key words "MUST", "MUST NOT", "REQUIRED",
  "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
  and "OPTIONAL" are to be interpreted as described in RFC 2119 [2].








Stapp & Lemon               Standards Track                     [Page 3]

RFC 4030                Authentication Suboption              March 2005


3.  DHCP Terminology

  This document uses the terms "DHCP server" (or "server") and "DHCP
  client" (or "client") as defined in RFC 2131 [6].  The term "DHCP
  relay agent" refers to a "BOOTP relay agent" as defined in RFC 2131.

4.  Suboption Format

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Code      |    Length     |   Algorithm   |  MBZ  |  RDM  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Replay Detection (64 bits)                                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Replay Detection cont.                                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    Relay Identifier                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                                                               |
     |                Authentication Information                     |
     |                                                               |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The code for the suboption is 8.  The length field includes the
  lengths of the algorithm, the RDM, and all subsequent suboption
  fields in octets.

  The Algorithm field defines the algorithm used to generate the
  authentication information.

  Four bits are reserved for future use.  These bits SHOULD be set to
  zero and MUST NOT be used when the suboption is processed.

  The Replay Detection Method (RDM) field defines the method used to
  generate the Replay Detection Data.

  The Replay Detection field contains a value used to detect replayed
  messages, which are interpreted according to the RDM.

  The Relay Identifier field is used by relay agents that do not set
  giaddr, as described in RFC 3046 [1], section 2.1.







Stapp & Lemon               Standards Track                     [Page 4]

RFC 4030                Authentication Suboption              March 2005


  The Authentication Information field contains the data required to
  communicate algorithm-specific parameters, as well as the checksum.
  The checksum is usually a digest of the data in the DHCP packet
  computed by using the method specified by the Algorithm field.

5.  Replay Detection

  The replay-detection mechanism is designed on the notion that a
  receiver can determine whether a message has a valid replay token
  value.  The default RDM, with value 1, specifies that the Replay
  Detection field contains an increasing counter value.  The receiver
  associates a replay counter with each sender and rejects any message
  containing an authentication suboption with a Replay Detection
  counter value less than or equal to the last valid value.  DHCP
  servers MAY identify relay agents by giaddr value or by other data in
  the message (e.g., data in other relay agent suboptions).  Relay
  agents identify DHCP servers by source IP address.  If the message's
  replay detection value, and the checksum are valid, the receiver
  updates its notion of the last valid replay counter value associated
  with the sender.

  All implementations MUST support the default RDM.  Additional methods
  may be defined in the future, following the process described in
  section 12.

  Receivers SHOULD perform the replay-detection check before testing
  the checksum.  The keyed hash calculation is likely to be much more
  expensive than the replay-detection value check.

     DISCUSSION:
        This places a burden on the receiver to maintain some run-time
        state (the most-recent valid counter value) for each sender,
        but the number of members in a DHCP agent-server system is
        unlikely to be unmanageably large.

6.  The Relay Identifier Field

  The Relay Agent Information Option [1] specification permits a relay
  agent to add a relay agent option to relayed messages without setting
  the giaddr field.  In this case, the eventual receiver of the message
  needs a stable identifier to use in order to associate per-sender
  state such as Key ID and replay-detection counters.

  A relay agent that adds a relay agent information option and sets
  giaddr MUST NOT set the Relay ID field.  A relay agent that does not
  set giaddr MAY be configured to place a value in the Relay ID field.
  If the relay agent is configured to use the Relay ID field, it MAY be
  configured with a value to use, or it MAY be configured to generate a



Stapp & Lemon               Standards Track                     [Page 5]

RFC 4030                Authentication Suboption              March 2005


  value based on some other data, such as its MAC or IP addresses.  If
  a relay generates a Relay ID value, it SHOULD select a value that it
  can regenerate reliably; e.g., across reboots.

  Servers that process an Authentication Suboption SHOULD use the
  giaddr value to identify the sender if the giaddr field is set.
  Servers MAY be configured to use some other data in the message to
  identify the sender.  If giaddr is not set, the server SHOULD use the
  Relay ID field if it is nonzero.  If neither the giaddr nor the Relay
  ID field is set, the server MAY be configured to use some other data
  in the message, or it MAY increment an error counter.

7.  Computing Authentication Information

  The Authentication Information field contains a keyed hash generated
  by the sender.  All algorithms are defined to process the data in the
  DHCP messages in the same way.  The sender and receiver compute a
  hash across a buffer containing all of the bytes in the DHCP message,
  including the fixed DHCP message header, the DHCP options, and the
  relay agent suboptions, with the following exceptions.  The value of
  the 'hops' field MUST be set to zero for the computation because its
  value may be changed in transmission.  The value of the 'giaddr'
  field MUST also be set to zero for the computation because it may be
  modified in networks where one relay agent adds the relay agent
  option but another relay agent sets 'giaddr' (see RFC 3046, section
  2.1).  In addition, because the relay agent option is itself included
  in the computation, the 'authentication information' field in the
  Authentication suboption is set to all zeros.  The relay agent option
  length, the Authentication suboption length and other Authentication
  suboption fields are all included in the computation.

