Network Working Group                                          S. Wenger
Request for Comments: 3984                               M.M. Hannuksela
Category: Standards Track                                 T. Stockhammer
                                                          M. Westerlund
                                                              D. Singer
                                                          February 2005


                  RTP Payload Format for H.264 Video

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This memo describes an RTP Payload format for the ITU-T
  Recommendation H.264 video codec and the technically identical
  ISO/IEC International Standard 14496-10 video codec.  The RTP payload
  format allows for packetization of one or more Network Abstraction
  Layer Units (NALUs), produced by an H.264 video encoder, in each RTP
  payload.  The payload format has wide applicability, as it supports
  applications from simple low bit-rate conversational usage, to
  Internet video streaming with interleaved transmission, to high bit-
  rate video-on-demand.

Table of Contents

  1.  Introduction..................................................  3
      1.1.  The H.264 Codec.........................................  3
      1.2.  Parameter Set Concept...................................  4
      1.3.  Network Abstraction Layer Unit Types....................  5
  2.  Conventions...................................................  6
  3.  Scope.........................................................  6
  4.  Definitions and Abbreviations.................................  6
      4.1.  Definitions.............................................  6
  5.  RTP Payload Format............................................  8
      5.1.  RTP Header Usage........................................  8
      5.2.  Common Structure of the RTP Payload Format.............. 11
      5.3.  NAL Unit Octet Usage.................................... 12



Wenger, et al.              Standards Track                     [Page 1]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


      5.4.  Packetization Modes..................................... 14
      5.5.  Decoding Order Number (DON)............................. 15
      5.6.  Single NAL Unit Packet.................................. 18
      5.7.  Aggregation Packets..................................... 18
      5.8.  Fragmentation Units (FUs)............................... 27
  6.  Packetization Rules........................................... 31
      6.1.  Common Packetization Rules.............................. 31
      6.2.  Single NAL Unit Mode.................................... 32
      6.3.  Non-Interleaved Mode.................................... 32
      6.4.  Interleaved Mode........................................ 33
  7.  De-Packetization Process (Informative)........................ 33
      7.1.  Single NAL Unit and Non-Interleaved Mode................ 33
      7.2.  Interleaved Mode........................................ 34
      7.3.  Additional De-Packetization Guidelines.................. 36
  8.  Payload Format Parameters..................................... 37
      8.1.  MIME Registration....................................... 37
      8.2.  SDP Parameters.......................................... 52
      8.3.  Examples................................................ 58
      8.4.  Parameter Set Considerations............................ 60
  9.  Security Considerations....................................... 62
  10. Congestion Control............................................ 63
  11. IANA Considerations........................................... 64
  12. Informative Appendix: Application Examples.................... 65
      12.1. Video Telephony according to ITU-T Recommendation H.241
            Annex A................................................. 65
      12.2. Video Telephony, No Slice Data Partitioning, No NAL
            Unit Aggregation........................................ 65
      12.3. Video Telephony, Interleaved Packetization Using NAL
            Unit Aggregation........................................ 66
      12.4. Video Telephony with Data Partitioning.................. 66
      12.5. Video Telephony or Streaming with FUs and Forward
            Error Correction........................................ 67
      12.6. Low Bit-Rate Streaming.................................. 69
      12.7. Robust Packet Scheduling in Video Streaming............. 70
  13. Informative Appendix: Rationale for Decoding Order Number..... 71
      13.1. Introduction............................................ 71
      13.2. Example of Multi-Picture Slice Interleaving............. 71
      13.3. Example of Robust Packet Scheduling..................... 73
      13.4. Robust Transmission Scheduling of Redundant Coded
            Slices.................................................. 77
      13.5. Remarks on Other Design Possibilities................... 77
  14. Acknowledgements.............................................. 78
  15. References.................................................... 78
      15.1. Normative References.................................... 78
      15.2. Informative References.................................. 79
  Authors' Addresses................................................ 81
  Full Copyright Statement.......................................... 83




Wenger, et al.              Standards Track                     [Page 2]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


1.  Introduction

1.1.  The H.264 Codec

  This memo specifies an RTP payload specification for the video coding
  standard known as ITU-T Recommendation H.264 [1] and ISO/IEC
  International Standard 14496 Part 10 [2] (both also known as Advanced
  Video Coding, or AVC).  Recommendation H.264 was approved by ITU-T on
  May 2003, and the approved draft specification is available for
  public review [8].  In this memo the H.264 acronym is used for the
  codec and the standard, but the memo is equally applicable to the
  ISO/IEC counterpart of the coding standard.

  The H.264 video codec has a very broad application range that covers
  all forms of digital compressed video from, low bit-rate Internet
  streaming applications to HDTV broadcast and Digital Cinema
  applications with nearly lossless coding.  Compared to the current
  state of technology, the overall performance of H.264 is such that
  bit rate savings of 50% or more are reported.  Digital Satellite TV
  quality, for example, was reported to be achievable at 1.5 Mbit/s,
  compared to the current operation point of MPEG 2 video at around 3.5
  Mbit/s [9].

  The codec specification [1] itself distinguishes conceptually between
  a video coding layer (VCL) and a network abstraction layer (NAL).
  The VCL contains the signal processing functionality of the codec;
  mechanisms such as transform, quantization, and motion compensated
  prediction; and a loop filter.  It follows the general concept of
  most of today's video codecs, a macroblock-based coder that uses
  inter picture prediction with motion compensation and transform
  coding of the residual signal.  The VCL encoder outputs slices: a bit
  string that contains the macroblock data of an integer number of
  macroblocks, and the information of the slice header (containing the
  spatial address of the first macroblock in the slice, the initial
  quantization parameter, and similar information).  Macroblocks in
  slices are arranged in scan order unless a different macroblock
  allocation is specified, by using the so-called Flexible Macroblock
  Ordering syntax.  In-picture prediction is used only within a slice.
  More information is provided in [9].

  The Network Abstraction Layer (NAL) encoder encapsulates the slice
  output of the VCL encoder into Network Abstraction Layer Units (NAL
  units), which are suitable for transmission over packet networks or
  use in packet oriented multiplex environments.  Annex B of H.264
  defines an encapsulation process to transmit such NAL units over
  byte-stream oriented networks.  In the scope of this memo, Annex B is
  not relevant.




Wenger, et al.              Standards Track                     [Page 3]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  Internally, the NAL uses NAL units.  A NAL unit consists of a one-
  byte header and the payload byte string.  The header indicates the
  type of the NAL unit, the (potential) presence of bit errors or
  syntax violations in the NAL unit payload, and information regarding
  the relative importance of the NAL unit for the decoding process.
  This RTP payload specification is designed to be unaware of the bit
  string in the NAL unit payload.

  One of the main properties of H.264 is the complete decoupling of the
  transmission time, the decoding time, and the sampling or
  presentation time of slices and pictures.  The decoding process
  specified in H.264 is unaware of time, and the H.264 syntax does not
  carry information such as the number of skipped frames (as is common
  in the form of the Temporal Reference in earlier video compression
  standards).  Also, there are NAL units that affect many pictures and
  that are, therefore, inherently timeless.  For this reason, the
  handling of the RTP timestamp requires some special considerations
  for NAL units for which the sampling or presentation time is not
  defined or, at transmission time, unknown.

1.2.  Parameter Set Concept

  One very fundamental design concept of H.264 is to generate self-
  contained packets, to make mechanisms such as the header duplication
  of RFC 2429 [10] or MPEG-4's Header Extension Code (HEC) [11]
  unnecessary.  This was achieved by decoupling information relevant to
  more than one slice from the media stream.  This higher layer meta
  information should be sent reliably, asynchronously, and in advance
  from the RTP packet stream that contains the slice packets.
  (Provisions for sending this information in-band are also available
  for applications that do not have an out-of-band transport channel
  appropriate for the purpose.)  The combination of the higher-level
  parameters is called a parameter set.  The H.264 specification
  includes two types of parameter sets: sequence parameter set and
  picture parameter set.  An active sequence parameter set remains
  unchanged throughout a coded video sequence, and an active picture
  parameter set remains unchanged within a coded picture.  The sequence
  and picture parameter set structures contain information such as
  picture size, optional coding modes employed, and macroblock to slice
  group map.

  To be able to change picture parameters (such as the picture size)
  without having to transmit parameter set updates synchronously to the
  slice packet stream, the encoder and decoder can maintain a list of
  more than one sequence and picture parameter set.  Each slice header
  contains a codeword that indicates the sequence and picture parameter
  set to be used.




Wenger, et al.              Standards Track                     [Page 4]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  This mechanism allows the decoupling of the transmission of parameter
  sets from the packet stream, and the transmission of them by external
  means (e.g., as a side effect of the capability exchange), or through
  a (reliable or unreliable) control protocol.  It may even be possible
  that they are never transmitted but are fixed by an application
  design specification.

1.3.  Network Abstraction Layer Unit Types

  Tutorial information on the NAL design can be found in [12], [13],
  and [14].

  All NAL units consist of a single NAL unit type octet, which also
  co-serves as the payload header of this RTP payload format.  The
  payload of a NAL unit follows immediately.

  The syntax and semantics of the NAL unit type octet are specified in
  [1], but the essential properties of the NAL unit type octet are
  summarized below.  The NAL unit type octet has the following format:

     +---------------+
     |0|1|2|3|4|5|6|7|
     +-+-+-+-+-+-+-+-+
     |F|NRI|  Type   |
     +---------------+

  The semantics of the components of the NAL unit type octet, as
  specified in the H.264 specification, are described briefly below.

  F: 1 bit
     forbidden_zero_bit.  The H.264 specification declares a value of
     1 as a syntax violation.

  NRI: 2 bits
     nal_ref_idc.  A value of 00 indicates that the content of the NAL
     unit is not used to reconstruct reference pictures for inter
     picture prediction.  Such NAL units can be discarded without
     risking the integrity of the reference pictures.  Values greater
     than 00 indicate that the decoding of the NAL unit is required to
     maintain the integrity of the reference pictures.

  Type: 5 bits
     nal_unit_type.  This component specifies the NAL unit payload type
     as defined in table 7-1 of [1], and later within this memo.  For a
     reference of all currently defined NAL unit types and their
     semantics, please refer to section 7.4.1 in [1].





Wenger, et al.              Standards Track                     [Page 5]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  This memo introduces new NAL unit types, which are presented in
  section 5.2.  The NAL unit types defined in this memo are marked as
  unspecified in [1].  Moreover, this specification extends the
  semantics of F and NRI as described in section 5.3.

2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, RFC 2119 [3].

  This specification uses the notion of setting and clearing a bit when
  bit fields are handled.  Setting a bit is the same as assigning that
  bit the value of 1 (On).  Clearing a bit is the same as assigning
  that bit the value of 0 (Off).

3.  Scope

  This payload specification can only be used to carry the "naked"
  H.264 NAL unit stream over RTP, and not the bitstream format
  discussed in Annex B of H.264.  Likely, the first applications of
  this specification will be in the conversational multimedia field,
  video telephony or video conferencing, but the payload format also
  covers other applications, such as Internet streaming and TV over IP.

4.  Definitions and Abbreviations

4.1.  Definitions

  This document uses the definitions of [1].  The following terms,
  defined in [1], are summed up for convenience:

     access unit: A set of NAL units always containing a primary coded
     picture.  In addition to the primary coded picture, an access unit
     may also contain one or more redundant coded pictures or other NAL
     units not containing slices or slice data partitions of a coded
     picture.  The decoding of an access unit always results in a
     decoded picture.

     coded video sequence: A sequence of access units that consists, in
     decoding order, of an instantaneous decoding refresh (IDR) access
     unit followed by zero or more non-IDR access units including all
     subsequent access units up to but not including any subsequent IDR
     access unit.

     IDR access unit: An access unit in which the primary coded picture
     is an IDR picture.




Wenger, et al.              Standards Track                     [Page 6]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


     IDR picture: A coded picture containing only slices with I or SI
     slice types that causes a "reset" in the decoding process.  After
     the decoding of an IDR picture, all following coded pictures in
     decoding order can be decoded without inter prediction from any
     picture decoded prior to the IDR picture.

     primary coded picture: The coded representation of a picture to be
     used by the decoding process for a bitstream conforming to H.264.
     The primary coded picture contains all macroblocks of the picture.

     redundant coded picture: A coded representation of a picture or a
     part of a picture.  The content of a redundant coded picture shall
     not be used by the decoding process for a bitstream conforming to
     H.264.  The content of a redundant coded picture may be used by
     the decoding process for a bitstream that contains errors or
     losses.

     VCL NAL unit: A collective term used to refer to coded slice and
     coded data partition NAL units.

  In addition, the following definitions apply:

     decoding order number (DON): A field in the payload structure, or
     a derived variable indicating NAL unit decoding order.  Values of
     DON are in the range of 0 to 65535, inclusive.  After reaching the
     maximum value, the value of DON wraps around to 0.

     NAL unit decoding order: A NAL unit order that conforms to the
     constraints on NAL unit order given in section 7.4.1.2 in [1].

     transmission order: The order of packets in ascending RTP sequence
     number order (in modulo arithmetic).  Within an aggregation
     packet, the NAL unit transmission order is the same as the order
     of appearance of NAL units in the packet.

     media aware network element (MANE): A network element, such as a
     middlebox or application layer gateway that is capable of parsing
     certain aspects of the RTP payload headers or the RTP payload and
     reacting to the contents.

        Informative note: The concept of a MANE goes beyond normal
        routers or gateways in that a MANE has to be aware of the
        signaling (e.g., to learn about the payload type mappings of
        the media streams), and in that it has to be trusted when
        working with SRTP.  The advantage of using MANEs is that they
        allow packets to be dropped according to the needs of the media
        coding.  For example, if a MANE has to drop packets due to
        congestion on a certain link, it can identify those packets



Wenger, et al.              Standards Track                     [Page 7]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


        whose dropping has the smallest negative impact on the user
        experience and remove them in order to remove the congestion
        and/or keep the delay low.

  Abbreviations

     DON:        Decoding Order Number
     DONB:       Decoding Order Number Base
     DOND:       Decoding Order Number Difference
     FEC:        Forward Error Correction
     FU:         Fragmentation Unit
     IDR:        Instantaneous Decoding Refresh
     IEC:        International Electrotechnical Commission
     ISO:        International Organization for Standardization
     ITU-T:      International Telecommunication Union,
                 Telecommunication Standardization Sector
     MANE:       Media Aware Network Element
     MTAP:       Multi-Time Aggregation Packet
     MTAP16:     MTAP with 16-bit timestamp offset
     MTAP24:     MTAP with 24-bit timestamp offset
     NAL:        Network Abstraction Layer
     NALU:       NAL Unit
     SEI:        Supplemental Enhancement Information
     STAP:       Single-Time Aggregation Packet
     STAP-A:     STAP type A
     STAP-B:     STAP type B
     TS:         Timestamp
     VCL:        Video Coding Layer

5.  RTP Payload Format

5.1.  RTP Header Usage

  The format of the RTP header is specified in RFC 3550 [4] and
  reprinted in Figure 1 for convenience.  This payload format uses the
  fields of the header in a manner consistent with that specification.

  When one NAL unit is encapsulated per RTP packet, the RECOMMENDED RTP
  payload format is specified in section 5.6.  The RTP payload (and the
  settings for some RTP header bits) for aggregation packets and
  fragmentation units are specified in sections 5.7 and 5.8,
  respectively.









Wenger, et al.              Standards Track                     [Page 8]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |V=2|P|X|  CC   |M|     PT      |       sequence number         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           timestamp                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           synchronization source (SSRC) identifier            |
     +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
     |            contributing source (CSRC) identifiers             |
     |                             ....                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 1.  RTP header according to RFC 3550

  The RTP header information to be set according to this RTP payload
  format is set as follows:

  Marker bit (M): 1 bit
     Set for the very last packet of the access unit indicated by the
     RTP timestamp, in line with the normal use of the M bit in video
     formats, to allow an efficient playout buffer handling.  For
     aggregation packets (STAP and MTAP), the marker bit in the RTP
     header MUST be set to the value that the marker bit of the last
     NAL unit of the aggregation packet would have been if it were
     transported in its own RTP packet.  Decoders MAY use this bit as
     an early indication of the last packet of an access unit, but MUST
     NOT rely on this property.

        Informative note: Only one M bit is associated with an
        aggregation packet carrying multiple NAL units.  Thus, if a
        gateway has re-packetized an aggregation packet into several
        packets, it cannot reliably set the M bit of those packets.

  Payload type (PT): 7 bits
     The assignment of an RTP payload type for this new packet format
     is outside the scope of this document and will not be specified
     here.  The assignment of a payload type has to be performed either
     through the profile used or in a dynamic way.

  Sequence number (SN): 16 bits
     Set and used in accordance with RFC 3550.  For the single NALU and
     non-interleaved packetization mode, the sequence number is used to
     determine decoding order for the NALU.

  Timestamp: 32 bits
     The RTP timestamp is set to the sampling timestamp of the content.
     A 90 kHz clock rate MUST be used.



Wenger, et al.              Standards Track                     [Page 9]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


     If the NAL unit has no timing properties of its own (e.g.,
     parameter set and SEI NAL units), the RTP timestamp is set to the
     RTP timestamp of the primary coded picture of the access unit in
     which the NAL unit is included, according to section 7.4.1.2 of
     [1].

     The setting of the RTP Timestamp for MTAPs is defined in section
     5.7.2.

     Receivers SHOULD ignore any picture timing SEI messages included
     in access units that have only one display timestamp.  Instead,
     receivers SHOULD use the RTP timestamp for synchronizing the
     display process.

     RTP senders SHOULD NOT transmit picture timing SEI messages for
     pictures that are not supposed to be displayed as multiple fields.

     If one access unit has more than one display timestamp carried in
     a picture timing SEI message, then the information in the SEI
     message SHOULD be treated as relative to the RTP timestamp, with
     the earliest event occurring at the time given by the RTP
     timestamp, and subsequent events later, as given by the difference
     in SEI message picture timing values.  Let tSEI1, tSEI2, ...,
     tSEIn be the display timestamps carried in the SEI message of an
     access unit, where tSEI1 is the earliest of all such timestamps.
     Let tmadjst() be a function that adjusts the SEI messages time
     scale to a 90-kHz time scale.  Let TS be the RTP timestamp.  Then,
     the display time for the event associated with tSEI1 is TS.  The
     display time for the event with tSEIx, where x is [2..n] is TS +
     tmadjst (tSEIx - tSEI1).

        Informative note: Displaying coded frames as fields is needed
        commonly in an operation known as 3:2 pulldown, in which film
        content that consists of coded frames is displayed on a display
        using interlaced scanning.  The picture timing SEI message
        enables carriage of multiple timestamps for the same coded
        picture, and therefore the 3:2 pulldown process is perfectly
        controlled.  The picture timing SEI message mechanism is
        necessary because only one timestamp per coded frame can be
        conveyed in the RTP timestamp.

