Network Working Group                                P. Saint-Andre, Ed.
Request for Comments: 3920                    Jabber Software Foundation
Category: Standards Track                                   October 2004


       Extensible Messaging and Presence Protocol (XMPP): Core

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2004).

Abstract

  This memo defines the core features of the Extensible Messaging and
  Presence Protocol (XMPP), a protocol for streaming Extensible Markup
  Language (XML) elements in order to exchange structured information
  in close to real time between any two network endpoints.  While XMPP
  provides a generalized, extensible framework for exchanging XML data,
  it is used mainly for the purpose of building instant messaging and
  presence applications that meet the requirements of RFC 2779.























Saint-Andre, Ed.            Standards Track                     [Page 1]

RFC 3920                       XMPP Core                    October 2004


Table of Contents

  1.   Introduction . . . . . . . . . . . . . . . . . . . . . . . .   2
  2.   Generalized Architecture . . . . . . . . . . . . . . . . . .   3
  3.   Addressing Scheme  . . . . . . . . . . . . . . . . . . . . .   5
  4.   XML Streams  . . . . . . . . . . . . . . . . . . . . . . . .   7
  5.   Use of TLS . . . . . . . . . . . . . . . . . . . . . . . . .  19
  6.   Use of SASL  . . . . . . . . . . . . . . . . . . . . . . . .  27
  7.   Resource Binding . . . . . . . . . . . . . . . . . . . . . .  37
  8.   Server Dialback  . . . . . . . . . . . . . . . . . . . . . .  41
  9.   XML Stanzas  . . . . . . . . . . . . . . . . . . . . . . . .  48
  10.  Server Rules for Handling XML Stanzas  . . . . . . . . . . .  58
  11.  XML Usage within XMPP  . . . . . . . . . . . . . . . . . . .  60
  12.  Core Compliance Requirements . . . . . . . . . . . . . . . .  62
  13.  Internationalization Considerations  . . . . . . . . . . . .  64
  14.  Security Considerations  . . . . . . . . . . . . . . . . . .  64
  15.  IANA Considerations  . . . . . . . . . . . . . . . . . . . .  69
  16.  References . . . . . . . . . . . . . . . . . . . . . . . . .  71
  A.   Nodeprep . . . . . . . . . . . . . . . . . . . . . . . . . .  75
  B.   Resourceprep . . . . . . . . . . . . . . . . . . . . . . . .  76
  C.   XML Schemas  . . . . . . . . . . . . . . . . . . . . . . . .  78
  D.   Differences Between Core Jabber Protocols and XMPP . . . . .  87
  Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . .  89
  Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . .  89
  Author's Address. . . . . . . . . . . . . . . . . . . . . . . . .  89
  Full Copyright Statement. . . . . . . . . . . . . . . . . . . . .  90

1.  Introduction

1.1.  Overview

  The Extensible Messaging and Presence Protocol (XMPP) is an open
  Extensible Markup Language [XML] protocol for near-real-time
  messaging, presence, and request-response services.  The basic syntax
  and semantics were developed originally within the Jabber open-source
  community, mainly in 1999.  In 2002, the XMPP WG was chartered with
  developing an adaptation of the Jabber protocol that would be
  suitable as an IETF instant messaging (IM) and presence technology.
  As a result of work by the XMPP WG, the current memo defines the core
  features of XMPP 1.0; the extensions required to provide the instant
  messaging and presence functionality defined in RFC 2779 [IMP-REQS]
  are specified in the Extensible Messaging and Presence Protocol
  (XMPP): Instant Messaging and Presence [XMPP-IM].








Saint-Andre, Ed.            Standards Track                     [Page 2]

RFC 3920                       XMPP Core                    October 2004


1.2.  Terminology

  The capitalized key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
  "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in BCP
  14, RFC 2119 [TERMS].

2.  Generalized Architecture

2.1.  Overview

  Although XMPP is not wedded to any specific network architecture, to
  date it usually has been implemented via a client-server architecture
  wherein a client utilizing XMPP accesses a server over a [TCP]
  connection, and servers also communicate with each other over TCP
  connections.

  The following diagram provides a high-level overview of this
  architecture (where "-" represents communications that use XMPP and
  "=" represents communications that use any other protocol).

  C1----S1---S2---C3
        |
  C2----+--G1===FN1===FC1

  The symbols are as follows:

  o  C1, C2, C3 = XMPP clients

  o  S1, S2 = XMPP servers

  o  G1 = A gateway that translates between XMPP and the protocol(s)
     used on a foreign (non-XMPP) messaging network

  o  FN1 = A foreign messaging network

  o  FC1 = A client on a foreign messaging network

2.2.  Server

  A server acts as an intelligent abstraction layer for XMPP
  communications.  Its primary responsibilities are:

  o  to manage connections from or sessions for other entities, in the
     form of XML streams (Section 4) to and from authorized clients,
     servers, and other entities





Saint-Andre, Ed.            Standards Track                     [Page 3]

RFC 3920                       XMPP Core                    October 2004


  o  to route appropriately-addressed XML stanzas (Section 9) among
     such entities over XML streams

  Most XMPP-compliant servers also assume responsibility for the
  storage of data that is used by clients (e.g., contact lists for
  users of XMPP-based instant messaging and presence applications); in
  this case, the XML data is processed directly by the server itself on
  behalf of the client and is not routed to another entity.

2.3.  Client

  Most clients connect directly to a server over a [TCP] connection and
  use XMPP to take full advantage of the functionality provided by a
  server and any associated services.  Multiple resources (e.g.,
  devices or locations) MAY connect simultaneously to a server on
  behalf of each authorized client, with each resource differentiated
  by the resource identifier of an XMPP address (e.g., <node@domain/
  home> vs. <node@domain/work>) as defined under Addressing Scheme
  (Section 3).  The RECOMMENDED port for connections between a client
  and a server is 5222, as registered with the IANA (see Port Numbers
  (Section 15.9)).

2.4.  Gateway

  A gateway is a special-purpose server-side service whose primary
  function is to translate XMPP into the protocol used by a foreign
  (non-XMPP) messaging system, as well as to translate the return data
  back into XMPP.  Examples are gateways to email (see [SMTP]),
  Internet Relay Chat (see [IRC]), SIMPLE (see [SIMPLE]), Short Message
  Service (SMS), and legacy instant messaging services such as AIM,
  ICQ, MSN Messenger, and Yahoo! Instant Messenger.  Communications
  between gateways and servers, and between gateways and the foreign
  messaging system, are not defined in this document.

2.5.  Network

  Because each server is identified by a network address and because
  server-to-server communications are a straightforward extension of
  the client-to-server protocol, in practice, the system consists of a
  network of servers that inter-communicate.  Thus, for example,
  <[email protected]> is able to exchange messages, presence, and
  other information with <[email protected]>.  This pattern is familiar
  from messaging protocols (such as [SMTP]) that make use of network
  addressing standards.  Communications between any two servers are
  OPTIONAL.  If enabled, such communications SHOULD occur over XML
  streams that are bound to [TCP] connections.  The RECOMMENDED port
  for connections between servers is 5269, as registered with the IANA
  (see Port Numbers (Section 15.9)).



Saint-Andre, Ed.            Standards Track                     [Page 4]

RFC 3920                       XMPP Core                    October 2004


3.  Addressing Scheme

3.1.  Overview

  An entity is anything that can be considered a network endpoint
  (i.e., an ID on the network) and that can communicate using XMPP.
  All such entities are uniquely addressable in a form that is
  consistent with RFC 2396 [URI].  For historical reasons, the address
  of an XMPP entity is called a Jabber Identifier or JID.  A valid JID
  contains a set of ordered elements formed of a domain identifier,
  node identifier, and resource identifier.

  The syntax for a JID is defined below using the Augmented Backus-Naur
  Form as defined in [ABNF].  (The IPv4address and IPv6address rules
  are defined in Appendix B of [IPv6]; the allowable character
  sequences that conform to the node rule are defined by the Nodeprep
  profile of [STRINGPREP] as documented in Appendix A of this memo; the
  allowable character sequences that conform to the resource rule are
  defined by the Resourceprep profile of [STRINGPREP] as documented in
  Appendix B of this memo; and the sub-domain rule makes reference to
  the concept of an internationalized domain label as described in
  [IDNA].)


     jid             = [ node "@" ] domain [ "/" resource ]
     domain          = fqdn / address-literal
     fqdn            = (sub-domain 1*("." sub-domain))
     sub-domain      = (internationalized domain label)
     address-literal = IPv4address / IPv6address

  All JIDs are based on the foregoing structure.  The most common use
  of this structure is to identify an instant messaging user, the
  server to which the user connects, and the user's connected resource
  (e.g., a specific client) in the form of <user@host/resource>.
  However, node types other than clients are possible; for example, a
  specific chat room offered by a multi-user chat service could be
  addressed as <room@service> (where "room" is the name of the chat
  room and "service" is the hostname of the multi-user chat service)
  and a specific occupant of such a room could be addressed as
  <room@service/nick> (where "nick" is the occupant's room nickname).
  Many other JID types are possible (e.g., <domain/resource> could be a
  server-side script or service).

  Each allowable portion of a JID (node identifier, domain identifier,
  and resource identifier) MUST NOT be more than 1023 bytes in length,
  resulting in a maximum total size (including the '@' and '/'
  separators) of 3071 bytes.




Saint-Andre, Ed.            Standards Track                     [Page 5]

RFC 3920                       XMPP Core                    October 2004


3.2.  Domain Identifier

  The domain identifier is the primary identifier and is the only
  REQUIRED element of a JID (a mere domain identifier is a valid JID).
  It usually represents the network gateway or "primary" server to
  which other entities connect for XML routing and data management
  capabilities.  However, the entity referenced by a domain identifier
  is not always a server, and may be a service that is addressed as a
  subdomain of a server that provides functionality above and beyond
  the capabilities of a server (e.g., a multi-user chat service, a user
  directory, or a gateway to a foreign messaging system).

  The domain identifier for every server or service that will
  communicate over a network MAY be an IP address but SHOULD be a fully
  qualified domain name (see [DNS]).  A domain identifier MUST be an
  "internationalized domain name" as defined in [IDNA], to which the
  Nameprep [NAMEPREP] profile of stringprep [STRINGPREP] can be applied
  without failing.  Before comparing two domain identifiers, a server
  MUST (and a client SHOULD) first apply the Nameprep profile to the
  labels (as defined in [IDNA]) that make up each identifier.

3.3.  Node Identifier

  The node identifier is an optional secondary identifier placed before
  the domain identifier and separated from the latter by the '@'
  character.  It usually represents the entity requesting and using
  network access provided by the server or gateway (i.e., a client),
  although it can also represent other kinds of entities (e.g., a chat
  room associated with a multi-user chat service).  The entity
  represented by a node identifier is addressed within the context of a
  specific domain; within instant messaging and presence applications
  of XMPP, this address is called a "bare JID" and is of the form
  <node@domain>.

  A node identifier MUST be formatted such that the Nodeprep profile of
  [STRINGPREP] can be applied to it without failing.  Before comparing
  two node identifiers, a server MUST (and a client SHOULD) first apply
  the Nodeprep profile to each identifier.

3.4.  Resource Identifier

  The resource identifier is an optional tertiary identifier placed
  after the domain identifier and separated from the latter by the '/'
  character.  A resource identifier may modify either a <node@domain>
  or a mere <domain> address.  It usually represents a specific
  session, connection (e.g., a device or location), or object (e.g., a
  participant in a multi-user chat room) belonging to the entity
  associated with a node identifier.  A resource identifier is opaque



Saint-Andre, Ed.            Standards Track                     [Page 6]

RFC 3920                       XMPP Core                    October 2004


  to both servers and other clients, and is typically defined by a
  client implementation when it provides the information necessary to
  complete Resource Binding (Section 7) (although it may be generated
  by a server on behalf of a client), after which it is referred to as
  a "connected resource".  An entity MAY maintain multiple connected
  resources simultaneously, with each connected resource differentiated
  by a distinct resource identifier.

  A resource identifier MUST be formatted such that the Resourceprep
  profile of [STRINGPREP] can be applied without failing.  Before
  comparing two resource identifiers, a server MUST (and a client
  SHOULD) first apply the Resourceprep profile to each identifier.

3.5.  Determination of Addresses

  After SASL negotiation (Section 6) and, if appropriate, Resource
  Binding (Section 7), the receiving entity for a stream MUST determine
  the initiating entity's JID.

  For server-to-server communications, the initiating entity's JID
  SHOULD be the authorization identity, derived from the authentication
  identity, as defined by the Simple Authentication and Security Layer
  (SASL) specification [SASL], if no authorization identity was
  specified during SASL negotiation (Section 6).

  For client-to-server communications, the "bare JID" (<node@domain>)
  SHOULD be the authorization identity, derived from the authentication
  identity, as defined in [SASL], if no authorization identity was
  specified during SASL negotiation (Section 6); the resource
  identifier portion of the "full JID" (<node@domain/resource>) SHOULD
  be the resource identifier negotiated by the client and server during
  Resource Binding (Section 7).

  The receiving entity MUST ensure that the resulting JID (including
  node identifier, domain identifier, resource identifier, and
  separator characters) conforms to the rules and formats defined
  earlier in this section; to meet this restriction, the receiving
  entity may need to replace the JID sent by the initiating entity with
  the canonicalized JID as determined by the receiving entity.

4.  XML Streams

4.1.  Overview

  Two fundamental concepts make possible the rapid, asynchronous
  exchange of relatively small payloads of structured information
  between presence-aware entities: XML streams and XML stanzas.  These
  terms are defined as follows:



Saint-Andre, Ed.            Standards Track                     [Page 7]

RFC 3920                       XMPP Core                    October 2004


  Definition of XML Stream: An XML stream is a container for the
     exchange of XML elements between any two entities over a network.
     The start of an XML stream is denoted unambiguously by an opening
     XML <stream> tag (with appropriate attributes and namespace
     declarations), while the end of the XML stream is denoted
     unambiguously by a closing XML </stream> tag.  During the life of
     the stream, the entity that initiated it can send an unbounded
     number of XML elements over the stream, either elements used to
     negotiate the stream (e.g., to negotiate Use of TLS (Section 5) or
     use of SASL (Section 6)) or XML stanzas (as defined herein,
     <message/>, <presence/>, or <iq/> elements qualified by the
     default namespace).  The "initial stream" is negotiated from the
     initiating entity (usually a client or server) to the receiving
     entity (usually a server), and can be seen as corresponding to the
     initiating entity's "session" with the receiving entity.  The
     initial stream enables unidirectional communication from the
     initiating entity to the receiving entity; in order to enable
     information exchange from the receiving entity to the initiating
     entity, the receiving entity MUST negotiate a stream in the
     opposite direction (the "response stream").

  Definition of XML Stanza: An XML stanza is a discrete semantic unit
     of structured information that is sent from one entity to another
     over an XML stream.  An XML stanza exists at the direct child
     level of the root <stream/> element and is said to be
     well-balanced if it matches the production [43] content of [XML].
     The start of any XML stanza is denoted unambiguously by the
     element start tag at depth=1 of the XML stream (e.g., <presence>),
     and the end of any XML stanza is denoted unambiguously by the
     corresponding close tag at depth=1 (e.g., </presence>).  An XML
     stanza MAY contain child elements (with accompanying attributes,
     elements, and XML character data) as necessary in order to convey
     the desired information.  The only XML stanzas defined herein are
     the <message/>, <presence/>, and <iq/> elements qualified by the
     default namespace for the stream, as described under XML Stanzas
     (Section 9); an XML element sent for the purpose of Transport
     Layer Security (TLS) negotiation (Section 5), Simple
     Authentication and Security Layer (SASL) negotiation (Section 6),
     or server dialback (Section 8) is not considered to be an XML
     stanza.

  Consider the example of a client's session with a server.  In order
  to connect to a server, a client MUST initiate an XML stream by
  sending an opening <stream> tag to the server, optionally preceded by
  a text declaration specifying the XML version and the character
  encoding supported (see Inclusion of Text Declaration (Section 11.4);
  see also Character Encoding (Section 11.5)).  Subject to local
  policies and service provisioning, the server SHOULD then reply with



Saint-Andre, Ed.            Standards Track                     [Page 8]

RFC 3920                       XMPP Core                    October 2004


  a second XML stream back to the client, again optionally preceded by
  a text declaration.  Once the client has completed SASL negotiation
  (Section 6), the client MAY send an unbounded number of XML stanzas
  over the stream to any recipient on the network.  When the client
  desires to close the stream, it simply sends a closing </stream> tag
  to the server (alternatively, the stream may be closed by the
  server), after which both the client and server SHOULD terminate the
  underlying connection (usually a TCP connection) as well.

  Those who are accustomed to thinking of XML in a document-centric
  manner may wish to view a client's session with a server as
  consisting of two open-ended XML documents: one from the client to
  the server and one from the server to the client.  From this
  perspective, the root <stream/> element can be considered the
  document entity for each "document", and the two "documents" are
  built up through the accumulation of XML stanzas sent over the two
  XML streams.  However, this perspective is a convenience only; XMPP
  does not deal in documents but in XML streams and XML stanzas.

  In essence, then, an XML stream acts as an envelope for all the XML
  stanzas sent during a session.  We can represent this in a simplistic
  fashion as follows:

  |--------------------|
  | <stream>           |
  |--------------------|
  | <presence>         |
  |   <show/>          |
  | </presence>        |
  |--------------------|
  | <message to='foo'> |
  |   <body/>          |
  | </message>         |
  |--------------------|
  | <iq to='bar'>      |
  |   <query/>         |
  | </iq>              |
  |--------------------|
  | ...                |
  |--------------------|
  | </stream>          |
  |--------------------|









Saint-Andre, Ed.            Standards Track                     [Page 9]

RFC 3920                       XMPP Core                    October 2004


4.2.  Binding to TCP

  Although there is no necessary coupling of an XML stream to a [TCP]
  connection (e.g., two entities could connect to each other via
  another mechanism such as polling over [HTTP]), this specification
  defines a binding of XMPP to TCP only.  In the context of
  client-to-server communications, a server MUST allow a client to
  share a single TCP connection for XML stanzas sent from client to
  server and from server to client.  In the context of server-to-server
  communications, a server MUST use one TCP connection for XML stanzas
  sent from the server to the peer and another TCP connection
  (initiated by the peer) for stanzas from the peer to the server, for
  a total of two TCP connections.

4.3.  Stream Security

  When negotiating XML streams in XMPP 1.0, TLS SHOULD be used as
  defined under Use of TLS (Section 5) and SASL MUST be used as defined
  under Use of SASL (Section 6).  The "initial stream" (i.e., the
  stream from the initiating entity to the receiving entity) and the
  "response stream" (i.e., the stream from the receiving entity to the
  initiating entity) MUST be secured separately, although security in
  both directions MAY be established via mechanisms that provide mutual
  authentication.  An entity SHOULD NOT attempt to send XML Stanzas
  (Section 9) over the stream before the stream has been authenticated,
  but if it does, then the other entity MUST NOT accept such stanzas
  and SHOULD return a <not-authorized/> stream error and then terminate
  both the XML stream and the underlying TCP connection; note well that
  this applies to XML stanzas only (i.e., <message/>, <presence/>, and
  <iq/> elements scoped by the default namespace) and not to XML
  elements used for stream negotiation (e.g., elements used to
  negotiate Use of TLS (Section 5) or Use of SASL (Section 6)).

4.4.  Stream Attributes

  The attributes of the stream element are as follows:

  o  to -- The 'to' attribute SHOULD be used only in the XML stream
     header from the initiating entity to the receiving entity, and
     MUST be set to a hostname serviced by the receiving entity.  There
     SHOULD NOT be a 'to' attribute set in the XML stream header by
     which the receiving entity replies to the initiating entity;
     however, if a 'to' attribute is included, it SHOULD be silently
     ignored by the initiating entity.







