Network Working Group                                         F. Strauss
Request for Comments: 3780                               TU Braunschweig
Category: Experimental                                  J. Schoenwaelder
                                        International University Bremen
                                                               May 2004


     SMIng - Next Generation Structure of Management Information

Status of this Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2004).  All Rights Reserved.

Abstract

  This memo defines the base SMIng (Structure of Management
  Information, Next Generation) language.  SMIng is a data definition
  language that provides a protocol-independent representation for
  management information.  Separate RFCs define mappings of SMIng to
  specific management protocols, including SNMP.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
      1.1.  The History of SMIng . . . . . . . . . . . . . . . . . .  4
      1.2.  Terms of Requirement Levels. . . . . . . . . . . . . . .  5
  2.  SMIng Data Modeling. . . . . . . . . . . . . . . . . . . . . .  5
      2.1.  Identifiers. . . . . . . . . . . . . . . . . . . . . . .  6
  3.  Base Types and Derived Types . . . . . . . . . . . . . . . . .  7
      3.1.  OctetString. . . . . . . . . . . . . . . . . . . . . . .  8
      3.2.  Pointer. . . . . . . . . . . . . . . . . . . . . . . . .  9
      3.3.  ObjectIdentifier . . . . . . . . . . . . . . . . . . . .  9
      3.4.  Integer32. . . . . . . . . . . . . . . . . . . . . . . . 10
      3.5.  Integer64. . . . . . . . . . . . . . . . . . . . . . . . 11
      3.6.  Unsigned32 . . . . . . . . . . . . . . . . . . . . . . . 12
      3.7.  Unsigned64 . . . . . . . . . . . . . . . . . . . . . . . 13
      3.8.  Float32. . . . . . . . . . . . . . . . . . . . . . . . . 13
      3.9.  Float64. . . . . . . . . . . . . . . . . . . . . . . . . 14
      3.10. Float128 . . . . . . . . . . . . . . . . . . . . . . . . 15
      3.11. Enumeration. . . . . . . . . . . . . . . . . . . . . . . 17
      3.12. Bits . . . . . . . . . . . . . . . . . . . . . . . . . . 17



Strauss & Schoenwaelder       Experimental                      [Page 1]

RFC 3780                         SMIng                          May 2004


      3.13. Display Formats. . . . . . . . . . . . . . . . . . . . . 18
  4.  The SMIng File Structure . . . . . . . . . . . . . . . . . . . 20
      4.1.  Comments . . . . . . . . . . . . . . . . . . . . . . . . 20
      4.2.  Textual Data . . . . . . . . . . . . . . . . . . . . . . 21
      4.3.  Statements and Arguments . . . . . . . . . . . . . . . . 21
  5.  The module Statement . . . . . . . . . . . . . . . . . . . . . 21
      5.1.  The module's import Statement. . . . . . . . . . . . . . 22
      5.2.  The module's organization Statement. . . . . . . . . . . 23
      5.3.  The module's contact Statement . . . . . . . . . . . . . 23
      5.4.  The module's description Statement . . . . . . . . . . . 23
      5.5.  The module's reference Statement . . . . . . . . . . . . 23
      5.6.  The module's revision Statement. . . . . . . . . . . . . 23
            5.6.1. The revision's date Statement . . . . . . . . . . 24
            5.6.2. The revision's description Statement. . . . . . . 24
      5.7.  Usage Example. . . . . . . . . . . . . . . . . . . . . . 24
  6.  The extension Statement. . . . . . . . . . . . . . . . . . . . 25
      6.1.  The extension's status Statement . . . . . . . . . . . . 25
      6.2.  The extension's description Statement. . . . . . . . . . 26
      6.3.  The extension's reference Statement. . . . . . . . . . . 26
      6.4.  The extension's abnf Statement . . . . . . . . . . . . . 26
      6.5.  Usage Example. . . . . . . . . . . . . . . . . . . . . . 26
  7.  The typedef Statement. . . . . . . . . . . . . . . . . . . . . 27
      7.1.  The typedef's type Statement . . . . . . . . . . . . . . 27
      7.2.  The typedef's default Statement. . . . . . . . . . . . . 27
      7.3.  The typedef's format Statement . . . . . . . . . . . . . 27
      7.4.  The typedef's units Statement. . . . . . . . . . . . . . 28
      7.5.  The typedef's status Statement . . . . . . . . . . . . . 28
      7.6.  The typedef's description Statement. . . . . . . . . . . 29
      7.7.  The typedef's reference Statement. . . . . . . . . . . . 29
      7.8.  Usage Examples . . . . . . . . . . . . . . . . . . . . . 29
  8.  The identity Statement . . . . . . . . . . . . . . . . . . . . 30
      8.1.  The identity's parent Statement. . . . . . . . . . . . . 30
      8.2.  The identity's status Statement. . . . . . . . . . . . . 30
      8.3.  The identity' description Statement. . . . . . . . . . . 31
      8.4.  The identity's reference Statement . . . . . . . . . . . 31
      8.5.  Usage Examples . . . . . . . . . . . . . . . . . . . . . 31
  9.  The class Statement. . . . . . . . . . . . . . . . . . . . . . 32
      9.1.  The class' extends Statement . . . . . . . . . . . . . . 32
      9.2.  The class' attribute Statement . . . . . . . . . . . . . 32
            9.2.1. The attribute's type Statement. . . . . . . . . . 32
            9.2.2. The attribute's access Statement. . . . . . . . . 32
            9.2.3. The attribute's default Statement . . . . . . . . 33
            9.2.4. The attribute's format Statement. . . . . . . . . 33
            9.2.5. The attribute's units Statement . . . . . . . . . 33
            9.2.6. The attribute's status Statement. . . . . . . . . 34
            9.2.7. The attribute's description Statement . . . . . . 34
            9.2.8. The attribute's reference Statement . . . . . . . 34
      9.3.  The class' unique Statement. . . . . . . . . . . . . . . 35