        Informative note: Because H.264 allows the decoding order to be
        different from the display order, values of RTP timestamps may
        not be monotonically non-decreasing as a function of RTP
        sequence numbers.  Furthermore, the value for interarrival
        jitter reported in the RTCP reports may not be a trustworthy
        indication of the network performance, as the calculation rules




Wenger, et al.              Standards Track                    [Page 10]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


        for interarrival jitter (section 6.4.1 of RFC 3550) assume that
        the RTP timestamp of a packet is directly proportional to its
        transmission time.

5.2.  Common Structure of the RTP Payload Format

  The payload format defines three different basic payload structures.
  A receiver can identify the payload structure by the first byte of
  the RTP payload, which co-serves as the RTP payload header and, in
  some cases, as the first byte of the payload.  This byte is always
  structured as a NAL unit header.  The NAL unit type field indicates
  which structure is present.  The possible structures are as follows:

  Single NAL Unit Packet: Contains only a single NAL unit in the
  payload.  The NAL header type field will be equal to the original NAL
  unit type; i.e., in the range of 1 to 23, inclusive.  Specified in
  section 5.6.

  Aggregation packet: Packet type used to aggregate multiple NAL units
  into a single RTP payload.  This packet exists in four versions, the
  Single-Time Aggregation Packet type A (STAP-A), the Single-Time
  Aggregation Packet type B (STAP-B), Multi-Time Aggregation Packet
  (MTAP) with 16-bit offset (MTAP16), and Multi-Time Aggregation Packet
  (MTAP) with 24-bit offset (MTAP24).  The NAL unit type numbers
  assigned for STAP-A, STAP-B, MTAP16, and MTAP24 are 24, 25, 26, and
  27, respectively.  Specified in section 5.7.

  Fragmentation unit: Used to fragment a single NAL unit over multiple
  RTP packets.  Exists with two versions, FU-A and FU-B, identified
  with the NAL unit type numbers 28 and 29, respectively.  Specified in
  section 5.8.

  Table 1.  Summary of NAL unit types and their payload structures

     Type   Packet    Type name                        Section
     ---------------------------------------------------------
     0      undefined                                    -
     1-23   NAL unit  Single NAL unit packet per H.264   5.6
     24     STAP-A    Single-time aggregation packet     5.7.1
     25     STAP-B    Single-time aggregation packet     5.7.1
     26     MTAP16    Multi-time aggregation packet      5.7.2
     27     MTAP24    Multi-time aggregation packet      5.7.2
     28     FU-A      Fragmentation unit                 5.8
     29     FU-B      Fragmentation unit                 5.8
     30-31  undefined                                    -






Wenger, et al.              Standards Track                    [Page 11]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


     Informative note: This specification does not limit the size of
     NAL units encapsulated in single NAL unit packets and
     fragmentation units.  The maximum size of a NAL unit encapsulated
     in any aggregation packet is 65535 bytes.

5.3.  NAL Unit Octet Usage

  The structure and semantics of the NAL unit octet were introduced in
  section 1.3.  For convenience, the format of the NAL unit type octet
  is reprinted below:

     +---------------+
     |0|1|2|3|4|5|6|7|
     +-+-+-+-+-+-+-+-+
     |F|NRI|  Type   |
     +---------------+

  This section specifies the semantics of F and NRI according to this
  specification.

  F: 1 bit
     forbidden_zero_bit.  A value of 0 indicates that the NAL unit type
     octet and payload should not contain bit errors or other syntax
     violations.  A value of 1 indicates that the NAL unit type octet
     and payload may contain bit errors or other syntax violations.

     MANEs SHOULD set the F bit to indicate detected bit errors in the
     NAL unit.  The H.264 specification requires that the F bit is
     equal to 0.  When the F bit is set, the decoder is advised that
     bit errors or any other syntax violations may be present in the
     payload or in the NAL unit type octet.  The simplest decoder
     reaction to a NAL unit in which the F bit is equal to 1 is to
     discard such a NAL unit and to conceal the lost data in the
     discarded NAL unit.

  NRI: 2 bits
     nal_ref_idc.  The semantics of value 00 and a non-zero value
     remain unchanged from the H.264 specification.  In other words, a
     value of 00 indicates that the content of the NAL unit is not used
     to reconstruct reference pictures for inter picture prediction.
     Such NAL units can be discarded without risking the integrity of
     the reference pictures.  Values greater than 00 indicate that the
     decoding of the NAL unit is required to maintain the integrity of
     the reference pictures.

     In addition to the specification above, according to this RTP
     payload specification, values of NRI greater than 00 indicate the
     relative transport priority, as determined by the encoder.  MANEs



Wenger, et al.              Standards Track                    [Page 12]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


     can use this information to protect more important NAL units
     better than they do less important NAL units.  The highest
     transport priority is 11, followed by 10, and then by 01; finally,
     00 is the lowest.

        Informative note: Any non-zero value of NRI is handled
        identically in H.264 decoders.  Therefore, receivers need not
        manipulate the value of NRI when passing NAL units to the
        decoder.

     An H.264 encoder MUST set the value of NRI according to the H.264
     specification (subclause 7.4.1) when the value of nal_unit_type is
     in the range of 1 to 12, inclusive.  In particular, the H.264
     specification requires that the value of NRI SHALL be equal to 0
     for all NAL units having nal_unit_type equal to 6, 9, 10, 11, or
     12.

     For NAL units having nal_unit_type equal to 7 or 8 (indicating a
     sequence parameter set or a picture parameter set, respectively),
     an H.264 encoder SHOULD set the value of NRI to 11 (in binary
     format).  For coded slice NAL units of a primary coded picture
     having nal_unit_type equal to 5 (indicating a coded slice
     belonging to an IDR picture), an H.264 encoder SHOULD set the
     value of NRI to 11 (in binary format).

     For a mapping of the remaining nal_unit_types to NRI values, the
     following example MAY be used and has been shown to be efficient
     in a certain environment [13].  Other mappings MAY also be
     desirable, depending on the application and the H.264/AVC Annex A
     profile in use.

        Informative note: Data Partitioning is not available in certain
        profiles; e.g., in the Main or Baseline profiles.
        Consequently, the nal unit types 2, 3, and 4 can occur only if
        the video bitstream conforms to a profile in which data
        partitioning is allowed and not in streams that conform to the
        Main or Baseline profiles.

     Table 2.  Example of NRI values for coded slices and coded slice
     data partitions of primary coded reference pictures

     NAL Unit Type     Content of NAL unit              NRI (binary)
     ----------------------------------------------------------------
      1              non-IDR coded slice                         10
      2              Coded slice data partition A                10
      3              Coded slice data partition B                01
      4              Coded slice data partition C                01




Wenger, et al.              Standards Track                    [Page 13]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


        Informative note: As mentioned before, the NRI value of non-
        reference pictures is 00 as mandated by H.264/AVC.

     An H.264 encoder SHOULD set the value of NRI for coded slice and
     coded slice data partition NAL units of redundant coded reference
     pictures equal to 01 (in binary format).

     Definitions of the values for NRI for NAL unit types 24 to 29,
     inclusive, are given in sections 5.7 and 5.8 of this memo.

     No recommendation for the value of NRI is given for NAL units
     having nal_unit_type in the range of 13 to 23, inclusive, because
     these values are reserved for ITU-T and ISO/IEC.  No
     recommendation for the value of NRI is given for NAL units having
     nal_unit_type equal to 0 or in the range of 30 to 31, inclusive,
     as the semantics of these values are not specified in this memo.

5.4.  Packetization Modes

  This memo specifies three cases of packetization modes:

     o Single NAL unit mode
     o Non-interleaved mode
     o Interleaved mode

  The single NAL unit mode is targeted for conversational systems that
  comply with ITU-T Recommendation H.241 [15] (see section 12.1).  The
  non-interleaved mode is targeted for conversational systems that may
  not comply with ITU-T Recommendation H.241.  In the non-interleaved
  mode, NAL units are transmitted in NAL unit decoding order.  The
  interleaved mode is targeted for systems that do not require very low
  end-to-end latency.  The interleaved mode allows transmission of NAL
  units out of NAL unit decoding order.

  The packetization mode in use MAY be signaled by the value of the
  OPTIONAL packetization-mode MIME parameter or by external means.  The
  used packetization mode governs which NAL unit types are allowed in
  RTP payloads.  Table 3 summarizes the allowed NAL unit types for each
  packetization mode.  Some NAL unit type values (indicated as
  undefined in Table 3) are reserved for future extensions.  NAL units
  of those types SHOULD NOT be sent by a sender and MUST be ignored by
  a receiver.  For example, the Types 1-23, with the associated packet
  type "NAL unit", are allowed in "Single NAL Unit Mode" and in "Non-
  Interleaved Mode", but disallowed in "Interleaved Mode".
  Packetization modes are explained in more detail in section 6.






Wenger, et al.              Standards Track                    [Page 14]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  Table 3.  Summary of allowed NAL unit types for each packetization
  mode (yes = allowed, no = disallowed, ig = ignore)

     Type   Packet    Single NAL    Non-Interleaved    Interleaved
                      Unit Mode           Mode             Mode
     -------------------------------------------------------------

     0      undefined     ig               ig               ig
     1-23   NAL unit     yes              yes               no
     24     STAP-A        no              yes               no
     25     STAP-B        no               no              yes
     26     MTAP16        no               no              yes
     27     MTAP24        no               no              yes
     28     FU-A          no              yes              yes
     29     FU-B          no               no              yes
     30-31  undefined     ig               ig               ig

5.5.  Decoding Order Number (DON)

  In the interleaved packetization mode, the transmission order of NAL
  units is allowed to differ from the decoding order of the NAL units.
  Decoding order number (DON) is a field in the payload structure or a
  derived variable that indicates the NAL unit decoding order.
  Rationale and examples of use cases for transmission out of decoding
  order and for the use of DON are given in section 13.

  The coupling of transmission and decoding order is controlled by the
  OPTIONAL sprop-interleaving-depth MIME parameter as follows.  When
  the value of the OPTIONAL sprop-interleaving-depth MIME parameter is
  equal to 0 (explicitly or per default) or transmission of NAL units
  out of their decoding order is disallowed by external means, the
  transmission order of NAL units MUST conform to the NAL unit decoding
  order.  When the value of the OPTIONAL sprop-interleaving-depth MIME
  parameter is greater than 0 or transmission of NAL units out of their
  decoding order is allowed by external means,

  o  the order of NAL units in an MTAP16 and an MTAP24 is NOT REQUIRED
     to be the NAL unit decoding order, and

  o  the order of NAL units generated by decapsulating STAP-Bs, MTAPs,
     and FUs in two consecutive packets is NOT REQUIRED to be the NAL
     unit decoding order.

  The RTP payload structures for a single NAL unit packet, an STAP-A,
  and an FU-A do not include DON.  STAP-B and FU-B structures include
  DON, and the structure of MTAPs enables derivation of DON as
  specified in section 5.7.2.




Wenger, et al.              Standards Track                    [Page 15]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


     Informative note: When an FU-A occurs in interleaved mode, it
     always follows an FU-B, which sets its DON.

     Informative note: If a transmitter wants to encapsulate a single
     NAL unit per packet and transmit packets out of their decoding
     order, STAP-B packet type can be used.

  In the single NAL unit packetization mode, the transmission order of
  NAL units, determined by the RTP sequence number, MUST be the same as
  their NAL unit decoding order.  In the non-interleaved packetization
  mode, the transmission order of NAL units in single NAL unit packets,
  STAP-As, and FU-As MUST be the same as their NAL unit decoding order.
  The NAL units within an STAP MUST appear in the NAL unit decoding
  order.  Thus, the decoding order is first provided through the
  implicit order within a STAP, and second provided through the RTP
  sequence number for the order between STAPs, FUs, and single NAL unit
  packets.

  Signaling of the value of DON for NAL units carried in STAP-B, MTAP,
  and a series of fragmentation units starting with an FU-B is
  specified in sections 5.7.1, 5.7.2, and 5.8, respectively.  The DON
  value of the first NAL unit in transmission order MAY be set to any
  value.  Values of DON are in the range of 0 to 65535, inclusive.
  After reaching the maximum value, the value of DON wraps around to 0.

  The decoding order of two NAL units contained in any STAP-B, MTAP, or
  a series of fragmentation units starting with an FU-B is determined
  as follows.  Let DON(i) be the decoding order number of the NAL unit
  having index i in the transmission order.  Function don_diff(m,n) is
  specified as follows:

     If DON(m) == DON(n), don_diff(m,n) = 0

     If (DON(m) < DON(n) and DON(n) - DON(m) < 32768),
     don_diff(m,n) = DON(n) - DON(m)

     If (DON(m) > DON(n) and DON(m) - DON(n) >= 32768),
     don_diff(m,n) = 65536 - DON(m) + DON(n)

     If (DON(m) < DON(n) and DON(n) - DON(m) >= 32768),
     don_diff(m,n) = - (DON(m) + 65536 - DON(n))

     If (DON(m) > DON(n) and DON(m) - DON(n) < 32768),
     don_diff(m,n) = - (DON(m) - DON(n))

  A positive value of don_diff(m,n) indicates that the NAL unit having
  transmission order index n follows, in decoding order, the NAL unit
  having transmission order index m.  When don_diff(m,n) is equal to 0,



Wenger, et al.              Standards Track                    [Page 16]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  then the NAL unit decoding order of the two NAL units can be in
  either order.  A negative value of don_diff(m,n) indicates that the
  NAL unit having transmission order index n precedes, in decoding
  order, the NAL unit having transmission order index m.

  Values of DON related fields (DON, DONB, and DOND; see section 5.7)
  MUST be such that the decoding order determined by the values of DON,
  as specified above, conforms to the NAL unit decoding order.  If the
  order of two NAL units in NAL unit decoding order is switched and the
  new order does not conform to the NAL unit decoding order, the NAL
  units MUST NOT have the same value of DON.  If the order of two
  consecutive NAL units in the NAL unit stream is switched and the new
  order still conforms to the NAL unit decoding order, the NAL units
  MAY have the same value of DON.  For example, when arbitrary slice
  order is allowed by the video coding profile in use, all the coded
  slice NAL units of a coded picture are allowed to have the same value
  of DON.  Consequently, NAL units having the same value of DON can be
  decoded in any order, and two NAL units having a different value of
  DON should be passed to the decoder in the order specified above.
  When two consecutive NAL units in the NAL unit decoding order have a
  different value of DON, the value of DON for the second NAL unit in
  decoding order SHOULD be the value of DON for the first, incremented
  by one.

  An example of the decapsulation process to recover the NAL unit
  decoding order is given in section 7.

     Informative note: Receivers should not expect that the absolute
     difference of values of DON for two consecutive NAL units in the
     NAL unit decoding order will be equal to one, even in error-free
     transmission.  An increment by one is not required, as at the time
     of associating values of DON to NAL units, it may not be known
     whether all NAL units are delivered to the receiver.  For example,
     a gateway may not forward coded slice NAL units of non-reference
     pictures or SEI NAL units when there is a shortage of bit rate in
     the network to which the packets are forwarded.  In another
     example, a live broadcast is interrupted by pre-encoded content,
     such as commercials, from time to time.  The first intra picture
     of a pre-encoded clip is transmitted in advance to ensure that it
     is readily available in the receiver.  When transmitting the first
     intra picture, the originator does not exactly know how many NAL
     units will be encoded before the first intra picture of the pre-
     encoded clip follows in decoding order.  Thus, the values of DON
     for the NAL units of the first intra picture of the pre-encoded
     clip have to be estimated when they are transmitted, and gaps in
     values of DON may occur.





Wenger, et al.              Standards Track                    [Page 17]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


5.6.  Single NAL Unit Packet

  The single NAL unit packet defined here MUST contain only one NAL
  unit, of the types defined in [1].  This means that neither an
  aggregation packet nor a fragmentation unit can be used within a
  single NAL unit packet.  A NAL unit stream composed by decapsulating
  single NAL unit packets in RTP sequence number order MUST conform to
  the NAL unit decoding order.  The structure of the single NAL unit
  packet is shown in Figure 2.

     Informative note: The first byte of a NAL unit co-serves as the
     RTP payload header.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |F|NRI|  type   |                                               |
     +-+-+-+-+-+-+-+-+                                               |
     |                                                               |
     |               Bytes 2..n of a Single NAL unit                 |
     |                                                               |
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :...OPTIONAL RTP padding        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 2.  RTP payload format for single NAL unit packet

5.7.  Aggregation Packets

  Aggregation packets are the NAL unit aggregation scheme of this
  payload specification.  The scheme is introduced to reflect the
  dramatically different MTU sizes of two key target networks:
  wireline IP networks (with an MTU size that is often limited by the
  Ethernet MTU size; roughly 1500 bytes), and IP or non-IP (e.g., ITU-T
  H.324/M) based wireless communication systems with preferred
  transmission unit sizes of 254 bytes or less.  To prevent media
  transcoding between the two worlds, and to avoid undesirable
  packetization overhead, a NAL unit aggregation scheme is introduced.

  Two types of aggregation packets are defined by this specification:

  o  Single-time aggregation packet (STAP): aggregates NAL units with
     identical NALU-time.  Two types of STAPs are defined, one without
     DON (STAP-A) and another including DON (STAP-B).

  o  Multi-time aggregation packet (MTAP): aggregates NAL units with
     potentially differing NALU-time.  Two different MTAPs are defined,
     differing in the length of the NAL unit timestamp offset.



Wenger, et al.              Standards Track                    [Page 18]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  The term NALU-time is defined as the value that the RTP timestamp
  would have if that NAL unit would be transported in its own RTP
  packet.

  Each NAL unit to be carried in an aggregation packet is encapsulated
  in an aggregation unit.  Please see below for the four different
  aggregation units and their characteristics.

  The structure of the RTP payload format for aggregation packets is
  presented in Figure 3.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |F|NRI|  type   |                                               |
     +-+-+-+-+-+-+-+-+                                               |
     |                                                               |
     |             one or more aggregation units                     |
     |                                                               |
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :...OPTIONAL RTP padding        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 3.  RTP payload format for aggregation packets

  MTAPs and STAPs share the following packetization rules:  The RTP
  timestamp MUST be set to the earliest of the NALU times of all the
  NAL units to be aggregated.  The type field of the NAL unit type
  octet MUST be set to the appropriate value, as indicated in Table 4.
  The F bit MUST be cleared if all F bits of the aggregated NAL units
  are zero; otherwise, it MUST be set.  The value of NRI MUST be the
  maximum of all the NAL units carried in the aggregation packet.

