Network Working Group                                       G. Pelletier
Request for Comments: 4019                                   Ericsson AB
Category: Standards Track                                     April 2005


                  RObust Header Compression (ROHC):
            Profiles for User Datagram Protocol (UDP) Lite

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This document defines Robust Header Compression (ROHC) profiles for
  compression of Real-Time Transport Protocol, User Datagram Protocol-
  Lite, and Internet Protocol (RTP/UDP-Lite/IP) packets and UDP-
  Lite/IP.  These profiles are defined based on their differences with
  the profiles for UDP as specified in RFC 3095.

Table of Contents

  1.  Introduction..................................................  2
  2.  Terminology...................................................  3
  3.  Background....................................................  3
      3.1.  Overview of the UDP-Lite Protocol.......................  3
      3.2.  Expected Behaviours of UDP-Lite Flows...................  5
            3.2.1.  Per-Packet Behavior.............................  5
            3.2.2.  Inter-Packet Behavior...........................  5
            3.2.3.  Per-Flow Behavior...............................  5
      3.3.  Header Field Classification.............................  5
  4.  Rationale behind the Design of ROHC Profiles for UDP-Lite.....  6
      4.1.  Design Motivations......................................  6
      4.2.  ROHC Considerations.....................................  6
  5.  ROHC Profiles for UDP-Lite....................................  6
      5.1.  Context Parameters......................................  7
      5.2.  Initialization..........................................  8
            5.2.1.  Initialization of the UDP-Lite Header [1].......  8
            5.2.2.  Compressor and Decompressor Logic...............  9




Pelletier                   Standards Track                     [Page 1]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


      5.3.  Packet Formats..........................................  9
            5.3.1.  General Packet Format...........................  9
            5.3.2.  Packet Type CCE: CCE(), CCE(ON), and CCE(OFF)... 10
                    5.3.2.1.  Properties of CCE():.................. 11
                    5.3.2.2.  Properties of CCE(ON):................ 11
                    5.3.2.3.  Properties of CCE(OFF):............... 12
      5.4.  Compressor Logic........................................ 12
      5.5.  Decompressor Logic...................................... 12
      5.6.  Additional Mode Transition Logic........................ 13
      5.7.  The CONTEXT_MEMORY Feedback Option...................... 13
      5.8.  Constant IP-ID.......................................... 13
  6.  Security Considerations....................................... 14
  7.  IANA Considerations........................................... 14
  8.  Acknowledgments............................................... 15
  9.  References.................................................... 15
      9.1.  Normative References.................................... 15
      9.2.  Informative References.................................. 15
  Appendix A.  Detailed Classification of Header Fields............. 17
  Appendix B.  Detailed Format of the CCE Packet Type............... 20
  Author's Address.................................................. 22
  Full Copyright Statement.......................................... 23

1.  Introduction

  The ROHC WG has developed a header compression framework on top of
  which various profiles can be defined for different protocol sets or
  compression strategies.  Due to the demands of the cellular industry
  for an efficient way to transport voice over IP over wireless, ROHC
  [2] has mainly focused on compression of IP/UDP/RTP headers, which
  are generous in size, especially compared to the payloads often
  carried by packets with these headers.

  ROHC RTP has become a very efficient, robust, and capable compression
  scheme, able to compress the headers down to a total size of one
  octet only.  Also, transparency is guaranteed to an extremely high
  extent, even when residual bit errors are present in compressed
  headers delivered to the decompressor.

  UDP-Lite [4] is a transport protocol similar to the UDP protocol [7].
  UDP-Lite is useful for applications designed with the capability to
  tolerate errors in the payload, for which receiving damaged data is
  better than dealing with the loss of entire packets.  This may be
  particularly suitable when packets are transported over link
  technologies in which data can be partially damaged, such as wireless
  links.






Pelletier                   Standards Track                     [Page 2]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


  Although these transport protocols are very similar, ROHC profiles
  must be defined separately for robust compression of UDP-Lite headers
  because UDP-Lite does not share the same protocol identifier with
  UDP.  Also, the UDP-Lite Checksum Coverage field does not share the
  semantics of the corresponding UDP Length field, and as a consequence
  it cannot always be inferred anymore.

  This document defines two ROHC profiles for efficient compression of
  UDP-Lite headers.  The objective of this document is to provide
  simple modifications to the corresponding ROHC profiles for UDP,
  specified in RFC 3095 [2].  In addition, the ROHC profiles for UDP-
  Lite support some of the mechanisms defined in the profile for
  compression of IP headers [3] (ROHC IP-Only).  This specification
  includes support for compression of multiple IP headers and for
  compressing IP-ID fields with constant behavior, as well as improved
  mode transition logic and a feedback option for decompressors with
  limited memory resources.