Saint-Andre, Ed.            Standards Track                    [Page 10]

RFC 3920                       XMPP Core                    October 2004


  o  from -- The 'from' attribute SHOULD be used only in the XML stream
     header from the receiving entity to the initiating entity, and
     MUST be set to a hostname serviced by the receiving entity that is
     granting access to the initiating entity.  There SHOULD NOT be a
     'from' attribute on the XML stream header sent from the initiating
     entity to the receiving entity; however, if a 'from' attribute is
     included, it SHOULD be silently ignored by the receiving entity.

  o  id -- The 'id' attribute SHOULD be used only in the XML stream
     header from the receiving entity to the initiating entity.  This
     attribute is a unique identifier created by the receiving entity
     to function as a session key for the initiating entity's streams
     with the receiving entity, and MUST be unique within the receiving
     application (normally a server).  Note well that the stream ID may
     be security-critical and therefore MUST be both unpredictable and
     nonrepeating (see [RANDOM] for recommendations regarding
     randomness for security purposes).  There SHOULD NOT be an 'id'
     attribute on the XML stream header sent from the initiating entity
     to the receiving entity; however, if an 'id' attribute is
     included, it SHOULD be silently ignored by the receiving entity.

  o  xml:lang -- An 'xml:lang' attribute (as defined in Section 2.12 of
     [XML]) SHOULD be included by the initiating entity on the header
     for the initial stream to specify the default language of any
     human-readable XML character data it sends over that stream.  If
     the attribute is included, the receiving entity SHOULD remember
     that value as the default for both the initial stream and the
     response stream; if the attribute is not included, the receiving
     entity SHOULD use a configurable default value for both streams,
     which it MUST communicate in the header for the response stream.
     For all stanzas sent over the initial stream, if the initiating
     entity does not include an 'xml:lang' attribute, the receiving
     entity SHOULD apply the default value; if the initiating entity
     does include an 'xml:lang' attribute, the receiving entity MUST
     NOT modify or delete it (see also xml:lang (Section 9.1.5)).  The
     value of the 'xml:lang' attribute MUST be an NMTOKEN (as defined
     in Section 2.3 of [XML]) and MUST conform to the format defined in
     RFC 3066 [LANGTAGS].

  o  version -- The presence of the version attribute set to a value of
     at least "1.0" signals support for the stream-related protocols
     (including stream features) defined in this specification.
     Detailed rules regarding the generation and handling of this
     attribute are defined below.







Saint-Andre, Ed.            Standards Track                    [Page 11]

RFC 3920                       XMPP Core                    October 2004


  We can summarize as follows:

           |  initiating to receiving  |  receiving to initiating
  ---------+---------------------------+-----------------------
  to       |  hostname of receiver     |  silently ignored
  from     |  silently ignored         |  hostname of receiver
  id       |  silently ignored         |  session key
  xml:lang |  default language         |  default language
  version  |  signals XMPP 1.0 support |  signals XMPP 1.0 support

4.4.1.  Version Support

  The version of XMPP specified herein is "1.0"; in particular, this
  encapsulates the stream-related protocols (Use of TLS (Section 5),
  Use of SASL (Section 6), and Stream Errors (Section 4.7)), as well as
  the semantics of the three defined XML stanza types (<message/>,
  <presence/>, and <iq/>).  The numbering scheme for XMPP versions is
  "<major>.<minor>".  The major and minor numbers MUST be treated as
  separate integers and each number MAY be incremented higher than a
  single digit.  Thus, "XMPP 2.4" would be a lower version than "XMPP
  2.13", which in turn would be lower than "XMPP 12.3".  Leading zeros
  (e.g., "XMPP 6.01") MUST be ignored by recipients and MUST NOT be
  sent.

  The major version number should be incremented only if the stream and
  stanza formats or required actions have changed so dramatically that
  an older version entity would not be able to interoperate with a
  newer version entity if it simply ignored the elements and attributes
  it did not understand and took the actions specified in the older
  specification.  The minor version number indicates new capabilities,
  and MUST be ignored by an entity with a smaller minor version number,
  but used for informational purposes by the entity with the larger
  minor version number.  For example, a minor version number might
  indicate the ability to process a newly defined value of the 'type'
  attribute for message, presence, or IQ stanzas; the entity with the
  larger minor version number would simply note that its correspondent
  would not be able to understand that value of the 'type' attribute
  and therefore would not send it.

  The following rules apply to the generation and handling of the
  'version' attribute within stream headers by implementations:

  1.  The initiating entity MUST set the value of the 'version'
      attribute on the initial stream header to the highest version
      number it supports (e.g., if the highest version number it
      supports is that defined in this specification, it MUST set the
      value to "1.0").




Saint-Andre, Ed.            Standards Track                    [Page 12]

RFC 3920                       XMPP Core                    October 2004


  2.  The receiving entity MUST set the value of the 'version'
      attribute on the response stream header to either the value
      supplied by the initiating entity or the highest version number
      supported by the receiving entity, whichever is lower.  The
      receiving entity MUST perform a numeric comparison on the major
      and minor version numbers, not a string match on
      "<major>.<minor>".

  3.  If the version number included in the response stream header is
      at least one major version lower than the version number included
      in the initial stream header and newer version entities cannot
      interoperate with older version entities as described above, the
      initiating entity SHOULD generate an <unsupported-version/>
      stream error and terminate the XML stream and underlying TCP
      connection.

  4.  If either entity receives a stream header with no 'version'
      attribute, the entity MUST consider the version supported by the
      other entity to be "0.0" and SHOULD NOT include a 'version'
      attribute in the stream header it sends in reply.

4.5.  Namespace Declarations

  The stream element MUST possess both a streams namespace declaration
  and a default namespace declaration (as "namespace declaration" is
  defined in the XML namespaces specification [XML-NAMES]).  For
  detailed information regarding the streams namespace and default
  namespace, see Namespace Names and Prefixes (Section 11.2).

4.6.  Stream Features

  If the initiating entity includes the 'version' attribute set to a
  value of at least "1.0" in the initial stream header, the receiving
  entity MUST send a <features/> child element (prefixed by the streams
  namespace prefix) to the initiating entity in order to announce any
  stream-level features that can be negotiated (or capabilities that
  otherwise need to be advertised).  Currently, this is used only to
  advertise Use of TLS (Section 5), Use of SASL (Section 6), and
  Resource Binding (Section 7) as defined herein, and for Session
  Establishment as defined in [XMPP-IM]; however, the stream features
  functionality could be used to advertise other negotiable features in
  the future.  If an entity does not understand or support some
  features, it SHOULD silently ignore them.  If one or more security
  features (e.g., TLS and SASL) need to be successfully negotiated
  before a non-security-related feature (e.g., Resource Binding) can be
  offered, the non-security-related feature SHOULD NOT be included in
  the stream features that are advertised before the relevant security
  features have been negotiated.



Saint-Andre, Ed.            Standards Track                    [Page 13]

RFC 3920                       XMPP Core                    October 2004


4.7.  Stream Errors

  The root stream element MAY contain an <error/> child element that is
  prefixed by the streams namespace prefix.  The error child MUST be
  sent by a compliant entity (usually a server rather than a client) if
  it perceives that a stream-level error has occurred.

4.7.1.  Rules

  The following rules apply to stream-level errors:

  o  It is assumed that all stream-level errors are unrecoverable;
     therefore, if an error occurs at the level of the stream, the
     entity that detects the error MUST send a stream error to the
     other entity, send a closing </stream> tag, and terminate the
     underlying TCP connection.

  o  If the error occurs while the stream is being set up, the
     receiving entity MUST still send the opening <stream> tag, include
     the <error/> element as a child of the stream element, send the
     closing </stream> tag, and terminate the underlying TCP
     connection.  In this case, if the initiating entity provides an
     unknown host in the 'to' attribute (or provides no 'to' attribute
     at all), the server SHOULD provide the server's authoritative
     hostname in the 'from' attribute of the stream header sent before
     termination.

4.7.2.  Syntax

  The syntax for stream errors is as follows:

  <stream:error>
    <defined-condition xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
    <text xmlns='urn:ietf:params:xml:ns:xmpp-streams'
          xml:lang='langcode'>
      OPTIONAL descriptive text
    </text>
    [OPTIONAL application-specific condition element]
  </stream:error>

  The <error/> element:

  o  MUST contain a child element corresponding to one of the defined
     stanza error conditions defined below; this element MUST be
     qualified by the 'urn:ietf:params:xml:ns:xmpp-streams' namespace






Saint-Andre, Ed.            Standards Track                    [Page 14]

RFC 3920                       XMPP Core                    October 2004


  o  MAY contain a <text/> child containing XML character data that
     describes the error in more detail; this element MUST be qualified
     by the 'urn:ietf:params:xml:ns:xmpp-streams' namespace and SHOULD
     possess an 'xml:lang' attribute specifying the natural language of
     the XML character data

  o  MAY contain a child element for an application-specific error
     condition; this element MUST be qualified by an
     application-defined namespace, and its structure is defined by
     that namespace

  The <text/> element is OPTIONAL.  If included, it SHOULD be used only
  to provide descriptive or diagnostic information that supplements the
  meaning of a defined condition or application-specific condition.  It
  SHOULD NOT be interpreted programmatically by an application.  It
  SHOULD NOT be used as the error message presented to a user, but MAY
  be shown in addition to the error message associated with the
  included condition element (or elements).

4.7.3.  Defined Conditions

  The following stream-level error conditions are defined:

  o  <bad-format/> -- the entity has sent XML that cannot be processed;
     this error MAY be used instead of the more specific XML-related
     errors, such as <bad-namespace-prefix/>, <invalid-xml/>,
     <restricted-xml/>, <unsupported-encoding/>, and
     <xml-not-well-formed/>, although the more specific errors are
     preferred.

  o  <bad-namespace-prefix/> -- the entity has sent a namespace prefix
     that is unsupported, or has sent no namespace prefix on an element
     that requires such a prefix (see XML Namespace Names and Prefixes
     (Section 11.2)).

  o  <conflict/> -- the server is closing the active stream for this
     entity because a new stream has been initiated that conflicts with
     the existing stream.

  o  <connection-timeout/> -- the entity has not generated any traffic
     over the stream for some period of time (configurable according to
     a local service policy).

  o  <host-gone/> -- the value of the 'to' attribute provided by the
     initiating entity in the stream header corresponds to a hostname
     that is no longer hosted by the server.





Saint-Andre, Ed.            Standards Track                    [Page 15]

RFC 3920                       XMPP Core                    October 2004


  o  <host-unknown/> -- the value of the 'to' attribute provided by the
     initiating entity in the stream header does not correspond to a
     hostname that is hosted by the server.

  o  <improper-addressing/> -- a stanza sent between two servers lacks
     a 'to' or 'from' attribute (or the attribute has no value).

  o  <internal-server-error/> -- the server has experienced a
     misconfiguration or an otherwise-undefined internal error that
     prevents it from servicing the stream.

  o  <invalid-from/> -- the JID or hostname provided in a 'from'
     address does not match an authorized JID or validated domain
     negotiated between servers via SASL or dialback, or between a
     client and a server via authentication and resource binding.

  o  <invalid-id/> -- the stream ID or dialback ID is invalid or does
     not match an ID previously provided.

  o  <invalid-namespace/> -- the streams namespace name is something
     other than "http://etherx.jabber.org/streams" or the dialback
     namespace name is something other than "jabber:server:dialback"
     (see XML Namespace Names and Prefixes (Section 11.2)).

  o  <invalid-xml/> -- the entity has sent invalid XML over the stream
     to a server that performs validation (see Validation (Section
     11.3)).

  o  <not-authorized/> -- the entity has attempted to send data before
     the stream has been authenticated, or otherwise is not authorized
     to perform an action related to stream negotiation; the receiving
     entity MUST NOT process the offending stanza before sending the
     stream error.

  o  <policy-violation/> -- the entity has violated some local service
     policy; the server MAY choose to specify the policy in the <text/>
     element or an application-specific condition element.

  o  <remote-connection-failed/> -- the server is unable to properly
     connect to a remote entity that is required for authentication or
     authorization.

  o  <resource-constraint/> -- the server lacks the system resources
     necessary to service the stream.







Saint-Andre, Ed.            Standards Track                    [Page 16]

RFC 3920                       XMPP Core                    October 2004


  o  <restricted-xml/> -- the entity has attempted to send restricted
     XML features such as a comment, processing instruction, DTD,
     entity reference, or unescaped character (see Restrictions
     (Section 11.1)).

  o  <see-other-host/> -- the server will not provide service to the
     initiating entity but is redirecting traffic to another host; the
     server SHOULD specify the alternate hostname or IP address (which
     MUST be a valid domain identifier) as the XML character data of
     the <see-other-host/> element.

  o  <system-shutdown/> -- the server is being shut down and all active
     streams are being closed.

  o  <undefined-condition/> -- the error condition is not one of those
     defined by the other conditions in this list; this error condition
     SHOULD be used only in conjunction with an application-specific
     condition.

  o  <unsupported-encoding/> -- the initiating entity has encoded the
     stream in an encoding that is not supported by the server (see
     Character Encoding (Section 11.5)).

  o  <unsupported-stanza-type/> -- the initiating entity has sent a
     first-level child of the stream that is not supported by the
     server.

  o  <unsupported-version/> -- the value of the 'version' attribute
     provided by the initiating entity in the stream header specifies a
     version of XMPP that is not supported by the server; the server
     MAY specify the version(s) it supports in the <text/> element.

  o  <xml-not-well-formed/> -- the initiating entity has sent XML that
     is not well-formed as defined by [XML].

4.7.4.  Application-Specific Conditions

  As noted, an application MAY provide application-specific stream
  error information by including a properly-namespaced child in the
  error element.  The application-specific element SHOULD supplement or
  further qualify a defined element.  Thus the <error/> element will
  contain two or three child elements:









Saint-Andre, Ed.            Standards Track                    [Page 17]

RFC 3920                       XMPP Core                    October 2004


  <stream:error>
    <xml-not-well-formed
        xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
    <text xml:lang='en' xmlns='urn:ietf:params:xml:ns:xmpp-streams'>
      Some special application diagnostic information!
    </text>
    <escape-your-data xmlns='application-ns'/>
  </stream:error>
  </stream:stream>

4.8.  Simplified Stream Examples

  This section contains two simplified examples of a stream-based
  "session" of a client on a server (where the "C" lines are sent from
  the client to the server, and the "S" lines are sent from the server
  to the client); these examples are included for the purpose of
  illustrating the concepts introduced thus far.

  A basic "session":

  C: <?xml version='1.0'?>
     <stream:stream
         to='example.com'
         xmlns='jabber:client'
         xmlns:stream='http://etherx.jabber.org/streams'
         version='1.0'>
  S: <?xml version='1.0'?>
     <stream:stream
         from='example.com'
         id='someid'
         xmlns='jabber:client'
         xmlns:stream='http://etherx.jabber.org/streams'
         version='1.0'>
  ...  encryption, authentication, and resource binding ...
  C:   <message from='[email protected]'
                to='[email protected]'
                xml:lang='en'>
  C:     <body>Art thou not Romeo, and a Montague?</body>
  C:   </message>
  S:   <message from='[email protected]'
                to='[email protected]'
                xml:lang='en'>
  S:     <body>Neither, fair saint, if either thee dislike.</body>
  S:   </message>
  C: </stream:stream>
  S: </stream:stream>





Saint-Andre, Ed.            Standards Track                    [Page 18]

RFC 3920                       XMPP Core                    October 2004


  A "session" gone bad:

  C: <?xml version='1.0'?>
     <stream:stream
         to='example.com'
         xmlns='jabber:client'
         xmlns:stream='http://etherx.jabber.org/streams'
         version='1.0'>
  S: <?xml version='1.0'?>
     <stream:stream
         from='example.com'
         id='someid'
         xmlns='jabber:client'
         xmlns:stream='http://etherx.jabber.org/streams'
         version='1.0'>
  ...  encryption, authentication, and resource binding ...
  C: <message xml:lang='en'>
       <body>Bad XML, no closing body tag!
     </message>
  S: <stream:error>
      <xml-not-well-formed
          xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
     </stream:error>
  S: </stream:stream>

5.  Use of TLS

5.1.  Overview

  XMPP includes a method for securing the stream from tampering and
  eavesdropping.  This channel encryption method makes use of the
  Transport Layer Security (TLS) protocol [TLS], along with a
  "STARTTLS" extension that is modelled after similar extensions for
  the IMAP [IMAP], POP3 [POP3], and ACAP [ACAP] protocols as described
  in RFC 2595 [USINGTLS].  The namespace name for the STARTTLS
  extension is 'urn:ietf:params:xml:ns:xmpp-tls'.

  An administrator of a given domain MAY require the use of TLS for
  client-to-server communications, server-to-server communications, or
  both.  Clients SHOULD use TLS to secure the streams prior to
  attempting the completion of SASL negotiation (Section 6), and
  servers SHOULD use TLS between two domains for the purpose of
  securing server-to-server communications.








Saint-Andre, Ed.            Standards Track                    [Page 19]

RFC 3920                       XMPP Core                    October 2004


  The following rules apply:

  1.  An initiating entity that complies with this specification MUST
      include the 'version' attribute set to a value of "1.0" in the
      initial stream header.

  2.  If the TLS negotiation occurs between two servers, communications
      MUST NOT proceed until the Domain Name System (DNS) hostnames
      asserted by the servers have been resolved (see Server-to-Server
      Communications (Section 14.4)).

  3.  When a receiving entity that complies with this specification
      receives an initial stream header that includes the 'version'
      attribute set to a value of at least "1.0", after sending a
      stream header in reply (including the version flag), it MUST
      include a <starttls/> element (qualified by the
      'urn:ietf:params:xml:ns:xmpp-tls' namespace) along with the list
      of other stream features it supports.

  4.  If the initiating entity chooses to use TLS, TLS negotiation MUST
      be completed before proceeding to SASL negotiation; this order of
      negotiation is required to help safeguard authentication
      information sent during SASL negotiation, as well as to make it
      possible to base the use of the SASL EXTERNAL mechanism on a
      certificate provided during prior TLS negotiation.

  5.  During TLS negotiation, an entity MUST NOT send any white space
      characters (matching production [3] content of [XML]) within the
      root stream element as separators between elements (any white
      space characters shown in the TLS examples below are included for
      the sake of readability only); this prohibition helps to ensure
      proper security layer byte precision.

  6.  The receiving entity MUST consider the TLS negotiation to have
      begun immediately after sending the closing ">" character of the
      <proceed/> element.  The initiating entity MUST consider the TLS
      negotiation to have begun immediately after receiving the closing
      ">" character of the <proceed/> element from the receiving
      entity.

  7.  The initiating entity MUST validate the certificate presented by
      the receiving entity; see Certificate Validation (Section 14.2)
      regarding certificate validation procedures.

  8.  Certificates MUST be checked against the hostname as provided by
      the initiating entity (e.g., a user), not the hostname as
      resolved via the Domain Name System; e.g., if the user specifies
      a hostname of "example.com" but a DNS SRV [SRV] lookup returned



Saint-Andre, Ed.            Standards Track                    [Page 20]

RFC 3920                       XMPP Core                    October 2004


      "im.example.com", the certificate MUST be checked as
      "example.com".  If a JID for any kind of XMPP entity (e.g.,
      client or server) is represented in a certificate, it MUST be
      represented as a UTF8String within an otherName entity inside the
      subjectAltName, using the [ASN.1] Object Identifier
      "id-on-xmppAddr" specified in Section 5.1.1 of this document.

  9.  If the TLS negotiation is successful, the receiving entity MUST
      discard any knowledge obtained in an insecure manner from the
      initiating entity before TLS takes effect.

  10. If the TLS negotiation is successful, the initiating entity MUST
      discard any knowledge obtained in an insecure manner from the
      receiving entity before TLS takes effect.

  11. If the TLS negotiation is successful, the receiving entity MUST
      NOT offer the STARTTLS extension to the initiating entity along
      with the other stream features that are offered when the stream
      is restarted.

  12. If the TLS negotiation is successful, the initiating entity MUST
      continue with SASL negotiation.

  13. If the TLS negotiation results in failure, the receiving entity
      MUST terminate both the XML stream and the underlying TCP
      connection.

  14. See Mandatory-to-Implement Technologies (Section 14.7) regarding
      mechanisms that MUST be supported.

5.1.1.  ASN.1 Object Identifier for XMPP Address

  The [ASN.1] Object Identifier "id-on-xmppAddr" described above is
  defined as follows:

  id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
          dod(6) internet(1) security(5) mechanisms(5) pkix(7) }

  id-on  OBJECT IDENTIFIER ::= { id-pkix 8 }  -- other name forms

  id-on-xmppAddr  OBJECT IDENTIFIER ::= { id-on 5 }

  XmppAddr ::= UTF8String

  This Object Identifier MAY also be represented in the dotted display
  format as "1.3.6.1.5.5.7.8.5".