     Table 4.  Type field for STAPs and MTAPs

     Type   Packet    Timestamp offset   DON related fields
                      field length       (DON, DONB, DOND)
                      (in bits)          present
     --------------------------------------------------------
     24     STAP-A       0                 no
     25     STAP-B       0                 yes
     26     MTAP16      16                 yes
     27     MTAP24      24                 yes

  The marker bit in the RTP header is set to the value that the marker
  bit of the last NAL unit of the aggregated packet would have if it
  were transported in its own RTP packet.




Wenger, et al.              Standards Track                    [Page 19]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  The payload of an aggregation packet consists of one or more
  aggregation units.  See sections 5.7.1 and 5.7.2 for the four
  different types of aggregation units.  An aggregation packet can
  carry as many aggregation units as necessary; however, the total
  amount of data in an aggregation packet obviously MUST fit into an IP
  packet, and the size SHOULD be chosen so that the resulting IP packet
  is smaller than the MTU size.  An aggregation packet MUST NOT contain
  fragmentation units specified in section 5.8.  Aggregation packets
  MUST NOT be nested; i.e., an aggregation packet MUST NOT contain
  another aggregation packet.

5.7.1.  Single-Time Aggregation Packet

  Single-time aggregation packet (STAP) SHOULD be used whenever NAL
  units are aggregated that all share the same NALU-time.  The payload
  of an STAP-A does not include DON and consists of at least one
  single-time aggregation unit, as presented in Figure 4.  The payload
  of an STAP-B consists of a 16-bit unsigned decoding order number
  (DON) (in network byte order) followed by at least one single-time
  aggregation unit, as presented in Figure 5.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     :                                               |
     +-+-+-+-+-+-+-+-+                                               |
     |                                                               |
     |                single-time aggregation units                  |
     |                                                               |
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 4.  Payload format for STAP-A

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     :  decoding order number (DON)  |               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               |
     |                                                               |
     |                single-time aggregation units                  |
     |                                                               |
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 5.  Payload format for STAP-B



Wenger, et al.              Standards Track                    [Page 20]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  The DON field specifies the value of DON for the first NAL unit in an
  STAP-B in transmission order.  For each successive NAL unit in
  appearance order in an STAP-B, the value of DON is equal to (the
  value of DON of the previous NAL unit in the STAP-B + 1) % 65536, in
  which '%' stands for the modulo operation.

  A single-time aggregation unit consists of 16-bit unsigned size
  information (in network byte order) that indicates the size of the
  following NAL unit in bytes (excluding these two octets, but
  including the NAL unit type octet of the NAL unit), followed by the
  NAL unit itself, including its NAL unit type byte.  A single-time
  aggregation unit is byte aligned within the RTP payload, but it may
  not be aligned on a 32-bit word boundary.  Figure 6 presents the
  structure of the single-time aggregation unit.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     :        NAL unit size          |               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               |
     |                                                               |
     |                           NAL unit                            |
     |                                                               |
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 6.  Structure for single-time aggregation unit























Wenger, et al.              Standards Track                    [Page 21]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  Figure 7 presents an example of an RTP packet that contains an STAP-
  A.  The STAP contains two single-time aggregation units, labeled as 1
  and 2 in the figure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          RTP Header                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |STAP-A NAL HDR |         NALU 1 Size           | NALU 1 HDR    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         NALU 1 Data                           |
     :                                                               :
     +               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |               | NALU 2 Size                   | NALU 2 HDR    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         NALU 2 Data                           |
     :                                                               :
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :...OPTIONAL RTP padding        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 7.  An example of an RTP packet including an STAP-A and two
                single-time aggregation units



























Wenger, et al.              Standards Track                    [Page 22]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  Figure 8 presents an example of an RTP packet that contains an STAP-
  B.  The STAP contains two single-time aggregation units, labeled as 1
  and 2 in the figure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          RTP Header                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |STAP-B NAL HDR | DON                           | NALU 1 Size   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | NALU 1 Size   | NALU 1 HDR    | NALU 1 Data                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     :                                                               :
     +               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |               | NALU 2 Size                   | NALU 2 HDR    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       NALU 2 Data                             |
     :                                                               :
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :...OPTIONAL RTP padding        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 8.  An example of an RTP packet including an STAP-B and two
                single-time aggregation units

5.7.2.  Multi-Time Aggregation Packets (MTAPs)

  The NAL unit payload of MTAPs consists of a 16-bit unsigned decoding
  order number base (DONB) (in network byte order) and one or more
  multi-time aggregation units, as presented in Figure 9.  DONB MUST
  contain the value of DON for the first NAL unit in the NAL unit
  decoding order among the NAL units of the MTAP.

     Informative note: The first NAL unit in the NAL unit decoding
     order is not necessarily the first NAL unit in the order in which
     the NAL units are encapsulated in an MTAP.














Wenger, et al.              Standards Track                    [Page 23]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     :  decoding order number base   |               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               |
     |                                                               |
     |                 multi-time aggregation units                  |
     |                                                               |
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 9.  NAL unit payload format for MTAPs

  Two different multi-time aggregation units are defined in this
  specification.  Both of them consist of 16 bits unsigned size
  information of the following NAL unit (in network byte order), an 8-
  bit unsigned decoding order number difference (DOND), and n bits (in
  network byte order) of timestamp offset (TS offset) for this NAL
  unit, whereby n can be 16 or 24.  The choice between the different
  MTAP types (MTAP16 and MTAP24) is application dependent: the larger
  the timestamp offset is, the higher the flexibility of the MTAP, but
  the overhead is also higher.

  The structure of the multi-time aggregation units for MTAP16 and
  MTAP24 are presented in Figures 10 and 11, respectively.  The
  starting or ending position of an aggregation unit within a packet is
  NOT REQUIRED to be on a 32-bit word boundary.  The DON of the
  following NAL unit is equal to (DONB + DOND) % 65536, in which %
  denotes the modulo operation.  This memo does not specify how the NAL
  units within an MTAP are ordered, but, in most cases, NAL unit
  decoding order SHOULD be used.

  The timestamp offset field MUST be set to a value equal to the value
  of the following formula: If the NALU-time is larger than or equal to
  the RTP timestamp of the packet, then the timestamp offset equals
  (the NALU-time of the NAL unit - the RTP timestamp of the packet).
  If the NALU-time is smaller than the RTP timestamp of the packet,
  then the timestamp offset is equal to the NALU-time + (2^32 - the RTP
  timestamp of the packet).











Wenger, et al.              Standards Track                    [Page 24]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     :        NAL unit size          |      DOND     |  TS offset    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  TS offset    |                                               |
     +-+-+-+-+-+-+-+-+              NAL unit                         |
     |                                                               |
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 10.  Multi-time aggregation unit for MTAP16

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     :        NALU unit size         |      DOND     |  TS offset    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         TS offset             |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
     |                              NAL unit                         |
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 11.  Multi-time aggregation unit for MTAP24

  For the "earliest" multi-time aggregation unit in an MTAP the
  timestamp offset MUST be zero.  Hence, the RTP timestamp of the MTAP
  itself is identical to the earliest NALU-time.

     Informative note: The "earliest" multi-time aggregation unit is
     the one that would have the smallest extended RTP timestamp among
     all the aggregation units of an MTAP if the aggregation units were
     encapsulated in single NAL unit packets.  An extended timestamp is
     a timestamp that has more than 32 bits and is capable of counting
     the wraparound of the timestamp field, thus enabling one to
     determine the smallest value if the timestamp wraps.  Such an
     "earliest" aggregation unit may not be the first one in the order
     in which the aggregation units are encapsulated in an MTAP.  The
     "earliest" NAL unit need not be the same as the first NAL unit in
     the NAL unit decoding order either.








Wenger, et al.              Standards Track                    [Page 25]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  Figure 12 presents an example of an RTP packet that contains a
  multi-time aggregation packet of type MTAP16 that contains two
  multi-time aggregation units, labeled as 1 and 2 in the figure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          RTP Header                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |MTAP16 NAL HDR |  decoding order number base   | NALU 1 Size   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  NALU 1 Size  |  NALU 1 DOND  |       NALU 1 TS offset        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  NALU 1 HDR   |  NALU 1 DATA                                  |
     +-+-+-+-+-+-+-+-+                                               +
     :                                                               :
     +               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |               | NALU 2 SIZE                   |  NALU 2 DOND  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       NALU 2 TS offset        |  NALU 2 HDR   |  NALU 2 DATA  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               |
     :                                                               :
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :...OPTIONAL RTP padding        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 12.  An RTP packet including a multi-time aggregation
                 packet of type MTAP16 and two multi-time aggregation
                 units






















Wenger, et al.              Standards Track                    [Page 26]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  Figure 13 presents an example of an RTP packet that contains a
  multi-time aggregation packet of type MTAP24 that contains two
  multi-time aggregation units, labeled as 1 and 2 in the figure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          RTP Header                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |MTAP24 NAL HDR |  decoding order number base   | NALU 1 Size   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  NALU 1 Size  |  NALU 1 DOND  |       NALU 1 TS offs          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |NALU 1 TS offs |  NALU 1 HDR   |  NALU 1 DATA                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     :                                                               :
     +               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |               | NALU 2 SIZE                   |  NALU 2 DOND  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       NALU 2 TS offset                        |  NALU 2 HDR   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  NALU 2 DATA                                                  |
     :                                                               :
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :...OPTIONAL RTP padding        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 13.  An RTP packet including a multi-time aggregation
                 packet of type MTAP24 and two multi-time aggregation
                 units

5.8.  Fragmentation Units (FUs)

  This payload type allows fragmenting a NAL unit into several RTP
  packets.  Doing so on the application layer instead of relying on
  lower layer fragmentation (e.g., by IP) has the following advantages:

  o  The payload format is capable of transporting NAL units bigger
     than 64 kbytes over an IPv4 network that may be present in pre-
     recorded video, particularly in High Definition formats (there is
     a limit of the number of slices per picture, which results in a
     limit of NAL units per picture, which may result in big NAL
     units).

  o  The fragmentation mechanism allows fragmenting a single picture
     and applying generic forward error correction as described in
     section 12.5.




Wenger, et al.              Standards Track                    [Page 27]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  Fragmentation is defined only for a single NAL unit and not for any
  aggregation packets.  A fragment of a NAL unit consists of an integer
  number of consecutive octets of that NAL unit.  Each octet of the NAL
  unit MUST be part of exactly one fragment of that NAL unit.
  Fragments of the same NAL unit MUST be sent in consecutive order with
  ascending RTP sequence numbers (with no other RTP packets within the
  same RTP packet stream being sent between the first and last
  fragment).  Similarly, a NAL unit MUST be reassembled in RTP sequence
  number order.

  When a NAL unit is fragmented and conveyed within fragmentation units
  (FUs), it is referred to as a fragmented NAL unit.  STAPs and MTAPs
  MUST NOT be fragmented.  FUs MUST NOT be nested; i.e., an FU MUST NOT
  contain another FU.

  The RTP timestamp of an RTP packet carrying an FU is set to the NALU
  time of the fragmented NAL unit.

  Figure 14 presents the RTP payload format for FU-As.  An FU-A
  consists of a fragmentation unit indicator of one octet, a
  fragmentation unit header of one octet, and a fragmentation unit
  payload.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | FU indicator  |   FU header   |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
     |                                                               |
     |                         FU payload                            |
     |                                                               |
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :...OPTIONAL RTP padding        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 14.  RTP payload format for FU-A















Wenger, et al.              Standards Track                    [Page 28]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  Figure 15 presents the RTP payload format for FU-Bs.  An FU-B
  consists of a fragmentation unit indicator of one octet, a
  fragmentation unit header of one octet, a decoding order number (DON)
  (in network byte order), and a fragmentation unit payload.  In other
  words, the structure of FU-B is the same as the structure of FU-A,
  except for the additional DON field.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | FU indicator  |   FU header   |               DON             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
     |                                                               |
     |                         FU payload                            |
     |                                                               |
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               :...OPTIONAL RTP padding        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 15.  RTP payload format for FU-B

  NAL unit type FU-B MUST be used in the interleaved packetization mode
  for the first fragmentation unit of a fragmented NAL unit.  NAL unit
  type FU-B MUST NOT be used in any other case.  In other words, in the
  interleaved packetization mode, each NALU that is fragmented has an
  FU-B as the first fragment, followed by one or more FU-A fragments.

  The FU indicator octet has the following format:

     +---------------+
     |0|1|2|3|4|5|6|7|
     +-+-+-+-+-+-+-+-+
     |F|NRI|  Type   |
     +---------------+

  Values equal to 28 and 29 in the Type field of the FU indicator octet
  identify an FU-A and an FU-B, respectively.  The use of the F bit is
  described in section 5.3.  The value of the NRI field MUST be set
  according to the value of the NRI field in the fragmented NAL unit.

  The FU header has the following format:

     +---------------+
     |0|1|2|3|4|5|6|7|
     +-+-+-+-+-+-+-+-+
     |S|E|R|  Type   |
     +---------------+




Wenger, et al.              Standards Track                    [Page 29]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  S: 1 bit
     When set to one, the Start bit indicates the start of a fragmented
     NAL unit.  When the following FU payload is not the start of a
     fragmented NAL unit payload, the Start bit is set to zero.

  E: 1 bit
     When set to one, the End bit indicates the end of a fragmented NAL
     unit, i.e., the last byte of the payload is also the last byte of
     the fragmented NAL unit.  When the following FU payload is not the
     last fragment of a fragmented NAL unit, the End bit is set to
     zero.

  R: 1 bit
     The Reserved bit MUST be equal to 0 and MUST be ignored by the
     receiver.

  Type: 5 bits
     The NAL unit payload type as defined in table 7-1 of [1].

  The value of DON in FU-Bs is selected as described in section 5.5.

     Informative note: The DON field in FU-Bs allows gateways to
     fragment NAL units to FU-Bs without organizing the incoming NAL
     units to the NAL unit decoding order.

  A fragmented NAL unit MUST NOT be transmitted in one FU; i.e., the
  Start bit and End bit MUST NOT both be set to one in the same FU
  header.

  The FU payload consists of fragments of the payload of the fragmented
  NAL unit so that if the fragmentation unit payloads of consecutive
  FUs are sequentially concatenated, the payload of the fragmented NAL
  unit can be reconstructed.  The NAL unit type octet of the fragmented
  NAL unit is not included as such in the fragmentation unit payload,
  but rather the information of the NAL unit type octet of the
  fragmented NAL unit is conveyed in F and NRI fields of the FU
  indicator octet of the fragmentation unit and in the type field of
  the FU header.  A FU payload MAY have any number of octets and MAY be
  empty.

     Informative note: Empty FUs are allowed to reduce the latency of a
     certain class of senders in nearly lossless environments.  These
     senders can be characterized in that they packetize NALU fragments
     before the NALU is completely generated and, hence, before the
     NALU size is known.  If zero-length NALU fragments were not
     allowed, the sender would have to generate at least one bit of
     data of the following fragment before the current fragment could
     be sent.  Due to the characteristics of H.264, where sometimes



Wenger, et al.              Standards Track                    [Page 30]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


     several macroblocks occupy zero bits, this is undesirable and can
     add delay.  However, the (potential) use of zero-length NALUs
     should be carefully weighed against the increased risk of the loss
     of the NALU because of the additional packets employed for its
     transmission.

  If a fragmentation unit is lost, the receiver SHOULD discard all
  following fragmentation units in transmission order corresponding to
  the same fragmented NAL unit.

  A receiver in an endpoint or in a MANE MAY aggregate the first n-1
  fragments of a NAL unit to an (incomplete) NAL unit, even if fragment
  n of that NAL unit is not received.  In this case, the
  forbidden_zero_bit of the NAL unit MUST be set to one to indicate a
  syntax violation.

6.  Packetization Rules

  The packetization modes are introduced in section 5.2.  The
  packetization rules common to more than one of the packetization
  modes are specified in section 6.1.  The packetization rules for the
  single NAL unit mode, the non-interleaved mode, and the interleaved
  mode are specified in sections 6.2, 6.3, and 6.4, respectively.

6.1.  Common Packetization Rules

  All senders MUST enforce the following packetization rules regardless
  of the packetization mode in use:

  o  Coded slice NAL units or coded slice data partition NAL units
     belonging to the same coded picture (and thus sharing the same RTP
     timestamp value) MAY be sent in any order permitted by the
     applicable profile defined in [1]; however, for delay-critical
     systems, they SHOULD be sent in their original coding order to
     minimize the delay.  Note that the coding order is not necessarily
     the scan order, but the order the NAL packets become available to
     the RTP stack.

  o  Parameter sets are handled in accordance with the rules and
     recommendations given in section 8.4.

  o  MANEs MUST NOT duplicate any NAL unit except for sequence or
     picture parameter set NAL units, as neither this memo nor the
     H.264 specification provides means to identify duplicated NAL
     units.  Sequence and picture parameter set NAL units MAY be
     duplicated to make their correct reception more probable, but any
     such duplication MUST NOT affect the contents of any active
     sequence or picture parameter set.  Duplication SHOULD be



Wenger, et al.              Standards Track                    [Page 31]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


     performed on the application layer and not by duplicating RTP
     packets (with identical sequence numbers).

  Senders using the non-interleaved mode and the interleaved mode MUST
  enforce the following packetization rule:

  o  MANEs MAY convert single NAL unit packets into one aggregation
     packet, convert an aggregation packet into several single NAL unit
     packets, or mix both concepts, in an RTP translator.  The RTP
     translator SHOULD take into account at least the following
     parameters: path MTU size, unequal protection mechanisms (e.g.,
     through packet-based FEC according to RFC 2733 [18], especially
     for sequence and picture parameter set NAL units and coded slice
     data partition A NAL units), bearable latency of the system, and
     buffering capabilities of the receiver.

     Informative note: An RTP translator is required to handle RTCP as
     per RFC 3550.

6.2.  Single NAL Unit Mode

  This mode is in use when the value of the OPTIONAL packetization-mode
  MIME parameter is equal to 0, the packetization-mode is not present,
  or no other packetization mode is signaled by external means.  All
  receivers MUST support this mode.  It is primarily intended for low-
  delay applications that are compatible with systems using ITU-T
  Recommendation H.241 [15] (see section 12.1).  Only single NAL unit
  packets MAY be used in this mode.  STAPs, MTAPs, and FUs MUST NOT be
  used.  The transmission order of single NAL unit packets MUST comply
  with the NAL unit decoding order.