2.  Terminology

  In this document, the key words "MUST", "MUST NOT", "REQUIRED",
  "SHALL", "SHALL NOT", "SHOULD, "SHOULD NOT", "RECOMMENDED", "MAY",
  and "OPTIONAL" are to be interpreted as described in RFC 2119 [1].

  ROHC RTP         : RTP/UDP/IP profile 0x0001 defined in RFC 3095 [2].
  ROHC UDP         : UDP/IP profile 0x0002 defined in RFC 3095 [2].
  ROHC UDP-Lite    : UDP-Lite/IP profile defined in this document.
  ROHC RTP/UDP-Lite: RTP/UDP-Lite/IP profile defined in this document.

3.  Background

3.1.  Overview of the UDP-Lite Protocol

  UDP-Lite is a transport protocol defined as an independent variant of
  the UDP transport protocol.  UDP-Lite is very similar to UDP, and it
  allows applications that can tolerate errors in the payload to use a
  checksum with an optional partial coverage.  This is particularly
  useful with IPv6 [6], in which the use of the transport-layer
  checksum is mandatory.

  UDP-Lite replaces the Length field of the UDP header with a Checksum
  Coverage field.  This field indicates the number of octets covered by
  the 16-bit checksum, which is applied on a per-packet basis.  The
  coverage area always includes the UDP-Lite header and may cover the
  entire packet, in which case UDP-Lite becomes semantically identical
  to UDP.  UDP-Lite and UDP do not share the same protocol identifier.





Pelletier                   Standards Track                     [Page 3]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


  The UDP-Lite header format:

       0              15 16             31
      +--------+--------+--------+--------+
      |     Source      |   Destination   |
      |      Port       |      Port       |
      +--------+--------+--------+--------+
      |    Checksum     |                 |
      |    Coverage     |    Checksum     |
      +--------+--------+--------+--------+
      |                                   |
      :              Payload              :
      |                                   |
      +-----------------------------------+

  Like the UDP checksum, the UDP-Lite checksum is an end-to-end
  mechanism against erroneous delivery of error sensitive data.  This
  checksum is mandatory with IPv6 [5] for both protocols.  However,
  unlike its UDP counterpart, the UDP-Lite checksum may not be
  transmitted as all zeroes and cannot be disabled for IPv4 [5].  For
  UDP, if the checksum is disabled (IPv4 only), the Checksum field
  maintains a constant value and is normally not sent by the header
  compression scheme.  If the UDP checksum is enabled (mandatory for
  IPv6), such an unpredictable field cannot be compressed and is sent
  uncompressed.  The UDP Length field, however, is always redundant and
  can be provided by the IP module.  Header compression schemes do not
  normally transmit any bits of information for this field, as its
  value can be inferred from the link layer.

  For UDP-Lite, the checksum also has unpredictable values, and this
  field must always be included as-is in the compressed header for both
  IPv4 and IPv6.  Furthermore, as the UDP Length field is redefined as
  the Checksum Coverage field by UDP-Lite, this leads to different
  properties for this field from a header-compression perspective.

  The following summarizes the relationship between UDP and UDP-Lite:

  - UDP-Lite and UDP have different protocol identifiers.
  - The UDP-Lite checksum cannot be disabled for IPv4.
  - UDP-Lite redefines the UDP Length field as the Checksum Coverage
    field, with different semantics.
  - UDP-Lite is semantically equivalent to UDP when the Checksum
    Coverage field indicates the total length of the packet.

  The next section provides a more detailed discussion of the behavior
  of the Checksum Coverage field of UDP-Lite in relation to header
  compression.




Pelletier                   Standards Track                     [Page 4]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


3.2.  Expected Behaviours of UDP-Lite Flows

3.2.1.  Per-Packet Behavior

  As mentioned in the previous section, the checksum coverage value is
  applied independently of other packets that may belong to the same
  flow.  Specifically, the value of the checksum coverage may indicate
  that the UDP-Lite packet is either entirely covered by the checksum
  or covered up to some boundary less than the packet size but
  including the UDP-Lite header.

3.2.2.  Inter-Packet Behavior

  In relation to each other, UDP-Lite packets may exhibit one of three
  possible change patterns, where within a sequence of packets the
  value of the Checksum Coverage field is

  1. changing, while covering the entire packet;
  2. unchanging, covering up to a fixed boundary within the packet; or
  3. changing, but it does not follow any specific pattern.

  The first pattern above corresponds to the semantics of UDP, when the
  UDP checksum is enabled.  For this case, the checksum coverage field
  varies according to the packet length and may be inferred from the IP
  header, as is the UDP Length field value.

  The second pattern corresponds to the case where the coverage is the
  same from one packet to another within a particular sequence.  For
  this case, the Checksum Coverage field may be a static value defined
  in the context, and it does not have to be sent in the compressed
  header.  For the third case, no useful change pattern can be
  identified from packet to packet for the value of the checksum
  coverage field, and it must be included in the compressed header.