Saint-Andre, Ed.            Standards Track                    [Page 21]

RFC 3920                       XMPP Core                    October 2004


5.2.  Narrative

  When an initiating entity secures a stream with a receiving entity
  using TLS, the steps involved are as follows:

  1.  The initiating entity opens a TCP connection and initiates the
      stream by sending the opening XML stream header to the receiving
      entity, including the 'version' attribute set to a value of at
      least "1.0".

  2.  The receiving entity responds by opening a TCP connection and
      sending an XML stream header to the initiating entity, including
      the 'version' attribute set to a value of at least "1.0".

  3.  The receiving entity offers the STARTTLS extension to the
      initiating entity by including it with the list of other
      supported stream features (if TLS is required for interaction
      with the receiving entity, it SHOULD signal that fact by
      including a <required/> element as a child of the <starttls/>
      element).

  4.  The initiating entity issues the STARTTLS command (i.e., a
      <starttls/> element qualified by the
      'urn:ietf:params:xml:ns:xmpp-tls' namespace) to instruct the
      receiving entity that it wishes to begin a TLS negotiation to
      secure the stream.

  5.  The receiving entity MUST reply with either a <proceed/> element
      or a <failure/> element qualified by the
      'urn:ietf:params:xml:ns:xmpp-tls' namespace.  If the failure case
      occurs, the receiving entity MUST terminate both the XML stream
      and the underlying TCP connection.  If the proceed case occurs,
      the entities MUST attempt to complete the TLS negotiation over
      the TCP connection and MUST NOT send any further XML data until
      the TLS negotiation is complete.

  6.  The initiating entity and receiving entity attempt to complete a
      TLS negotiation in accordance with [TLS].

  7.  If the TLS negotiation is unsuccessful, the receiving entity MUST
      terminate the TCP connection.  If the TLS negotiation is
      successful, the initiating entity MUST initiate a new stream by
      sending an opening XML stream header to the receiving entity (it
      is not necessary to send a closing </stream> tag first, since the
      receiving entity and initiating entity MUST consider the original
      stream to be closed upon successful TLS negotiation).





Saint-Andre, Ed.            Standards Track                    [Page 22]

RFC 3920                       XMPP Core                    October 2004


  8.  Upon receiving the new stream header from the initiating entity,
      the receiving entity MUST respond by sending a new XML stream
      header to the initiating entity along with the available features
      (but not including the STARTTLS feature).

5.3.  Client-to-Server Example

  The following example shows the data flow for a client securing a
  stream using STARTTLS (note: the alternate steps shown below are
  provided to illustrate the protocol for failure cases; they are not
  exhaustive and would not necessarily be triggered by the data sent in
  the example).

  Step 1: Client initiates stream to server:

  <stream:stream
      xmlns='jabber:client'
      xmlns:stream='http://etherx.jabber.org/streams'
      to='example.com'
      version='1.0'>

  Step 2: Server responds by sending a stream tag to client:

  <stream:stream
      xmlns='jabber:client'
      xmlns:stream='http://etherx.jabber.org/streams'
      id='c2s_123'
      from='example.com'
      version='1.0'>

  Step 3: Server sends the STARTTLS extension to client along with
  authentication mechanisms and any other stream features:

  <stream:features>
    <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
      <required/>
    </starttls>
    <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
      <mechanism>DIGEST-MD5</mechanism>
      <mechanism>PLAIN</mechanism>
    </mechanisms>
  </stream:features>

  Step 4: Client sends the STARTTLS command to server:

  <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>





Saint-Andre, Ed.            Standards Track                    [Page 23]

RFC 3920                       XMPP Core                    October 2004


  Step 5: Server informs client that it is allowed to proceed:

  <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

  Step 5 (alt): Server informs client that TLS negotiation has failed
  and closes both stream and TCP connection:

  <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
  </stream:stream>

  Step 6: Client and server attempt to complete TLS negotiation over
  the existing TCP connection.

  Step 7: If TLS negotiation is successful, client initiates a new
  stream to server:

  <stream:stream
      xmlns='jabber:client'
      xmlns:stream='http://etherx.jabber.org/streams'
      to='example.com'
      version='1.0'>

  Step 7 (alt): If TLS negotiation is unsuccessful, server closes TCP
  connection.

  Step 8: Server responds by sending a stream header to client along
  with any available stream features:

  <stream:stream
      xmlns='jabber:client'
      xmlns:stream='http://etherx.jabber.org/streams'
      from='example.com'
      id='c2s_234'
      version='1.0'>
  <stream:features>
    <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
      <mechanism>DIGEST-MD5</mechanism>
      <mechanism>PLAIN</mechanism>
      <mechanism>EXTERNAL</mechanism>
    </mechanisms>
  </stream:features>

  Step 9: Client continues with SASL negotiation (Section 6).








Saint-Andre, Ed.            Standards Track                    [Page 24]

RFC 3920                       XMPP Core                    October 2004


5.4.  Server-to-Server Example

  The following example shows the data flow for two servers securing a
  stream using STARTTLS (note: the alternate steps shown below are
  provided to illustrate the protocol for failure cases; they are not
  exhaustive and would not necessarily be triggered by the data sent in
  the example).

  Step 1: Server1 initiates stream to Server2:

  <stream:stream
      xmlns='jabber:server'
      xmlns:stream='http://etherx.jabber.org/streams'
      to='example.com'
      version='1.0'>

  Step 2: Server2 responds by sending a stream tag to Server1:

  <stream:stream
      xmlns='jabber:server'
      xmlns:stream='http://etherx.jabber.org/streams'
      from='example.com'
      id='s2s_123'
      version='1.0'>

  Step 3: Server2 sends the STARTTLS extension to Server1 along with
  authentication mechanisms and any other stream features:

  <stream:features>
    <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
      <required/>
    </starttls>
    <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
      <mechanism>DIGEST-MD5</mechanism>
      <mechanism>KERBEROS_V4</mechanism>
    </mechanisms>
  </stream:features>

  Step 4: Server1 sends the STARTTLS command to Server2:

  <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

  Step 5: Server2 informs Server1 that it is allowed to proceed:

  <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>






Saint-Andre, Ed.            Standards Track                    [Page 25]

RFC 3920                       XMPP Core                    October 2004


  Step 5 (alt): Server2 informs Server1 that TLS negotiation has failed
  and closes stream:

  <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
  </stream:stream>

  Step 6: Server1 and Server2 attempt to complete TLS negotiation via
  TCP.

  Step 7: If TLS negotiation is successful, Server1 initiates a new
  stream to Server2:

  <stream:stream
      xmlns='jabber:server'
      xmlns:stream='http://etherx.jabber.org/streams'
      to='example.com'
      version='1.0'>

  Step 7 (alt): If TLS negotiation is unsuccessful, Server2 closes TCP
  connection.

  Step 8: Server2 responds by sending a stream header to Server1 along
  with any available stream features:

  <stream:stream
      xmlns='jabber:server'
      xmlns:stream='http://etherx.jabber.org/streams'
      from='example.com'
      id='s2s_234'
      version='1.0'>
  <stream:features>
    <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
      <mechanism>DIGEST-MD5</mechanism>
      <mechanism>KERBEROS_V4</mechanism>
      <mechanism>EXTERNAL</mechanism>
    </mechanisms>
  </stream:features>

  Step 9: Server1 continues with SASL negotiation (Section 6).












Saint-Andre, Ed.            Standards Track                    [Page 26]

RFC 3920                       XMPP Core                    October 2004


6.  Use of SASL

6.1.  Overview

  XMPP includes a method for authenticating a stream by means of an
  XMPP-specific profile of the Simple Authentication and Security Layer
  (SASL) protocol [SASL].  SASL provides a generalized method for
  adding authentication support to connection-based protocols, and XMPP
  uses a generic XML namespace profile for SASL that conforms to the
  profiling requirements of [SASL].

  The following rules apply:

  1.  If the SASL negotiation occurs between two servers,
      communications MUST NOT proceed until the Domain Name System
      (DNS) hostnames asserted by the servers have been resolved (see
      Server-to-Server Communications (Section 14.4)).

  2.  If the initiating entity is capable of SASL negotiation, it MUST
      include the 'version' attribute set to a value of at least "1.0"
      in the initial stream header.

  3.  If the receiving entity is capable of SASL negotiation, it MUST
      advertise one or more authentication mechanisms within a
      <mechanisms/> element qualified by the
      'urn:ietf:params:xml:ns:xmpp-sasl' namespace in reply to the
      opening stream tag received from the initiating entity (if the
      opening stream tag included the 'version' attribute set to a
      value of at least "1.0").

  4.  During SASL negotiation, an entity MUST NOT send any white space
      characters (matching production [3] content of [XML]) within the
      root stream element as separators between elements (any white
      space characters shown in the SASL examples below are included
      for the sake of readability only); this prohibition helps to
      ensure proper security layer byte precision.

  5.  Any XML character data contained within the XML elements used
      during SASL negotiation MUST be encoded using base64, where the
      encoding adheres to the definition in Section 3 of RFC 3548
      [BASE64].

  6.  If provision of a "simple username" is supported by the selected
      SASL mechanism (e.g., this is supported by the DIGEST-MD5 and
      CRAM-MD5 mechanisms but not by the EXTERNAL and GSSAPI
      mechanisms), during authentication the initiating entity SHOULD
      provide as the simple username its sending domain (IP address or
      fully qualified domain name as contained in a domain identifier)



Saint-Andre, Ed.            Standards Track                    [Page 27]

RFC 3920                       XMPP Core                    October 2004


      in the case of server-to-server communications or its registered
      account name (user or node name as contained in an XMPP node
      identifier) in the case of client-to-server communications.

  7.  If the initiating entity wishes to act on behalf of another
      entity and the selected SASL mechanism supports transmission of
      an authorization identity, the initiating entity MUST provide an
      authorization identity during SASL negotiation.  If the
      initiating entity does not wish to act on behalf of another
      entity, it MUST NOT provide an authorization identity.  As
      specified in [SASL], the initiating entity MUST NOT provide an
      authorization identity unless the authorization identity is
      different from the default authorization identity derived from
      the authentication identity as described in [SASL].  If provided,
      the value of the authorization identity MUST be of the form
      <domain> (i.e., a domain identifier only) for servers and of the
      form <node@domain> (i.e., node identifier and domain identifier)
      for clients.

  8.  Upon successful SASL negotiation that involves negotiation of a
      security layer, the receiving entity MUST discard any knowledge
      obtained from the initiating entity which was not obtained from
      the SASL negotiation itself.

  9.  Upon successful SASL negotiation that involves negotiation of a
      security layer, the initiating entity MUST discard any knowledge
      obtained from the receiving entity which was not obtained from
      the SASL negotiation itself.

  10. See Mandatory-to-Implement Technologies (Section 14.7) regarding
      mechanisms that MUST be supported.

6.2.  Narrative

  When an initiating entity authenticates with a receiving entity using
  SASL, the steps involved are as follows:

  1.  The initiating entity requests SASL authentication by including
      the 'version' attribute in the opening XML stream header sent to
      the receiving entity, with the value set to "1.0".

  2.  After sending an XML stream header in reply, the receiving entity
      advertises a list of available SASL authentication mechanisms;
      each of these is a <mechanism/> element included as a child
      within a <mechanisms/> container element qualified by the
      'urn:ietf:params:xml:ns:xmpp-sasl' namespace, which in turn is a
      child of a <features/> element in the streams namespace.  If Use
      of TLS (Section 5) needs to be established before a particular



Saint-Andre, Ed.            Standards Track                    [Page 28]

RFC 3920                       XMPP Core                    October 2004


      authentication mechanism may be used, the receiving entity MUST
      NOT provide that mechanism in the list of available SASL
      authentication mechanisms prior to TLS negotiation.  If the
      initiating entity presents a valid certificate during prior TLS
      negotiation, the receiving entity SHOULD offer the SASL EXTERNAL
      mechanism to the initiating entity during SASL negotiation (refer
      to [SASL]), although the EXTERNAL mechanism MAY be offered under
      other circumstances as well.

  3.  The initiating entity selects a mechanism by sending an <auth/>
      element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl'
      namespace to the receiving entity and including an appropriate
      value for the 'mechanism' attribute.  This element MAY contain
      XML character data (in SASL terminology, the "initial response")
      if the mechanism supports or requires it; if the initiating
      entity needs to send a zero-length initial response, it MUST
      transmit the response as a single equals sign ("="), which
      indicates that the response is present but contains no data.

  4.  If necessary, the receiving entity challenges the initiating
      entity by sending a <challenge/> element qualified by the
      'urn:ietf:params:xml:ns:xmpp-sasl' namespace to the initiating
      entity; this element MAY contain XML character data (which MUST
      be computed in accordance with the definition of the SASL
      mechanism chosen by the initiating entity).

  5.  The initiating entity responds to the challenge by sending a
      <response/> element qualified by the
      'urn:ietf:params:xml:ns:xmpp-sasl' namespace to the receiving
      entity; this element MAY contain XML character data (which MUST
      be computed in accordance with the definition of the SASL
      mechanism chosen by the initiating entity).

  6.  If necessary, the receiving entity sends more challenges and the
      initiating entity sends more responses.

  This series of challenge/response pairs continues until one of three
  things happens:

  1.  The initiating entity aborts the handshake by sending an <abort/>
      element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl'
      namespace to the receiving entity.  Upon receiving an <abort/>
      element, the receiving entity SHOULD allow a configurable but
      reasonable number of retries (at least 2), after which it MUST
      terminate the TCP connection; this enables the initiating entity
      (e.g., an end-user client) to tolerate incorrectly-provided
      credentials (e.g., a mistyped password) without being forced to
      reconnect.



Saint-Andre, Ed.            Standards Track                    [Page 29]

RFC 3920                       XMPP Core                    October 2004


  2.  The receiving entity reports failure of the handshake by sending
      a <failure/> element qualified by the
      'urn:ietf:params:xml:ns:xmpp-sasl' namespace to the initiating
      entity (the particular cause of failure SHOULD be communicated in
      an appropriate child element of the <failure/> element as defined
      under SASL Errors (Section 6.4)).  If the failure case occurs,
      the receiving entity SHOULD allow a configurable but reasonable
      number of retries (at least 2), after which it MUST terminate the
      TCP connection; this enables the initiating entity (e.g., an
      end-user client) to tolerate incorrectly-provided credentials
      (e.g., a mistyped password) without being forced to reconnect.

  3.  The receiving entity reports success of the handshake by sending
      a <success/> element qualified by the
      'urn:ietf:params:xml:ns:xmpp-sasl' namespace to the initiating
      entity; this element MAY contain XML character data (in SASL
      terminology, "additional data with success") if required by the
      chosen SASL mechanism.  Upon receiving the <success/> element,
      the initiating entity MUST initiate a new stream by sending an
      opening XML stream header to the receiving entity (it is not
      necessary to send a closing </stream> tag first, since the
      receiving entity and initiating entity MUST consider the original
      stream to be closed upon sending or receiving the <success/>
      element).  Upon receiving the new stream header from the
      initiating entity, the receiving entity MUST respond by sending a
      new XML stream header to the initiating entity, along with any
      available features (but not including the STARTTLS and SASL
      features) or an empty <features/> element (to signify that no
      additional features are available); any such additional features
      not defined herein MUST be defined by the relevant extension to
      XMPP.

6.3.  SASL Definition

  The profiling requirements of [SASL] require that the following
  information be supplied by a protocol definition:

  service name: "xmpp"

  initiation sequence: After the initiating entity provides an opening
     XML stream header and the receiving entity replies in kind, the
     receiving entity provides a list of acceptable authentication
     methods.  The initiating entity chooses one method from the list
     and sends it to the receiving entity as the value of the
     'mechanism' attribute possessed by an <auth/> element, optionally
     including an initial response to avoid a round trip.





Saint-Andre, Ed.            Standards Track                    [Page 30]

RFC 3920                       XMPP Core                    October 2004


  exchange sequence: Challenges and responses are carried through the
     exchange of <challenge/> elements from receiving entity to
     initiating entity and <response/> elements from initiating entity
     to receiving entity.  The receiving entity reports failure by
     sending a <failure/> element and success by sending a <success/>
     element; the initiating entity aborts the exchange by sending an
     <abort/> element.  Upon successful negotiation, both sides
     consider the original XML stream to be closed and new stream
     headers are sent by both entities.

  security layer negotiation: The security layer takes effect
     immediately after sending the closing ">" character of the
     <success/> element for the receiving entity, and immediately after
     receiving the closing ">" character of the <success/> element for
     the initiating entity.  The order of layers is first [TCP], then
     [TLS], then [SASL], then XMPP.

  use of the authorization identity: The authorization identity may be
     used by xmpp to denote the non-default <node@domain> of a client
     or the sending <domain> of a server.

6.4.  SASL Errors

  The following SASL-related error conditions are defined:

  o  <aborted/> -- The receiving entity acknowledges an <abort/>
     element sent by the initiating entity; sent in reply to the
     <abort/> element.

  o  <incorrect-encoding/> -- The data provided by the initiating
     entity could not be processed because the [BASE64] encoding is
     incorrect (e.g., because the encoding does not adhere to the
     definition in Section 3 of [BASE64]); sent in reply to a
     <response/> element or an <auth/> element with initial response
     data.

  o  <invalid-authzid/> -- The authzid provided by the initiating
     entity is invalid, either because it is incorrectly formatted or
     because the initiating entity does not have permissions to
     authorize that ID; sent in reply to a <response/> element or an
     <auth/> element with initial response data.

  o  <invalid-mechanism/> -- The initiating entity did not provide a
     mechanism or requested a mechanism that is not supported by the
     receiving entity; sent in reply to an <auth/> element.






Saint-Andre, Ed.            Standards Track                    [Page 31]

RFC 3920                       XMPP Core                    October 2004


  o  <mechanism-too-weak/> -- The mechanism requested by the initiating
     entity is weaker than server policy permits for that initiating
     entity; sent in reply to a <response/> element or an <auth/>
     element with initial response data.

  o  <not-authorized/> -- The authentication failed because the
     initiating entity did not provide valid credentials (this includes
     but is not limited to the case of an unknown username); sent in
     reply to a <response/> element or an <auth/> element with initial
     response data.

  o  <temporary-auth-failure/> -- The authentication failed because of
     a temporary error condition within the receiving entity; sent in
     reply to an <auth/> element or <response/> element.

6.5.  Client-to-Server Example

  The following example shows the data flow for a client authenticating
  with a server using SASL, normally after successful TLS negotiation
  (note: the alternate steps shown below are provided to illustrate the
  protocol for failure cases; they are not exhaustive and would not
  necessarily be triggered by the data sent in the example).