6.3.  Non-Interleaved Mode

  This mode is in use when the value of the OPTIONAL packetization-mode
  MIME parameter is equal to 1 or the mode is turned on by external
  means.  This mode SHOULD be supported.  It is primarily intended for
  low-delay applications.  Only single NAL unit packets, STAP-As, and
  FU-As MAY be used in this mode.  STAP-Bs, MTAPs, and FU-Bs MUST NOT
  be used.  The transmission order of NAL units MUST comply with the
  NAL unit decoding order.











Wenger, et al.              Standards Track                    [Page 32]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


6.4.  Interleaved Mode

  This mode is in use when the value of the OPTIONAL packetization-mode
  MIME parameter is equal to 2 or the mode is turned on by external
  means.  Some receivers MAY support this mode.  STAP-Bs, MTAPs, FU-As,
  and FU-Bs MAY be used.  STAP-As and single NAL unit packets MUST NOT
  be used.  The transmission order of packets and NAL units is
  constrained as specified in section 5.5.

7.  De-Packetization Process (Informative)

  The de-packetization process is implementation dependent.  Therefore,
  the following description should be seen as an example of a suitable
  implementation.  Other schemes may be used as well.  Optimizations
  relative to the described algorithms are likely possible.  Section
  7.1 presents the de-packetization process for the single NAL unit and
  non-interleaved packetization modes, whereas section 7.2 describes
  the process for the interleaved mode.  Section 7.3 includes
  additional decapsulation guidelines for intelligent receivers.

  All normal RTP mechanisms related to buffer management apply.  In
  particular, duplicated or outdated RTP packets (as indicated by the
  RTP sequences number and the RTP timestamp) are removed.  To
  determine the exact time for decoding, factors such as a possible
  intentional delay to allow for proper inter-stream synchronization
  must be factored in.

7.1.  Single NAL Unit and Non-Interleaved Mode

  The receiver includes a receiver buffer to compensate for
  transmission delay jitter.  The receiver stores incoming packets in
  reception order into the receiver buffer.  Packets are decapsulated
  in RTP sequence number order.  If a decapsulated packet is a single
  NAL unit packet, the NAL unit contained in the packet is passed
  directly to the decoder.  If a decapsulated packet is an STAP-A, the
  NAL units contained in the packet are passed to the decoder in the
  order in which they are encapsulated in the packet.  If a
  decapsulated packet is an FU-A, all the fragments of the fragmented
  NAL unit are concatenated and passed to the decoder.

     Informative note: If the decoder supports Arbitrary Slice Order,
     coded slices of a picture can be passed to the decoder in any
     order regardless of their reception and transmission order.








Wenger, et al.              Standards Track                    [Page 33]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


7.2.  Interleaved Mode

  The general concept behind these de-packetization rules is to reorder
  NAL units from transmission order to the NAL unit decoding order.

  The receiver includes a receiver buffer, which is used to compensate
  for transmission delay jitter and to reorder packets from
  transmission order to the NAL unit decoding order.  In this section,
  the receiver operation is described under the assumption that there
  is no transmission delay jitter.  To make a difference from a
  practical receiver buffer that is also used for compensation of
  transmission delay jitter, the receiver buffer is here after called
  the deinterleaving buffer in this section.  Receivers SHOULD also
  prepare for transmission delay jitter; i.e., either reserve separate
  buffers for transmission delay jitter buffering and deinterleaving
  buffering or use a receiver buffer for both transmission delay jitter
  and deinterleaving.  Moreover, receivers SHOULD take transmission
  delay jitter into account in the buffering operation; e.g., by
  additional initial buffering before starting of decoding and
  playback.

  This section is organized as follows: subsection 7.2.1 presents how
  to calculate the size of the deinterleaving buffer.  Subsection 7.2.2
  specifies the receiver process how to organize received NAL units to
  the NAL unit decoding order.

7.2.1.  Size of the Deinterleaving Buffer

  When SDP Offer/Answer model or any other capability exchange
  procedure is used in session setup, the properties of the received
  stream SHOULD be such that the receiver capabilities are not
  exceeded.  In the SDP Offer/Answer model, the receiver can indicate
  its capabilities to allocate a deinterleaving buffer with the deint-
  buf-cap MIME parameter.  The sender indicates the requirement for the
  deinterleaving buffer size with the sprop-deint-buf-req MIME
  parameter.  It is therefore RECOMMENDED to set the deinterleaving
  buffer size, in terms of number of bytes, equal to or greater than
  the value of sprop-deint-buf-req MIME parameter.  See section 8.1 for
  further information on deint-buf-cap and sprop-deint-buf-req MIME
  parameters and section 8.2.2 for further information on their use in
  SDP Offer/Answer model.

  When a declarative session description is used in session setup, the
  sprop-deint-buf-req MIME parameter signals the requirement for the
  deinterleaving buffer size.  It is therefore RECOMMENDED to set the
  deinterleaving buffer size, in terms of number of bytes, equal to or
  greater than the value of sprop-deint-buf-req MIME parameter.




Wenger, et al.              Standards Track                    [Page 34]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


7.2.2.  Deinterleaving Process

  There are two buffering states in the receiver: initial buffering and
  buffering while playing.  Initial buffering occurs when the RTP
  session is initialized.  After initial buffering, decoding and
  playback is started, and the buffering-while-playing mode is used.

  Regardless of the buffering state, the receiver stores incoming NAL
  units, in reception order, in the deinterleaving buffer as follows.
  NAL units of aggregation packets are stored in the deinterleaving
  buffer individually.  The value of DON is calculated and stored for
  all NAL units.

  The receiver operation is described below with the help of the
  following functions and constants:

  o  Function AbsDON is specified in section 8.1.

  o  Function don_diff is specified in section 5.5.

  o  Constant N is the value of the OPTIONAL sprop-interleaving-depth
     MIME type parameter (see section 8.1) incremented by 1.

  Initial buffering lasts until one of the following conditions is
  fulfilled:

  o  There are N VCL NAL units in the deinterleaving buffer.

  o  If sprop-max-don-diff is present, don_diff(m,n) is greater than
     the value of sprop-max-don-diff, in which n corresponds to the NAL
     unit having the greatest value of AbsDON among the received NAL
     units and m corresponds to the NAL unit having the smallest value
     of AbsDON among the received NAL units.

  o  Initial buffering has lasted for the duration equal to or greater
     than the value of the OPTIONAL sprop-init-buf-time MIME parameter.

  The NAL units to be removed from the deinterleaving buffer are
  determined as follows:

  o  If the deinterleaving buffer contains at least N VCL NAL units,
     NAL units are removed from the deinterleaving buffer and passed to
     the decoder in the order specified below until the buffer contains
     N-1 VCL NAL units.







Wenger, et al.              Standards Track                    [Page 35]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  o  If sprop-max-don-diff is present, all NAL units m for which
     don_diff(m,n) is greater than sprop-max-don-diff are removed from
     the deinterleaving buffer and passed to the decoder in the order
     specified below.  Herein, n corresponds to the NAL unit having the
     greatest value of AbsDON among the received NAL units.

  The order in which NAL units are passed to the decoder is specified
  as follows:

  o  Let PDON be a variable that is initialized to 0 at the beginning
     of the an RTP session.

  o  For each NAL unit associated with a value of DON, a DON distance
     is calculated as follows.  If the value of DON of the NAL unit is
     larger than the value of PDON, the DON distance is equal to DON -
     PDON.  Otherwise, the DON distance is equal to 65535 - PDON + DON
     + 1.

  o  NAL units are delivered to the decoder in ascending order of DON
     distance.  If several NAL units share the same value of DON
     distance, they can be passed to the decoder in any order.

  o  When a desired number of NAL units have been passed to the
     decoder, the value of PDON is set to the value of DON for the last
     NAL unit passed to the decoder.

7.3.  Additional De-Packetization Guidelines

  The following additional de-packetization rules may be used to
  implement an operational H.264 de-packetizer:

  o  Intelligent RTP receivers (e.g., in gateways) may identify lost
     coded slice data partitions A (DPAs).  If a lost DPA is found, a
     gateway may decide not to send the corresponding coded slice data
     partitions B and C, as their information is meaningless for H.264
     decoders.  In this way a MANE can reduce network load by
     discarding useless packets without parsing a complex bitstream.

  o  Intelligent RTP receivers (e.g., in gateways) may identify lost
     FUs.  If a lost FU is found, a gateway may decide not to send the
     following FUs of the same fragmented NAL unit, as their
     information is meaningless for H.264 decoders.  In this way a MANE
     can reduce network load by discarding useless packets without
     parsing a complex bitstream.







Wenger, et al.              Standards Track                    [Page 36]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  o  Intelligent receivers having to discard packets or NALUs should
     first discard all packets/NALUs in which the value of the NRI
     field of the NAL unit type octet is equal to 0.  This will
     minimize the impact on user experience and keep the reference
     pictures intact.  If more packets have to be discarded, then
     packets with a numerically lower NRI value should be discarded
     before packets with a numerically higher NRI value.  However,
     discarding any packets with an NRI bigger than 0 very likely leads
     to decoder drift and SHOULD be avoided.

8.  Payload Format Parameters

  This section specifies the parameters that MAY be used to select
  optional features of the payload format and certain features of the
  bitstream.  The parameters are specified here as part of the MIME
  subtype registration for the ITU-T H.264 | ISO/IEC 14496-10 codec.  A
  mapping of the parameters into the Session Description Protocol (SDP)
  [5] is also provided for applications that use SDP.  Equivalent
  parameters could be defined elsewhere for use with control protocols
  that do not use MIME or SDP.

  Some parameters provide a receiver with the properties of the stream
  that will be sent.  The name of all these parameters starts with
  "sprop" for stream properties.  Some of these "sprop" parameters are
  limited by other payload or codec configuration parameters.  For
  example, the sprop-parameter-sets parameter is constrained by the
  profile-level-id parameter.  The media sender selects all "sprop"
  parameters rather than the receiver.  This uncommon characteristic of
  the "sprop" parameters may not be compatible with some signaling
  protocol concepts, in which case the use of these parameters SHOULD
  be avoided.

8.1.  MIME Registration

  The MIME subtype for the ITU-T H.264 | ISO/IEC 14496-10 codec is
  allocated from the IETF tree.

  The receiver MUST ignore any unspecified parameter.

  Media Type name:     video

  Media subtype name:  H264

  Required parameters: none







Wenger, et al.              Standards Track                    [Page 37]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  OPTIONAL parameters:
      profile-level-id:
                       A base16 [6] (hexadecimal) representation of
                       the following three bytes in the sequence
                       parameter set NAL unit specified in [1]: 1)
                       profile_idc, 2) a byte herein referred to as
                       profile-iop, composed of the values of
                       constraint_set0_flag, constraint_set1_flag,
                       constraint_set2_flag, and reserved_zero_5bits
                       in bit-significance order, starting from the
                       most significant bit, and 3) level_idc.  Note
                       that reserved_zero_5bits is required to be
                       equal to 0 in [1], but other values for it may
                       be specified in the future by ITU-T or ISO/IEC.

                       If the profile-level-id parameter is used to
                       indicate properties of a NAL unit stream, it
                       indicates the profile and level that a decoder
                       has to support in order to comply with [1] when
                       it decodes the stream.  The profile-iop byte
                       indicates whether the NAL unit stream also
                       obeys all constraints of the indicated profiles
                       as follows.  If bit 7 (the most significant
                       bit), bit 6, or bit 5 of profile-iop is equal
                       to 1, all constraints of the Baseline profile,
                       the Main profile, or the Extended profile,
                       respectively, are obeyed in the NAL unit
                       stream.

                       If the profile-level-id parameter is used for
                       capability exchange or session setup procedure,
                       it indicates the profile that the codec
                       supports and the highest level
                       supported for the signaled profile.  The
                       profile-iop byte indicates whether the codec
                       has additional limitations whereby only the
                       common subset of the algorithmic features and
                       limitations of the profiles signaled with the
                       profile-iop byte and of the profile indicated
                       by profile_idc is supported by the codec.  For
                       example, if a codec supports only the common
                       subset of the coding tools of the Baseline
                       profile and the Main profile at level 2.1 and
                       below, the profile-level-id becomes 42E015, in
                       which 42 stands for the Baseline profile, E0
                       indicates that only the common subset for all
                       profiles is supported, and 15 indicates level
                       2.1.



Wenger, et al.              Standards Track                    [Page 38]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


                           Informative note: Capability exchange and
                           session setup procedures should provide
                           means to list the capabilities for each
                           supported codec profile separately.  For
                           example, the one-of-N codec selection
                           procedure of the SDP Offer/Answer model can
                           be used (section 10.2 of [7]).

                       If no profile-level-id is present, the Baseline
                       Profile without additional constraints at Level
                       1 MUST be implied.

      max-mbps, max-fs, max-cpb, max-dpb, and max-br:
                       These parameters MAY be used to signal the
                       capabilities of a receiver implementation.
                       These parameters MUST NOT be used for any other
                       purpose.  The profile-level-id parameter MUST
                       be present in the same receiver capability
                       description that contains any of these
                       parameters.  The level conveyed in the value of
                       the profile-level-id parameter MUST be such
                       that the receiver is fully capable of
                       supporting.  max-mbps, max-fs, max-cpb, max-
                       dpb, and max-br MAY be used to indicate
                       capabilities of the receiver that extend the
                       required capabilities of the signaled level, as
                       specified below.

                       When more than one parameter from the set (max-
                       mbps, max-fs, max-cpb, max-dpb, max-br) is
                       present, the receiver MUST support all signaled
                       capabilities simultaneously.  For example, if
                       both max-mbps and max-br are present, the
                       signaled level with the extension of both the
                       frame rate and bit rate is supported.  That is,
                       the receiver is able to decode NAL unit
                       streams in which the macroblock processing rate
                       is up to max-mbps (inclusive), the bit rate is
                       up to max-br (inclusive), the coded picture
                       buffer size is derived as specified in the
                       semantics of the max-br parameter below, and
                       other properties comply with the level
                       specified in the value of the profile-level-id
                       parameter.

                       A receiver MUST NOT signal values of max-
                       mbps, max-fs, max-cpb, max-dpb, and max-br that
                       meet the requirements of a higher level,



Wenger, et al.              Standards Track                    [Page 39]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


                       referred to as level A herein, compared to the
                       level specified in the value of the profile-
                       level-id parameter, if the receiver can support
                       all the properties of level A.

                           Informative note: When the OPTIONAL MIME
                           type parameters are used to signal the
                           properties of a NAL unit stream, max-mbps,
                           max-fs, max-cpb, max-dpb, and max-br are
                           not present, and the value of profile-
                           level-id must always be such that the NAL
                           unit stream complies fully with the
                           specified profile and level.

      max-mbps:        The value of max-mbps is an integer indicating
                       the maximum macroblock processing rate in units
                       of macroblocks per second.  The max-mbps
                       parameter signals that the receiver is capable
                       of decoding video at a higher rate than is
                       required by the signaled level conveyed in the
                       value of the profile-level-id parameter.  When
                       max-mbps is signaled, the receiver MUST be able
                       to decode NAL unit streams that conform to the
                       signaled level, with the exception that the
                       MaxMBPS value in Table A-1 of [1] for the
                       signaled level is replaced with the value of
                       max-mbps.  The value of max-mbps MUST be
                       greater than or equal to the value of MaxMBPS
                       for the level given in Table A-1 of [1].
                       Senders MAY use this knowledge to send pictures
                       of a given size at a higher picture rate than
                       is indicated in the signaled level.

      max-fs:          The value of max-fs is an integer indicating
                       the maximum frame size in units of macroblocks.
                       The max-fs parameter signals that the receiver
                       is capable of decoding larger picture sizes
                       than are required by the signaled level conveyed
                       in the value of the profile-level-id parameter.
                       When max-fs is signaled, the receiver MUST be
                       able to decode NAL unit streams that conform to
                       the signaled level, with the exception that the
                       MaxFS value in Table A-1 of [1] for the
                       signaled level is replaced with the value of
                       max-fs.  The value of max-fs MUST be greater
                       than or equal to the value of MaxFS for the
                       level given in Table A-1 of [1].  Senders MAY
                       use this knowledge to send larger pictures at a



Wenger, et al.              Standards Track                    [Page 40]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


                       proportionally lower frame rate than is
                       indicated in the signaled level.

      max-cpb          The value of max-cpb is an integer indicating
                       the maximum coded picture buffer size in units
                       of 1000 bits for the VCL HRD parameters (see
                       A.3.1 item i of [1]) and in units of 1200 bits
                       for the NAL HRD parameters (see A.3.1 item j of
                       [1]).  The max-cpb parameter signals that the
                       receiver has more memory than the minimum
                       amount of coded picture buffer memory required
                       by the signaled level conveyed in the value of
                       the profile-level-id parameter.  When max-cpb
                       is signaled, the receiver MUST be able to
                       decode NAL unit streams that conform to the
                       signaled level, with the exception that the
                       MaxCPB value in Table A-1 of [1] for the
                       signaled level is replaced with the value of
                       max-cpb.  The value of max-cpb MUST be greater
                       than or equal to the value of MaxCPB for the
                       level given in Table A-1 of [1].  Senders MAY
                       use this knowledge to construct coded video
                       streams with greater variation of bit rate
                       than can be achieved with the
                       MaxCPB value in Table A-1 of [1].

                           Informative note: The coded picture buffer
                           is used in the hypothetical reference
                           decoder (Annex C) of H.264.  The use of the
                           hypothetical reference decoder is
                           recommended in H.264 encoders to verify
                           that the produced bitstream conforms to the
                           standard and to control the output bitrate.
                           Thus, the coded picture buffer is
                           conceptually independent of any other
                           potential buffers in the receiver,
                           including de-interleaving and de-jitter
                           buffers.  The coded picture buffer need not
                           be implemented in decoders as specified in
                           Annex C of H.264, but rather standard-
                           compliant decoders can have any buffering
                           arrangements provided that they can decode
                           standard-compliant bitstreams.  Thus, in
                           practice, the input buffer for video
                           decoder can be integrated with de-
                           interleaving and de-jitter buffers of the
                           receiver.




Wenger, et al.              Standards Track                    [Page 41]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


      max-dpb:         The value of max-dpb is an integer indicating
                       the maximum decoded picture buffer size in
                       units of 1024 bytes.  The max-dpb parameter
                       signals that the receiver has more memory than
                       the minimum amount of decoded picture buffer
                       memory required by the signaled level conveyed
                       in the value of the profile-level-id parameter.
                       When max-dpb is signaled, the receiver MUST be
                       able to decode NAL unit streams that conform to
                       the signaled level, with the exception that the
                       MaxDPB value in Table A-1 of [1] for the
                       signaled level is replaced with the value of
                       max-dpb.  Consequently, a receiver that signals
                       max-dpb MUST be capable of storing the
                       following number of decoded frames,
                       complementary field pairs, and non-paired
                       fields in its decoded picture buffer:

                       Min(1024 * max-dpb / ( PicWidthInMbs *
                       FrameHeightInMbs * 256 * ChromaFormatFactor ),
                       16)

                       PicWidthInMbs, FrameHeightInMbs, and
                       ChromaFormatFactor are defined in [1].