3.2.3.  Per-Flow behavior

  It can be expected that any one of the above change patterns for
  sequences of packets may be predominant at any time during the
  lifetime of the UDP-Lite flow.  A flow that predominantly follows the
  first two change patterns described above may provide opportunities
  for compressing the Checksum Coverage field for most of the packets.

3.3.  Header Field Classification

  In relation to the header field classification of RFC 3095 [2], the
  first two patterns represent the case where the value of the Checksum
  Coverage field behavior is fixed and may be either INFERRED (pattern




Pelletier                   Standards Track                     [Page 5]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


  1) or STATIC (pattern 2).  Pattern 3 is for the case where the value
  varies unpredictably, the field is CHANGING, and the value must be
  sent along with every packet.

  Additional information regarding the analysis of the behavior of the
  UDP-Lite fields may be found in Appendix A.

4.  Rationale behind the Design of ROHC Profiles for UDP-Lite

4.1.  Design Motivations

  Simplicity is a strong motivation for the design of the UDP-Lite
  header compression profiles.  The profiles defined for UDP-Lite
  should entail only a few simple modifications to the corresponding
  profiles defined for UDP in RFC 3095 [2].  In addition, it is
  desirable to include some of the improvements found in the ROHC IP-
  Only profile [3].  Finally, whenever UDP-Lite is used in a manner
  that is semantically identical to UDP, the compression efficiency
  should be similar.

4.2.  ROHC Considerations

  The simplest approach to the definition of ROHC profiles for UDP-Lite
  is to treat the Checksum Coverage field as an irregular value, and to
  send it uncompressed for every packet.  This may be achieved simply
  by adding the field to the definition of the general packet format
  [2].  However, then the compression efficiency would always be less
  than for UDP.

  Some care should be given to achieve compression efficiency for UDP-
  Lite similar to that for UDP when the Checksum Coverage field behaves
  like the UDP Length field.  This requires the possibility to infer
  the Checksum Coverage field when it is equal to the length of the
  packet.  Otherwise, this would put the UDP-Lite protocol at a
  disadvantage over links where header compression is used, when its
  behavior is made similar to the semantics of UDP.

  A mechanism to detect the presence of the Checksum Coverage field in
  compressed headers is thus needed.  This is achieved by defining a
  new packet type with the identifiers left unused in RFC 3095 [2].

5.  ROHC Profiles for UDP-Lite

  This section defines two ROHC profiles:

     - RTP/UDP-Lite/IP compression (profile 0x0007)
     - UDP-Lite/IP compression     (profile 0x0008)




Pelletier                   Standards Track                     [Page 6]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


  These profiles build on the specifications found in RFC 3095 [2],
  with as little modification as possible.  Unless it is explicitly
  stated otherwise, the profiles defined herein follow the
  specifications of ROHC UDP and ROHC RTP, respectively.

  Note also that this document reuses the notation found in [2].

5.1.  Context Parameters

  As described in [2], information about previous packets is maintained
  in a context.  This includes information describing the packet stream
  and compression parameters.  Although the UDP and UDP-Lite protocols
  share many commonalities, the differences in semantics as described
  earlier render the following parameter inapplicable:

  The parameter context(UDP Checksum)

    The UDP-Lite checksum cannot be disabled, as opposed to UDP.  The
    parameter context(UDP Checksum) defined in [2] (section 5.7) is
    therefore not used for compression of UDP-Lite.

  In addition, the UDP-Lite checksum is always sent as-is in every
  compressed packet.  However, the Checksum Coverage field may not
  always be sent in each compressed packet, and the following context
  parameter is used to indicate whether the field is sent:

  The parameter context(UDP-Lite Coverage Field Present)

    Whether the UDP-Lite Checksum Coverage field is present or not in
    the general packet format (see section 5.3.1) is controlled by the
    value of the Coverage Field Present (CFP) flag in the context.

    If context(CFP) is nonzero, the Checksum Coverage field is not
    compressed, and it is present within compressed packets.  If
    context(CFP) is zero, the Checksum Coverage field is compressed,
    and it is not sent.  This is the case when the value of the
    Checksum Coverage field follows a stable inter-packet change
    pattern; the field has either a constant value or it has a value
    equal to the packet length for most packets in a sequence (see
    section 3.2).

  Finally, the following context parameter is needed to indicate
  whether the field should be inferred or taken from a value previously
  saved in the context:







Pelletier                   Standards Track                     [Page 7]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


  The parameter context(UDP-Lite Coverage Field Inferred)

    When the UDP-Lite Checksum Coverage field is not present in the
    compressed header (CFP=0), whether it is inferred is controlled by
    the value of the Coverage Field Inferred (CFI) flag in the context.