  Step 1: Client initiates stream to server:

  <stream:stream
      xmlns='jabber:client'
      xmlns:stream='http://etherx.jabber.org/streams'
      to='example.com'
      version='1.0'>

  Step 2: Server responds with a stream tag sent to client:

  <stream:stream
      xmlns='jabber:client'
      xmlns:stream='http://etherx.jabber.org/streams'
      id='c2s_234'
      from='example.com'
      version='1.0'>

  Step 3: Server informs client of available authentication mechanisms:

  <stream:features>
    <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
      <mechanism>DIGEST-MD5</mechanism>
      <mechanism>PLAIN</mechanism>
    </mechanisms>
  </stream:features>



Saint-Andre, Ed.            Standards Track                    [Page 32]

RFC 3920                       XMPP Core                    October 2004


  Step 4: Client selects an authentication mechanism:

  <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
        mechanism='DIGEST-MD5'/>

  Step 5: Server sends a [BASE64] encoded challenge to client:

  <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
  cmVhbG09InNvbWVyZWFsbSIsbm9uY2U9Ik9BNk1HOXRFUUdtMmhoIixxb3A9ImF1dGgi
  LGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1kNS1zZXNzCg==
  </challenge>

  The decoded challenge is:

  realm="somerealm",nonce="OA6MG9tEQGm2hh",\
  qop="auth",charset=utf-8,algorithm=md5-sess

  Step 5 (alt): Server returns error to client:

  <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
    <incorrect-encoding/>
  </failure>
  </stream:stream>

  Step 6: Client sends a [BASE64] encoded response to the challenge:

  <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
  dXNlcm5hbWU9InNvbWVub2RlIixyZWFsbT0ic29tZXJlYWxtIixub25jZT0i
  T0E2TUc5dEVRR20yaGgiLGNub25jZT0iT0E2TUhYaDZWcVRyUmsiLG5jPTAw
  MDAwMDAxLHFvcD1hdXRoLGRpZ2VzdC11cmk9InhtcHAvZXhhbXBsZS5jb20i
  LHJlc3BvbnNlPWQzODhkYWQ5MGQ0YmJkNzYwYTE1MjMyMWYyMTQzYWY3LGNo
  YXJzZXQ9dXRmLTgK
  </response>

  The decoded response is:

  username="somenode",realm="somerealm",\
  nonce="OA6MG9tEQGm2hh",cnonce="OA6MHXh6VqTrRk",\
  nc=00000001,qop=auth,digest-uri="xmpp/example.com",\
  response=d388dad90d4bbd760a152321f2143af7,charset=utf-8

  Step 7: Server sends another [BASE64] encoded challenge to client:

  <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
  cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZAo=
  </challenge>





Saint-Andre, Ed.            Standards Track                    [Page 33]

RFC 3920                       XMPP Core                    October 2004


  The decoded challenge is:

  rspauth=ea40f60335c427b5527b84dbabcdfffd

  Step 7 (alt): Server returns error to client:

  <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
    <temporary-auth-failure/>
  </failure>
  </stream:stream>

  Step 8: Client responds to the challenge:

  <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

  Step 9: Server informs client of successful authentication:

  <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

  Step 9 (alt): Server informs client of failed authentication:

  <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
    <temporary-auth-failure/>
  </failure>
  </stream:stream>

  Step 10: Client initiates a new stream to server:

  <stream:stream
      xmlns='jabber:client'
      xmlns:stream='http://etherx.jabber.org/streams'
      to='example.com'
      version='1.0'>

  Step 11: Server responds by sending a stream header to client along
  with any additional features (or an empty features element):

  <stream:stream
      xmlns='jabber:client'
      xmlns:stream='http://etherx.jabber.org/streams'
      id='c2s_345'
      from='example.com'
      version='1.0'>
  <stream:features>
    <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>
    <session xmlns='urn:ietf:params:xml:ns:xmpp-session'/>
  </stream:features>




Saint-Andre, Ed.            Standards Track                    [Page 34]

RFC 3920                       XMPP Core                    October 2004


6.6.  Server-to-Server Example

  The following example shows the data flow for a server authenticating
  with another server using SASL, normally after successful TLS
  negotiation (note: the alternate steps shown below are provided to
  illustrate the protocol for failure cases; they are not exhaustive
  and would not necessarily be triggered by the data sent in the
  example).

  Step 1: Server1 initiates stream to Server2:

  <stream:stream
      xmlns='jabber:server'
      xmlns:stream='http://etherx.jabber.org/streams'
      to='example.com'
      version='1.0'>

  Step 2: Server2 responds with a stream tag sent to Server1:

  <stream:stream
      xmlns='jabber:server'
      xmlns:stream='http://etherx.jabber.org/streams'
      from='example.com'
      id='s2s_234'
      version='1.0'>

  Step 3: Server2 informs Server1 of available authentication
  mechanisms:

  <stream:features>
    <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
      <mechanism>DIGEST-MD5</mechanism>
      <mechanism>KERBEROS_V4</mechanism>
    </mechanisms>
  </stream:features>

  Step 4: Server1 selects an authentication mechanism:

  <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
        mechanism='DIGEST-MD5'/>

  Step 5: Server2 sends a [BASE64] encoded challenge to Server1:

  <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
  cmVhbG09InNvbWVyZWFsbSIsbm9uY2U9Ik9BNk1HOXRFUUdtMmhoIixxb3A9
  ImF1dGgiLGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1kNS1zZXNz
  </challenge>




Saint-Andre, Ed.            Standards Track                    [Page 35]

RFC 3920                       XMPP Core                    October 2004


  The decoded challenge is:

  realm="somerealm",nonce="OA6MG9tEQGm2hh",\
  qop="auth",charset=utf-8,algorithm=md5-sess

  Step 5 (alt): Server2 returns error to Server1:

  <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
    <incorrect-encoding/>
  </failure>
  </stream:stream>

  Step 6: Server1 sends a [BASE64] encoded response to the challenge:

  <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
  dXNlcm5hbWU9ImV4YW1wbGUub3JnIixyZWFsbT0ic29tZXJlYWxtIixub25j
  ZT0iT0E2TUc5dEVRR20yaGgiLGNub25jZT0iT0E2TUhYaDZWcVRyUmsiLG5j
  PTAwMDAwMDAxLHFvcD1hdXRoLGRpZ2VzdC11cmk9InhtcHAvZXhhbXBsZS5v
  cmciLHJlc3BvbnNlPWQzODhkYWQ5MGQ0YmJkNzYwYTE1MjMyMWYyMTQzYWY3
  LGNoYXJzZXQ9dXRmLTgK
  </response>

  The decoded response is:

  username="example.org",realm="somerealm",\
  nonce="OA6MG9tEQGm2hh",cnonce="OA6MHXh6VqTrRk",\
  nc=00000001,qop=auth,digest-uri="xmpp/example.org",\
  response=d388dad90d4bbd760a152321f2143af7,charset=utf-8

  Step 7: Server2 sends another [BASE64] encoded challenge to Server1:

  <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
  cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZAo=
  </challenge>

  The decoded challenge is:

  rspauth=ea40f60335c427b5527b84dbabcdfffd

  Step 7 (alt): Server2 returns error to Server1:

  <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
    <invalid-authzid/>
  </failure>
  </stream:stream>






Saint-Andre, Ed.            Standards Track                    [Page 36]

RFC 3920                       XMPP Core                    October 2004


  Step 8: Server1 responds to the challenge:

  <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

  Step 8 (alt): Server1 aborts negotiation:

  <abort xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

  Step 9: Server2 informs Server1 of successful authentication:

  <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

  Step 9 (alt): Server2 informs Server1 of failed authentication:

  <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
    <aborted/>
  </failure>
  </stream:stream>

  Step 10: Server1 initiates a new stream to Server2:

  <stream:stream
      xmlns='jabber:server'
      xmlns:stream='http://etherx.jabber.org/streams'
      to='example.com'
      version='1.0'>

  Step 11: Server2 responds by sending a stream header to Server1 along
  with any additional features (or an empty features element):

  <stream:stream
      xmlns='jabber:client'
      xmlns:stream='http://etherx.jabber.org/streams'
      from='example.com'
      id='s2s_345'
      version='1.0'>
  <stream:features/>

7.  Resource Binding

  After SASL negotiation (Section 6) with the receiving entity, the
  initiating entity MAY want or need to bind a specific resource to
  that stream.  In general this applies only to clients: in order to
  conform to the addressing format (Section 3) and stanza delivery
  rules (Section 10) specified herein, there MUST be a resource
  identifier associated with the <node@domain> of the client (which is





Saint-Andre, Ed.            Standards Track                    [Page 37]

RFC 3920                       XMPP Core                    October 2004


  either generated by the server or provided by the client
  application); this ensures that the address for use over that stream
  is a "full JID" of the form <node@domain/resource>.

  Upon receiving a success indication within the SASL negotiation, the
  client MUST send a new stream header to the server, to which the
  server MUST respond with a stream header as well as a list of
  available stream features.  Specifically, if the server requires the
  client to bind a resource to the stream after successful SASL
  negotiation, it MUST include an empty <bind/> element qualified by
  the 'urn:ietf:params:xml:ns:xmpp-bind' namespace in the stream
  features list it presents to the client upon sending the header for
  the response stream sent after successful SASL negotiation (but not
  before):

  Server advertises resource binding feature to client:

  <stream:stream
      xmlns='jabber:client'
      xmlns:stream='http://etherx.jabber.org/streams'
      id='c2s_345'
      from='example.com'
      version='1.0'>
  <stream:features>
    <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>
  </stream:features>

  Upon being so informed that resource binding is required, the client
  MUST bind a resource to the stream by sending to the server an IQ
  stanza of type "set" (see IQ Semantics (Section 9.2.3)) containing
  data qualified by the 'urn:ietf:params:xml:ns:xmpp-bind' namespace.

  If the client wishes to allow the server to generate the resource
  identifier on its behalf, it sends an IQ stanza of type "set" that
  contains an empty <bind/> element:

  Client asks server to bind a resource:

  <iq type='set' id='bind_1'>
    <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>
  </iq>

  A server that supports resource binding MUST be able to generate a
  resource identifier on behalf of a client.  A resource identifier
  generated by the server MUST be unique for that <node@domain>.






Saint-Andre, Ed.            Standards Track                    [Page 38]

RFC 3920                       XMPP Core                    October 2004


  If the client wishes to specify the resource identifier, it sends an
  IQ stanza of type "set" that contains the desired resource identifier
  as the XML character data of a <resource/> element that is a child of
  the <bind/> element:

  Client binds a resource:

  <iq type='set' id='bind_2'>
    <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
      <resource>someresource</resource>
    </bind>
  </iq>

  Once the server has generated a resource identifier for the client or
  accepted the resource identifier provided by the client, it MUST
  return an IQ stanza of type "result" to the client, which MUST
  include a <jid/> child element that specifies the full JID for the
  connected resource as determined by the server:

  Server informs client of successful resource binding:

  <iq type='result' id='bind_2'>
    <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
      <jid>[email protected]/someresource</jid>
    </bind>
  </iq>

  A server SHOULD accept the resource identifier provided by the
  client, but MAY override it with a resource identifier that the
  server generates; in this case, the server SHOULD NOT return a stanza
  error (e.g., <forbidden/>) to the client but instead SHOULD
  communicate the generated resource identifier to the client in the IQ
  result as shown above.

  When a client supplies a resource identifier, the following stanza
  error conditions are possible (see Stanza Errors (Section 9.3)):

  o  The provided resource identifier cannot be processed by the server
     in accordance with Resourceprep (Appendix B).

  o  The client is not allowed to bind a resource to the stream (e.g.,
     because the node or user has reached a limit on the number of
     connected resources allowed).

  o  The provided resource identifier is already in use but the server
     does not allow binding of multiple connected resources with the
     same identifier.




Saint-Andre, Ed.            Standards Track                    [Page 39]

RFC 3920                       XMPP Core                    October 2004


  The protocol for these error conditions is shown below.

  Resource identifier cannot be processed:

  <iq type='error' id='bind_2'>
    <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
      <resource>someresource</resource>
    </bind>
    <error type='modify'>
      <bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
    </error>
  </iq>

  Client is not allowed to bind a resource:

  <iq type='error' id='bind_2'>
    <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
      <resource>someresource</resource>
    </bind>
    <error type='cancel'>
      <not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
    </error>
  </iq>

  Resource identifier is in use:

  <iq type='error' id='bind_2'>
    <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
      <resource>someresource</resource>
    </bind>
    <error type='cancel'>
      <conflict xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
    </error>
  </iq>

  If, before completing the resource binding step, the client attempts
  to send an XML stanza other than an IQ stanza with a <bind/> child
  qualified by the 'urn:ietf:params:xml:ns:xmpp-bind' namespace, the
  server MUST NOT process the stanza and SHOULD return a
  <not-authorized/> stanza error to the client.











Saint-Andre, Ed.            Standards Track                    [Page 40]

RFC 3920                       XMPP Core                    October 2004


8.  Server Dialback

8.1.  Overview

  The Jabber protocols from which XMPP was adapted include a "server
  dialback" method for protecting against domain spoofing, thus making
  it more difficult to spoof XML stanzas.  Server dialback is not a
  security mechanism, and results in weak verification of server
  identities only (see Server-to-Server Communications (Section 14.4)
  regarding this method's security characteristics).  Domains requiring
  robust security SHOULD use TLS and SASL; see Server-to-Server
  Communications (Section 14.4) for details.  If SASL is used for
  server-to-server authentication, dialback SHOULD NOT be used since it
  is unnecessary.  Documentation of dialback is included mainly for the
  sake of backward-compatibility with existing implementations and
  deployments.

  The server dialback method is made possible by the existence of the
  Domain Name System (DNS), since one server can (normally) discover
  the authoritative server for a given domain.  Because dialback
  depends on DNS, inter-domain communications MUST NOT proceed until
  the Domain Name System (DNS) hostnames asserted by the servers have
  been resolved (see Server-to-Server Communications (Section 14.4)).

  Server dialback is uni-directional, and results in (weak)
  verification of identities for one stream in one direction.  Because
  server dialback is not an authentication mechanism, mutual
  authentication is not possible via dialback.  Therefore, server
  dialback MUST be completed in each direction in order to enable
  bi-directional communications between two domains.

  The method for generating and verifying the keys used in server
  dialback MUST take into account the hostnames being used, the stream
  ID generated by the receiving server, and a secret known by the
  authoritative server's network.  The stream ID is security-critical
  in server dialback and therefore MUST be both unpredictable and
  non-repeating (see [RANDOM] for recommendations regarding randomness
  for security purposes).

  Any error that occurs during dialback negotiation MUST be considered
  a stream error, resulting in termination of the stream and of the
  underlying TCP connection.  The possible error conditions are
  specified in the protocol description below.

  The following terminology applies:

  o  Originating Server -- the server that is attempting to establish a
     connection between two domains.



Saint-Andre, Ed.            Standards Track                    [Page 41]

RFC 3920                       XMPP Core                    October 2004


  o  Receiving Server -- the server that is trying to authenticate that
     the Originating Server represents the domain which it claims to
     be.

  o  Authoritative Server -- the server that answers to the DNS
     hostname asserted by the Originating Server; for basic
     environments this will be the Originating Server, but it could be
     a separate machine in the Originating Server's network.

8.2.  Order of Events

  The following is a brief summary of the order of events in dialback:

  1.  The Originating Server establishes a connection to the Receiving
      Server.

  2.  The Originating Server sends a 'key' value over the connection to
      the Receiving Server.

  3.  The Receiving Server establishes a connection to the
      Authoritative Server.

  4.  The Receiving Server sends the same 'key' value to the
      Authoritative Server.

  5.  The Authoritative Server replies that key is valid or invalid.

  6.  The Receiving Server informs the Originating Server whether it is
      authenticated or not.






















Saint-Andre, Ed.            Standards Track                    [Page 42]

RFC 3920                       XMPP Core                    October 2004


  We can represent this flow of events graphically as follows:

  Originating               Receiving
    Server                    Server
  -----------               ---------
      |                         |
      |   establish connection  |
      | ----------------------> |
      |                         |
      |   send stream header    |
      | ----------------------> |
      |                         |
      |   send stream header    |
      | <---------------------- |
      |                         |                   Authoritative
      |   send dialback key     |                       Server
      | ----------------------> |                   -------------
      |                         |                         |
                                |   establish connection  |
                                | ----------------------> |
                                |                         |
                                |   send stream header    |
                                | ----------------------> |
                                |                         |
                                |   send stream header    |
                                | <---------------------- |
                                |                         |
                                |   send verify request   |
                                | ----------------------> |
                                |                         |
                                |   send verify response  |
                                | <---------------------- |
                                |
      |  report dialback result |
      | <---------------------- |
      |                         |

8.3.  Protocol

  The detailed protocol interaction between the servers is as follows:

  1.  The Originating Server establishes TCP connection to the
      Receiving Server.








Saint-Andre, Ed.            Standards Track                    [Page 43]

RFC 3920                       XMPP Core                    October 2004


  2.  The Originating Server sends a stream header to the Receiving
      Server:

  <stream:stream
      xmlns:stream='http://etherx.jabber.org/streams'
      xmlns='jabber:server'
      xmlns:db='jabber:server:dialback'>

  Note: The 'to' and 'from' attributes are OPTIONAL on the root stream
  element.  The inclusion of the xmlns:db namespace declaration with
  the name shown indicates to the Receiving Server that the Originating
  Server supports dialback.  If the namespace name is incorrect, then
  the Receiving Server MUST generate an <invalid-namespace/> stream
  error condition and terminate both the XML stream and the underlying
  TCP connection.

  3.  The Receiving Server SHOULD send a stream header back to the
      Originating Server, including a unique ID for this interaction:

  <stream:stream
      xmlns:stream='http://etherx.jabber.org/streams'
      xmlns='jabber:server'
      xmlns:db='jabber:server:dialback'
      id='457F9224A0...'>

  Note: The 'to' and 'from' attributes are OPTIONAL on the root stream
  element.  If the namespace name is incorrect, then the Originating
  Server MUST generate an <invalid-namespace/> stream error condition
  and terminate both the XML stream and the underlying TCP connection.
  Note well that the Receiving Server SHOULD reply but MAY silently
  terminate the XML stream and underlying TCP connection depending on
  security policies in place; however, if the Receiving Server desires
  to proceed, it MUST send a stream header back to the Originating
  Server.

  4.  The Originating Server sends a dialback key to the Receiving
      Server:

  <db:result
      to='Receiving Server'
      from='Originating Server'>
    98AF014EDC0...
  </db:result>

  Note: This key is not examined by the Receiving Server, since the
  Receiving Server does not keep information about the Originating
  Server between sessions.  The key generated by the Originating Server
  MUST be based in part on the value of the ID provided by the



Saint-Andre, Ed.            Standards Track                    [Page 44]

RFC 3920                       XMPP Core                    October 2004


  Receiving Server in the previous step, and in part on a secret shared
  by the Originating Server and Authoritative Server.  If the value of
  the 'to' address does not match a hostname recognized by the
  Receiving Server, then the Receiving Server MUST generate a
  <host-unknown/> stream error condition and terminate both the XML
  stream and the underlying TCP connection.  If the value of the 'from'
  address matches a domain with which the Receiving Server already has
  an established connection, then the Receiving Server MUST maintain
  the existing connection until it validates whether the new connection
  is legitimate; additionally, the Receiving Server MAY choose to
  generate a <not-authorized/> stream error condition for the new
  connection and then terminate both the XML stream and the underlying
  TCP connection related to the new request.

  5.  The Receiving Server establishes a TCP connection back to the
      domain name asserted by the Originating Server, as a result of
      which it connects to the Authoritative Server.  (Note: As an
      optimization, an implementation MAY reuse an existing connection
      here.)

  6.  The Receiving Server sends the Authoritative Server a stream
      header:

  <stream:stream
      xmlns:stream='http://etherx.jabber.org/streams'
      xmlns='jabber:server'
      xmlns:db='jabber:server:dialback'>

  Note: The 'to' and 'from' attributes are OPTIONAL on the root stream
  element.  If the namespace name is incorrect, then the Authoritative
  Server MUST generate an <invalid-namespace/> stream error condition
  and terminate both the XML stream and the underlying TCP connection.

  7.  The Authoritative Server sends the Receiving Server a stream
      header:

  <stream:stream
      xmlns:stream='http://etherx.jabber.org/streams'
      xmlns='jabber:server'
      xmlns:db='jabber:server:dialback'
      id='1251A342B...'>

  Note: If the namespace name is incorrect, then the Receiving Server
  MUST generate an <invalid-namespace/> stream error condition and
  terminate both the XML stream and the underlying TCP connection
  between it and the Authoritative Server.  If a stream error occurs
  between the Receiving Server and the Authoritative Server, then the
  Receiving Server MUST generate a <remote-connection-failed/> stream



Saint-Andre, Ed.            Standards Track                    [Page 45]

RFC 3920                       XMPP Core                    October 2004


  error condition and terminate both the XML stream and the underlying
  TCP connection between it and the Originating Server.