                       The value of max-dpb MUST be greater than or
                       equal to the value of MaxDPB for the level
                       given in Table A-1 of [1].  Senders MAY use
                       this knowledge to construct coded video streams
                       with improved compression.

                           Informative note: This parameter was added
                           primarily to complement a similar codepoint
                           in the ITU-T Recommendation H.245, so as to
                           facilitate signaling gateway designs.  The
                           decoded picture buffer stores reconstructed
                           samples and is a property of the video
                           decoder only.  There is no relationship
                           between the size of the decoded picture
                           buffer and the buffers used in RTP,
                           especially de-interleaving and de-jitter
                           buffers.

      max-br:          The value of max-br is an integer indicating
                       the maximum video bit rate in units of 1000
                       bits per second for the VCL HRD parameters (see
                       A.3.1 item i of [1]) and in units of 1200 bits




Wenger, et al.              Standards Track                    [Page 42]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


                       per second for the NAL HRD parameters (see
                       A.3.1 item j of [1]).

                       The max-br parameter signals that the video
                       decoder of the receiver is capable of decoding
                       video at a higher bit rate than is required by
                       the signaled level conveyed in the value of the
                       profile-level-id parameter.  The value of max-
                       br MUST be greater than or equal to the value
                       of MaxBR for the level given in Table A-1 of
                       [1].

                       When max-br is signaled, the video codec of the
                       receiver MUST be able to decode NAL unit
                       streams that conform to the signaled level,
                       conveyed in the profile-level-id parameter,
                       with the following exceptions in the limits
                       specified by the level:
                       o The value of max-br replaces the MaxBR value
                         of the signaled level (in Table A-1 of [1]).
                       o When the max-cpb parameter is not present,
                         the result of the following formula replaces
                         the value of MaxCPB in Table A-1 of [1]:
                         (MaxCPB of the signaled level) * max-br /
                         (MaxBR of the signaled level).

                       For example, if a receiver signals capability
                       for Level 1.2 with max-br equal to 1550, this
                       indicates a maximum video bitrate of 1550
                       kbits/sec for VCL HRD parameters, a maximum
                       video bitrate of 1860 kbits/sec for NAL HRD
                       parameters, and a CPB size of 4036458 bits
                       (1550000 / 384000 * 1000 * 1000).

                       The value of max-br MUST be greater than or
                       equal to the value MaxBR for the signaled level
                       given in Table A-1 of [1].

                       Senders MAY use this knowledge to send higher
                       bitrate video as allowed in the level
                       definition of Annex A of H.264, to achieve
                       improved video quality.

                           Informative note: This parameter was added
                           primarily to complement a similar codepoint
                           in the ITU-T Recommendation H.245, so as to
                           facilitate signaling gateway designs.  No
                           assumption can be made from the value of



Wenger, et al.              Standards Track                    [Page 43]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


                           this parameter that the network is capable
                           of handling such bit rates at any given
                           time.  In particular, no conclusion can be
                           drawn that the signaled bit rate is
                           possible under congestion control
                           constraints.

     redundant-pic-cap:
                       This parameter signals the capabilities of a
                       receiver implementation.  When equal to 0, the
                       parameter indicates that the receiver makes no
                       attempt to use redundant coded pictures to
                       correct incorrectly decoded primary coded
                       pictures.  When equal to 0, the receiver is not
                       capable of using redundant slices; therefore, a
                       sender SHOULD avoid sending redundant slices to
                       save bandwidth.  When equal to 1, the receiver
                       is capable of decoding any such redundant slice
                       that covers a corrupted area in a primary
                       decoded picture (at least partly), and therefore
                       a sender MAY send redundant slices.  When the
                       parameter is not present, then a value of 0
                       MUST be used for redundant-pic-cap.  When
                       present, the value of redundant-pic-cap MUST be
                       either 0 or 1.

                       When the profile-level-id parameter is present
                       in the same capability signaling as the
                       redundant-pic-cap parameter, and the profile
                       indicated in profile-level-id is such that it
                       disallows the use of redundant coded pictures
                       (e.g., Main Profile), the value of redundant-
                       pic-cap MUST be equal to 0.  When a receiver
                       indicates redundant-pic-cap equal to 0, the
                       received stream SHOULD NOT contain redundant
                       coded pictures.

                           Informative note: Even if redundant-pic-cap
                           is equal to 0, the decoder is able to
                           ignore redundant codec pictures provided
                           that the decoder supports such a profile
                           (Baseline, Extended) in which redundant
                           coded pictures are allowed.

                           Informative note: Even if redundant-pic-cap
                           is equal to 1, the receiver may also choose
                           other error concealment strategies to




Wenger, et al.              Standards Track                    [Page 44]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


                           replace or complement decoding of redundant
                           slices.

      sprop-parameter-sets:
                       This parameter MAY be used to convey
                       any sequence and picture parameter set NAL
                       units (herein referred to as the initial
                       parameter set NAL units) that MUST precede any
                       other NAL units in decoding order.  The
                       parameter MUST NOT be used to indicate codec
                       capability in any capability exchange
                       procedure.  The value of the parameter is the
                       base64 [6] representation of the initial
                       parameter set NAL units as specified in
                       sections 7.3.2.1 and 7.3.2.2 of [1].  The
                       parameter sets are conveyed in decoding order,
                       and no framing of the parameter set NAL units
                       takes place.  A comma is used to separate any
                       pair of parameter sets in the list.  Note that
                       the number of bytes in a parameter set NAL unit
                       is typically less than 10, but a picture
                       parameter set NAL unit can contain several
                       hundreds of bytes.

                          Informative note: When several payload
                          types are offered in the SDP Offer/Answer
                          model, each with its own sprop-parameter-
                          sets parameter, then the receiver cannot
                          assume that those parameter sets do not use
                          conflicting storage locations (i.e.,
                          identical values of parameter set
                          identifiers).  Therefore, a receiver should
                          double-buffer all sprop-parameter-sets and
                          make them available to the decoder instance
                          that decodes a certain payload type.

      parameter-add:   This parameter MAY be used to signal whether
                       the receiver of this parameter is allowed to
                       add parameter sets in its signaling response
                       using the sprop-parameter-sets MIME parameter.
                       The value of this parameter is either 0 or 1.
                       0 is equal to false; i.e., it is not allowed to
                       add parameter sets.  1 is equal to true; i.e.,
                       it is allowed to add parameter sets.  If the
                       parameter is not present, its value MUST be 1.






Wenger, et al.              Standards Track                    [Page 45]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


      packetization-mode:
                       This parameter signals the properties of an
                       RTP payload type or the capabilities of a
                       receiver implementation.  Only a single
                       configuration point can be indicated; thus,
                       when capabilities to support more than one
                       packetization-mode are declared, multiple
                       configuration points (RTP payload types) must
                       be used.

                       When the value of packetization-mode is equal
                       to 0 or packetization-mode is not present, the
                       single NAL mode, as defined in section 6.2 of
                       RFC 3984, MUST be used.  This mode is in use in
                       standards using ITU-T Recommendation H.241 [15]
                       (see section 12.1).  When the value of
                       packetization-mode is equal to 1, the non-
                       interleaved mode, as defined in section 6.3 of
                       RFC 3984, MUST be used.  When the value of
                       packetization-mode is equal to 2, the
                       interleaved mode, as defined in section 6.4 of
                       RFC 3984, MUST be used.  The value of
                       packetization mode MUST be an integer in the
                       range of 0 to 2, inclusive.

      sprop-interleaving-depth:
                       This parameter MUST NOT be present
                       when packetization-mode is not present or the
                       value of packetization-mode is equal to 0 or 1.
                       This parameter MUST be present when the value
                       of packetization-mode is equal to 2.

                       This parameter signals the properties of a NAL
                       unit stream.  It specifies the maximum number
                       of VCL NAL units that precede any VCL NAL unit
                       in the NAL unit stream in transmission order
                       and follow the VCL NAL unit in decoding order.
                       Consequently, it is guaranteed that receivers
                       can reconstruct NAL unit decoding order when
                       the buffer size for NAL unit decoding order
                       recovery is at least the value of sprop-
                       interleaving-depth + 1 in terms of VCL NAL
                       units.

                       The value of sprop-interleaving-depth MUST be
                       an integer in the range of 0 to 32767,
                       inclusive.




Wenger, et al.              Standards Track                    [Page 46]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


      sprop-deint-buf-req:
                       This parameter MUST NOT be present when
                       packetization-mode is not present or the value
                       of packetization-mode is equal to 0 or 1.  It
                       MUST be present when the value of
                       packetization-mode is equal to 2.

                       sprop-deint-buf-req signals the required size
                       of the deinterleaving buffer for the NAL unit
                       stream.  The value of the parameter MUST be
                       greater than or equal to the maximum buffer
                       occupancy (in units of bytes) required in such
                       a deinterleaving buffer that is specified in
                       section 7.2 of RFC 3984.  It is guaranteed that
                       receivers can perform the deinterleaving of
                       interleaved NAL units into NAL unit decoding
                       order, when the deinterleaving buffer size is
                       at least the value of sprop-deint-buf-req in
                       terms of bytes.

                       The value of sprop-deint-buf-req MUST be an
                       integer in the range of 0 to 4294967295,
                       inclusive.

                           Informative note: sprop-deint-buf-req
                           indicates the required size of the
                           deinterleaving buffer only.  When network
                           jitter can occur, an appropriately sized
                           jitter buffer has to be provisioned for
                           as well.

      deint-buf-cap:   This parameter signals the capabilities of a
                       receiver implementation and indicates the
                       amount of deinterleaving buffer space in units
                       of bytes that the receiver has available for
                       reconstructing the NAL unit decoding order.  A
                       receiver is able to handle any stream for which
                       the value of the sprop-deint-buf-req parameter
                       is smaller than or equal to this parameter.

                       If the parameter is not present, then a value
                       of 0 MUST be used for deint-buf-cap.  The value
                       of deint-buf-cap MUST be an integer in the
                       range of 0 to 4294967295, inclusive.

                           Informative note: deint-buf-cap indicates
                           the maximum possible size of the
                           deinterleaving buffer of the receiver only.



Wenger, et al.              Standards Track                    [Page 47]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


                           When network jitter can occur, an
                           appropriately sized jitter buffer has to
                           be provisioned for as well.

      sprop-init-buf-time:
                       This parameter MAY be used to signal the
                       properties of a NAL unit stream.  The parameter
                       MUST NOT be present, if the value of
                       packetization-mode is equal to 0 or 1.

                       The parameter signals the initial buffering
                       time that a receiver MUST buffer before
                       starting decoding to recover the NAL unit
                       decoding order from the transmission order.
                       The parameter is the maximum value of
                       (transmission time of a NAL unit - decoding
                       time of the NAL unit), assuming reliable and
                       instantaneous transmission, the same
                       timeline for transmission and decoding, and
                       that decoding starts when the first packet
                       arrives.

                       An example of specifying the value of sprop-
                       init-buf-time follows.  A NAL unit stream is
                       sent in the following interleaved order, in
                       which the value corresponds to the decoding
                       time and the transmission order is from left to
                       right:

                       0  2  1  3  5  4  6  8  7 ...

                       Assuming a steady transmission rate of NAL
                       units, the transmission times are:

                       0  1  2  3  4  5  6  7  8 ...

                       Subtracting the decoding time from the
                       transmission time column-wise results in the
                       following series:

                       0 -1  1  0 -1  1  0 -1  1 ...

                       Thus, in terms of intervals of NAL unit
                       transmission times, the value of
                       sprop-init-buf-time in this
                       example is 1.





Wenger, et al.              Standards Track                    [Page 48]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


                       The parameter is coded as a non-negative base10
                       integer representation in clock ticks of a 90-
                       kHz clock.  If the parameter is not present,
                       then no initial buffering time value is
                       defined.  Otherwise the value of sprop-init-
                       buf-time MUST be an integer in the range of 0
                       to 4294967295, inclusive.

                       In addition to the signaled sprop-init-buf-
                       time, receivers SHOULD take into account the
                       transmission delay jitter buffering, including
                       buffering for the delay jitter caused by
                       mixers, translators, gateways, proxies,
                       traffic-shapers, and other network elements.

      sprop-max-don-diff:
                       This parameter MAY be used to signal the
                       properties of a NAL unit stream.  It MUST NOT
                       be used to signal transmitter or receiver or
                       codec capabilities.  The parameter MUST NOT be
                       present if the value of packetization-mode is
                       equal to 0 or 1.  sprop-max-don-diff is an
                       integer in the range of 0 to 32767, inclusive.
                       If sprop-max-don-diff is not present, the value
                       of the parameter is unspecified.  sprop-max-
                       don-diff is calculated as follows:

                       sprop-max-don-diff = max{AbsDON(i) -
                       AbsDON(j)},
                       for any i and any j>i,

                       where i and j indicate the index of the NAL
                       unit in the transmission order and AbsDON
                       denotes a decoding order number of the NAL
                       unit that does not wrap around to 0 after
                       65535.  In other words, AbsDON is calculated as
                       follows: Let m and n be consecutive NAL units
                       in transmission order.  For the very first NAL
                       unit in transmission order (whose index is 0),
                       AbsDON(0) = DON(0).  For other NAL units,
                       AbsDON is calculated as follows:

                       If DON(m) == DON(n), AbsDON(n) = AbsDON(m)

                       If (DON(m) < DON(n) and DON(n) - DON(m) <
                       32768),
                       AbsDON(n) = AbsDON(m) + DON(n) - DON(m)




Wenger, et al.              Standards Track                    [Page 49]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


                       If (DON(m) > DON(n) and DON(m) - DON(n) >=
                       32768),
                       AbsDON(n) = AbsDON(m) + 65536 - DON(m) + DON(n)

                       If (DON(m) < DON(n) and DON(n) - DON(m) >=
                       32768),

                       AbsDON(n) = AbsDON(m) - (DON(m) + 65536 -
                       DON(n))

                       If (DON(m) > DON(n) and DON(m) - DON(n) <
                       32768),
                       AbsDON(n) = AbsDON(m) - (DON(m) - DON(n))

                       where DON(i) is the decoding order number of
                       the NAL unit having index i in the transmission
                       order.  The decoding order number is specified
                       in section 5.5 of RFC 3984.

                           Informative note: Receivers may use sprop-
                           max-don-diff to trigger which NAL units in
                           the receiver buffer can be passed to the
                           decoder.

    max-rcmd-nalu-size:
                       This parameter MAY be used to signal the
                       capabilities of a receiver.  The parameter MUST
                       NOT be used for any other purposes.  The value
                       of the parameter indicates the largest NALU
                       size in bytes that the receiver can handle
                       efficiently.  The parameter value is a
                       recommendation, not a strict upper boundary.
                       The sender MAY create larger NALUs but must be
                       aware that the handling of these may come at a
                       higher cost than NALUs conforming to the
                       limitation.

                       The value of max-rcmd-nalu-size MUST be an
                       integer in the range of 0 to 4294967295,
                       inclusive.  If this parameter is not specified,
                       no known limitation to the NALU size exists.
                       Senders still have to consider the MTU size
                       available between the sender and the receiver
                       and SHOULD run MTU discovery for this purpose.

                       This parameter is motivated by, for example, an
                       IP to H.223 video telephony gateway, where
                       NALUs smaller than the H.223 transport data



Wenger, et al.              Standards Track                    [Page 50]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


                       unit will be more efficient.  A gateway may
                       terminate IP; thus, MTU discovery will normally
                       not work beyond the gateway.

                           Informative note: Setting this parameter to
                           a lower than necessary value may have a
                           negative impact.

  Encoding considerations:
                       This type is only defined for transfer via RTP
                       (RFC 3550).

                       A file format of H.264/AVC video is defined in
                       [29].  This definition is utilized by other
                       file formats, such as the 3GPP multimedia file
                       format (MIME type video/3gpp) [30] or the MP4
                       file format (MIME type video/mp4).

  Security considerations:
                       See section 9 of RFC 3984.

  Public specification:
                       Please refer to RFC 3984 and its section 15.

  Additional information:
                       None

  File extensions:     none
  Macintosh file type code: none
  Object identifier or OID: none

  Person & email address to contact for further information:
                       [email protected]

  Intended usage:      COMMON

  Author:
                       [email protected]
  Change controller:
                       IETF Audio/Video Transport working group
                       delegated from the IESG.










Wenger, et al.              Standards Track                    [Page 51]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


8.2.  SDP Parameters

8.2.1.  Mapping of MIME Parameters to SDP

  The MIME media type video/H264 string is mapped to fields in the
  Session Description Protocol (SDP) [5] as follows:

  o  The media name in the "m=" line of SDP MUST be video.

  o  The encoding name in the "a=rtpmap" line of SDP MUST be H264 (the
     MIME subtype).

  o  The clock rate in the "a=rtpmap" line MUST be 90000.

  o  The OPTIONAL parameters "profile-level-id", "max-mbps", "max-fs",
     "max-cpb", "max-dpb", "max-br", "redundant-pic-cap", "sprop-
     parameter-sets", "parameter-add", "packetization-mode", "sprop-
     interleaving-depth", "deint-buf-cap", "sprop-deint-buf-req",
     "sprop-init-buf-time", "sprop-max-don-diff", and "max-rcmd-nalu-
     size", when present, MUST be included in the "a=fmtp" line of SDP.
     These parameters are expressed as a MIME media type string, in the
     form of a semicolon separated list of parameter=value pairs.

  An example of media representation in SDP is as follows (Baseline
  Profile, Level 3.0, some of the constraints of the Main profile may
  not be obeyed):

     m=video 49170 RTP/AVP 98
     a=rtpmap:98 H264/90000
     a=fmtp:98 profile-level-id=42A01E;
               sprop-parameter-sets=Z0IACpZTBYmI,aMljiA==

8.2.2.  Usage with the SDP Offer/Answer Model

  When H.264 is offered over RTP using SDP in an Offer/Answer model [7]
  for negotiation for unicast usage, the following limitations and
  rules apply:

  o  The parameters identifying a media format configuration for H.264
     are "profile-level-id", "packetization-mode", and, if required by
     "packetization-mode", "sprop-deint-buf-req".  These three
     parameters MUST be used symmetrically; i.e., the answerer MUST
     either maintain all configuration parameters or remove the media
     format (payload type) completely, if one or more of the parameter
     values are not supported.






Wenger, et al.              Standards Track                    [Page 52]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


        Informative note: The requirement for symmetric use applies
        only for the above three parameters and not for the other
        stream properties and capability parameters.