    If context(CFI) is nonzero, the Checksum Coverage field is inferred
    from the packet length, similarly as for the UDP Length field in
    ROHC RTP.  If context(CFI) is zero, the Checksum Coverage field is
    decompressed by using context(UDP-Lite Checksum Coverage).
    Therefore, when context(CFI) is updated to a nonzero value, the
    value of the Checksum Coverage field stored in the context must
    also be updated.

5.2.  Initialization

  Unless it is stated otherwise, the mechanisms of ROHC RTP and ROHC
  UDP found in [2] are used also for the ROHC RTP/UDP-Lite and the ROHC
  UDP-Lite profiles, respectively.

  In particular, the considerations of ROHC UDP regarding the UDP SN
  taking the role of the RTP Sequence Number apply to ROHC UDP-Lite.
  Also, the static context for ROHC UDP-Lite may be initialized by
  reusing an existing context belonging to a stream compressed by using
  ROHC RTP/UDP-Lite (profile 0x0007), similarly as for ROHC UDP.

5.2.1.  Initialization of the UDP-Lite Header [1]

  The structure of the IR and IR-DYN packets and the initialization
  procedures are the same as for the ROHC profiles for UDP [2], with
  the exception of the dynamic part as specified for UDP.  A 2-octet
  field containing the checksum coverage is added before the Checksum
  field.  This affects the format of dynamic chains in both IR and IR-
  DYN packets.

  Dynamic part:

     +---+---+---+---+---+---+---+---+
     /       Checksum Coverage       /   2 octets
     +---+---+---+---+---+---+---+---+
     /           Checksum            /   2 octets
     +---+---+---+---+---+---+---+---+

  CRC-DYNAMIC: Checksum Coverage field, Checksum field (octets 5 - 8).

  CRC-STATIC: All other fields (octets 1 - 4).





Pelletier                   Standards Track                     [Page 8]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


5.2.2.  Compressor and Decompressor Logic

  The following logic must be used by both the compressor and the
  decompressor for assigning values to the parameters context(CFP) and
  context(CFI) during initialization:

  Context(CFP)

    During context initialization, the value of context(CFP) MUST be
    set to a nonzero value if the Checksum Coverage field differs from
    the length of the UDP-Lite packet, for any one IR or IR-DYN packet
    sent (compressor) or received (decompressor); otherwise, the value
    MUST be set to zero.

  Context(CFI)

    During context initialization, the value of context(CFI) MUST be
    set to a nonzero value if the Checksum Coverage field is equal to
    the length of the UDP-Lite packet within an IR or an IR-DYN packet
    sent (compressor) or received (decompressor); otherwise, the value
    MUST be set to zero.

5.3.  Packet Formats

  The general packet format, as defined in RFC 3095 [2], is modified to
  include an additional field for the UDP-Lite checksum coverage.  A
  packet type is also defined to handle the specific semantics and
  characteristics of this field.

5.3.1.  General Packet Format

  The general packet format of a compressed ROHC UDP-Lite header is
  similar to the compressed ROHC RTP header ([2], section 5.7), with
  modifications to the Checksum field, as well as additional fields for
  handling multiple IP headers and for the UDP-Lite checksum coverage:
















Pelletier                   Standards Track                     [Page 9]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


     --- --- --- --- --- --- --- ---
    :            List of            :  variable, given by static chain
    /        dynamic chains         /  (does not include SN)
    :   for additional IP headers   :  see also [3], section 3.2.
     --- --- --- --- --- --- --- ---
    :                               :  2 octets,
    +  UDP-Lite Checksum Coverage   +  if context(CFP) = 1 or
    :                               :  if packet type = CCE (see 5.3.2)
     --- --- --- --- --- --- --- ---
    :                               :
    +      UDP-Lite Checksum        +  2 octets
    :                               :
     --- --- --- --- --- --- --- ---

  The list of dynamic header chains carries the dynamic header part for
  each IP header in excess of the initial two, if there is any (as
  indicated by the presence of corresponding header parts in the static
  chain).  Note that there is no sequence number at the end of the
  chain, as SN is present within compressed base headers.

  The order of the fields following the optional extension of the
  general ROHC packet format is the same as the order between the
  fields in the uncompressed header.

  When the CRC is calculated, the Checksum Coverage field is CRC-
  DYNAMIC.

5.3.2.  Packet Type CCE: CCE(), CCE(ON), and CCE(OFF)

  The ROHC profiles for UDP-Lite define a packet type to handle the
  various possible change patterns of the checksum coverage.  This
  packet type may be used to manipulate the context values that control
  the presence of the Checksum Coverage field within the general packet
  format (i.e., context(CFP)) and how the field is decompressed (i.e.,
  context(CFI)).  The 2-octet Checksum Coverage field is always present
  within the format of this packet (see section 5.3.1).