Strauss & Schoenwaelder       Experimental                      [Page 2]

RFC 3780                         SMIng                          May 2004


      9.4.  The class' event Statement . . . . . . . . . . . . . . . 35
            9.4.1. The event's status Statement. . . . . . . . . . . 35
            9.4.2. The event's description Statement . . . . . . . . 35
            9.4.3. The event's reference Statement . . . . . . . . . 36
      9.5.  The class' status Statement. . . . . . . . . . . . . . . 36
      9.6.  The class' description Statement . . . . . . . . . . . . 36
      9.7.  The class' reference Statement . . . . . . . . . . . . . 37
      9.8.  Usage Example. . . . . . . . . . . . . . . . . . . . . . 37
  10. Extending a Module . . . . . . . . . . . . . . . . . . . . . . 38
  11. SMIng Language Extensibility . . . . . . . . . . . . . . . . . 39
  12. Security Considerations. . . . . . . . . . . . . . . . . . . . 41
  13. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 41
  14. References . . . . . . . . . . . . . . . . . . . . . . . . . . 42
      14.1. Normative References . . . . . . . . . . . . . . . . . . 42
      14.2. Informative References . . . . . . . . . . . . . . . . . 42
  Appendix A.  NMRG-SMING Module . . . . . . . . . . . . . . . . . . 44
  Appendix B.  SMIng ABNF Grammar. . . . . . . . . . . . . . . . . . 53
  Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 63
  Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 64

1.  Introduction

  In traditional management systems, management information is viewed
  as a collection of managed objects, residing in a virtual information
  store, termed the Management Information Base (MIB).  Collections of
  related objects are defined in MIB modules.  These modules are
  written in conformance with a specification language, the Structure
  of Management Information (SMI).  There are different versions of the
  SMI.  The SMI version 1 (SMIv1) is defined in [RFC1155], [RFC1212],
  [RFC1215], and the SMI version 2 (SMIv2) in [RFC2578], [RFC2579], and
  [RFC2580].  Both are based on adapted subsets of OSI's Abstract
  Syntax Notation One, ASN.1 [ASN1].

  In a similar fashion, policy provisioning information is viewed as a
  collection of Provisioning Classes (PRCs) and Provisioning Instances
  (PRIs) residing in a virtual information store, termed the Policy
  Information Base (PIB).  Collections of related Provisioning Classes
  are defined in PIB modules.  PIB modules are written using the
  Structure of Policy Provisioning Information (SPPI) [RFC3159] which
  is an adapted subset of SMIv2.