     To simplify handling and matching of these configurations, the
     same RTP payload type number used in the offer SHOULD also be used
     in the answer, as specified in [7].  An answer MUST NOT contain a
     payload type number used in the offer unless the configuration
     ("profile-level-id", "packetization-mode", and, if present,
     "sprop-deint-buf-req") is the same as in the offer.

        Informative note: An offerer, when receiving the answer, has to
        compare payload types not declared in the offer based on media
        type (i.e., video/h264) and the above three parameters with any
        payload types it has already declared, in order to determine
        whether the configuration in question is new or equivalent to a
        configuration already offered.

  o  The parameters "sprop-parameter-sets", "sprop-deint-buf-req",
     "sprop-interleaving-depth", "sprop-max-don-diff", and "sprop-
     init-buf-time" describe the properties of the NAL unit stream that
     the offerer or answerer is sending for this media format
     configuration.  This differs from the normal usage of the
     Offer/Answer parameters: normally such parameters declare the
     properties of the stream that the offerer or the answerer is able
     to receive.  When dealing with H.264, the offerer assumes that the
     answerer will be able to receive media encoded using the
     configuration being offered.

        Informative note: The above parameters apply for any stream
        sent by the declaring entity with the same configuration; i.e.,
        they are dependent on their source.  Rather then being bound to
        the payload type, the values may have to be applied to another
        payload type when being sent, as they apply for the
        configuration.

  o  The capability parameters ("max-mbps", "max-fs", "max-cpb", "max-
     dpb", "max-br", ,"redundant-pic-cap", "max-rcmd-nalu-size") MAY be
     used to declare further capabilities.  Their interpretation
     depends on the direction attribute.  When the direction attribute
     is sendonly, then the parameters describe the limits of the RTP
     packets and the NAL unit stream that the sender is capable of
     producing.  When the direction attribute is sendrecv or recvonly,
     then the parameters describe the limitations of what the receiver
     accepts.






Wenger, et al.              Standards Track                    [Page 53]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  o  As specified above, an offerer has to include the size of the
     deinterleaving buffer in the offer for an interleaved H.264
     stream.  To enable the offerer and answerer to inform each other
     about their capabilities for deinterleaving buffering, both
     parties are RECOMMENDED to include "deint-buf-cap".  This
     information MAY be used when the value for "sprop-deint-buf-req"
     is selected in a second round of offer and answer.  For
     interleaved streams, it is also RECOMMENDED to consider offering
     multiple payload types with different buffering requirements when
     the capabilities of the receiver are unknown.

  o  The "sprop-parameter-sets" parameter is used as described above.
     In addition, an answerer MUST maintain all parameter sets received
     in the offer in its answer.  Depending on the value of the
     "parameter-add" parameter, different rules apply: If "parameter-
     add" is false (0), the answer MUST NOT add any additional
     parameter sets.  If "parameter-add" is true (1), the answerer, in
     its answer, MAY add additional parameter sets to the "sprop-
     parameter-sets" parameter.  The answerer MUST also, independent of
     the value of "parameter-add", accept to receive a video stream
     using the sprop-parameter-sets it declared in the answer.

        Informative note: care must be taken when parameter sets are
        added not to cause overwriting of already transmitted parameter
        sets by using conflicting parameter set identifiers.

  For streams being delivered over multicast, the following rules apply
  in addition:

  o  The stream properties parameters ("sprop-parameter-sets", "sprop-
     deint-buf-req", "sprop-interleaving-depth", "sprop-max-don-diff",
     and "sprop-init-buf-time") MUST NOT be changed by the answerer.
     Thus, a payload type can either be accepted unaltered or removed.

  o  The receiver capability parameters "max-mbps", "max-fs", "max-
     cpb", "max-dpb", "max-br", and "max-rcmd-nalu-size" MUST be
     supported by the answerer for all streams declared as sendrecv or
     recvonly; otherwise, one of the following actions MUST be
     performed: the media format is removed, or the session rejected.

  o  The receiver capability parameter redundant-pic-cap SHOULD be
     supported by the answerer for all streams declared as sendrecv or
     recvonly as follows:  The answerer SHOULD NOT include redundant
     coded pictures in the transmitted stream if the offerer indicated
     redundant-pic-cap equal to 0.  Otherwise (when redundant_pic_cap
     is equal to 1), it is beyond the scope of this memo to recommend
     how the answerer should use redundant coded pictures.




Wenger, et al.              Standards Track                    [Page 54]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  Below are the complete lists of how the different parameters shall be
  interpreted in the different combinations of offer or answer and
  direction attribute.

  o  In offers and answers for which "a=sendrecv" or no direction
     attribute is used, or in offers and answers for which "a=recvonly"
     is used, the following interpretation of the parameters MUST be
     used.

     Declaring actual configuration or properties for receiving:

        - profile-level-id
        - packetization-mode

     Declaring actual properties of the stream to be sent (applicable
     only when "a=sendrecv" or no direction attribute is used):

        - sprop-deint-buf-req
        - sprop-interleaving-depth
        - sprop-parameter-sets
        - sprop-max-don-diff
        - sprop-init-buf-time

     Declaring receiver implementation capabilities:

        - max-mbps
        - max-fs
        - max-cpb
        - max-dpb
        - max-br
        - redundant-pic-cap
        - deint-buf-cap
        - max-rcmd-nalu-size

     Declaring how Offer/Answer negotiation shall be performed:

        - parameter-add

  o  In an offer or answer for which the direction attribute
     "a=sendonly" is included for the media stream, the following
     interpretation of the parameters MUST be used:

     Declaring actual configuration and properties of stream proposed
     to be sent:

        - profile-level-id
        - packetization-mode
        - sprop-deint-buf-req



Wenger, et al.              Standards Track                    [Page 55]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


        - sprop-max-don-diff
        - sprop-init-buf-time
        - sprop-parameter-sets
        - sprop-interleaving-depth

     Declaring the capabilities of the sender when it receives a
     stream:

        - max-mbps
        - max-fs
        - max-cpb
        - max-dpb
        - max-br
        - redundant-pic-cap
        - deint-buf-cap
        - max-rcmd-nalu-size

     Declaring how Offer/Answer negotiation shall be performed:

        - parameter-add

  Furthermore, the following considerations are necessary:

  o  Parameters used for declaring receiver capabilities are in general
     downgradable; i.e., they express the upper limit for a sender's
     possible behavior.  Thus a sender MAY select to set its encoder
     using only lower/lesser or equal values of these parameters.
     "sprop-parameter-sets" MUST NOT be used in a sender's declaration
     of its capabilities, as the limits of the values that are carried
     inside the parameter sets are implicit with the profile and level
     used.

  o  Parameters declaring a configuration point are not downgradable,
     with the exception of the level part of the "profile-level-id"
     parameter.  This expresses values a receiver expects to be used
     and must be used verbatim on the sender side.

  o  When a sender's capabilities are declared, and non-downgradable
     parameters are used in this declaration, then these parameters
     express a configuration that is acceptable.  In order to achieve
     high interoperability levels, it is often advisable to offer
     multiple alternative configurations; e.g., for the packetization
     mode.  It is impossible to offer multiple configurations in a
     single payload type.  Thus, when multiple configuration offers are
     made, each offer requires its own RTP payload type associated with
     the offer.





Wenger, et al.              Standards Track                    [Page 56]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  o  A receiver SHOULD understand all MIME parameters, even if it only
     supports a subset of the payload format's functionality.  This
     ensures that a receiver is capable of understanding when an offer
     to receive media can be downgraded to what is supported by the
     receiver of the offer.

  o  An answerer MAY extend the offer with additional media format
     configurations.  However, to enable their usage, in most cases a
     second offer is required from the offerer to provide the stream
     properties parameters that the media sender will use.  This also
     has the effect that the offerer has to be able to receive this
     media format configuration, not only to send it.

  o  If an offerer wishes to have non-symmetric capabilities between
     sending and receiving, the offerer has to offer different RTP
     sessions; i.e., different media lines declared as "recvonly" and
     "sendonly", respectively.  This may have further implications on
     the system.

8.2.3.  Usage in Declarative Session Descriptions

  When H.264 over RTP is offered with SDP in a declarative style, as in
  RTSP [27] or SAP [28], the following considerations are necessary.

  o  All parameters capable of indicating the properties of both a NAL
     unit stream and a receiver are used to indicate the properties of
     a NAL unit stream.  For example, in this case, the parameter
     "profile-level-id" declares the values used by the stream, instead
     of the capabilities of the sender.  This results in that the
     following interpretation of the parameters MUST be used:

     Declaring actual configuration or properties:

        - profile-level-id
        - sprop-parameter-sets
        - packetization-mode
        - sprop-interleaving-depth
        - sprop-deint-buf-req
        - sprop-max-don-diff
        - sprop-init-buf-time











Wenger, et al.              Standards Track                    [Page 57]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


     Not usable:

        - max-mbps
        - max-fs
        - max-cpb
        - max-dpb
        - max-br
        - redundant-pic-cap
        - max-rcmd-nalu-size
        - parameter-add
        - deint-buf-cap

  o  A receiver of the SDP is required to support all parameters and
     values of the parameters provided; otherwise, the receiver MUST
     reject (RTSP) or not participate in (SAP) the session.  It falls
     on the creator of the session to use values that are expected to
     be supported by the receiving application.

8.3.  Examples

  A SIP Offer/Answer exchange wherein both parties are expected to both
  send and receive could look like the following.  Only the media codec
  specific parts of the SDP are shown.  Some lines are wrapped due to
  text constraints.

     Offerer -> Answer SDP message:

     m=video 49170 RTP/AVP 100 99 98
     a=rtpmap:98 H264/90000
     a=fmtp:98 profile-level-id=42A01E; packetization-mode=0;
               sprop-parameter-sets=Z0IACpZTBYmI,aMljiA==
     a=rtpmap:99 H264/90000
     a=fmtp:99 profile-level-id=42A01E; packetization-mode=1;
               sprop-parameter-sets=Z0IACpZTBYmI,aMljiA==
     a=rtpmap:100 H264/90000
     a=fmtp:100 profile-level-id=42A01E; packetization-mode=2;
                sprop-parameter-sets=Z0IACpZTBYmI,aMljiA==;
                sprop-interleaving-depth=45; sprop-deint-buf-req=64000;
                sprop-init-buf-time=102478; deint-buf-cap=128000

  The above offer presents the same codec configuration in three
  different packetization formats.  PT 98 represents single NALU mode,
  PT 99 non-interleaved mode; PT 100 indicates the interleaved mode.
  In the interleaved mode case, the interleaving parameters that the
  offerer would use if the answer indicates support for PT 100 are also
  included.  In all three cases the parameter "sprop-parameter-sets"
  conveys the initial parameter sets that are required for the answerer
  when receiving a stream from the offerer when this configuration



Wenger, et al.              Standards Track                    [Page 58]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  (profile-level-id and packetization mode) is accepted.  Note that the
  value for "sprop-parameter-sets", although identical in the example
  above, could be different for each payload type.

    Answerer -> Offerer SDP message:

    m=video 49170 RTP/AVP 100 99 97
    a=rtpmap:97 H264/90000
    a=fmtp:97 profile-level-id=42A01E; packetization-mode=0;
              sprop-parameter-sets=Z0IACpZTBYmI,aMljiA==,As0DEWlsIOp==,
              KyzFGleR
    a=rtpmap:99 H264/90000
    a=fmtp:99 profile-level-id=42A01E; packetization-mode=1;
              sprop-parameter-sets=Z0IACpZTBYmI,aMljiA==,As0DEWlsIOp==,
              KyzFGleR; max-rcmd-nalu-size=3980
    a=rtpmap:100 H264/90000
    a=fmtp:100 profile-level-id=42A01E; packetization-mode=2;
              sprop-parameter-sets=Z0IACpZTBYmI,aMljiA==,As0DEWlsIOp==,
              KyzFGleR; sprop-interleaving-depth=60;
              sprop-deint-buf-req=86000; sprop-init-buf-time=156320;
              deint-buf-cap=128000; max-rcmd-nalu-size=3980

  As the Offer/Answer negotiation covers both sending and receiving
  streams, an offer indicates the exact parameters for what the offerer
  is willing to receive, whereas the answer indicates the same for what
  the answerer accepts to receive.  In this case the offerer declared
  that it is willing to receive payload type 98.  The answerer accepts
  this by declaring a equivalent payload type 97; i.e., it has
  identical values for the three parameters "profile-level-id",
  packetization-mode, and "sprop-deint-buf-req".  This has the
  following implications for both the offerer and the answerer
  concerning the parameters that declare properties.  The offerer
  initially declared a certain value of the "sprop-parameter-sets" in
  the payload definition for PT=98.  However, as the answerer accepted
  this as PT=97, the values of "sprop-parameter-sets" in PT=98 must now
  be used instead when the offerer sends PT=97.  Similarly, when the
  answerer sends PT=98 to the offerer, it has to use the properties
  parameters it declared in PT=97.

  The answerer also accepts the reception of the two configurations
  that payload types 99 and 100 represent.  It provides the initial
  parameter sets for the answerer-to-offerer direction, and for
  buffering related parameters that it will use to send the payload
  types.  It also provides the offerer with its memory limit for
  deinterleaving operations by providing a "deint-buf-cap" parameter.
  This is only useful if the offerer decides on making a second offer,
  where it can take the new value into account.  The "max-rcmd-nalu-
  size" indicates that the answerer can efficiently process NALUs up to



Wenger, et al.              Standards Track                    [Page 59]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  the size of 3980 bytes.  However, there is no guarantee that the
  network supports this size.

  Please note that the parameter sets in the above example do not
  represent a legal operation point of an H.264 codec.  The base64
  strings are only used for illustration.

8.4.  Parameter Set Considerations

  The H.264 parameter sets are a fundamental part of the video codec
  and vital to its operation; see section 1.2.  Due to their
  characteristics and their importance for the decoding process, lost
  or erroneously transmitted parameter sets can hardly be concealed
  locally at the receiver.  A reference to a corrupt parameter set has
  normally fatal results to the decoding process.  Corruption could
  occur, for example, due to the erroneous transmission or loss of a
  parameter set data structure, but also due to the untimely
  transmission of a parameter set update.  Therefore, the following
  recommendations are provided as a guideline for the implementer of
  the RTP sender.

  Parameter set NALUs can be transported using three different
  principles:

  A. Using a session control protocol (out-of-band) prior to the actual
     RTP session.

  B. Using a session control protocol (out-of-band) during an ongoing
     RTP session.

  C. Within the RTP stream in the payload (in-band) during an ongoing
     RTP session.

  It is necessary to implement principles A and B within a session
  control protocol.  SIP and SDP can be used as described in the SDP
  Offer/Answer model and in the previous sections of this memo.  This
  section contains guidelines on how principles A and B must be
  implemented within session control protocols.  It is independent of
  the particular protocol used.  Principle C is supported by the RTP
  payload format defined in this specification.

  The picture and sequence parameter set NALUs SHOULD NOT be
  transmitted in the RTP payload unless reliable transport is provided
  for RTP, as a loss of a parameter set of either type will likely
  prevent decoding of a considerable portion of the corresponding RTP






Wenger, et al.              Standards Track                    [Page 60]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  stream.  Thus, the transmission of parameter sets using a reliable
  session control protocol (i.e., usage of principle A or B above) is
  RECOMMENDED.

  In the rest of the section it is assumed that out-of-band signaling
  provides reliable transport of parameter set NALUs and that in-band
  transport does not.  If in-band signaling of parameter sets is used,
  the sender SHOULD take the error characteristics into account and use
  mechanisms to provide a high probability for delivering the parameter
  sets correctly.  Mechanisms that increase the probability for a
  correct reception include packet repetition, FEC, and retransmission.
  The use of an unreliable, out-of-band control protocol has similar
  disadvantages as the in-band signaling (possible loss) and, in
  addition, may also lead to difficulties in the synchronization (see
  below).  Therefore, it is NOT RECOMMENDED.

  Parameter sets MAY be added or updated during the lifetime of a
  session using principles B and C.  It is required that parameter sets
  are present at the decoder prior to the NAL units that refer to them.
  Updating or adding of parameter sets can result in further problems,
  and therefore the following recommendations should be considered.

  -  When parameter sets are added or updated, principle C is
     vulnerable to transmission errors as described above, and
     therefore principle B is RECOMMENDED.

  -  When parameter sets are added or updated, care SHOULD be taken to
     ensure that any parameter set is delivered prior to its usage.  It
     is common that no synchronization is present between out-of-band
     signaling and in-band traffic.  If out-of-band signaling is used,
     it is RECOMMENDED that a sender does not start sending NALUs
     requiring the updated parameter sets prior to acknowledgement of
     delivery from the signaling protocol.

  -  When parameter sets are updated, the following synchronization
     issue should be taken into account.  When overwriting a parameter
     set at the receiver, the sender has to ensure that the parameter
     set in question is not needed by any NALU present in the network
     or receiver buffers.  Otherwise, decoding with a wrong parameter
     set may occur.  To lessen this problem, it is RECOMMENDED either
     to overwrite only those parameter sets that have not been used for
     a sufficiently long time (to ensure that all related NALUs have
     been consumed), or to add a new parameter set instead (which may
     have negative consequences for the efficiency of the video
     coding).

  -  When new parameter sets are added, previously unused parameter set
     identifiers are used.  This avoids the problem identified in the



Wenger, et al.              Standards Track                    [Page 61]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


     previous paragraph.  However, in a multiparty session, unless a
     synchronized control protocol is used, there is a risk that
     multiple entities try to add different parameter sets for the same
     identifier, which has to be avoided.

  -  Adding or modifying parameter sets by using both principles B and
     C in the same RTP session may lead to inconsistencies of the
     parameter sets because of the lack of synchronization between the
     control and the RTP channel.  Therefore, principles B and C MUST
     NOT both be used in the same session unless sufficient
     synchronization can be provided.

  In some scenarios (e.g., when only the subset of this payload format
  specification corresponding to H.241 is used), it is not possible to
  employ out-of-band parameter set transmission.  In this case,
  parameter sets have to be transmitted in-band.  Here, the
  synchronization with the non-parameter-set-data in the bitstream is
  implicit, but the possibility of a loss has to be taken into account.
  The loss probability should be reduced using the mechanisms discussed
  above.

  -  When parameter sets are initially provided using principle A and
     then later added or updated in-band (principle C), there is a risk
     associated with updating the parameter sets delivered out-of-band.
     If receivers miss some in-band updates (for example, because of a
     loss or a late tune-in), those receivers attempt to decode the
     bitstream using out-dated parameters.  It is RECOMMENDED that
     parameter set IDs be partitioned between the out-of-band and in-
     band parameter sets.