  This type of packet is named Checksum Coverage Extension, or CCE, and
  its updating properties depend on the final two bits of the packet
  type octet (see format below).  A naming scheme of the form
  CCE(<some_property>) is used to uniquely identify the properties of a
  particular CCE packet.

  Although this packet type defines its own format, it may be
  considered as an extension mechanism for packets of type 2, 1, or 0
  [2].  This is achieved by substitution of the packet type identifier
  of the first octet of the base header (the "outer" identifier) with




Pelletier                   Standards Track                    [Page 10]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


  one of the unused packet types from RFC 3095 [2].  The substituted
  identifier is then moved to the first octet of the remainder of the
  base header (the "inner" identifier).

  The format of the ROHC UDP-Lite CCE packet type is as follows:

    0   1   2   3   4   5   6   7
  +---+---+---+---+---+---+---+---+
  | 1   1   1   1   1   0   F | K |  Outer packet type identifier
  +===+===+===+===+===+===+===+===+
  :                               :  (with inner type identifier)
  /       Inner Base header       /  variable number of bits, given by
  :                               :  the inner packet type identifier
  +---+---+---+---+---+---+---+---+

    F,K: F,K = 00 is reserved at framework level (IR-DYN);
         F,K = 01 indicates CCE();
         F,K = 10 indicates CCE(ON);
         F,K = 11 indicates CCE(OFF).

    Updating properties: The updating properties of the inner packet
         type carried within any of the CCE packets are always
         maintained.  CCE(ON) and CCE(OFF) MUST NOT be used to extend
         R-0 and R-1* headers.  In addition, CCE(ON) always updates
         context(CFP); CCE(OFF) always updates context(CFP),
         context(CFI), and context(UDP-Lite Checksum Coverage).

  Appendix B provides an expanded view of the resulting format of the
  CCE packet type.

5.3.2.1.  Properties of CCE()

  Aside from the updating properties of the inner packet type carried
  within CCE(), this packet does not update any other context values.
  CCE() thus is mode-agnostic; e.g., it can extend any of packet types
  2, 1, and 0, regardless of the current mode of operation [2].

  CCE() may be used when the checksum coverage deviates from the change
  pattern assumed by the compressor, where the field could previously
  be compressed.  This packet is useful if the occurrence of such
  deviations is rare.

5.3.2.2.  Properties of CCE(ON)

  In addition to the updating properties of the inner packet type,
  CCE(ON) updates context(CFP) to a nonzero value; i.e., it effectively
  turns on the presence of the Checksum Coverage field within the




Pelletier                   Standards Track                    [Page 11]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


  general packet format.  This is useful when the predominant change
  pattern of the checksum coverage precludes its compression.

  CCE(ON) can extend any of the context-updating packets of type 2, 1,
  and 0; that is, packets with a compressed header containing a CRC
  [2].  Specifically, R-0 and R-1* headers MUST NOT be extended by
  using CCE(ON).

5.3.2.3.  Properties of CCE(OFF)

  In addition to the updating properties of the inner packet type,
  CCE(OFF) updates context(CFP) to a value of zero; i.e., it
  effectively turns off the presence of the Checksum Coverage field
  within the general packet format.  This is useful when the change
  pattern of the checksum coverage seldom deviates from the pattern
  assumed by the compressor.

  CCE(OFF) also updates context(CFI) to a nonzero value, if field(UDP-
  Lite Checksum Coverage) is equal to the packet length; otherwise, it
  must be set to zero.  Note that when context(CFI) is updated by using
  packet type CCE(OFF), a match of field(Checksum Coverage) with the
  packet length always has precedence over a match with
  context(Checksum Coverage).  Finally, context(UDP-Lite Checksum
  Coverage) is also updated by CCE(OFF).

  Similarly to CCE(ON), CCE(OFF) can extend any of the context updating
  packets of type 2, 1, and 0 [2].

5.4.  Compressor Logic

  If hdr(UDP-Lite Checksum Coverage) is different from context(UDP-Lite
  Checksum Coverage) and different from the packet length when
  context(CFP) is zero, the Checksum Coverage field cannot be
  compressed.  In addition, if hdr(UDP-Lite Checksum Coverage) is
  different from the packet length when context(CFP) is zero and
  context(CFI) is nonzero, the Checksum Coverage field cannot be
  compressed by either.  For both cases, the field must be sent
  uncompressed using a CCE packet, or the context must be reinitialized
  by using an IR packet.

5.5.  Decompressor Logic

  For packet types other than IR, IR-DYN, and CCE that are received
  when the value of context(CFP) is zero, the Checksum Coverage field
  must be decompressed by using the value stored in the context if the
  value of context(CFI) is zero; otherwise, the field is inferred from
  the length of the UDP-Lite packet derived from the IP module.