  8.  The Receiving Server sends the Authoritative Server a request for
      verification of a key:

  <db:verify
      from='Receiving Server'
      to='Originating Server'
      id='457F9224A0...'>
    98AF014EDC0...
  </db:verify>

  Note: Passed here are the hostnames, the original identifier from the
  Receiving Server's stream header to the Originating Server in Step 3,
  and the key that the Originating Server sent to the Receiving Server
  in Step 4.  Based on this information, as well as shared secret
  information within the Authoritative Server's network, the key is
  verified.  Any verifiable method MAY be used to generate the key.  If
  the value of the 'to' address does not match a hostname recognized by
  the Authoritative Server, then the Authoritative Server MUST generate
  a <host-unknown/> stream error condition and terminate both the XML
  stream and the underlying TCP connection.  If the value of the 'from'
  address does not match the hostname represented by the Receiving
  Server when opening the TCP connection (or any validated domain
  thereof, such as a validated subdomain of the Receiving Server's
  hostname or another validated domain hosted by the Receiving Server),
  then the Authoritative Server MUST generate an <invalid-from/> stream
  error condition and terminate both the XML stream and the underlying
  TCP connection.

  9.  The Authoritative Server verifies whether the key was valid or
      invalid:

  <db:verify
      from='Originating Server'
      to='Receiving Server'
      type='valid'
      id='457F9224A0...'/>

  or

  <db:verify
      from='Originating Server'
      to='Receiving Server'
      type='invalid'
      id='457F9224A0...'/>




Saint-Andre, Ed.            Standards Track                    [Page 46]

RFC 3920                       XMPP Core                    October 2004


  Note: If the ID does not match that provided by the Receiving Server
  in Step 3, then the Receiving Server MUST generate an <invalid-id/>
  stream error condition and terminate both the XML stream and the
  underlying TCP connection.  If the value of the 'to' address does not
  match a hostname recognized by the Receiving Server, then the
  Receiving Server MUST generate a <host-unknown/> stream error
  condition and terminate both the XML stream and the underlying TCP
  connection.  If the value of the 'from' address does not match the
  hostname represented by the Originating Server when opening the TCP
  connection (or any validated domain thereof, such as a validated
  subdomain of the Originating Server's hostname or another validated
  domain hosted by the Originating Server), then the Receiving Server
  MUST generate an <invalid-from/> stream error condition and terminate
  both the XML stream and the underlying TCP connection.  After
  returning the verification to the Receiving Server, the Authoritative
  Server SHOULD terminate the stream between them.

  10. The Receiving Server informs the Originating Server of the
      result:

  <db:result
      from='Receiving Server'
      to='Originating Server'
      type='valid'/>

  Note: At this point, the connection has either been validated via a
  type='valid', or reported as invalid.  If the connection is invalid,
  then the Receiving Server MUST terminate both the XML stream and the
  underlying TCP connection.  If the connection is validated, data can
  be sent by the Originating Server and read by the Receiving Server;
  before that, all XML stanzas sent to the Receiving Server SHOULD be
  silently dropped.

  The result of the foregoing is that the Receiving Server has verified
  the identity of the Originating Server, so that the Originating
  Server can send, and the Receiving Server can accept, XML stanzas
  over the "initial stream" (i.e., the stream from the Originating
  Server to the Receiving Server).  In order to verify the identities
  of the entities using the "response stream" (i.e., the stream from
  the Receiving Server to the Originating Server), dialback MUST be
  completed in the opposite direction as well.

  After successful dialback negotiation, the Receiving Server SHOULD
  accept subsequent <db:result/> packets (e.g., validation requests
  sent to a subdomain or other hostname serviced by the Receiving
  Server) from the Originating Server over the existing validated
  connection; this enables "piggybacking" of the original validated
  connection in one direction.



Saint-Andre, Ed.            Standards Track                    [Page 47]

RFC 3920                       XMPP Core                    October 2004


  Even if dialback negotiation is successful, a server MUST verify that
  all XML stanzas received from the other server include a 'from'
  attribute and a 'to' attribute; if a stanza does not meet this
  restriction, the server that receives the stanza MUST generate an
  <improper-addressing/> stream error condition and terminate both the
  XML stream and the underlying TCP connection.  Furthermore, a server
  MUST verify that the 'from' attribute of stanzas received from the
  other server includes a validated domain for the stream; if a stanza
  does not meet this restriction, the server that receives the stanza
  MUST generate an <invalid-from/> stream error condition and terminate
  both the XML stream and the underlying TCP connection.  Both of these
  checks help to prevent spoofing related to particular stanzas.

9.  XML Stanzas

  After TLS negotiation (Section 5) if desired, SASL negotiation
  (Section 6), and Resource Binding (Section 7) if necessary, XML
  stanzas can be sent over the streams.  Three kinds of XML stanza are
  defined for the 'jabber:client' and 'jabber:server' namespaces:
  <message/>, <presence/>, and <iq/>.  In addition, there are five
  common attributes for these kinds of stanza.  These common
  attributes, as well as the basic semantics of the three stanza kinds,
  are defined herein; more detailed information regarding the syntax of
  XML stanzas in relation to instant messaging and presence
  applications is provided in [XMPP-IM].

9.1.  Common Attributes

  The following five attributes are common to message, presence, and IQ
  stanzas:

9.1.1.  to

  The 'to' attribute specifies the JID of the intended recipient for
  the stanza.

  In the 'jabber:client' namespace, a stanza SHOULD possess a 'to'
  attribute, although a stanza sent from a client to a server for
  handling by that server (e.g., presence sent to the server for
  broadcasting to other entities) SHOULD NOT possess a 'to' attribute.

  In the 'jabber:server' namespace, a stanza MUST possess a 'to'
  attribute; if a server receives a stanza that does not meet this
  restriction, it MUST generate an <improper-addressing/> stream error
  condition and terminate both the XML stream and the underlying TCP
  connection with the offending server.





Saint-Andre, Ed.            Standards Track                    [Page 48]

RFC 3920                       XMPP Core                    October 2004


  If the value of the 'to' attribute is invalid or cannot be contacted,
  the entity discovering that fact (usually the sender's or recipient's
  server) MUST return an appropriate error to the sender, setting the
  'from' attribute of the error stanza to the value provided in the
  'to' attribute of the offending stanza.

9.1.2.  from

  The 'from' attribute specifies the JID of the sender.

  When a server receives an XML stanza within the context of an
  authenticated stream qualified by the 'jabber:client' namespace, it
  MUST do one of the following:

  1.  validate that the value of the 'from' attribute provided by the
      client is that of a connected resource for the associated entity

  2.  add a 'from' address to the stanza whose value is the bare JID
      (<node@domain>) or the full JID (<node@domain/resource>)
      determined by the server for the connected resource that
      generated the stanza (see Determination of Addresses (Section
      3.5))

  If a client attempts to send an XML stanza for which the value of the
  'from' attribute does not match one of the connected resources for
  that entity, the server SHOULD return an <invalid-from/> stream error
  to the client.  If a client attempts to send an XML stanza over a
  stream that is not yet authenticated, the server SHOULD return a
  <not-authorized/> stream error to the client.  If generated, both of
  these conditions MUST result in closure of the stream and termination
  of the underlying TCP connection; this helps to prevent a denial of
  service attack launched from a rogue client.

  When a server generates a stanza from the server itself for delivery
  to a connected client (e.g., in the context of data storage services
  provided by the server on behalf of the client), the stanza MUST
  either (1) not include a 'from' attribute or (2) include a 'from'
  attribute whose value is the account's bare JID (<node@domain>) or
  client's full JID (<node@domain/resource>).  A server MUST NOT send
  to the client a stanza without a 'from' attribute if the stanza was
  not generated by the server itself.  When a client receives a stanza
  that does not include a 'from' attribute, it MUST assume that the
  stanza is from the server to which the client is connected.

  In the 'jabber:server' namespace, a stanza MUST possess a 'from'
  attribute; if a server receives a stanza that does not meet this
  restriction, it MUST generate an <improper-addressing/> stream error
  condition.  Furthermore, the domain identifier portion of the JID



Saint-Andre, Ed.            Standards Track                    [Page 49]

RFC 3920                       XMPP Core                    October 2004


  contained in the 'from' attribute MUST match the hostname of the
  sending server (or any validated domain thereof, such as a validated
  subdomain of the sending server's hostname or another validated
  domain hosted by the sending server) as communicated in the SASL
  negotiation or dialback negotiation; if a server receives a stanza
  that does not meet this restriction, it MUST generate an
  <invalid-from/> stream error condition.  Both of these conditions
  MUST result in closing of the stream and termination of the
  underlying TCP connection; this helps to prevent a denial of service
  attack launched from a rogue server.

9.1.3.  id

  The optional 'id' attribute MAY be used by a sending entity for
  internal tracking of stanzas that it sends and receives (especially
  for tracking the request-response interaction inherent in the
  semantics of IQ stanzas).  It is OPTIONAL for the value of the 'id'
  attribute to be unique globally, within a domain, or within a stream.
  The semantics of IQ stanzas impose additional restrictions; see IQ
  Semantics (Section 9.2.3).

9.1.4.  type

  The 'type' attribute specifies detailed information about the purpose
  or context of the message, presence, or IQ stanza.  The particular
  allowable values for the 'type' attribute vary depending on whether
  the stanza is a message, presence, or IQ; the values for message and
  presence stanzas are specific to instant messaging and presence
  applications and therefore are defined in [XMPP-IM], whereas the
  values for IQ stanzas specify the role of an IQ stanza in a
  structured request-response "conversation" and thus are defined under
  IQ Semantics (Section 9.2.3) below.  The only 'type' value common to
  all three stanzas is "error"; see Stanza Errors (Section 9.3).

9.1.5.  xml:lang

  A stanza SHOULD possess an 'xml:lang' attribute (as defined in
  Section 2.12 of [XML]) if the stanza contains XML character data that
  is intended to be presented to a human user (as explained in RFC 2277
  [CHARSET], "internationalization is for humans").  The value of the
  'xml:lang' attribute specifies the default language of any such
  human-readable XML character data, which MAY be overridden by the
  'xml:lang' attribute of a specific child element.  If a stanza does
  not possess an 'xml:lang' attribute, an implementation MUST assume
  that the default language is that specified for the stream as defined
  under Stream Attributes (Section 4.4) above.  The value of the
  'xml:lang' attribute MUST be an NMTOKEN and MUST conform to the
  format defined in RFC 3066 [LANGTAGS].



Saint-Andre, Ed.            Standards Track                    [Page 50]

RFC 3920                       XMPP Core                    October 2004


9.2.  Basic Semantics

9.2.1.  Message Semantics

  The <message/> stanza kind can be seen as a "push" mechanism whereby
  one entity pushes information to another entity, similar to the
  communications that occur in a system such as email.  All message
  stanzas SHOULD possess a 'to' attribute that specifies the intended
  recipient of the message; upon receiving such a stanza, a server
  SHOULD route or deliver it to the intended recipient (see Server
  Rules for Handling XML Stanzas (Section 10) for general routing and
  delivery rules related to XML stanzas).

9.2.2.  Presence Semantics

  The <presence/> element can be seen as a basic broadcast or
  "publish-subscribe" mechanism, whereby multiple entities receive
  information about an entity to which they have subscribed (in this
  case, network availability information).  In general, a publishing
  entity SHOULD send a presence stanza with no 'to' attribute, in which
  case the server to which the entity is connected SHOULD broadcast or
  multiplex that stanza to all subscribing entities.  However, a
  publishing entity MAY also send a presence stanza with a 'to'
  attribute, in which case the server SHOULD route or deliver that
  stanza to the intended recipient.  See Server Rules for Handling XML
  Stanzas (Section 10) for general routing and delivery rules related
  to XML stanzas, and [XMPP-IM] for presence-specific rules in the
  context of an instant messaging and presence application.

9.2.3.  IQ Semantics

  Info/Query, or IQ, is a request-response mechanism, similar in some
  ways to [HTTP].  The semantics of IQ enable an entity to make a
  request of, and receive a response from, another entity.  The data
  content of the request and response is defined by the namespace
  declaration of a direct child element of the IQ element, and the
  interaction is tracked by the requesting entity through use of the
  'id' attribute.  Thus, IQ interactions follow a common pattern of
  structured data exchange such as get/result or set/result (although
  an error may be returned in reply to a request if appropriate):











Saint-Andre, Ed.            Standards Track                    [Page 51]

RFC 3920                       XMPP Core                    October 2004


  Requesting                 Responding
    Entity                     Entity
  ----------                 ----------
      |                           |
      | <iq type='get' id='1'>    |
      | ------------------------> |
      |                           |
      | <iq type='result' id='1'> |
      | <------------------------ |
      |                           |
      | <iq type='set' id='2'>    |
      | ------------------------> |
      |                           |
      | <iq type='error' id='2'>  |
      | <------------------------ |
      |                           |

  In order to enforce these semantics, the following rules apply:

  1.  The 'id' attribute is REQUIRED for IQ stanzas.

  2.  The 'type' attribute is REQUIRED for IQ stanzas.  The value MUST
      be one of the following:

      *  get -- The stanza is a request for information or
         requirements.

      *  set -- The stanza provides required data, sets new values, or
         replaces existing values.

      *  result -- The stanza is a response to a successful get or set
         request.

      *  error -- An error has occurred regarding processing or
         delivery of a previously-sent get or set (see Stanza Errors
         (Section 9.3)).

  3.  An entity that receives an IQ request of type "get" or "set" MUST
      reply with an IQ response of type "result" or "error" (the
      response MUST preserve the 'id' attribute of the request).

  4.  An entity that receives a stanza of type "result" or "error" MUST
      NOT respond to the stanza by sending a further IQ response of
      type "result" or "error"; however, as shown above, the requesting
      entity MAY send another request (e.g., an IQ of type "set" in
      order to provide required information discovered through a
      get/result pair).




Saint-Andre, Ed.            Standards Track                    [Page 52]

RFC 3920                       XMPP Core                    October 2004


  5.  An IQ stanza of type "get" or "set" MUST contain one and only one
      child element that specifies the semantics of the particular
      request or response.

  6.  An IQ stanza of type "result" MUST include zero or one child
      elements.

  7.  An IQ stanza of type "error" SHOULD include the child element
      contained in the associated "get" or "set" and MUST include an
      <error/> child; for details, see Stanza Errors (Section 9.3).

9.3.  Stanza Errors

  Stanza-related errors are handled in a manner similar to stream
  errors (Section 4.7).  However, unlike stream errors, stanza errors
  are recoverable; therefore error stanzas include hints regarding
  actions that the original sender can take in order to remedy the
  error.

9.3.1.  Rules

  The following rules apply to stanza-related errors:

  o  The receiving or processing entity that detects an error condition
     in relation to a stanza MUST return to the sending entity a stanza
     of the same kind (message, presence, or IQ), whose 'type'
     attribute is set to a value of "error" (such a stanza is called an
     "error stanza" herein).

  o  The entity that generates an error stanza SHOULD include the
     original XML sent so that the sender can inspect and, if
     necessary, correct the XML before attempting to resend.

  o  An error stanza MUST contain an <error/> child element.

  o  An <error/> child MUST NOT be included if the 'type' attribute has
     a value other than "error" (or if there is no 'type' attribute).

  o  An entity that receives an error stanza MUST NOT respond to the
     stanza with a further error stanza; this helps to prevent looping.











Saint-Andre, Ed.            Standards Track                    [Page 53]

RFC 3920                       XMPP Core                    October 2004


9.3.2.  Syntax

  The syntax for stanza-related errors is as follows:

  <stanza-kind to='sender' type='error'>
    [RECOMMENDED to include sender XML here]
    <error type='error-type'>
      <defined-condition xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
      <text xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'
            xml:lang='langcode'>
        OPTIONAL descriptive text
      </text>
      [OPTIONAL application-specific condition element]
    </error>
  </stanza-kind>

  The stanza-kind is one of message, presence, or iq.

  The value of the <error/> element's 'type' attribute MUST be one of
  the following:

  o  cancel -- do not retry (the error is unrecoverable)
  o  continue -- proceed (the condition was only a warning)
  o  modify -- retry after changing the data sent
  o  auth -- retry after providing credentials
  o  wait -- retry after waiting (the error is temporary)

  The <error/> element:

  o  MUST contain a child element corresponding to one of the defined
     stanza error conditions specified below; this element MUST be
     qualified by the 'urn:ietf:params:xml:ns:xmpp-stanzas' namespace.

  o  MAY contain a <text/> child containing XML character data that
     describes the error in more detail; this element MUST be qualified
     by the 'urn:ietf:params:xml:ns:xmpp-stanzas' namespace and SHOULD
     possess an 'xml:lang' attribute.

  o  MAY contain a child element for an application-specific error
     condition; this element MUST be qualified by an
     application-defined namespace, and its structure is defined by
     that namespace.

  The <text/> element is OPTIONAL.  If included, it SHOULD be used only
  to provide descriptive or diagnostic information that supplements the
  meaning of a defined condition or application-specific condition.  It
  SHOULD NOT be interpreted programmatically by an application.  It




Saint-Andre, Ed.            Standards Track                    [Page 54]

RFC 3920                       XMPP Core                    October 2004


  SHOULD NOT be used as the error message presented to a user, but MAY
  be shown in addition to the error message associated with the
  included condition element (or elements).

  Finally, to maintain backward compatibility, the schema (specified in
  [XMPP-IM]) allows the optional inclusion of a 'code' attribute on the
  <error/> element.

9.3.3.  Defined Conditions

  The following conditions are defined for use in stanza errors.

  o  <bad-request/> -- the sender has sent XML that is malformed or
     that cannot be processed (e.g., an IQ stanza that includes an
     unrecognized value of the 'type' attribute); the associated error
     type SHOULD be "modify".

  o  <conflict/> -- access cannot be granted because an existing
     resource or session exists with the same name or address; the
     associated error type SHOULD be "cancel".

  o  <feature-not-implemented/> -- the feature requested is not
     implemented by the recipient or server and therefore cannot be
     processed; the associated error type SHOULD be "cancel".

  o  <forbidden/> -- the requesting entity does not possess the
     required permissions to perform the action; the associated error
     type SHOULD be "auth".

  o  <gone/> -- the recipient or server can no longer be contacted at
     this address (the error stanza MAY contain a new address in the
     XML character data of the <gone/> element); the associated error
     type SHOULD be "modify".

  o  <internal-server-error/> -- the server could not process the
     stanza because of a misconfiguration or an otherwise-undefined
     internal server error; the associated error type SHOULD be "wait".

  o  <item-not-found/> -- the addressed JID or item requested cannot be
     found; the associated error type SHOULD be "cancel".

  o  <jid-malformed/> -- the sending entity has provided or
     communicated an XMPP address (e.g., a value of the 'to' attribute)
     or aspect thereof (e.g., a resource identifier) that does not
     adhere to the syntax defined in Addressing Scheme (Section 3); the
     associated error type SHOULD be "modify".





Saint-Andre, Ed.            Standards Track                    [Page 55]

RFC 3920                       XMPP Core                    October 2004


  o  <not-acceptable/> -- the recipient or server understands the
     request but is refusing to process it because it does not meet
     criteria defined by the recipient or server (e.g., a local policy
     regarding acceptable words in messages); the associated error type
     SHOULD be "modify".

  o  <not-allowed/> -- the recipient or server does not allow any
     entity to perform the action; the associated error type SHOULD be
     "cancel".

  o  <not-authorized/> -- the sender must provide proper credentials
     before being allowed to perform the action, or has provided
     improper credentials; the associated error type SHOULD be "auth".

  o  <payment-required/> -- the requesting entity is not authorized to
     access the requested service because payment is required; the
     associated error type SHOULD be "auth".

  o  <recipient-unavailable/> -- the intended recipient is temporarily
     unavailable; the associated error type SHOULD be "wait" (note: an
     application MUST NOT return this error if doing so would provide
     information about the intended recipient's network availability to
     an entity that is not authorized to know such information).

  o  <redirect/> -- the recipient or server is redirecting requests for
     this information to another entity, usually temporarily (the error
     stanza SHOULD contain the alternate address, which MUST be a valid
     JID, in the XML character data of the <redirect/> element); the
     associated error type SHOULD be "modify".

  o  <registration-required/> -- the requesting entity is not
     authorized to access the requested service because registration is
     required; the associated error type SHOULD be "auth".

  o  <remote-server-not-found/> -- a remote server or service specified
     as part or all of the JID of the intended recipient does not
     exist; the associated error type SHOULD be "cancel".

  o  <remote-server-timeout/> -- a remote server or service specified
     as part or all of the JID of the intended recipient (or required
     to fulfill a request) could not be contacted within a reasonable
     amount of time; the associated error type SHOULD be "wait".

  o  <resource-constraint/> -- the server or recipient lacks the system
     resources necessary to service the request; the associated error
     type SHOULD be "wait".