  To allow for maximum flexibility and best performance from the H.264
  coder, it is recommended, if possible, to allow any sender to add its
  own parameter sets to be used in a session.  Setting the "parameter-
  add" parameter to false should only be done in cases where the
  session topology prevents a participant to add its own parameter
  sets.

9.  Security Considerations

  RTP packets using the payload format defined in this specification
  are subject to the security considerations discussed in the RTP
  specification [4], and in any appropriate RTP profile (for example,
  [16]).  This implies that confidentiality of the media streams is
  achieved by encryption; for example, through the application of SRTP
  [26].  Because the data compression used with this payload format is
  applied end-to-end, any encryption needs to be performed after
  compression.




Wenger, et al.              Standards Track                    [Page 62]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  A potential denial-of-service threat exists for data encodings using
  compression techniques that have non-uniform receiver-end
  computational load.  The attacker can inject pathological datagrams
  into the stream that are complex to decode and that cause the
  receiver to be overloaded.  H.264 is particularly vulnerable to such
  attacks, as it is extremely simple to generate datagrams containing
  NAL units that affect the decoding process of many future NAL units.
  Therefore, the usage of data origin authentication and data integrity
  protection of at least the RTP packet is RECOMMENDED; for example,
  with SRTP [26].

  Note that the appropriate mechanism to ensure confidentiality and
  integrity of RTP packets and their payloads is very dependent on the
  application and on the transport and signaling protocols employed.
  Thus, although SRTP is given as an example above, other possible
  choices exist.

  Decoders MUST exercise caution with respect to the handling of user
  data SEI messages, particularly if they contain active elements, and
  MUST restrict their domain of applicability to the presentation
  containing the stream.

  End-to-End security with either authentication, integrity or
  confidentiality protection will prevent a MANE from performing
  media-aware operations other than discarding complete packets.  And
  in the case of confidentiality protection it will even be prevented
  from performing discarding of packets in a media aware way.  To allow
  any MANE to perform its operations, it will be required to be a
  trusted entity which is included in the security context
  establishment.

10.  Congestion Control

  Congestion control for RTP SHALL be used in accordance with RFC 3550
  [4], and with any applicable RTP profile; e.g., RFC 3551 [16].  An
  additional requirement if best-effort service is being used is:
  users of this payload format MUST monitor packet loss to ensure that
  the packet loss rate is within acceptable parameters.  Packet loss is
  considered acceptable if a TCP flow across the same network path, and
  experiencing the same network conditions, would achieve an average
  throughput, measured on a reasonable timescale, that is not less than
  the RTP flow is achieving.  This condition can be satisfied by
  implementing congestion control mechanisms to adapt the transmission
  rate (or the number of layers subscribed for a layered multicast
  session), or by arranging for a receiver to leave the session if the
  loss rate is unacceptably high.





Wenger, et al.              Standards Track                    [Page 63]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  The bit rate adaptation necessary for obeying the congestion control
  principle is easily achievable when real-time encoding is used.
  However, when pre-encoded content is being transmitted, bandwidth
  adaptation requires the availability of more than one coded
  representation of the same content, at different bit rates, or the
  existence of non-reference pictures or sub-sequences [22] in the
  bitstream.  The switching between the different representations can
  normally be performed in the same RTP session; e.g., by employing a
  concept known as SI/SP slices of the Extended Profile, or by
  switching streams at IDR picture boundaries.  Only when non-
  downgradable parameters (such as the profile part of the
  profile/level ID) are required to be changed does it become necessary
  to terminate and re-start the media stream.  This may be accomplished
  by using a different RTP payload type.

  MANEs MAY follow the suggestions outlined in section 7.3 and remove
  certain unusable packets from the packet stream when that stream was
  damaged due to previous packet losses.  This can help reduce the
  network load in certain special cases.

11.  IANA Consideration

  IANA has registered one new MIME type; see section 8.1.




























Wenger, et al.              Standards Track                    [Page 64]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


12.  Informative Appendix: Application Examples

  This payload specification is very flexible in its use, in order to
  cover the extremely wide application space anticipated for H.264.
  However, this great flexibility also makes it difficult for an
  implementer to decide on a reasonable packetization scheme.  Some
  information on how to apply this specification to real-world
  scenarios is likely to appear in the form of academic publications
  and a test model software and description in the near future.
  However, some preliminary usage scenarios are described here as well.

12.1.  Video Telephony according to ITU-T Recommendation H.241
      Annex A

  H.323-based video telephony systems that use H.264 as an optional
  video compression scheme are required to support H.241 Annex A [15]
  as a packetization scheme.  The packetization mechanism defined in
  this Annex is technically identical with a small subset of this
  specification.

  When a system operates according to H.241 Annex A, parameter set NAL
  units are sent in-band.  Only Single NAL unit packets are used.  Many
  such systems are not sending IDR pictures regularly, but only when
  required by user interaction or by control protocol means; e.g., when
  switching between video channels in a Multipoint Control Unit or for
  error recovery requested by feedback.

12.2.  Video Telephony, No Slice Data Partitioning, No NAL Unit
      Aggregation

  The RTP part of this scheme is implemented and tested (though not the
  control-protocol part; see below).

  In most real-world video telephony applications, picture parameters
  such as picture size or optional modes never change during the
  lifetime of a connection.  Therefore, all necessary parameter sets
  (usually only one) are sent as a side effect of the capability
  exchange/announcement process, e.g., according to the SDP syntax
  specified in section 8.2 of this document.  As all necessary
  parameter set information is established before the RTP session
  starts, there is no need for sending any parameter set NAL units.
  Slice data partitioning is not used, either.  Thus, the RTP packet
  stream basically consists of NAL units that carry single coded
  slices.

  The encoder chooses the size of coded slice NAL units so that they
  offer the best performance.  Often, this is done by adapting the
  coded slice size to the MTU size of the IP network.  For small



Wenger, et al.              Standards Track                    [Page 65]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  picture sizes, this may result in a one-picture-per-one-packet
  strategy.  Intra refresh algorithms clean up the loss of packets and
  the resulting drift-related artifacts.

12.3.  Video Telephony, Interleaved Packetization Using NAL Unit
      Aggregation

  This scheme allows better error concealment and is used in H.263
  based designs using RFC 2429 packetization [10].  It has been
  implemented, and good results were reported [12].

  The VCL encoder codes the source picture so that all macroblocks
  (MBs) of one MB line are assigned to one slice.  All slices with even
  MB row addresses are combined into one STAP, and all slices with odd
  MB row addresses into another.  Those STAPs are transmitted as RTP
  packets.  The establishment of the parameter sets is performed as
  discussed above.

  Note that the use of STAPs is essential here, as the high number of
  individual slices (18 for a CIF picture) would lead to unacceptably
  high IP/UDP/RTP header overhead (unless the source coding tool FMO is
  used, which is not assumed in this scenario).  Furthermore, some
  wireless video transmission systems, such as H.324M and the IP-based
  video telephony specified in 3GPP, are likely to use relatively small
  transport packet size.  For example, a typical MTU size of H.223 AL3
  SDU is around 100 bytes [17].  Coding individual slices according to
  this packetization scheme provides further advantage in communication
  between wired and wireless networks, as individual slices are likely
  to be smaller than the preferred maximum packet size of wireless
  systems.  Consequently, a gateway can convert the STAPs used in a
  wired network into several RTP packets with only one NAL unit, which
  are preferred in a wireless network, and vice versa.

12.4.  Video Telephony with Data Partitioning

  This scheme has been implemented and has been shown to offer good
  performance, especially at higher packet loss rates [12].

  Data Partitioning is known to be useful only when some form of
  unequal error protection is available.  Normally, in single-session
  RTP environments, even error characteristics are assumed; i.e., the
  packet loss probability of all packets of the session is the same
  statistically.  However, there are means to reduce the packet loss
  probability of individual packets in an RTP session.  A FEC packet
  according to RFC 2733 [18], for example, specifies which media
  packets are associated with the FEC packet.





Wenger, et al.              Standards Track                    [Page 66]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  In all cases, the incurred overhead is substantial but is in the same
  order of magnitude as the number of bits that have otherwise been
  spent for intra information.  However, this mechanism does not add
  any delay to the system.

  Again, the complete parameter set establishment is performed through
  control protocol means.

12.5.  Video Telephony or Streaming with FUs and Forward Error
      Correction

  This scheme has been implemented and has been shown to provide good
  performance, especially at higher packet loss rates [19].

  The most efficient means to combat packet losses for scenarios where
  retransmissions are not applicable is forward error correction (FEC).
  Although application layer, end-to-end use of FEC is often less
  efficient than an FEC-based protection of individual links
  (especially when links of different characteristics are in the
  transmission path), application layer, end-to-end FEC is unavoidable
  in some scenarios.  RFC 2733 [18] provides means to use generic,
  application layer, end-to-end FEC in packet-loss environments.  A
  binary forward error correcting code is generated by applying the XOR
  operation to the bits at the same bit position in different packets.
  The binary code can be specified by the parameters (n,k) in which k
  is the number of information packets used in the connection and n is
  the total number of packets generated for k information packets;
  i.e., n-k parity packets are generated for k information packets.

  When a code is used with parameters (n,k) within the RFC 2733
  framework, the following properties are well known:

  a) If applied over one RTP packet, RFC 2733 provides only packet
     repetition.

  b) RFC 2733 is most bit rate efficient if XOR-connected packets have
     equal length.

  c) At the same packet loss probability p and for a fixed k, the
     greater the value of n is, the smaller the residual error
     probability becomes.  For example, for a packet loss probability
     of 10%, k=1, and n=2, the residual error probability is about 1%,
     whereas for n=3, the residual error probability is about 0.1%.

  d) At the same packet loss probability p and for a fixed code rate
     k/n, the greater the value of n is, the smaller the residual error
     probability becomes.  For example, at a packet loss probability of
     p=10%, k=1 and n=2, the residual error rate is about 1%, whereas



Wenger, et al.              Standards Track                    [Page 67]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


     for an extended Golay code with k=12 and n=24, the residual error
     rate is about 0.01%.

  For applying RFC 2733 in combination with H.264 baseline coded video
  without using FUs, several options might be considered:

  1) The video encoder produces NAL units for which each video frame is
     coded in a single slice.  Applying FEC, one could use a simple
     code; e.g., (n=2, k=1).  That is, each NAL unit would basically
     just be repeated.  The disadvantage is obviously the bad code
     performance according to d), above, and the low flexibility, as
     only (n, k=1) codes can be used.

  2) The video encoder produces NAL units for which each video frame is
     encoded in one or more consecutive slices.  Applying FEC, one
     could use a better code, e.g., (n=24, k=12), over a sequence of
     NAL units.  Depending on the number of RTP packets per frame, a
     loss may introduce a significant delay, which is reduced when more
     RTP packets are used per frame.  Packets of completely different
     length might also be connected, which decreases bit rate
     efficiency according to b), above.  However, with some care and
     for slices of 1kb or larger, similar length (100-200 bytes
     difference) may be produced, which will not lower the bit
     efficiency catastrophically.

  3) The video encoder produces NAL units, for which a certain frame
     contains k slices of possibly almost equal length.  Then, applying
     FEC, a better code, e.g., (n=24, k=12), can be used over the
     sequence of NAL units for each frame.  The delay compared to that
     of 2), above,  may be reduced, but several disadvantages are
     obvious.  First, the coding efficiency of the encoded video is
     lowered significantly, as slice-structured coding reduces intra-
     frame prediction and additional slice overhead is necessary.
     Second, pre-encoded content or, when operating over a gateway, the
     video is usually not appropriately coded with k slices such that
     FEC can be applied.  Finally, the encoding of video producing k
     slices of equal length is not straightforward and might require
     more than one encoding pass.

  Many of the mentioned disadvantages can be avoided by applying FUs in
  combination with FEC.  Each NAL unit can be split into any number of
  FUs of basically equal length; therefore, FEC with a reasonable k and
  n can be applied, even if the encoder made no effort to produce
  slices of equal length.  For example, a coded slice NAL unit
  containing an entire frame can be split to k FUs, and a parity check
  code (n=k+1, k) can be applied.  However, this has the disadvantage





Wenger, et al.              Standards Track                    [Page 68]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  that unless all created fragments can be recovered, the whole slice
  will be lost.  Thus a larger section is lost than would be if the
  frame had been split into several slices.

  The presented technique makes it possible to achieve good
  transmission error tolerance, even if no additional source coding
  layer redundancy (such as periodic intra frames) is present.
  Consequently, the same coded video sequence can be used to achieve
  the maximum compression efficiency and quality over error-free
  transmission and for transmission over error-prone networks.
  Furthermore, the technique allows the application of FEC to pre-
  encoded sequences without adding delay.  In this case, pre-encoded
  sequences that are not encoded for error-prone networks can still be
  transmitted almost reliably without adding extensive delays.  In
  addition, FUs of equal length result in a bit rate efficient use of
  RFC 2733.

  If the error probability depends on the length of the transmitted
  packet (e.g., in case of mobile transmission [14]), the benefits of
  applying FUs with FEC are even more obvious.  Basically, the
  flexibility of the size of FUs allows appropriate FEC to be applied
  for each NAL unit and unequal error protection of NAL units.

  When FUs and FEC are used, the incurred overhead is substantial but
  is in the same order of magnitude as the number of bits that have to
  be spent for intra-coded macroblocks if no FEC is applied.  In [19],
  it was shown that the overall performance of the FEC-based approach
  enhanced quality when using the same error rate and same overall bit
  rate, including the overhead.

12.6.  Low Bit-Rate Streaming

  This scheme has been implemented with H.263 and non-standard RTP
  packetization and has given good results [20].  There is no technical
  reason why similarly good results could not be achievable with H.264.

  In today's Internet streaming, some of the offered bit rates are
  relatively low in order to allow terminals with dial-up modems to
  access the content.  In wired IP networks, relatively large packets,
  say 500 - 1500 bytes, are preferred to smaller and more frequently
  occurring packets in order to reduce network congestion.  Moreover,
  use of large packets decreases the amount of RTP/UDP/IP header
  overhead.  For low bit-rate video, the use of large packets means
  that sometimes up to few pictures should be encapsulated in one
  packet.






Wenger, et al.              Standards Track                    [Page 69]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  However, loss of a packet including many coded pictures would have
  drastic consequences for visual quality, as there is practically no
  other way to conceal a loss of an entire picture than to repeat the
  previous one.  One way to construct relatively large packets and
  maintain possibilities for successful loss concealment is to
  construct MTAPs that contain interleaved slices from several
  pictures.  An MTAP should not contain spatially adjacent slices from
  the same picture or spatially overlapping slices from any picture.
  If a packet is lost, it is likely that a lost slice is surrounded by
  spatially adjacent slices of the same picture and spatially
  corresponding slices of the temporally previous and succeeding
  pictures.  Consequently, concealment of the lost slice is likely to
  be relatively successful.

12.7.  Robust Packet Scheduling in Video Streaming

  Robust packet scheduling has been implemented with MPEG-4 Part 2 and
  simulated in a wireless streaming environment [21].  There is no
  technical reason why similar or better results could not be
  achievable with H.264.

  Streaming clients typically have a receiver buffer that is capable of
  storing a relatively large amount of data.  Initially, when a
  streaming session is established, a client does not start playing the
  stream back immediately.  Rather, it typically buffers the incoming
  data for a few seconds.  This buffering helps maintain continuous
  playback, as, in case of occasional increased transmission delays or
  network throughput drops, the client can decode and play buffered
  data.  Otherwise, without initial buffering, the client has to freeze
  the display, stop decoding, and wait for incoming data.  The
  buffering is also necessary for either automatic or selective
  retransmission in any protocol level.  If any part of a picture is
  lost, a retransmission mechanism may be used to resend the lost data.
  If the retransmitted data is received before its scheduled decoding
  or playback time, the loss is recovered perfectly.  Coded pictures
  can be ranked according to their importance in the subjective quality
  of the decoded sequence.  For example, non-reference pictures, such
  as conventional B pictures, are subjectively least important, as
  their absence does not affect decoding of any other pictures.  In
  addition to non-reference pictures, the ITU-T H.264 | ISO/IEC
  14496-10 standard includes a temporal scalability method called sub-
  sequences [22].  Subjective ranking can also be made on coded slice
  data partition or slice group basis.  Coded slices and coded slice
  data partitions that are subjectively the most important can be sent
  earlier than their decoding order indicates, whereas coded slices and
  coded slice data partitions that are subjectively the least important
  can be sent later than their natural coding order indicates.
  Consequently, any retransmitted parts of the most important slices



Wenger, et al.              Standards Track                    [Page 70]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  and coded slice data partitions are more likely to be received before
  their scheduled decoding or playback time compared to the least
  important slices and slice data partitions.

13.  Informative Appendix: Rationale for Decoding Order Number

13.1.  Introduction

  The Decoding Order Number (DON) concept was introduced mainly to
  enable efficient multi-picture slice interleaving (see section 12.6)
  and robust packet scheduling (see section 12.7).  In both of these
  applications, NAL units are transmitted out of decoding order.  DON
  indicates the decoding order of NAL units and should be used in the
  receiver to recover the decoding order.  Example use cases for
  efficient multi-picture slice interleaving and for robust packet
  scheduling are given in sections 13.2 and 13.3, respectively.
  Section 13.4 describes the benefits of the DON concept in error
  resiliency achieved by redundant coded pictures.  Section 13.5
  summarizes considered alternatives to DON and justifies why DON was
  chosen to this RTP payload specification.

13.2.  Example of Multi-Picture Slice Interleaving

  An example of multi-picture slice interleaving follows.  A subset of
  a coded video sequence is depicted below in output order.  R denotes
  a reference picture, N denotes a non-reference picture, and the
  number indicates a relative output time.

     ... R1 N2 R3 N4 R5 ...

  The decoding order of these pictures from left to right is as
  follows:

     ... R1 R3 N2 R5 N4 ...

  The NAL units of pictures R1, R3, N2, R5, and N4 are marked with a
  DON equal to 1, 2, 3, 4, and 5, respectively.














Wenger, et al.              Standards Track                    [Page 71]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  Each reference picture consists of three slice groups that are
  scattered as follows (a number denotes the slice group number for
  each macroblock in a QCIF frame):

     0 1 2 0 1 2 0 1 2 0 1
     2 0 1 2 0 1 2 0 1 2 0
     1 2 0 1 2 0 1 2 0 1 2
     0 1 2 0 1 2 0 1 2 0 1
     2 0 1 2 0 1 2 0 1 2 0
     1 2 0 1 2 0 1 2 0 1 2
     0 1 2 0 1 2 0 1 2 0 1
     2 0 1 2 0 1 2 0 1 2 0
     1 2 0 1 2 0 1 2 0 1 2


  For the sake of simplicity, we assume that all the macroblocks of a
  slice group are included in one slice.  Three MTAPs are constructed
  from three consecutive reference pictures so that each MTAP contains
  three aggregation units, each of which contains all the macroblocks
  from one slice group.  The first MTAP contains slice group 0 of
  picture R1, slice group 1 of picture R3, and slice group 2 of
  picture R5.  The second MTAP contains slice group 1 of picture R1,
  slice group 2 of picture R3, and slice group 0 of picture R5.  The
  third MTAP contains slice group 2 of picture R1, slice group 0 of
  picture R3, and slice group 1 of picture R5.  Each non-reference
  picture is encapsulated into an STAP-B.