Pelletier                   Standards Track                    [Page 12]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


5.6.  Additional Mode Transition Logic

  The profiles defined in this document allow the compressor to decline
  a mode transition requested by the decompressor.  This is achieved by
  redefining the Mode parameter for the value mode = 0 (in packet types
  UOR-2, IR, and IR-DYN) as follows (see also [3], section 3.4):

          Mode: Compression mode.  0 = (C)ancel Mode Transition

  Upon receiving the Mode parameter set to 0, the decompressor MUST
  stay in its current mode of operation and SHOULD refrain from sending
  further mode transition requests for the declined mode.

5.7.  The CONTEXT_MEMORY Feedback Option

  This feedback option informs the compressor that the decompressor
  does not have sufficient memory resources to handle the context of
  the packet stream required by the current compressed structure.

       0   1   2   3   4   5   6   7
     +---+---+---+---+---+---+---+---+
     |  Opt Type = 9 |  Opt Len = 0  |
     +---+---+---+---+---+---+---+---+

  When receiving a CONTEXT_MEMORY option, the compressor SHOULD take
  actions to compress the packet stream in a way that requiring less
  decompressor memory resources or stop compressing the packet stream.

5.8.  Constant IP-ID

  The profiles for UDP-Lite support compression of the IP-ID field with
  constant behavior, with the addition of the Static IP Identifier
  (SID) flag within the dynamic part of the chain used to initialize
  the IPv4 header, as follows (see also [3], section 3.3):

  Dynamic part:

     +---+---+---+---+---+---+---+---+
     |        Type of Service        |
     +---+---+---+---+---+---+---+---+
     |         Time to Live          |
     +---+---+---+---+---+---+---+---+
     /        Identification         /   2 octets
     +---+---+---+---+---+---+---+---+
     | DF|RND|NBO|SID|       0       |
     +---+---+---+---+---+---+---+---+
     / Generic extension header list /  variable length
     +---+---+---+---+---+---+---+---+



Pelletier                   Standards Track                    [Page 13]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


  SID: Static IP Identifier.

     For IR and IR-DYN packets:

        The logic is the same as that for the respective ROHC
        profiles for UDP, with the addition that field (SID)
        must be kept in the context.

     For compressed headers other than IR and IR-DYN:

        If value(RND) = 0 and context(SID) = 0, hdr(IP-ID) is
        compressed by using Offset IP-ID encoding (see [2], section
        4.5.5) using p = 0 and default-slope(IP-ID offset) = 0.

        If value(RND) = 0 and context(SID) = 1, hdr(IP-ID) is constant
        and compressed away; hdr(IP-ID) is the value of context(IP-ID).

        If value(RND) = 1, IP-ID is the uncompressed hdr(IP-ID).  IP-ID
        is then passed as additional octets at the end of the
        compressed header, after any extensions.

  Note: Only IR and IR-DYN packets can update context(SID).

  Note: All other fields are the same as for the respective ROHC
  profiles for UDP [2].

6.  Security Considerations

  The security considerations of RFC 3095 [2] apply integrally to this
  document, without modification.

7.  IANA Considerations

  ROHC profile identifiers 0x0007 (ROHC RTP/UDP-Lite) and 0x0008 (ROHC
  UDP-Lite) have been reserved by the IANA for the profiles defined in
  this document (RFC 4019).

  Two ROHC profile identifiers must be reserved by the IANA for the
  profiles defined in this document.  Since profile number 0x0006 is
  being saved for the TCP/IP (ROHC-TCP) profile, profile numbers 0x0007
  and 0x0008 are the most suitable unused identifiers available, and
  should thus be used.  As for previous ROHC profiles, profile numbers
  0xnn07 and 0xnn08 must also be reserved for future variants of these
  profiles.  The registration suggested for the "RObust Header
  Compression (ROHC) Profile Identifiers" name space:






Pelletier                   Standards Track                    [Page 14]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


     OLD:   0x0006-0xnn7F     To be Assigned by IANA

     NEW:   0xnn06            To be Assigned by IANA
            0x0007            ROHC RTP/UDP-Lite        [RFC4019]
            0xnn07            Reserved
            0x0008            ROHC UDP-Lite            [RFC4019]
            0xnn08            Reserved
            0x0009-0xnn7F     To be Assigned by IANA

8.  Acknowledgments

  The author would like to thank Lars-Erik Jonsson, Kristofer Sandlund,
  Mark West, Richard Price, Gorry Fairhurst, Fredrik Linstroem and Mats
  Nordberg for useful reviews and discussions around this document.