  All implementations MUST support Algorithm 1, the HMAC-SHA1
  algorithm.  Additional algorithms may be defined in the future,
  following the process described in section 12.

7.1.  The HMAC-SHA1 Algorithm

  Algorithm 1 is assigned to the HMAC [3] protocol by using the SHA-1
  [4] hash function.  This algorithm requires that a shared secret key
  be configured at the relay agent and the DHCP server.  A 32-bit Key
  Identifier is associated with each shared key, and this identifier is
  carried in the first 4 bytes of the Authentication Information field
  of the Authentication suboption.  The HMAC-SHA1 computation generates
  a 20-byte hash value, which is placed in the Authentication
  Information field after the Key ID.






Stapp & Lemon               Standards Track                     [Page 6]

RFC 4030                Authentication Suboption              March 2005


  When Algorithm 1 is used, the format of the Authentication suboption
  is as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Code      |       38      |0 0 0 0 0 0 0 1|  MBZ  |  RDM  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Replay Detection (64 bits)                                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Replay Detection cont.                                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    Relay Identifier                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Key ID (32 bits)                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                      HMAC-SHA1 (160 bits)                     |
     |                                                               |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The suboption length is 38.  The RDM and Replay Detection fields are
  as specified in section 5.  The Relay ID field is set as specified in
  section 6.  The Key ID is set by the sender to the ID of the key used
  in computing the checksum, as an integer value in network byte order.
  The HMAC result follows the Key ID.

  The Key ID exists only to allow the sender and receiver to specify a
  shared secret in cases where more than one secret is in use among a
  network's relays and DHCP servers.  The Key ID values are entirely a
  matter of local configuration; they only have to be unique locally.
  This specification does not define any semantics or impose any
  requirements on this algorithm's Key ID values.

8.  Procedures for Sending Messages

8.1.  Replay Detection

  The sender obtains a replay-detection counter value to use based on
  the RDM it is using.  If the sender is using RDM 1, the default RDM,
  the value MUST be greater than any previously sent value.









Stapp & Lemon               Standards Track                     [Page 7]

RFC 4030                Authentication Suboption              March 2005


8.2.  Packet Preparation

  The sender sets the 'giaddr' field and the 'hops' field to all zeros.
  The sender appends the relay agent information option to the client's
  packet, including the Authentication suboption.  The sender selects
  an appropriate Replay Detection value.  The sender places its
  identifier into the Relay ID field, if necessary, or sets the field
  to all zeros.  The sender sets the suboption length, places the
  Replay Detection value into the Replay Detection field of the
  suboption, and sets the algorithm to the algorithm number that it is
  using.  If the sender is using HMAC-SHA1, it sets the Key ID field to
  the appropriate value.  The sender sets the field that will contain
  the checksum to all zeros.  Other algorithms may specify additional
  preparation steps.

8.3.  Checksum Computation

  The sender computes the checksum across the entire DHCP message,
  using the algorithm it has selected.  The sender places the result of
  the computation into the Authentication Information field of the
  Authentication suboption.

8.4.  Sending the Message

  The sender restores the values of the 'hops' and 'giaddr' fields and
  sends the message.

9.  Procedures for Processing Incoming Messages

9.1.  Initial Examination

  The receiver examines the message for the value of the giaddr field
  and determines whether the packet includes the relay agent
  information option.  The receiver uses its configuration to determine
  whether it should expect an Authentication suboption.  The receiver
  MUST support a configuration that allows it to drop incoming messages
  that do not contain a valid relay agent information option and
  Authentication suboption.

  If the receiver determines that the Authentication suboption is
  present and that it should process the suboption, it uses the data in
  the message to determine which algorithm, key, and RDM to use in
  validating the message.  If the receiver cannot determine which
  algorithm, key, and RDM to use, or if it does not support the value
  indicated in the message, it SHOULD drop the message.  Because this
  situation could indicate a misconfiguration that could deny service
  to clients, receivers MAY attempt to notify their administrators or
  to log an error message.



Stapp & Lemon               Standards Track                     [Page 8]

RFC 4030                Authentication Suboption              March 2005


9.2.  Replay Detection Check

  The receiver examines the RDM field.  Receivers MUST discard messages
  containing RDM values that they do not support.  Because this may
  indicate a misconfiguration at the sender, an attempt SHOULD be made
  to indicate this condition to the administrator by incrementing an
  error counter or writing a log message.  If the receiver supports the
  RDM, it examines the value in the Replay Detection field by using the
  procedures in the RDM and in section 5.  If the Replay value is not
  valid, the receiver MUST drop the message.