Saint-Andre, Ed.            Standards Track                    [Page 56]

RFC 3920                       XMPP Core                    October 2004


  o  <service-unavailable/> -- the server or recipient does not
     currently provide the requested service; the associated error type
     SHOULD be "cancel".

  o  <subscription-required/> -- the requesting entity is not
     authorized to access the requested service because a subscription
     is required; the associated error type SHOULD be "auth".

  o  <undefined-condition/> -- the error condition is not one of those
     defined by the other conditions in this list; any error type may
     be associated with this condition, and it SHOULD be used only in
     conjunction with an application-specific condition.

  o  <unexpected-request/> -- the recipient or server understood the
     request but was not expecting it at this time (e.g., the request
     was out of order); the associated error type SHOULD be "wait".

9.3.4.  Application-Specific Conditions

  As noted, an application MAY provide application-specific stanza
  error information by including a properly-namespaced child in the
  error element.  The application-specific element SHOULD supplement or
  further qualify a defined element.  Thus, the <error/> element will
  contain two or three child elements:

  <iq type='error' id='some-id'>
    <error type='modify'>
      <bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
      <too-many-parameters xmlns='application-ns'/>
    </error>
  </iq>

  <message type='error' id='another-id'>
    <error type='modify'>
      <undefined-condition
            xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
      <text xml:lang='en'
            xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'>
        Some special application diagnostic information...
      </text>
      <special-application-condition xmlns='application-ns'/>
    </error>
  </message>








Saint-Andre, Ed.            Standards Track                    [Page 57]

RFC 3920                       XMPP Core                    October 2004


10.  Server Rules for Handling XML Stanzas

  Compliant server implementations MUST ensure in-order processing of
  XML stanzas between any two entities.

  Beyond the requirement for in-order processing, each server
  implementation will contain its own "delivery tree" for handling
  stanzas it receives.  Such a tree determines whether a stanza needs
  to be routed to another domain, processed internally, or delivered to
  a resource associated with a connected node.  The following rules
  apply:

10.1.  No 'to' Address

  If the stanza possesses no 'to' attribute, the server SHOULD process
  it on behalf of the entity that sent it.  Because all stanzas
  received from other servers MUST possess a 'to' attribute, this rule
  applies only to stanzas received from a registered entity (such as a
  client) that is connected to the server.  If the server receives a
  presence stanza with no 'to' attribute, the server SHOULD broadcast
  it to the entities that are subscribed to the sending entity's
  presence, if applicable (the semantics of presence broadcast for
  instant messaging and presence applications are defined in
  [XMPP-IM]).  If the server receives an IQ stanza of type "get" or
  "set" with no 'to' attribute and it understands the namespace that
  qualifies the content of the stanza, it MUST either process the
  stanza on behalf of the sending entity (where the meaning of
  "process" is determined by the semantics of the qualifying namespace)
  or return an error to the sending entity.

10.2.  Foreign Domain

  If the hostname of the domain identifier portion of the JID contained
  in the 'to' attribute does not match one of the configured hostnames
  of the server itself or a subdomain thereof, the server SHOULD route
  the stanza to the foreign domain (subject to local service
  provisioning and security policies regarding inter-domain
  communication).  There are two possible cases:

  A server-to-server stream already exists between the two domains: The
     sender's server routes the stanza to the authoritative server for
     the foreign domain over the existing stream

  There exists no server-to-server stream between the two domains: The
     sender's server (1) resolves the hostname of the foreign domain
     (as defined under Server-to-Server Communications (Section 14.4)),
     (2) negotiates a server-to-server stream between the two domains
     (as defined under Use of TLS (Section 5) and Use of SASL (Section



Saint-Andre, Ed.            Standards Track                    [Page 58]

RFC 3920                       XMPP Core                    October 2004


     6)), and (3) routes the stanza to the authoritative server for the
     foreign domain over the newly-established stream

  If routing to the recipient's server is unsuccessful, the sender's
  server MUST return an error to the sender; if the recipient's server
  can be contacted but delivery by the recipient's server to the
  recipient is unsuccessful, the recipient's server MUST return an
  error to the sender by way of the sender's server.

10.3.  Subdomain

  If the hostname of the domain identifier portion of the JID contained
  in the 'to' attribute matches a subdomain of one of the configured
  hostnames of the server itself, the server MUST either process the
  stanza itself or route the stanza to a specialized service that is
  responsible for that subdomain (if the subdomain is configured), or
  return an error to the sender (if the subdomain is not configured).

10.4.  Mere Domain or Specific Resource

  If the hostname of the domain identifier portion of the JID contained
  in the 'to' attribute matches a configured hostname of the server
  itself and the JID contained in the 'to' attribute is of the form
  <domain> or <domain/resource>, the server (or a defined resource
  thereof) MUST either process the stanza as appropriate for the stanza
  kind or return an error stanza to the sender.

10.5.  Node in Same Domain

  If the hostname of the domain identifier portion of the JID contained
  in the 'to' attribute matches a configured hostname of the server
  itself and the JID contained in the 'to' attribute is of the form
  <node@domain> or <node@domain/resource>, the server SHOULD deliver
  the stanza to the intended recipient of the stanza as represented by
  the JID contained in the 'to' attribute.  The following rules apply:

  1.  If the JID contains a resource identifier (i.e., is of the form
      <node@domain/resource>) and there exists a connected resource
      that matches the full JID, the recipient's server SHOULD deliver
      the stanza to the stream or session that exactly matches the
      resource identifier.

  2.  If the JID contains a resource identifier and there exists no
      connected resource that matches the full JID, the recipient's
      server SHOULD return a <service-unavailable/> stanza error to the
      sender.





Saint-Andre, Ed.            Standards Track                    [Page 59]

RFC 3920                       XMPP Core                    October 2004


  3.  If the JID is of the form <node@domain> and there exists at least
      one connected resource for the node, the recipient's server
      SHOULD deliver the stanza to at least one of the connected
      resources, according to application-specific rules (a set of
      delivery rules for instant messaging and presence applications is
      defined in [XMPP-IM]).

11.  XML Usage within XMPP

11.1.  Restrictions

  XMPP is a simplified and specialized protocol for streaming XML
  elements in order to exchange structured information in close to real
  time.  Because XMPP does not require the parsing of arbitrary and
  complete XML documents, there is no requirement that XMPP needs to
  support the full feature set of [XML].  In particular, the following
  restrictions apply.

  With regard to XML generation, an XMPP implementation MUST NOT inject
  into an XML stream any of the following:

  o  comments (as defined in Section 2.5 of [XML])

  o  processing instructions (Section 2.6 therein)

  o  internal or external DTD subsets (Section 2.8 therein)

  o  internal or external entity references (Section 4.2 therein) with
     the exception of predefined entities (Section 4.6 therein)

  o  character data or attribute values containing unescaped characters
     that map to the predefined entities (Section 4.6 therein); such
     characters MUST be escaped

  With regard to XML processing, if an XMPP implementation receives
  such restricted XML data, it MUST ignore the data.

11.2.  XML Namespace Names and Prefixes

  XML Namespaces [XML-NAMES] are used within all XMPP-compliant XML to
  create strict boundaries of data ownership.  The basic function of
  namespaces is to separate different vocabularies of XML elements that
  are structurally mixed together.  Ensuring that XMPP-compliant XML is
  namespace-aware enables any allowable XML to be structurally mixed
  with any data element within XMPP.  Rules for XML namespace names and
  prefixes are defined in the following subsections.





Saint-Andre, Ed.            Standards Track                    [Page 60]

RFC 3920                       XMPP Core                    October 2004


11.2.1.  Streams Namespace

  A streams namespace declaration is REQUIRED in all XML stream
  headers.  The name of the streams namespace MUST be
  'http://etherx.jabber.org/streams'.  The element names of the
  <stream/> element and its <features/> and <error/> children MUST be
  qualified by the streams namespace prefix in all instances.  An
  implementation SHOULD generate only the 'stream:' prefix for these
  elements, and for historical reasons MAY accept only the 'stream:'
  prefix.

11.2.2.  Default Namespace

  A default namespace declaration is REQUIRED and is used in all XML
  streams in order to define the allowable first-level children of the
  root stream element.  This namespace declaration MUST be the same for
  the initial stream and the response stream so that both streams are
  qualified consistently.  The default namespace declaration applies to
  the stream and all stanzas sent within a stream (unless explicitly
  qualified by another namespace, or by the prefix of the streams
  namespace or the dialback namespace).

  A server implementation MUST support the following two default
  namespaces (for historical reasons, some implementations MAY support
  only these two default namespaces):

  o  jabber:client -- this default namespace is declared when the
     stream is used for communications between a client and a server

  o  jabber:server -- this default namespace is declared when the
     stream is used for communications between two servers

  A client implementation MUST support the 'jabber:client' default
  namespace, and for historical reasons MAY support only that default
  namespace.

  An implementation MUST NOT generate namespace prefixes for elements
  in the default namespace if the default namespace is 'jabber:client'
  or 'jabber:server'.  An implementation SHOULD NOT generate namespace
  prefixes for elements qualified by content (as opposed to stream)
  namespaces other than 'jabber:client' and 'jabber:server'.

  Note: The 'jabber:client' and 'jabber:server' namespaces are nearly
  identical but are used in different contexts (client-to-server
  communications for 'jabber:client' and server-to-server
  communications for 'jabber:server').  The only difference between the
  two is that the 'to' and 'from' attributes are OPTIONAL on stanzas
  sent within 'jabber:client', whereas they are REQUIRED on stanzas



Saint-Andre, Ed.            Standards Track                    [Page 61]

RFC 3920                       XMPP Core                    October 2004


  sent within 'jabber:server'.  If a compliant implementation accepts a
  stream that is qualified by the 'jabber:client' or 'jabber:server'
  namespace, it MUST support the common attributes (Section 9.1) and
  basic semantics (Section 9.2) of all three core stanza kinds
  (message, presence, and IQ).

11.2.3.  Dialback Namespace

  A dialback namespace declaration is REQUIRED for all elements used in
  server dialback (Section 8).  The name of the dialback namespace MUST
  be 'jabber:server:dialback'.  All elements qualified by this
  namespace MUST be prefixed.  An implementation SHOULD generate only
  the 'db:' prefix for such elements and MAY accept only the 'db:'
  prefix.

11.3.  Validation

  Except as noted with regard to 'to' and 'from' addresses for stanzas
  within the 'jabber:server' namespace, a server is not responsible for
  validating the XML elements forwarded to a client or another server;
  an implementation MAY choose to provide only validated data elements
  but this is OPTIONAL (although an implementation MUST NOT accept XML
  that is not well-formed).  Clients SHOULD NOT rely on the ability to
  send data which does not conform to the schemas, and SHOULD ignore
  any non-conformant elements or attributes on the incoming XML stream.
  Validation of XML streams and stanzas is OPTIONAL, and schemas are
  included herein for descriptive purposes only.

11.4.  Inclusion of Text Declaration

  Implementations SHOULD send a text declaration before sending a
  stream header.  Applications MUST follow the rules in [XML] regarding
  the circumstances under which a text declaration is included.

11.5.  Character Encoding

  Implementations MUST support the UTF-8 (RFC 3629 [UTF-8])
  transformation of Universal Character Set (ISO/IEC 10646-1 [UCS2])
  characters, as required by RFC 2277 [CHARSET].  Implementations MUST
  NOT attempt to use any other encoding.

12.  Core Compliance Requirements

  This section summarizes the specific aspects of the Extensible
  Messaging and Presence Protocol that MUST be supported by servers and
  clients in order to be considered compliant implementations, as well
  as additional protocol aspects that SHOULD be supported.  For
  compliance purposes, we draw a distinction between core protocols



Saint-Andre, Ed.            Standards Track                    [Page 62]

RFC 3920                       XMPP Core                    October 2004


  (which MUST be supported by any server or client, regardless of the
  specific application) and instant messaging protocols (which MUST be
  supported only by instant messaging and presence applications built
  on top of the core protocols).  Compliance requirements that apply to
  all servers and clients are specified in this section; compliance
  requirements for instant messaging servers and clients are specified
  in the corresponding section of [XMPP-IM].

12.1.  Servers

  In addition to all defined requirements with regard to security, XML
  usage, and internationalization, a server MUST support the following
  core protocols in order to be considered compliant:

  o  Application of the [NAMEPREP], Nodeprep (Appendix A), and
     Resourceprep (Appendix B) profiles of [STRINGPREP] to addresses
     (including ensuring that domain identifiers are internationalized
     domain names as defined in [IDNA])

  o  XML streams (Section 4), including Use of TLS (Section 5), Use of
     SASL (Section 6), and Resource Binding (Section 7)

  o  The basic semantics of the three defined stanza kinds (i.e.,
     <message/>, <presence/>, and <iq/>) as specified in stanza
     semantics (Section 9.2)

  o  Generation (and, where appropriate, handling) of error syntax and
     semantics related to streams, TLS, SASL, and XML stanzas

  In addition, a server MAY support the following core protocol:

  o  Server dialback (Section 8)

12.2.  Clients

  A client MUST support the following core protocols in order to be
  considered compliant:

  o  XML streams (Section 4), including Use of TLS (Section 5), Use of
     SASL (Section 6), and Resource Binding (Section 7)

  o  The basic semantics of the three defined stanza kinds (i.e.,
     <message/>, <presence/>, and <iq/>) as specified in stanza
     semantics (Section 9.2)

  o  Handling (and, where appropriate, generation) of error syntax and
     semantics related to streams, TLS, SASL, and XML stanzas




Saint-Andre, Ed.            Standards Track                    [Page 63]

RFC 3920                       XMPP Core                    October 2004


  In addition, a client SHOULD support the following core protocols:

  o  Generation of addresses to which the [NAMEPREP], Nodeprep
     (Appendix A), and Resourceprep (Appendix B) profiles of
     [STRINGPREP] can be applied without failing

13.  Internationalization Considerations

  XML streams MUST be encoded in UTF-8 as specified under Character
  Encoding (Section 11.5).  As specified under Stream Attributes
  (Section 4.4), an XML stream SHOULD include an 'xml:lang' attribute
  that is treated as the default language for any XML character data
  sent over the stream that is intended to be presented to a human
  user.  As specified under xml:lang (Section 9.1.5), an XML stanza
  SHOULD include an 'xml:lang' attribute if the stanza contains XML
  character data that is intended to be presented to a human user.  A
  server SHOULD apply the default 'xml:lang' attribute to stanzas it
  routes or delivers on behalf of connected entities, and MUST NOT
  modify or delete 'xml:lang' attributes from stanzas it receives from
  other entities.

14.  Security Considerations

14.1.  High Security

  For the purposes of XMPP communications (client-to-server and
  server-to-server), the term "high security" refers to the use of
  security technologies that provide both mutual authentication and
  integrity-checking; in particular, when using certificate-based
  authentication to provide high security, a chain-of-trust SHOULD be
  established out-of-band, although a shared certificate authority
  signing certificates could allow a previously unknown certificate to
  establish trust in-band.  See Section 14.2 below regarding
  certificate validation procedures.

  Implementations MUST support high security.  Service provisioning
  SHOULD use high security, subject to local security policies.

14.2.  Certificate Validation

  When an XMPP peer communicates with another peer securely, it MUST
  validate the peer's certificate.  There are three possible cases:

  Case #1: The peer contains an End Entity certificate which appears to
     be certified by a chain of certificates terminating in a trust
     anchor (as described in Section 6.1 of [X509]).





Saint-Andre, Ed.            Standards Track                    [Page 64]

RFC 3920                       XMPP Core                    October 2004


  Case #2: The peer certificate is certified by a Certificate Authority
     not known to the validating peer.

  Case #3: The peer certificate is self-signed.

  In Case #1, the validating peer MUST do one of two things:

  1.  Verify the peer certificate according to the rules of [X509].
      The certificate SHOULD then be checked against the expected
      identity of the peer following the rules described in [HTTP-TLS],
      except that a subjectAltName extension of type "xmpp" MUST be
      used as the identity if present.  If one of these checks fails,
      user-oriented clients MUST either notify the user (clients MAY
      give the user the opportunity to continue with the connection in
      any case) or terminate the connection with a bad certificate
      error.  Automated clients SHOULD terminate the connection (with a
      bad certificate error) and log the error to an appropriate audit
      log.  Automated clients MAY provide a configuration setting that
      disables this check, but MUST provide a setting that enables it.

  2.  The peer SHOULD show the certificate to a user for approval,
      including the entire certificate chain.  The peer MUST cache the
      certificate (or some non-forgeable representation such as a
      hash).  In future connections, the peer MUST verify that the same
      certificate was presented and MUST notify the user if it has
      changed.

  In Case #2 and Case #3, implementations SHOULD act as in (2) above.

14.3.  Client-to-Server Communications

  A compliant client implementation MUST support both TLS and SASL for
  connections to a server.

  The TLS protocol for encrypting XML streams (defined under Use of TLS
  (Section 5)) provides a reliable mechanism for helping to ensure the
  confidentiality and data integrity of data exchanged between two
  entities.

  The SASL protocol for authenticating XML streams (defined under Use
  of SASL (Section 6)) provides a reliable mechanism for validating
  that a client connecting to a server is who it claims to be.

  Client-to-server communications MUST NOT proceed until the DNS
  hostname asserted by the server has been resolved.  Such resolutions
  SHOULD first attempt to resolve the hostname using an [SRV] Service
  of "xmpp-client" and Proto of "tcp", resulting in resource records
  such as "_xmpp-client._tcp.example.com." (the use of the string



Saint-Andre, Ed.            Standards Track                    [Page 65]

RFC 3920                       XMPP Core                    October 2004


  "xmpp-client" for the service identifier is consistent with the IANA
  registration).  If the SRV lookup fails, the fallback is a normal
  IPv4/IPv6 address record resolution to determine the IP address,
  using the "xmpp-client" port of 5222, registered with the IANA.

  The IP address and method of access of clients MUST NOT be made
  public by a server, nor are any connections other than the original
  server connection required.  This helps to protect the client's
  server from direct attack or identification by third parties.

14.4.  Server-to-Server Communications

  A compliant server implementation MUST support both TLS and SASL for
  inter-domain communications.  For historical reasons, a compliant
  implementation SHOULD also support Server Dialback (Section 8).

  Because service provisioning is a matter of policy, it is OPTIONAL
  for any given domain to communicate with other domains, and
  server-to-server communications MAY be disabled by the administrator
  of any given deployment.  If a particular domain enables inter-domain
  communications, it SHOULD enable high security.

  Administrators may want to require use of SASL for server-to-server
  communications in order to ensure both authentication and
  confidentiality (e.g., on an organization's private network).
  Compliant implementations SHOULD support SASL for this purpose.

  Inter-domain connections MUST NOT proceed until the DNS hostnames
  asserted by the servers have been resolved.  Such resolutions MUST
  first attempt to resolve the hostname using an [SRV] Service of
  "xmpp-server" and Proto of "tcp", resulting in resource records such
  as "_xmpp-server._tcp.example.com." (the use of the string
  "xmpp-server" for the service identifier is consistent with the IANA
  registration; note well that the "xmpp-server" service identifier
  supersedes the earlier use of a "jabber" service identifier, since
  the earlier usage did not conform to [SRV]; implementations desiring
  to be backward compatible should continue to look for or answer to
  the "jabber" service identifier as well).  If the SRV lookup fails,
  the fallback is a normal IPv4/IPv6 address record resolution to
  determine the IP address, using the "xmpp-server" port 5269,
  registered with the IANA.

  Server dialback helps protect against domain spoofing, thus making it
  more difficult to spoof XML stanzas.  It is not a mechanism for
  authenticating, securing, or encrypting streams between servers as is
  done via SASL and TLS, and results in weak verification of server
  identities only.  Furthermore, it is susceptible to DNS poisoning
  attacks unless DNSSec [DNSSEC] is used, and even if the DNS



Saint-Andre, Ed.            Standards Track                    [Page 66]

RFC 3920                       XMPP Core                    October 2004


  information is accurate, dialback cannot protect from attacks where
  the attacker is capable of hijacking the IP address of the remote
  domain.  Domains requiring robust security SHOULD use TLS and SASL.
  If SASL is used for server-to-server authentication, dialback SHOULD
  NOT be used since it is unnecessary.