9.  References

9.1.  Normative References

  [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [2]  Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
       Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le, K., Liu,
       Z., Martensson, A., Miyazaki, A., Svanbro, K., Wiebke, T.,
       Yoshimura, T., and H. Zheng, "RObust Header Compression (ROHC):
       Framework and four profiles: RTP, UDP, ESP, and uncompressed",
       RFC 3095, July 2001.

  [3]  Jonsson, L-E. and G. Pelletier, "RObust Header Compression
       (ROHC): A Compression Profile for IP", RFC 3843, June 2004.

  [4]  Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., and G.
       Fairhurst, "The Lightweight User Datagram Protocol (UDP-Lite)",
       RFC 3828, July 2004.

9.2.  Informative References

  [5]  Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.

  [6]  Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
       Specification", RFC 2460, December 1998.

  [7]  Postel, J., "User Datagram Protocol", STD 6, RFC 768, August
       1980.






Pelletier                   Standards Track                    [Page 15]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


  [8]  Schulzrinne, H.,  Casner, S., Frederick, R., and V. Jacobson,
       "RTP: A Transport Protocol for Real-Time Applications", STD 64,
       RFC 3550, July 2003.
















































Pelletier                   Standards Track                    [Page 16]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


Appendix A.  Detailed Classification of Header Fields

  This section summarizes the difference from the classification found
  in the corresponding appendix in RFC 3095 [2] and similarly provides
  conclusions about how the various header fields should be handled by
  the header compression scheme to optimize compression and
  functionality.  These conclusions are separated based on the behavior
  of the UDP-Lite Checksum Coverage field and use the expected change
  patterns described in section 3.2 of this document.

A.1.  UDP-Lite Header Fields

  The following table summarizes a possible classification for the UDP-
  Lite header fields in comparison with the classification for UDP,
  using the same classes as in RFC 3095 [2].

  Header fields of UDP-Lite and UDP:

                                 +-------------------+-------------+
                                 |      UDP-Lite     |     UDP     |
    +-------------------+--------+-------------------+-------------+
    |       Header      |  Size  |       Class       |    Class    |
    |       Field       | (bits) |                   |             |
    +-------------------+--------+-------------------+-------------+
    |    Source Port    |   16   |     STATIC-DEF    | STATIC-DEF  |
    | Destination Port  |   16   |     STATIC-DEF    | STATIC-DEF  |
    | Checksum Coverage |   16   |      INFERRED     |             |
    |                   |        |       STATIC      |             |
    |                   |        |      CHANGING     |             |
    |      Length       |   16   |                   |  INFERRED   |
    |     Checksum      |   16   |      CHANGING     |  CHANGING   |
    +-------------------+--------+-------------------+-------------+

  Source and Destination Port

    Same as for UDP.  Specifically, these fields are part of the
    definition of a stream and must thus be constant for all packets in
    the stream.  The fields are therefore classified as STATIC-DEF.

  Checksum Coverage

    This field specifies which part of the UDP-Lite datagram is covered
    by the checksum.  It may have a value of zero or be equal to the
    datagram length if the checksum covers the entire datagram, or it
    may have any value between eight octets and the length of the
    datagram to specify the number of octets protected by the checksum,





Pelletier                   Standards Track                    [Page 17]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


    calculated from the first octet of the UDP-Lite header.  The value
    of this field may vary for each packet, and this makes the value
    unpredictable from a header-compression perspective.

  Checksum

    The information used for the calculation of the UDP-Lite checksum
    is governed by the value of the checksum coverage and minimally
    includes the UDP-Lite header.  The checksum is a changing field
    that must always be sent as-is.

  The total size of the fields in each class, for each expected change
  pattern (see section 3.2), is summarized in the tables below:

  Pattern 1:
    +------------+---------------+
    |   Class    | Size (octets) |
    +------------+---------------+
    | INFERRED   |       2       |  Checksum Coverage
    | STATIC-DEF |       4       |  Source Port / Destination Port
    | CHANGING   |       2       |  Checksum
    +------------+---------------+

  Pattern 2:
    +------------+---------------+
    |   Class    | Size (octets) |
    +------------+---------------+
    | STATIC-DEF |       4       |  Source Port / Destination Port
    | STATIC     |       2       |  Checksum Coverage
    | CHANGING   |       2       |  Checksum
    +------------+---------------+

  Pattern 3:
    +------------+---------------+
    |   Class    | Size (octets) |
    +------------+---------------+
    | STATIC-DEF |       4       |  Source Port / Destination Port
    | CHANGING   |       4       |  Checksum Coverage / Checksum
    +------------+---------------+












Pelletier                   Standards Track                    [Page 18]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


A.2.  Header Compression Strategies for UDP-Lite

  The following table revisits the corresponding table (table A.1) for
  UDP from [2] (section A.2) and classifies the changing fields based
  on the change patterns previously identified in section 3.2.