  Note that at this point the receiver MUST NOT update its notion of
  the last valid Replay Detection value for the sender.  Until the
  checksum has been tested, the Replay Detection field cannot be
  trusted.  If the receiver trusts the Replay Detection value without
  testing the checksum, a malicious host could send a replayed message
  with a Replay Detection value that was very high, tricking the
  receiver into rejecting legitimate values from the sender.

9.3.  Testing the Checksum

  The receiver prepares the packet in order to test the checksum by
  setting the 'giaddr' and 'hops' fields to zero, and by setting the
  Authentication Information field of the suboption to all zeros.
  Using the algorithm and key associated with the sender, the receiver
  computes a hash of the message.  The receiver compares the result of
  its computation with the value sent.  If the checksums do not match,
  the receiver MUST drop the message.  Otherwise, the receiver updates
  its notion of the last valid Replay Detection value associated with
  the sender and processes the message.

10.  Relay Agent Behavior

  DHCP Relay agents are typically configured with the addresses of one
  or more DHCP servers.  A relay agent that implements this suboption
  requires an algorithm number for each server, as well as appropriate
  credentials (i.e., keys).  Relay implementations SHOULD support a
  configuration that indicates that all relayed messages should include
  the authentication suboption.  Use of the authentication suboption
  SHOULD be disabled by default.  Relay agents MAY support
  configuration that indicates that certain destination servers support
  the authentication suboption and that other servers do not.  Relay
  agents MAY support configuration of a single algorithm number and key
  to be used with all DHCP servers, or they MAY support configuration
  of different algorithms and keys for each server.






Stapp & Lemon               Standards Track                     [Page 9]

RFC 4030                Authentication Suboption              March 2005


10.1.  Receiving Messages from Other Relay Agents

  There are network configurations in which one relay agent adds the
  relay agent option and then forwards the DHCP message to another
  relay agent.  For example, a layer-2 switch might be directly
  connected to a client, and it might forward messages to an
  aggregating router, which sets giaddr and then forwards the message
  to a DHCP server.  When a DHCP relay that implements the
  Authentication suboption receives a message, it MAY use the
  procedures in section 9 to verify the source of the message before
  forwarding it.

10.2.  Sending Messages to Servers

  When the relay agent receives a broadcast packet from a client, it
  determines which DHCP servers (or other relay agents) should receive
  copies of the message.  If the relay agent is configured to include
  the Authentication suboption, it determines which Algorithm and RDM
  to use, and then it performs the steps in section 8.

10.3.  Receiving Messages from Servers

  When the relay agent receives a message, it determines from its
  configuration whether it expects the message to contain a relay agent
  information option and an Authentication suboption.  The relay agent
  MAY be configured to drop response messages that do not contain the
  Authentication suboption.  The relay agent then follows the
  procedures in section 9.

11.  DHCP Server Behavior

  DHCP servers may interact with multiple relay agents.  Server
  implementations MAY support a configuration that associates the same
  algorithm and key with all relay agents.  Servers MAY support a
  configuration that specifies the algorithm and key to use with each
  relay agent individually.

11.1.  Receiving Messages from Relay Agents

  When a DHCP server that implements the Authentication suboption
  receives a message, it performs the steps in section 9.










Stapp & Lemon               Standards Track                    [Page 10]

RFC 4030                Authentication Suboption              March 2005


11.2.  Sending Reply Messages to Relay Agents

  When the server has prepared a reply message, it uses the incoming
  request message and its configuration to determine whether it should
  include a relay agent information option and an Authentication
  suboption.  If the server is configured to include the Authentication
  suboption, it determines which Algorithm and RDM to use and then
  performs the steps in section 8.

     DISCUSSION:
        This server behavior represents a slight variance from RFC 3046
        [1], section 2.2.  The Authentication suboption is not echoed
        back from the server to the relay; the server generates its own
        suboption.

12.  IANA Considerations

  Section 4 defines a new suboption for the DHCP relay agent option
  called the Authentication Suboption.  IANA has allocated a new
  suboption code from the relay agent option suboption number space.

  This specification introduces two new number spaces for the
  Authentication suboption's 'Algorithm' and 'Replay Detection Method'
  fields.  These number spaces have been created and will be maintained
  by IANA.

  The Algorithm identifier is a one-byte value.  The Algorithm value 0
  is reserved.  The Algorithm value 1 is assigned to the HMAC-SHA1
  keyed hash, as defined in section 7.1.  Additional algorithm values
  will be allocated and assigned through IETF consensus, as defined in
  RFC 2434 [5].

  The RDM identifier is a four-bit value.  The RDM value 0 is reserved.
  The RDM value 1 is assigned to the use of a monotonically increasing
  counter value, as defined in section 5.  Additional RDM values will
  be allocated and assigned through IETF consensus, as defined in RFC
  2434 [5].