  Consequently, the transmission order of NAL units is the following:

     R1, slice group 0, DON 1, carried in MTAP,   RTP SN: N
     R3, slice group 1, DON 2, carried in MTAP,   RTP SN: N
     R5, slice group 2, DON 4, carried in MTAP,   RTP SN: N
     R1, slice group 1, DON 1, carried in MTAP,   RTP SN: N+1
     R3, slice group 2, DON 2, carried in MTAP,   RTP SN: N+1
     R5, slice group 0, DON 4, carried in MTAP,   RTP SN: N+1
     R1, slice group 2, DON 1, carried in MTAP,   RTP SN: N+2
     R3, slice group 1, DON 2, carried in MTAP,   RTP SN: N+2
     R5, slice group 0, DON 4, carried in MTAP,   RTP SN: N+2
     N2,                DON 3, carried in STAP-B, RTP SN: N+3
     N4,                DON 5, carried in STAP-B, RTP SN: N+4

  The receiver is able to organize the NAL units back in decoding order
  based on the value of DON associated with each NAL unit.

  If one of the MTAPs is lost, the spatially adjacent and temporally
  co-located macroblocks are received and can be used to conceal the
  loss efficiently.  If one of the STAPs is lost, the effect of the
  loss does not propagate temporally.



Wenger, et al.              Standards Track                    [Page 72]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


13.3.  Example of Robust Packet Scheduling

  An example of robust packet scheduling follows.  The communication
  system used in the example consists of the following components in
  the order that the video is processed from source to sink:

     o camera and capturing
     o pre-encoding buffer
     o encoder
     o encoded picture buffer
     o transmitter
     o transmission channel
     o receiver
     o receiver buffer
     o decoder
     o decoded picture buffer
     o display

  The video communication system used in the example operates as
  follows.  Note that processing of the video stream happens gradually
  and at the same time in all components of the system.  The source
  video sequence is shot and captured to a pre-encoding buffer.  The
  pre-encoding buffer can be used to order pictures from sampling order
  to encoding order or to analyze multiple uncompressed frames for bit
  rate control purposes, for example.  In some cases, the pre-encoding
  buffer may not exist; instead, the sampled pictures are encoded right
  away.  The encoder encodes pictures from the pre-encoding buffer and
  stores the output; i.e., coded pictures, to the encoded picture
  buffer.  The transmitter encapsulates the coded pictures from the
  encoded picture buffer to transmission packets and sends them to a
  receiver through a transmission channel.  The receiver stores the
  received packets to the receiver buffer.  The receiver buffering
  process typically includes buffering for transmission delay jitter.
  The receiver buffer can also be used to recover correct decoding
  order of coded data.  The decoder reads coded data from the receiver
  buffer and produces decoded pictures as output into the decoded
  picture buffer.  The decoded picture buffer is used to recover the
  output (or display) order of pictures.  Finally, pictures are
  displayed.

  In the following example figures, I denotes an IDR picture, R denotes
  a reference picture, N denotes a non-reference picture, and the
  number after I, R, or N indicates the sampling time relative to the
  previous IDR picture in decoding order.  Values below the sequence of
  pictures indicate scaled system clock timestamps.  The system clock
  is initialized arbitrarily in this example, and time runs from left
  to right.  Each I, R, and N picture is mapped into the same timeline
  compared to the previous processing step, if any, assuming that



Wenger, et al.              Standards Track                    [Page 73]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  encoding, transmission, and decoding take no time.  Thus, events
  happening at the same time are located in the same column throughout
  all example figures.

  A subset of a sequence of coded pictures is depicted below in
  sampling order.

      ...  N58 N59 I00 N01 N02 R03 N04 N05 R06 ... N58 N59 I00 N01 ...
      ... --|---|---|---|---|---|---|---|---|- ... -|---|---|---|- ...
      ...  58  59  60  61  62  63  64  65  66  ... 128 129 130 131 ...

     Figure 16.  Sequence of pictures in sampling order

  The sampled pictures are buffered in the pre-encoding buffer to
  arrange them in encoding order.  In this example, we assume that the
  non-reference pictures are predicted from both the previous and the
  next reference picture in output order, except for the non-reference
  pictures immediately preceding an IDR picture, which are predicted
  only from the previous reference picture in output order.  Thus, the
  pre-encoding buffer has to contain at least two pictures, and the
  buffering causes a delay of two picture intervals.  The output of the
  pre-encoding buffering process and the encoding (and decoding) order
  of the pictures are as follows:

               ... N58 N59 I00 R03 N01 N02 R06 N04 N05 ...
               ... -|---|---|---|---|---|---|---|---|- ...
               ... 60  61  62  63  64  65  66  67  68  ...

     Figure 17.  Re-ordered pictures in the pre-encoding buffer

  The encoder or the transmitter can set the value of DON for each
  picture to a value of DON for the previous picture in decoding order
  plus one.

  For the sake of simplicity, let us assume that:

  o  the frame rate of the sequence is constant,
  o  each picture consists of only one slice,
  o  each slice is encapsulated in a single NAL unit packet,
  o  there is no transmission delay, and
  o  pictures are transmitted at constant intervals (that is, 1 / frame
     rate).









Wenger, et al.              Standards Track                    [Page 74]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  When pictures are transmitted in decoding order, they are received as
  follows:

               ... N58 N59 I00 R03 N01 N02 R06 N04 N05 ...
               ... -|---|---|---|---|---|---|---|---|- ...
               ... 60  61  62  63  64  65  66  67  68  ...

     Figure 18.  Received pictures in decoding order

  The OPTIONAL sprop-interleaving-depth MIME type parameter is set to
  0, as the transmission (or reception) order is identical to the
  decoding order.

  The decoder has to buffer for one picture interval initially in its
  decoded picture buffer to organize pictures from decoding order to
  output order as depicted below:

                   ... N58 N59 I00 N01 N02 R03 N04 N05 R06 ...
                   ... -|---|---|---|---|---|---|---|---|- ...
                   ... 61  62  63  64  65  66  67  68  69  ...

     Figure 19.  Output order

  The amount of required initial buffering in the decoded picture
  buffer can be signaled in the buffering period SEI message or with
  the num_reorder_frames syntax element of H.264 video usability
  information.  num_reorder_frames indicates the maximum number of
  frames, complementary field pairs, or non-paired fields that precede
  any frame, complementary field pair, or non-paired field in the
  sequence in decoding order and that follow it in output order.  For
  the sake of simplicity, we assume that num_reorder_frames is used to
  indicate the initial buffer in the decoded picture buffer.  In this
  example, num_reorder_frames is equal to 1.

  It can be observed that if the IDR picture I00 is lost during
  transmission and a retransmission request is issued when the value of
  the system clock is 62, there is one picture interval of time (until
  the system clock reaches timestamp 63) to receive the retransmitted
  IDR picture I00.












Wenger, et al.              Standards Track                    [Page 75]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  Let us then assume that IDR pictures are transmitted two frame
  intervals earlier than their decoding position; i.e., the pictures
  are transmitted as follows:

                      ...  I00 N58 N59 R03 N01 N02 R06 N04 N05 ...
                      ... --|---|---|---|---|---|---|---|---|- ...
                      ...  62  63  64  65  66  67  68  69  70  ...

     Figure 20.  Interleaving: Early IDR pictures in sending order

  The OPTIONAL sprop-interleaving-depth MIME type parameter is set
  equal to 1 according to its definition.  (The value of sprop-
  interleaving-depth in this example can be derived as follows:
  Picture I00 is the only picture preceding picture N58 or N59 in
  transmission order and following it in decoding order.  Except for
  pictures I00, N58, and N59, the transmission order is the same as the
  decoding order of pictures.  As a coded picture is encapsulated into
  exactly one NAL unit, the value of sprop-interleaving-depth is equal
  to the maximum number of pictures preceding any picture in
  transmission order and following the picture in decoding order.)

  The receiver buffering process contains two pictures at a time
  according to the value of the sprop-interleaving-depth parameter and
  orders pictures from the reception order to the correct decoding
  order based on the value of DON associated with each picture.  The
  output of the receiver buffering process is as follows:

                           ... N58 N59 I00 R03 N01 N02 R06 N04 N05 ...
                           ... -|---|---|---|---|---|---|---|---|- ...
                           ... 63  64  65  66  67  68  69  70  71  ...

     Figure 21.  Interleaving: Receiver buffer

  Again, an initial buffering delay of one picture interval is needed
  to organize pictures from decoding order to output order, as depicted
  below:

                               ... N58 N59 I00 N01 N02 R03 N04 N05 ...
                               ... -|---|---|---|---|---|---|---|- ...
                               ... 64  65  66  67  68  69  70  71  ...

     Figure 22.  Interleaving: Receiver buffer after reordering

  Note that the maximum delay that IDR pictures can undergo during
  transmission, including possible application, transport, or link
  layer retransmission, is equal to three picture intervals.  Thus, the





Wenger, et al.              Standards Track                    [Page 76]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  loss resiliency of IDR pictures is improved in systems supporting
  retransmission compared to the case in which pictures were
  transmitted in their decoding order.

13.4.  Robust Transmission Scheduling of Redundant Coded Slices

  A redundant coded picture is a coded representation of a picture or a
  part of a picture that is not used in the decoding process if the
  corresponding primary coded picture is correctly decoded.  There
  should be no noticeable difference between any area of the decoded
  primary picture and a corresponding area that would result from
  application of the H.264 decoding process for any redundant picture
  in the same access unit.  A redundant coded slice is a coded slice
  that is a part of a redundant coded picture.

  Redundant coded pictures can be used to provide unequal error
  protection in error-prone video transmission.  If a primary coded
  representation of a picture is decoded incorrectly, a corresponding
  redundant coded picture can be decoded.  Examples of applications and
  coding techniques using the redundant codec picture feature include
  the video redundancy coding [23] and the protection of "key pictures"
  in multicast streaming [24].

  One property of many error-prone video communications systems is that
  transmission errors are often bursty.  Therefore, they may affect
  more than one consecutive transmission packets in transmission order.
  In low bit-rate video communication, it is relatively common that an
  entire coded picture can be encapsulated into one transmission
  packet.  Consequently, a primary coded picture and the corresponding
  redundant coded pictures may be transmitted in consecutive packets in
  transmission order.  To make the transmission scheme more tolerant of
  bursty transmission errors, it is beneficial to transmit the primary
  coded picture and redundant coded picture separated by more than a
  single packet.  The DON concept enables this.

13.5.  Remarks on Other Design Possibilities

  The slice header syntax structure of the H.264 coding standard
  contains the frame_num syntax element that can indicate the decoding
  order of coded frames.  However, the usage of the frame_num syntax
  element is not feasible or desirable to recover the decoding order,
  due to the following reasons:

  o  The receiver is required to parse at least one slice header per
     coded picture (before passing the coded data to the decoder).






Wenger, et al.              Standards Track                    [Page 77]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  o  Coded slices from multiple coded video sequences cannot be
     interleaved, as the frame number syntax element is reset to 0 in
     each IDR picture.

  o  The coded fields of a complementary field pair share the same
     value of the frame_num syntax element.  Thus, the decoding order
     of the coded fields of a complementary field pair cannot be
     recovered based on the frame_num syntax element or any other
     syntax element of the H.264 coding syntax.

  The RTP payload format for transport of MPEG-4 elementary streams
  [25] enables interleaving of access units and transmission of
  multiple access units in the same RTP packet.  An access unit is
  specified in the H.264 coding standard to comprise all NAL units
  associated with a primary coded picture according to subclause
  7.4.1.2 of [1].  Consequently, slices of different pictures cannot be
  interleaved, and the multi-picture slice interleaving technique (see
  section 12.6) for improved error resilience cannot be used.

14.  Acknowledgements

  The authors thank Roni Even, Dave Lindbergh, Philippe Gentric,
  Gonzalo Camarillo, Gary Sullivan, Joerg Ott, and Colin Perkins for
  careful review.

15.  References

15.1.  Normative References

  [1]  ITU-T Recommendation H.264, "Advanced video coding for generic
       audiovisual services", May 2003.

  [2]  ISO/IEC International Standard 14496-10:2003.

  [3]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [4]  Schulzrinne, H.,  Casner, S., Frederick, R., and V. Jacobson,
       "RTP: A Transport Protocol for Real-Time Applications", STD 64,
       RFC 3550, July 2003.

  [5]  Handley, M. and V. Jacobson, "SDP: Session Description
       Protocol", RFC 2327, April 1998.

  [6]  Josefsson, S., "The Base16, Base32, and Base64 Data Encodings",
       RFC 3548, July 2003.





Wenger, et al.              Standards Track                    [Page 78]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  [7]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
       Session Description Protocol (SDP)", RFC 3264, June 2002.

15.2.  Informative References

  [8]  "Draft ITU-T Recommendation and Final Draft International
       Standard of Joint Video Specification (ITU-T Rec. H.264 |
       ISO/IEC 14496-10 AVC)", available from http://ftp3.itu.int/av-
       arch/jvt-site/2003_03_Pattaya/JVT-G050r1.zip, May 2003.

  [9]  Luthra, A., Sullivan, G.J., and T. Wiegand (eds.), Special Issue
       on H.264/AVC. IEEE Transactions on Circuits and Systems on Video
       Technology, July 2003.

  [10] Bormann, C., Cline, L., Deisher, G., Gardos, T., Maciocco, C.,
       Newell, D., Ott, J., Sullivan, G., Wenger, S., and C. Zhu, "RTP
       Payload Format for the 1998 Version of ITU-T Rec. H.263 Video
       (H.263+)", RFC 2429, October 1998.

  [11] ISO/IEC IS 14496-2.

  [12] Wenger, S., "H.26L over IP", IEEE Transaction on Circuits and
       Systems for Video technology, Vol. 13, No. 7, July 2003.

  [13] Wenger, S., "H.26L over IP: The IP Network Adaptation Layer",
       Proceedings Packet Video Workshop 02, April 2002.

  [14] Stockhammer, T., Hannuksela, M.M., and S. Wenger, "H.26L/JVT
       Coding Network Abstraction Layer and IP-based Transport" in
       Proc. ICIP 2002, Rochester, NY, September 2002.

  [15] ITU-T Recommendation H.241, "Extended video procedures and
       control signals for H.300 series terminals", 2004.

  [16] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video
       Conferences with Minimal Control", STD 65, RFC 3551, July 2003.

  [17] ITU-T Recommendation H.223, "Multiplexing protocol for low bit
       rate multimedia communication", July 2001.

  [18] Rosenberg, J. and H. Schulzrinne, "An RTP Payload Format for
       Generic Forward Error Correction", RFC 2733, December 1999.

  [19] Stockhammer, T., Wiegand, T., Oelbaum, T., and F. Obermeier,
       "Video Coding and Transport Layer Techniques for H.264/AVC-Based
       Transmission over Packet-Lossy Networks", IEEE International
       Conference on Image Processing (ICIP 2003), Barcelona, Spain,
       September 2003.



Wenger, et al.              Standards Track                    [Page 79]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  [20] Varsa, V. and M. Karczewicz, "Slice interleaving in compressed
       video packetization", Packet Video Workshop 2000.

  [21] Kang, S.H. and A. Zakhor, "Packet scheduling algorithm for
       wireless video streaming," International Packet Video Workshop
       2002.

  [22] Hannuksela, M.M., "Enhanced concept of GOP", JVT-B042, available
       http://ftp3.itu.int/av-arch/video-site/0201_Gen/JVT-B042.doc,
       January 2002.

  [23] Wenger, S., "Video Redundancy Coding in H.263+", 1997
       International Workshop on Audio-Visual Services over Packet
       Networks, September 1997.

  [24] Wang, Y.-K., Hannuksela, M.M., and M. Gabbouj, "Error Resilient
       Video Coding Using Unequally Protected Key Pictures", in Proc.
       International Workshop VLBV03, September 2003.

  [25] van der Meer, J., Mackie, D., Swaminathan, V., Singer, D., and
       P. Gentric, "RTP Payload Format for Transport of MPEG-4
       Elementary Streams", RFC 3640, November 2003.

  [26] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
       Norrman, "The Secure Real-time Transport Protocol (SRTP)", RFC
       3711, March 2004.

  [27] Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time Streaming
       Protocol (RTSP)", RFC 2326, April 1998.

  [28] Handley, M., Perkins, C., and E. Whelan, "Session Announcement
       Protocol", RFC 2974, October 2000.

  [29] ISO/IEC 14496-15: "Information technology - Coding of audio-
       visual objects - Part 15: Advanced Video Coding (AVC) file
       format".

  [30] Castagno, R. and D. Singer, "MIME Type Registrations for 3rd
       Generation Partnership Project (3GPP) Multimedia files", RFC
       3839, July 2004.











Wenger, et al.              Standards Track                    [Page 80]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


Authors' Addresses

  Stephan Wenger
  TU Berlin / Teles AG
  Franklinstr. 28-29
  D-10587 Berlin
  Germany

  Phone: +49-172-300-0813
  EMail: [email protected]


  Miska M. Hannuksela
  Nokia Corporation
  P.O. Box 100
  33721 Tampere
  Finland

  Phone: +358-7180-73151
  EMail: [email protected]


  Thomas Stockhammer
  Nomor Research
  D-83346 Bergen
  Germany

  Phone: +49-8662-419407
  EMail: [email protected]


  Magnus Westerlund
  Multimedia Technologies
  Ericsson Research EAB/TVA/A
  Ericsson AB
  Torshamsgatan 23
  SE-164 80 Stockholm
  Sweden

  Phone: +46-8-7190000
  EMail: [email protected]










Wenger, et al.              Standards Track                    [Page 81]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


  David Singer
  QuickTime Engineering
  Apple
  1 Infinite Loop MS 302-3MT
  Cupertino
  CA 95014
  USA

  Phone +1 408 974-3162
  EMail: [email protected]









































Wenger, et al.              Standards Track                    [Page 82]

RFC 3984           RTP Payload Format for H.264 Video      February 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the IETF's procedures with respect to rights in IETF Documents can
  be found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].


Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.






Wenger, et al.              Standards Track                    [Page 83]