  Header compression strategies for UDP-Lite:
  +----------+---------+-------------+-----------+-----------+
  |  Field   | Pattern | Value/Delta |   Class   | Knowledge |
  +==========+=========+=============+===========+===========+
  |          |    #1   |    Value    | CHANGING  | INFERRED  |
  | Checksum |---------+-------------+-----------+-----------+
  | Coverage |    #2   |    Value    |    RC     |  UNKNOWN  |
  |          |---------+-------------+-----------+-----------+
  |          |    #3   |    Value    | IRREGULAR |  UNKNOWN  |
  +----------+---------+-------------+-----------+-----------+
  | Checksum |   All   |    Value    | IRREGULAR |  UNKNOWN  |
  +----------+---------+-------------+-----------+-----------+

A.2.1.  Transmit initially but be prepared to update

  UDP-Lite Checksum Coverage (Patterns #1 and #2)

A.2.2.  Transmit as-is in all packets

  UDP-Lite Checksum
  UDP-Lite Checksum Coverage (Pattern #3)
























Pelletier                   Standards Track                    [Page 19]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


Appendix B.  Detailed Format of the CCE Packet Type

  This section provides an expanded view of the format of the CCE
  packet, based on the general ROHC RTP compressed header [2] and the
  general format of a compressed header of the ROHC IP-Only profile
  [3].  The modifications necessary to carry the base header of a
  packet of type 2, 1 or 0 [2] within the CCE packet format, along with
  the additional fields to properly handle compression of multiple IP
  headers, result in the following structure for the CCE packet type:

     0   1   2   3   4   5   6   7
    --- --- --- --- --- --- --- ---
   :         Add-CID octet         :  If for small CIDs and CID 1 - 15
   +---+---+---+---+---+---+---+---+
   | 1   1   1   1   1   0   F | K |  Outer packet type identifier
   +---+---+---+---+---+---+---+---+
   :                               :
   /   0, 1, or 2 octets of CID    /  1 - 2 octets if large CIDs
   :                               :
   +---+---+---+---+---+---+---+---+
   |   First octet of base header  |  (with "inner" type indication)
   +---+---+---+---+---+---+---+---+
   /    Remainder of base header   /  Variable number of bits
   +---+---+---+---+---+---+---+---+



























Pelletier                   Standards Track                    [Page 20]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


     0   1   2   3   4   5   6   7
    --- --- --- --- --- --- --- ---
   :                               :
   /          Extension            /  See RFC 3095 [2], section 5.7.
   :                               :
    --- --- --- --- --- --- --- ---
   :                               :
   +   IP-ID of outer IPv4 header  +  See RFC 3095 [2], section 5.7.
   :                               :
    --- --- --- --- --- --- --- ---
   /    AH data for outer list     /  See RFC 3095 [2], section 5.7.
    --- --- --- --- --- --- --- ---
   :                               :
   +         GRE checksum          +  See RFC 3095 [2], section 5.7.
   :                               :
    --- --- --- --- --- --- --- ---
   :                               :
   +   IP-ID of inner IPv4 header  +  See RFC 3095 [2], section 5.7.
   :                               :
    --- --- --- --- --- --- --- ---
   /    AH data for inner list     /  See RFC 3095 [2], section 5.7.
    --- --- --- --- --- --- --- ---
   :                               :
   +         GRE checksum          +  See RFC 3095 [2], section 5.7.
   :                               :
    --- --- --- --- --- --- --- ---
   :            List of            :  Variable, given by static chain
   /        dynamic chains         /  (includes no SN).
   :   for additional IP headers   :  See [3], section 3.2.
    --- --- --- --- --- --- --- ---
   :                               :
   +  UDP-Lite Checksum Coverage   +  2 octets
   :                               :
   +---+---+---+---+---+---+---+---+
   :                               :
   +      UDP-Lite Checksum        +  2 octets
   :                               :
   +---+---+---+---+---+---+---+---+

   F,K: F,K = 00 is reserved at framework level (IR-DYN);
        F,K = 01 indicates CCE();
        F,K = 10 indicates CCE(ON);
        F,K = 11 indicates CCE(OFF).

  Note that this document does not define (F,K) = 00, as this would
  collide with the IR-DYN packet type already reserved at the ROHC
  framework level.




Pelletier                   Standards Track                    [Page 21]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


Author's Address

  Ghyslain Pelletier
  Ericsson AB
  Box 920
  SE-971 28 Lulea, Sweden

  Phone: +46 840 429 43
  Fax  : +46 920 996 21
  EMail: [email protected]









































Pelletier                   Standards Track                    [Page 22]

RFC 4019              ROHC: Profiles for UDP-Lite             April 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Pelletier                   Standards Track                    [Page 23]