13.  Security Considerations

  This specification describes a protocol that adds source
  authentication and message integrity protection to the messages
  between DHCP relay agents and DHCP servers.

  The use of this protocol imposes a new computational burden on relay
  agents and servers, because they must perform cryptographic hash
  calculations when they send and receive messages.  This burden may
  add latency to DHCP message exchanges.  Because relay agents are



Stapp & Lemon               Standards Track                    [Page 11]

RFC 4030                Authentication Suboption              March 2005


  involved when clients reboot, periods of very high reboot activity
  will result in the largest number of messages that have to be
  processed.  During a cable MSO head-end reboot event, for example,
  the time required for all clients to be served may increase.

13.1.  The Key ID Field

  The Authentication suboption contains a four-byte Key ID, following
  the example of the DHCP Authentication RFC.  Other authentication
  protocols, such as DNS TSIG [10], use a key name.  A key name is more
  flexible and potentially more human readable than a key id.  DHCP
  servers may well be configured to use key names for DNS updates using
  TSIG, so it might simplify DHCP server configuration if some of the
  key management for both protocols could be shared.

  On the other hand, it is crucial to minimize the size expansion
  caused by the introduction of the relay agent information option.
  Named keys would require more physical space and would entail more
  complex suboption encoding and parsing implementations.  These
  considerations have led us to specify a fixed-length Key ID instead
  of a variable-length key name.

13.2.  Protocol Vulnerabilities

  Because DHCP is a UDP protocol, messages between relays and servers
  may be delivered in an order different from that in which they were
  generated.  The replay-detection mechanism will cause receivers to
  drop packets that are delivered 'late', leading to client retries.
  The retry mechanisms that most clients implement should not cause
  this to be an enormous issue, but it will cause senders to do
  computational work which will be wasted if their messages are
  re-ordered.

  The DHC WG has developed two documents describing authentication of
  DHCP relay agent options to accommodate the requirements of different
  deployment scenarios: this document and "Authentication of Relay
  Agent Options Using IPsec" [11].  As we note in section 11, the
  Authentication suboption can be used without pairwise keys between
  each relay and each DHCP server.  In deployments where IPsec is
  readily available and pairwise keys can be managed efficiently, the
  use of IPsec as described in that document may be appropriate.  If
  IPsec is not available or there are multiple relay agents for which
  multiple keys must be managed, the protocol described in this
  document may be appropriate.  As is the case whenever two
  alternatives are available, local network administration can choose
  whichever is more appropriate.  Because the relay agents and the DHCP





Stapp & Lemon               Standards Track                    [Page 12]

RFC 4030                Authentication Suboption              March 2005


  server are all in the same administrative domain, the appropriate
  mechanism can be configured on all interoperating DHCP server
  elements.

14.  Acknowledgements

  The need for this specification was made clear by comments made by
  Thomas Narten and John Schnizlein, and the use of the DHCP
  Authentication option format was suggested by Josh Littlefield, at
  IETF 53.

15.  References

15.1.  Normative References

  [1]  Patrick, M., "DHCP Relay Agent Information Option", RFC 3046,
       January 2001.

  [2]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [3]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing
       for Message Authentication", RFC 2104, February 1997.

  [4]  Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1
       (SHA1)", RFC 3174, September 2001.

  [5]  Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
       Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

15.2.  Informative References

  [6]  Droms, R., "Dynamic Host Configuration Protocol", RFC 2131,
       March 1997.

  [7]  Croft, W. and J. Gilmore, "Bootstrap Protocol", RFC 951,
       September 1985.

  [8]  Wimer, W., "Clarifications and Extensions for the Bootstrap
       Protocol", RFC 1542, October 1993.

  [9]  Droms, R. and W. Arbaugh, "Authentication for DHCP Messages",
       RFC 3118, June 2001.

  [10] Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B. Wellington,
       "Secret Key Transaction Authentication for DNS (TSIG)", RFC
       2845, May 2000.




Stapp & Lemon               Standards Track                    [Page 13]

RFC 4030                Authentication Suboption              March 2005


  [11] Droms, R., "Authentication of Relay Agent Options Using IPsec",
       Work in Progress, February 2004.

Authors' Addresses

  Mark Stapp
  Cisco Systems, Inc.
  1414 Massachusetts Ave.
  Boxborough, MA  01719
  USA

  Phone: 978.936.0000
  EMail: [email protected]


  Ted Lemon
  Nominum, Inc.
  950 Charter St.
  Redwood City, CA  94063
  USA

  EMail: [email protected]





























Stapp & Lemon               Standards Track                    [Page 14]

RFC 4030                Authentication Suboption              March 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Stapp & Lemon               Standards Track                    [Page 15]