14.5.  Order of Layers

  The order of layers in which protocols MUST be stacked is as follows:

  1.  TCP
  2.  TLS
  3.  SASL
  4.  XMPP

  The rationale for this order is that [TCP] is the base connection
  layer used by all of the protocols stacked on top of TCP, [TLS] is
  often provided at the operating system layer, [SASL] is often
  provided at the application layer, and XMPP is the application
  itself.

14.6.  Lack of SASL Channel Binding to TLS

  The SASL framework does not provide a mechanism to bind SASL
  authentication to a security layer providing confidentiality and
  integrity protection that was negotiated at a lower layer.  This lack
  of a "channel binding" prevents SASL from being able to verify that
  the source and destination end points to which the lower layer's
  security is bound are equivalent to the end points that SASL is
  authenticating.  If the end points are not identical, the lower
  layer's security cannot be trusted to protect data transmitted
  between the SASL authenticated entities.  In such a situation, a SASL
  security layer should be negotiated that effectively ignores the
  presence of the lower layer security.

14.7.  Mandatory-to-Implement Technologies

  At a minimum, all implementations MUST support the following
  mechanisms:

  for authentication: the SASL [DIGEST-MD5] mechanism

  for confidentiality: TLS (using the TLS_RSA_WITH_3DES_EDE_CBC_SHA
     cipher)

  for both: TLS plus SASL EXTERNAL(using the
     TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher supporting client-side
     certificates)



Saint-Andre, Ed.            Standards Track                    [Page 67]

RFC 3920                       XMPP Core                    October 2004


14.8.  Firewalls

  Communications using XMPP normally occur over [TCP] connections on
  port 5222 (client-to-server) or port 5269 (server-to-server), as
  registered with the IANA (see IANA Considerations (Section 15)).  Use
  of these well-known ports allows administrators to easily enable or
  disable XMPP activity through existing and commonly-deployed
  firewalls.

14.9.  Use of base64 in SASL

  Both the client and the server MUST verify any [BASE64] data received
  during SASL negotiation.  An implementation MUST reject (not ignore)
  any characters that are not explicitly allowed by the base64
  alphabet; this helps to guard against creation of a covert channel
  that could be used to "leak" information.  An implementation MUST NOT
  break on invalid input and MUST reject any sequence of base64
  characters containing the pad ('=') character if that character is
  included as something other than the last character of the data
  (e.g., "=AAA" or "BBBB=CCC"); this helps to guard against buffer
  overflow attacks and other attacks on the implementation.  Base 64
  encoding visually hides otherwise easily recognized information, such
  as passwords, but does not provide any computational confidentiality.
  Base 64 encoding MUST follow the definition in Section 3 of RFC 3548
  [BASE64].

14.10.  Stringprep Profiles

  XMPP makes use of the [NAMEPREP] profile of [STRINGPREP] for the
  processing of domain identifiers; for security considerations related
  to Nameprep, refer to the appropriate section of [NAMEPREP].

  In addition, XMPP defines two profiles of [STRINGPREP]: Nodeprep
  (Appendix A) for node identifiers and Resourceprep (Appendix B) for
  resource identifiers.

  The Unicode and ISO/IEC 10646 repertoires have many characters that
  look similar.  In many cases, users of security protocols might do
  visual matching, such as when comparing the names of trusted third
  parties.  Because it is impossible to map similar-looking characters
  without a great deal of context, such as knowing the fonts used,
  stringprep does nothing to map similar-looking characters together,
  nor to prohibit some characters because they look like others.

  A node identifier can be employed as one part of an entity's address
  in XMPP.  One common usage is as the username of an instant messaging
  user; another is as the name of a multi-user chat room; many other
  kinds of entities could use node identifiers as part of their



Saint-Andre, Ed.            Standards Track                    [Page 68]

RFC 3920                       XMPP Core                    October 2004


  addresses.  The security of such services could be compromised based
  on different interpretations of the internationalized node
  identifier; for example, a user entering a single internationalized
  node identifier could access another user's account information, or a
  user could gain access to an otherwise restricted chat room or
  service.

  A resource identifier can be employed as one part of an entity's
  address in XMPP.  One common usage is as the name for an instant
  messaging user's connected resource (active session); another is as
  the nickname of a user in a multi-user chat room; many other kinds of
  entities could use resource identifiers as part of their addresses.
  The security of such services could be compromised based on different
  interpretations of the internationalized resource identifier; for
  example, a user could attempt to initiate multiple sessions with the
  same name, or a user could send a message to someone other than the
  intended recipient in a multi-user chat room.

15.  IANA Considerations

15.1.  XML Namespace Name for TLS Data

  A URN sub-namespace for TLS-related data in the Extensible Messaging
  and Presence Protocol (XMPP) is defined as follows.  (This namespace
  name adheres to the format defined in The IETF XML Registry
  [XML-REG].)

  URI: urn:ietf:params:xml:ns:xmpp-tls
  Specification: RFC 3920
  Description: This is the XML namespace name for TLS-related data in
     the Extensible Messaging and Presence Protocol (XMPP) as defined
     by RFC 3920.
  Registrant Contact: IETF, XMPP Working Group, <[email protected]>

15.2.  XML Namespace Name for SASL Data

  A URN sub-namespace for SASL-related data in the Extensible Messaging
  and Presence Protocol (XMPP) is defined as follows.  (This namespace
  name adheres to the format defined in [XML-REG].)

  URI: urn:ietf:params:xml:ns:xmpp-sasl
  Specification: RFC 3920
  Description: This is the XML namespace name for SASL-related data in
     the Extensible Messaging and Presence Protocol (XMPP) as defined
     by RFC 3920.
  Registrant Contact: IETF, XMPP Working Group, <[email protected]>





Saint-Andre, Ed.            Standards Track                    [Page 69]

RFC 3920                       XMPP Core                    October 2004


15.3.  XML Namespace Name for Stream Errors

  A URN sub-namespace for stream-related error data in the Extensible
  Messaging and Presence Protocol (XMPP) is defined as follows.  (This
  namespace name adheres to the format defined in [XML-REG].)

  URI: urn:ietf:params:xml:ns:xmpp-streams
  Specification: RFC 3920
  Description: This is the XML namespace name for stream-related error
     data in the Extensible Messaging and Presence Protocol (XMPP) as
     defined by RFC 3920.
  Registrant Contact: IETF, XMPP Working Group, <[email protected]>

15.4.  XML Namespace Name for Resource Binding

  A URN sub-namespace for resource binding in the Extensible Messaging
  and Presence Protocol (XMPP) is defined as follows.  (This namespace
  name adheres to the format defined in [XML-REG].)

  URI: urn:ietf:params:xml:ns:xmpp-bind
  Specification: RFC 3920
  Description: This is the XML namespace name for resource binding in
     the Extensible Messaging and Presence Protocol (XMPP) as defined
     by RFC 3920.
  Registrant Contact: IETF, XMPP Working Group, <[email protected]>

15.5.  XML Namespace Name for Stanza Errors

  A URN sub-namespace for stanza-related error data in the Extensible
  Messaging and Presence Protocol (XMPP) is defined as follows.  (This
  namespace name adheres to the format defined in [XML-REG].)

  URI: urn:ietf:params:xml:ns:xmpp-stanzas
  Specification: RFC 3920
  Description: This is the XML namespace name for stanza-related error
     data in the Extensible Messaging and Presence Protocol (XMPP) as
     defined by RFC 3920.
  Registrant Contact: IETF, XMPP Working Group, <[email protected]>

15.6.  Nodeprep Profile of Stringprep

  The Nodeprep profile of stringprep is defined under Nodeprep
  (Appendix A).  The IANA has registered Nodeprep in the stringprep
  profile registry.

  Name of this profile:

     Nodeprep



Saint-Andre, Ed.            Standards Track                    [Page 70]

RFC 3920                       XMPP Core                    October 2004


  RFC in which the profile is defined:

     RFC 3920

  Indicator whether or not this is the newest version of the profile:

     This is the first version of Nodeprep

15.7.  Resourceprep Profile of Stringprep

  The Resourceprep profile of stringprep is defined under Resourceprep
  (Appendix B).  The IANA has registered Resourceprep in the stringprep
  profile registry.

  Name of this profile:

     Resourceprep

  RFC in which the profile is defined:

     RFC 3920

  Indicator whether or not this is the newest version of the profile:

     This is the first version of Resourceprep

15.8.  GSSAPI Service Name

  The IANA has registered "xmpp" as a GSSAPI [GSS-API] service name, as
  defined under SASL Definition (Section 6.3).

15.9.  Port Numbers

  The IANA has registered "xmpp-client" and "xmpp-server" as keywords
  for [TCP] ports 5222 and 5269 respectively.

  These ports SHOULD be used for client-to-server and server-to-server
  communications respectively, but their use is OPTIONAL.

16.  References

16.1.  Normative References

  [ABNF]       Crocker, D. and P. Overell, "Augmented BNF for Syntax
               Specifications: ABNF", RFC 2234, November 1997.

  [BASE64]     Josefsson, S., "The Base16, Base32, and Base64 Data
               Encodings", RFC 3548, July 2003.



Saint-Andre, Ed.            Standards Track                    [Page 71]

RFC 3920                       XMPP Core                    October 2004


  [CHARSET]    Alvestrand, H., "IETF Policy on Character Sets and
               Languages", BCP 18, RFC 2277, January 1998.

  [DIGEST-MD5] Leach, P. and C. Newman, "Using Digest Authentication as
               a SASL Mechanism", RFC 2831, May 2000.

  [DNS]        Mockapetris, P., "Domain names - implementation and
               specification", STD 13, RFC 1035, November 1987.

  [GSS-API]    Linn, J., "Generic Security Service Application Program
               Interface Version 2, Update 1", RFC 2743, January 2000.

  [HTTP-TLS]   Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

  [IDNA]       Faltstrom, P., Hoffman, P., and A. Costello,
               "Internationalizing Domain Names in Applications
               (IDNA)", RFC 3490, March 2003.

  [IPv6]       Hinden, R. and S. Deering, "Internet Protocol Version 6
               (IPv6) Addressing Architecture", RFC 3513, April 2003.

  [LANGTAGS]   Alvestrand, H., "Tags for the Identification of
               Languages", BCP 47, RFC 3066, January 2001.

  [NAMEPREP]   Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep
               Profile for Internationalized Domain Names (IDN)", RFC
               3491, March 2003.

  [RANDOM]     Eastlake 3rd, D., Crocker, S., and J. Schiller,
               "Randomness Recommendations for Security", RFC 1750,
               December 1994.

  [SASL]       Myers, J., "Simple Authentication and Security Layer
               (SASL)", RFC 2222, October 1997.

  [SRV]        Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
               specifying the location of services (DNS SRV)", RFC
               2782, February 2000.

  [STRINGPREP] Hoffman, P. and M. Blanchet, "Preparation of
               Internationalized Strings ("stringprep")", RFC 3454,
               December 2002.

  [TCP]        Postel, J., "Transmission Control Protocol", STD 7, RFC
               793, September 1981.






Saint-Andre, Ed.            Standards Track                    [Page 72]

RFC 3920                       XMPP Core                    October 2004


  [TERMS]      Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [TLS]        Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
               RFC 2246, January 1999.

  [UCS2]       International Organization for Standardization,
               "Information Technology - Universal Multiple-octet coded
               Character Set (UCS) - Amendment 2: UCS Transformation
               Format 8 (UTF-8)", ISO Standard 10646-1 Addendum 2,
               October 1996.

  [UTF-8]      Yergeau, F., "UTF-8, a transformation format of ISO
               10646", STD 63, RFC 3629, November 2003.

  [X509]       Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
               X.509 Public Key Infrastructure Certificate and
               Certificate Revocation List (CRL) Profile", RFC 3280,
               April 2002.

  [XML]        Bray, T., Paoli, J., Sperberg-McQueen, C., and E. Maler,
               "Extensible Markup Language (XML) 1.0 (2nd ed)", W3C
               REC-xml, October 2000, <http://www.w3.org/TR/REC-xml>.

  [XML-NAMES]  Bray, T., Hollander, D., and A. Layman, "Namespaces in
               XML", W3C REC-xml-names, January 1999,
               <http://www.w3.org/TR/REC-xml-names>.

16.2.  Informative References

  [ACAP]       Newman, C. and J. Myers, "ACAP -- Application
               Configuration Access Protocol", RFC 2244, November 1997.

  [ASN.1]      CCITT, "Recommendation X.208: Specification of Abstract
               Syntax Notation One (ASN.1)", 1988.

  [DNSSEC]     Eastlake 3rd, D., "Domain Name System Security
               Extensions", RFC 2535, March 1999.

  [HTTP]       Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
               Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
               Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

  [IMAP]       Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
               4rev1", RFC 3501, March 2003.






Saint-Andre, Ed.            Standards Track                    [Page 73]

RFC 3920                       XMPP Core                    October 2004


  [IMP-REQS]   Day, M., Aggarwal, S., Mohr, G., and J. Vincent,
               "Instant Messaging / Presence Protocol Requirements",
               RFC 2779, February 2000.

  [IRC]        Oikarinen, J. and D. Reed, "Internet Relay Chat
               Protocol", RFC 1459, May 1993.

  [JEP-0029]   Kaes, C., "Definition of Jabber Identifiers (JIDs)", JSF
               JEP 0029, October 2003.

  [JEP-0078]   Saint-Andre, P., "Non-SASL Authentication", JSF JEP
               0078, July 2004.

  [JEP-0086]   Norris, R. and P. Saint-Andre, "Error Condition
               Mappings", JSF JEP 0086, February 2004.

  [JSF]        Jabber Software Foundation, "Jabber Software
               Foundation", <http://www.jabber.org/>.

  [POP3]       Myers, J. and M. Rose, "Post Office Protocol - Version
               3", STD 53, RFC 1939, May 1996.

  [SIMPLE]     SIMPLE Working Group, "SIMPLE WG",
               <http://www.ietf.org/html.charters/simple-charter.html>.

  [SMTP]       Klensin, J., "Simple Mail Transfer Protocol", RFC 2821,
               April 2001.

  [URI]        Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
               Resource Identifiers (URI): Generic Syntax", RFC 2396,
               August 1998.

  [USINGTLS]   Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC
               2595, June 1999.

  [XML-REG]    Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
               January 2004.

  [XMPP-IM]    Saint-Andre, P., Ed., "Extensible Messaging and Presence
               Protocol (XMPP): Instant Messaging and Presence", RFC
               3921, October 2004.










Saint-Andre, Ed.            Standards Track                    [Page 74]

RFC 3920                       XMPP Core                    October 2004


Appendix A.  Nodeprep

A.1.  Introduction

  This appendix defines the "Nodeprep" profile of [STRINGPREP].  As
  such, it specifies processing rules that will enable users to enter
  internationalized node identifiers in the Extensible Messaging and
  Presence Protocol (XMPP) and have the highest chance of getting the
  content of the strings correct.  (An XMPP node identifier is the
  optional portion of an XMPP address that precedes a domain identifier
  and the '@' separator; it is often but not exclusively associated
  with an instant messaging username.)  These processing rules are
  intended only for XMPP node identifiers and are not intended for
  arbitrary text or any other aspect of an XMPP address.

  This profile defines the following, as required by [STRINGPREP]:

  o  The intended applicability of the profile: internationalized node
     identifiers within XMPP
  o  The character repertoire that is the input and output to
     stringprep: Unicode 3.2, specified in Section 2 of this Appendix
  o  The mappings used: specified in Section 3
  o  The Unicode normalization used: specified in Section 4
  o  The characters that are prohibited as output: specified in Section
     5
  o  Bidirectional character handling: specified in Section 6

A.2.  Character Repertoire

  This profile uses Unicode 3.2 with the list of unassigned code points
  being Table A.1, both defined in Appendix A of [STRINGPREP].

A.3.  Mapping

  This profile specifies mapping using the following tables from
  [STRINGPREP]:

     Table B.1
     Table B.2

A.4.  Normalization

  This profile specifies the use of Unicode normalization form KC, as
  described in [STRINGPREP].







Saint-Andre, Ed.            Standards Track                    [Page 75]

RFC 3920                       XMPP Core                    October 2004


A.5.  Prohibited Output

  This profile specifies the prohibition of using the following tables
  from [STRINGPREP].

     Table C.1.1
     Table C.1.2
     Table C.2.1
     Table C.2.2
     Table C.3
     Table C.4
     Table C.5
     Table C.6
     Table C.7
     Table C.8
     Table C.9

  In addition, the following Unicode characters are also prohibited:

     #x22 (")
     #x26 (&)
     #x27 (')
     #x2F (/)
     #x3A (:)
     #x3C (<)
     #x3E (>)
     #x40 (@)

A.6.  Bidirectional Characters

  This profile specifies the checking of bidirectional strings, as
  described in Section 6 of [STRINGPREP].

Appendix B.  Resourceprep

B.1.  Introduction

  This appendix defines the "Resourceprep" profile of [STRINGPREP].  As
  such, it specifies processing rules that will enable users to enter
  internationalized resource identifiers in the Extensible Messaging
  and Presence Protocol (XMPP) and have the highest chance of getting
  the content of the strings correct.  (An XMPP resource identifier is
  the optional portion of an XMPP address that follows a domain
  identifier and the '/' separator; it is often but not exclusively
  associated with an instant messaging session name.)  These processing
  rules are intended only for XMPP resource identifiers and are not
  intended for arbitrary text or any other aspect of an XMPP address.




Saint-Andre, Ed.            Standards Track                    [Page 76]

RFC 3920                       XMPP Core                    October 2004


  This profile defines the following, as required by [STRINGPREP]:

  o  The intended applicability of the profile: internationalized
     resource identifiers within XMPP

  o  The character repertoire that is the input and output to
     stringprep: Unicode 3.2, specified in Section 2 of this Appendix

  o  The mappings used: specified in Section 3

  o  The Unicode normalization used: specified in Section 4

  o  The characters that are prohibited as output: specified in Section
     5

  o  Bidirectional character handling: specified in Section 6

B.2.  Character Repertoire

  This profile uses Unicode 3.2 with the list of unassigned code points
  being Table A.1, both defined in Appendix A of [STRINGPREP].

B.3.  Mapping

  This profile specifies mapping using the following tables from
  [STRINGPREP]:

     Table B.1

B.4.  Normalization

  This profile specifies using Unicode normalization form KC, as
  described in [STRINGPREP].


















Saint-Andre, Ed.            Standards Track                    [Page 77]

RFC 3920                       XMPP Core                    October 2004


B.5.  Prohibited Output

  This profile specifies prohibiting use of the following tables from
  [STRINGPREP].

     Table C.1.2
     Table C.2.1
     Table C.2.2
     Table C.3
     Table C.4
     Table C.5
     Table C.6
     Table C.7
     Table C.8
     Table C.9

B.6.  Bidirectional Characters

  This profile specifies checking bidirectional strings as described in
  Section 6 of [STRINGPREP].

Appendix C.  XML Schemas

  The following XML schemas are descriptive, not normative.  For
  schemas defining the 'jabber:client' and 'jabber:server' namespaces,
  refer to [XMPP-IM].

C.1.  Streams namespace

  <?xml version='1.0' encoding='UTF-8'?>

  <xs:schema
      xmlns:xs='http://www.w3.org/2001/XMLSchema'
      targetNamespace='http://etherx.jabber.org/streams'
      xmlns='http://etherx.jabber.org/streams'
      elementFormDefault='unqualified'>

    <xs:element name='stream'>
      <xs:complexType>
        <xs:sequence xmlns:client='jabber:client'
                     xmlns:server='jabber:server'
                     xmlns:db='jabber:server:dialback'>
          <xs:element ref='features' minOccurs='0' maxOccurs='1'/>
          <xs:any namespace='urn:ietf:params:xml:ns:xmpp-tls'
                  minOccurs='0'
                  maxOccurs='unbounded'/>
          <xs:any namespace='urn:ietf:params:xml:ns:xmpp-sasl'
                  minOccurs='0'



Saint-Andre, Ed.            Standards Track                    [Page 78]

RFC 3920                       XMPP Core                    October 2004


                  maxOccurs='unbounded'/>
          <xs:choice minOccurs='0' maxOccurs='1'>
            <xs:choice minOccurs='0' maxOccurs='unbounded'>
              <xs:element ref='client:message'/>
              <xs:element ref='client:presence'/>
              <xs:element ref='client:iq'/>
            </xs:choice>
            <xs:choice minOccurs='0' maxOccurs='unbounded'>
              <xs:element ref='server:message'/>
              <xs:element ref='server:presence'/>
              <xs:element ref='server:iq'/>
              <xs:element ref='db:result'/>
              <xs:element ref='db:verify'/>
            </xs:choice>
          </xs:choice>
          <xs:element ref='error' minOccurs='0' maxOccurs='1'/>
        </xs:sequence>
        <xs:attribute name='from' type='xs:string' use='optional'/>
        <xs:attribute name='id' type='xs:NMTOKEN' use='optional'/>
        <xs:attribute name='to' type='xs:string' use='optional'/>
        <xs:attribute name='version' type='xs:decimal' use='optional'/>
        <xs:attribute ref='xml:lang' use='optional'/>
      </xs:complexType>
    </xs:element>

    <xs:element name='features'>
      <xs:complexType>
        <xs:all xmlns:tls='urn:ietf:params:xml:ns:xmpp-tls'
                xmlns:sasl='urn:ietf:params:xml:ns:xmpp-sasl'
                xmlns:bind='urn:ietf:params:xml:ns:xmpp-bind'
                xmlns:sess='urn:ietf:params:xml:ns:xmpp-session'>
          <xs:element ref='tls:starttls' minOccurs='0'/>
          <xs:element ref='sasl:mechanisms' minOccurs='0'/>
          <xs:element ref='bind:bind' minOccurs='0'/>
          <xs:element ref='sess:session' minOccurs='0'/>
        </xs:all>
      </xs:complexType>
    </xs:element>

    <xs:element name='error'>
      <xs:complexType>
        <xs:sequence  xmlns:err='urn:ietf:params:xml:ns:xmpp-streams'>
          <xs:group   ref='err:streamErrorGroup'/>
          <xs:element ref='err:text'
                      minOccurs='0'
                      maxOccurs='1'/>
        </xs:sequence>
      </xs:complexType>



Saint-Andre, Ed.            Standards Track                    [Page 79]

RFC 3920                       XMPP Core                    October 2004


    </xs:element>

  </xs:schema>

C.2.  Stream error namespace

  <?xml version='1.0' encoding='UTF-8'?>

  <xs:schema
      xmlns:xs='http://www.w3.org/2001/XMLSchema'
      targetNamespace='urn:ietf:params:xml:ns:xmpp-streams'
      xmlns='urn:ietf:params:xml:ns:xmpp-streams'
      elementFormDefault='qualified'>

    <xs:element name='bad-format' type='empty'/>
    <xs:element name='bad-namespace-prefix' type='empty'/>
    <xs:element name='conflict' type='empty'/>
    <xs:element name='connection-timeout' type='empty'/>
    <xs:element name='host-gone' type='empty'/>
    <xs:element name='host-unknown' type='empty'/>
    <xs:element name='improper-addressing' type='empty'/>
    <xs:element name='internal-server-error' type='empty'/>
    <xs:element name='invalid-from' type='empty'/>
    <xs:element name='invalid-id' type='empty'/>
    <xs:element name='invalid-namespace' type='empty'/>
    <xs:element name='invalid-xml' type='empty'/>
    <xs:element name='not-authorized' type='empty'/>
    <xs:element name='policy-violation' type='empty'/>
    <xs:element name='remote-connection-failed' type='empty'/>
    <xs:element name='resource-constraint' type='empty'/>
    <xs:element name='restricted-xml' type='empty'/>
    <xs:element name='see-other-host' type='xs:string'/>
    <xs:element name='system-shutdown' type='empty'/>
    <xs:element name='undefined-condition' type='empty'/>
    <xs:element name='unsupported-encoding' type='empty'/>
    <xs:element name='unsupported-stanza-type' type='empty'/>
    <xs:element name='unsupported-version' type='empty'/>
    <xs:element name='xml-not-well-formed' type='empty'/>

    <xs:group name='streamErrorGroup'>
      <xs:choice>
        <xs:element ref='bad-format'/>
        <xs:element ref='bad-namespace-prefix'/>
        <xs:element ref='conflict'/>
        <xs:element ref='connection-timeout'/>
        <xs:element ref='host-gone'/>
        <xs:element ref='host-unknown'/>
        <xs:element ref='improper-addressing'/>



Saint-Andre, Ed.            Standards Track                    [Page 80]

RFC 3920                       XMPP Core                    October 2004


        <xs:element ref='internal-server-error'/>
        <xs:element ref='invalid-from'/>
        <xs:element ref='invalid-id'/>
        <xs:element ref='invalid-namespace'/>
        <xs:element ref='invalid-xml'/>
        <xs:element ref='not-authorized'/>
        <xs:element ref='policy-violation'/>
        <xs:element ref='remote-connection-failed'/>
        <xs:element ref='resource-constraint'/>
        <xs:element ref='restricted-xml'/>
        <xs:element ref='see-other-host'/>
        <xs:element ref='system-shutdown'/>
        <xs:element ref='undefined-condition'/>
        <xs:element ref='unsupported-encoding'/>
        <xs:element ref='unsupported-stanza-type'/>
        <xs:element ref='unsupported-version'/>
        <xs:element ref='xml-not-well-formed'/>
      </xs:choice>
    </xs:group>

    <xs:element name='text'>
      <xs:complexType>
        <xs:simpleContent>
          <xs:extension base='xs:string'>
            <xs:attribute ref='xml:lang' use='optional'/>
          </xs:extension>
        </xs:simpleContent>
      </xs:complexType>
    </xs:element>

    <xs:simpleType name='empty'>
      <xs:restriction base='xs:string'>
        <xs:enumeration value=''/>
      </xs:restriction>
    </xs:simpleType>

  </xs:schema>

C.3.  TLS namespace

  <?xml version='1.0' encoding='UTF-8'?>

  <xs:schema
      xmlns:xs='http://www.w3.org/2001/XMLSchema'
      targetNamespace='urn:ietf:params:xml:ns:xmpp-tls'
      xmlns='urn:ietf:params:xml:ns:xmpp-tls'
      elementFormDefault='qualified'>




Saint-Andre, Ed.            Standards Track                    [Page 81]

RFC 3920                       XMPP Core                    October 2004


    <xs:element name='starttls'>
      <xs:complexType>
        <xs:sequence>
          <xs:element
              name='required'
              minOccurs='0'
              maxOccurs='1'
              type='empty'/>
        </xs:sequence>
      </xs:complexType>
    </xs:element>

    <xs:element name='proceed' type='empty'/>
    <xs:element name='failure' type='empty'/>

    <xs:simpleType name='empty'>
      <xs:restriction base='xs:string'>
        <xs:enumeration value=''/>
      </xs:restriction>
    </xs:simpleType>

  </xs:schema>

C.4.  SASL namespace

  <?xml version='1.0' encoding='UTF-8'?>

  <xs:schema
      xmlns:xs='http://www.w3.org/2001/XMLSchema'
      targetNamespace='urn:ietf:params:xml:ns:xmpp-sasl'
      xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
      elementFormDefault='qualified'>

    <xs:element name='mechanisms'>
      <xs:complexType>
        <xs:sequence>
          <xs:element name='mechanism'
                      maxOccurs='unbounded'
                      type='xs:string'/>
        </xs:sequence>
      </xs:complexType>
    </xs:element>

    <xs:element name='auth'>
      <xs:complexType>
        <xs:simpleContent>
          <xs:extension base='empty'>
            <xs:attribute name='mechanism'



Saint-Andre, Ed.            Standards Track                    [Page 82]

RFC 3920                       XMPP Core                    October 2004


                          type='xs:string'
                          use='optional'/>
          </xs:extension>
        </xs:simpleContent>
      </xs:complexType>
    </xs:element>

    <xs:element name='challenge' type='xs:string'/>
    <xs:element name='response' type='xs:string'/>
    <xs:element name='abort' type='empty'/>
    <xs:element name='success' type='empty'/>

    <xs:element name='failure'>
      <xs:complexType>
        <xs:choice minOccurs='0'>
          <xs:element name='aborted' type='empty'/>
          <xs:element name='incorrect-encoding' type='empty'/>
          <xs:element name='invalid-authzid' type='empty'/>
          <xs:element name='invalid-mechanism' type='empty'/>
          <xs:element name='mechanism-too-weak' type='empty'/>
          <xs:element name='not-authorized' type='empty'/>
          <xs:element name='temporary-auth-failure' type='empty'/>
        </xs:choice>
      </xs:complexType>
    </xs:element>
    <xs:simpleType name='empty'>
      <xs:restriction base='xs:string'>
        <xs:enumeration value=''/>
      </xs:restriction>
    </xs:simpleType>

  </xs:schema>

C.5.  Resource binding namespace

  <?xml version='1.0' encoding='UTF-8'?>

  <xs:schema
      xmlns:xs='http://www.w3.org/2001/XMLSchema'
      targetNamespace='urn:ietf:params:xml:ns:xmpp-bind'
      xmlns='urn:ietf:params:xml:ns:xmpp-bind'
      elementFormDefault='qualified'>

    <xs:element name='bind'>
      <xs:complexType>
        <xs:choice minOccurs='0' maxOccurs='1'>
          <xs:element name='resource' type='xs:string'/>
          <xs:element name='jid' type='xs:string'/>



Saint-Andre, Ed.            Standards Track                    [Page 83]

RFC 3920                       XMPP Core                    October 2004


        </xs:choice>
      </xs:complexType>
    </xs:element>

  </xs:schema>

C.6.  Dialback namespace

  <?xml version='1.0' encoding='UTF-8'?>

  <xs:schema
      xmlns:xs='http://www.w3.org/2001/XMLSchema'
      targetNamespace='jabber:server:dialback'
      xmlns='jabber:server:dialback'
      elementFormDefault='qualified'>

    <xs:element name='result'>
      <xs:complexType>
        <xs:simpleContent>
          <xs:extension base='xs:token'>
            <xs:attribute name='from' type='xs:string' use='required'/>
            <xs:attribute name='to' type='xs:string' use='required'/>
            <xs:attribute name='type' use='optional'>
              <xs:simpleType>
                <xs:restriction base='xs:NCName'>
                  <xs:enumeration value='invalid'/>
                  <xs:enumeration value='valid'/>
                </xs:restriction>
              </xs:simpleType>
            </xs:attribute>
          </xs:extension>
        </xs:simpleContent>
      </xs:complexType>
    </xs:element>

    <xs:element name='verify'>
      <xs:complexType>
        <xs:simpleContent>
          <xs:extension base='xs:token'>
            <xs:attribute name='from' type='xs:string' use='required'/>
            <xs:attribute name='id' type='xs:NMTOKEN' use='required'/>
            <xs:attribute name='to' type='xs:string' use='required'/>
            <xs:attribute name='type' use='optional'>
              <xs:simpleType>
                <xs:restriction base='xs:NCName'>
                  <xs:enumeration value='invalid'/>
                  <xs:enumeration value='valid'/>
                </xs:restriction>



Saint-Andre, Ed.            Standards Track                    [Page 84]

RFC 3920                       XMPP Core                    October 2004


              </xs:simpleType>
            </xs:attribute>
          </xs:extension>
        </xs:simpleContent>
      </xs:complexType>
    </xs:element>

  </xs:schema>

C.7.  Stanza error namespace

  <?xml version='1.0' encoding='UTF-8'?>

  <xs:schema
      xmlns:xs='http://www.w3.org/2001/XMLSchema'
      targetNamespace='urn:ietf:params:xml:ns:xmpp-stanzas'
      xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'
      elementFormDefault='qualified'>

    <xs:element name='bad-request' type='empty'/>
    <xs:element name='conflict' type='empty'/>
    <xs:element name='feature-not-implemented' type='empty'/>
    <xs:element name='forbidden' type='empty'/>
    <xs:element name='gone' type='xs:string'/>
    <xs:element name='internal-server-error' type='empty'/>
    <xs:element name='item-not-found' type='empty'/>
    <xs:element name='jid-malformed' type='empty'/>
    <xs:element name='not-acceptable' type='empty'/>
    <xs:element name='not-allowed' type='empty'/>
    <xs:element name='payment-required' type='empty'/>
    <xs:element name='recipient-unavailable' type='empty'/>
    <xs:element name='redirect' type='xs:string'/>
    <xs:element name='registration-required' type='empty'/>
    <xs:element name='remote-server-not-found' type='empty'/>
    <xs:element name='remote-server-timeout' type='empty'/>
    <xs:element name='resource-constraint' type='empty'/>
    <xs:element name='service-unavailable' type='empty'/>
    <xs:element name='subscription-required' type='empty'/>
    <xs:element name='undefined-condition' type='empty'/>
    <xs:element name='unexpected-request' type='empty'/>

    <xs:group name='stanzaErrorGroup'>
      <xs:choice>
        <xs:element ref='bad-request'/>
        <xs:element ref='conflict'/>
        <xs:element ref='feature-not-implemented'/>
        <xs:element ref='forbidden'/>
        <xs:element ref='gone'/>



Saint-Andre, Ed.            Standards Track                    [Page 85]

RFC 3920                       XMPP Core                    October 2004


        <xs:element ref='internal-server-error'/>
        <xs:element ref='item-not-found'/>
        <xs:element ref='jid-malformed'/>
        <xs:element ref='not-acceptable'/>
        <xs:element ref='not-allowed'/>
        <xs:element ref='payment-required'/>
        <xs:element ref='recipient-unavailable'/>
        <xs:element ref='redirect'/>
        <xs:element ref='registration-required'/>
        <xs:element ref='remote-server-not-found'/>
        <xs:element ref='remote-server-timeout'/>
        <xs:element ref='resource-constraint'/>
        <xs:element ref='service-unavailable'/>
        <xs:element ref='subscription-required'/>
        <xs:element ref='undefined-condition'/>
        <xs:element ref='unexpected-request'/>
      </xs:choice>
    </xs:group>

    <xs:element name='text'>
      <xs:complexType>
        <xs:simpleContent>
          <xs:extension base='xs:string'>
            <xs:attribute ref='xml:lang' use='optional'/>
          </xs:extension>
        </xs:simpleContent>
      </xs:complexType>
    </xs:element>

    <xs:simpleType name='empty'>
      <xs:restriction base='xs:string'>
        <xs:enumeration value=''/>
      </xs:restriction>
    </xs:simpleType>

  </xs:schema>















Saint-Andre, Ed.            Standards Track                    [Page 86]

RFC 3920                       XMPP Core                    October 2004


Appendix D.  Differences Between Core Jabber Protocols and XMPP

  This section is non-normative.

  XMPP has been adapted from the protocols originally developed in the
  Jabber open-source community, which can be thought of as "XMPP 0.9".
  Because there exists a large installed base of Jabber implementations
  and deployments, it may be helpful to specify the key differences
  between the relevant Jabber protocols and XMPP in order to expedite
  and encourage upgrades of those implementations and deployments to
  XMPP.  This section summarizes the core differences, while the
  corresponding section of [XMPP-IM] summarizes the differences that
  relate specifically to instant messaging and presence applications.

D.1.  Channel Encryption

  It was common practice in the Jabber community to use SSL for channel
  encryption on ports other than 5222 and 5269 (the convention is to
  use ports 5223 and 5270).  XMPP uses TLS over the IANA-registered
  ports for channel encryption, as defined under Use of TLS (Section 5)
  herein.

D.2.  Authentication

  The client-server authentication protocol developed in the Jabber
  community used a basic IQ interaction qualified by the
  'jabber:iq:auth' namespace (documentation of this protocol is
  contained in [JEP-0078], published by the Jabber Software Foundation
  [JSF]).  XMPP uses SASL for authentication, as defined under Use of
  SASL (Section 6) herein.

  The Jabber community did not develop an authentication protocol for
  server-to-server communications, only the Server Dialback (Section 8)
  protocol to prevent server spoofing.  XMPP supersedes Server Dialback
  with a true server-to-server authentication protocol, as defined
  under Use of SASL (Section 6) herein.

D.3.  Resource Binding

  Resource binding in the Jabber community was handled via the
  'jabber:iq:auth' namespace (which was also used for client
  authentication with a server).  XMPP defines a dedicated namespace
  for resource binding as well as the ability for a server to generate
  a resource identifier on behalf of a client, as defined under
  Resource Binding (Section 7).






Saint-Andre, Ed.            Standards Track                    [Page 87]

RFC 3920                       XMPP Core                    October 2004


D.4.  JID Processing

  JID processing was somewhat loosely defined by the Jabber community
  (documentation of forbidden characters and case handling is contained
  in [JEP-0029], published by the Jabber Software Foundation [JSF]).
  XMPP specifies the use of [NAMEPREP] for domain identifiers and
  supplements Nameprep with two additional [STRINGPREP] profiles for
  JID processing: Nodeprep (Appendix A) for node identifiers and
  Resourceprep (Appendix B) for resource identifiers.

D.5.  Error Handling

  Stream-related errors were handled in the Jabber community via XML
  character data text in a <stream:error/> element.  In XMPP,
  stream-related errors are handled via an extensible mechanism defined
  under Stream Errors (Section 4.7) herein.

  Stanza-related errors were handled in the Jabber community via
  HTTP-style error codes.  In XMPP, stanza-related errors are handled
  via an extensible mechanism defined under Stanza Errors (Section 9.3)
  herein.  (Documentation of a mapping between Jabber and XMPP error
  handling mechanisms is contained in [JEP-0086], published by the
  Jabber Software Foundation [JSF].)

D.6.  Internationalization

  Although use of UTF-8 has always been standard practice within the
  Jabber community, the community did not define mechanisms for
  specifying the language of human-readable text provided in XML
  character data.  XMPP specifies the use of the 'xml:lang' attribute
  in such contexts, as defined under Stream Attributes (Section 4.4)
  and xml:lang (Section 9.1.5) herein.

D.7.  Stream Version Attribute

  The Jabber community did not include a 'version' attribute in stream
  headers.  XMPP specifies inclusion of that attribute as a way to
  signal support for the stream features (authentication, encryption,
  etc.) defined under Version Support (Section 4.4.1) herein.












Saint-Andre, Ed.            Standards Track                    [Page 88]

RFC 3920                       XMPP Core                    October 2004


Contributors

  Most of the core aspects of the Extensible Messaging and Presence
  Protocol were developed originally within the Jabber open-source
  community in 1999.  This community was founded by Jeremie Miller, who
  released source code for the initial version of the jabber server in
  January 1999.  Major early contributors to the base protocol also
  included Ryan Eatmon, Peter Millard, Thomas Muldowney, and Dave
  Smith.  Work by the XMPP Working Group has concentrated especially on
  security and internationalization; in these areas, protocols for the
  use of TLS and SASL were originally contributed by Rob Norris, and
  stringprep profiles were originally contributed by Joe Hildebrand.
  The error code syntax was suggested by Lisa Dusseault.

Acknowledgements

  Thanks are due to a number of individuals in addition to the
  contributors listed.  Although it is difficult to provide a complete
  list, the following individuals were particularly helpful in defining
  the protocols or in commenting on the specifications in this memo:
  Thomas Charron, Richard Dobson, Sam Hartman, Schuyler Heath, Jonathan
  Hogg, Cullen Jennings, Craig Kaes, Jacek Konieczny, Alexey Melnikov,
  Keith Minkler, Julian Missig, Pete Resnick, Marshall Rose, Alexey
  Shchepin, Jean-Louis Seguineau, Iain Shigeoka, Greg Troxel, and David
  Waite.  Thanks also to members of the XMPP Working Group and the IETF
  community for comments and feedback provided throughout the life of
  this memo.

Author's Address

  Peter Saint-Andre (editor)
  Jabber Software Foundation

  EMail: [email protected]

















Saint-Andre, Ed.            Standards Track                    [Page 89]

RFC 3920                       XMPP Core                    October 2004


Full Copyright Statement

  Copyright (C) The Internet Society (2004).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/S HE
  REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
  INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
  IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the IETF's procedures with respect to rights in IETF Documents can
  be found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Saint-Andre, Ed.            Standards Track                    [Page 90]