  The SMIv1 and the SMIv2 are bound to the Simple Network Management
  Protocol (SNMP) [RFC3411], while the SPPI is bound to the Common Open
  Policy Service Provisioning (COPS-PR) Protocol [RFC3084].  Even
  though the languages have common rules, it is hard to use common data
  definitions with both protocols.  It is the purpose of this document
  to define a common data definition language, named SMIng, that can




Strauss & Schoenwaelder       Experimental                      [Page 3]

RFC 3780                         SMIng                          May 2004


  formally specify data models independent of specific protocols and
  applications.  The appendix of this document defines a core module
  that supplies common SMIng definitions.

  A companion document contains an SMIng language extension to define
  SNMP specific mappings of SMIng definitions in compatibility with
  SMIv2 MIB modules [RFC3781].  Additional language extensions may be
  added in the future, e.g., to define COPS-PR specific mappings of
  SMIng definitions in a way that is compatible with SPPI PIBs.

  Section 2 gives an overview of the basic concepts of data modeling
  using SMIng, while the subsequent sections present the concepts of
  the SMIng language in detail: the base types, the SMIng file
  structure, and all SMIng core statements.

  The remainder of the document describes extensibility features of the
  language and rules to follow when changes are applied to a module.
  Appendix B contains the grammar of SMIng in ABNF [RFC2234] notation.

1.1.  The History of SMIng

  SMIng started in 1999 as a research project to address some drawbacks
  of SMIv2, the current data modeling language for management
  information bases.  Primarily, its partial dependence on ASN.1 and a
  number of exception rules turned out to be problematic.  In 2000, the
  work was handed over to the IRTF Network Management Research Group
  where it was significantly detailed.  Since the work of the RAP
  Working Group on COPS-PR and SPPI emerged in 1999/2000, SMIng was
  split into two parts: a core data definition language (defined in
  this document) and protocol mappings to allow the application of core
  definitions through (potentially) multiple management protocols.  The
  replacement of SMIv2 and SPPI by a single merged data definition
  language was also a primary goal of the IETF SMING Working Group that
  was chartered at the end of 2000.

  The requirements for a new data definition language were discussed
  several times within the IETF SMING Working Group and changed
  significantly over time [RFC3216], so that another proposal (in
  addition to SMIng), named SMI Data Structures (SMI-DS), was presented
  to the Working Group.  In the end, neither of the two proposals found
  enough consensus and support, and the attempt to merge the existing
  concepts did not succeed, resulting in the Working Group being closed
  down in April 2003.

  In order to record the work of the NMRG (Network Management Research
  Group) on SMIng, this memo and the accompanying memo on the SNMP
  protocol mapping [RFC3781] have been published for informational
  purposes.



Strauss & Schoenwaelder       Experimental                      [Page 4]

RFC 3780                         SMIng                          May 2004


  Note that throughout these documents, the term "SMIng" refers to the
  specific data modeling language that is specified in this document,
  whereas the term "SMING" refers to the general effort within the IETF
  Working Group to define a new management data definition language as
  an SMIv2 successor and probably an SPPI merger, for which "SMIng" and
  "SMI-DS" were two specific proposals.

1.2.  Terms of Requirement Levels

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  SMIng Data Modeling

  SMIng is a language designed to specify management information in a
  structured way readable to computer programs, e.g., MIB compilers, as
  well as to human readers.

  Management information is modeled in classes.  Classes can be defined
  from scratch or by derivation from a parent class.  Derivation from
  multiple parent classes is not possible.  The concept of classes is
  described in Section 9.

  Each class has a number of attributes.  Each attribute represents an
  atomic piece of information of a base type, a sub-type of a base
  type, or another class.  The concept of attributes is described in
  Section 9.2.

  The base types of SMIng include signed and unsigned integers, octet
  strings, enumeration types, bitset types, and pointers.  Pointers are
  references to class instances, attributes of class instances, or
  arbitrary identities.  The SMIng type system is described in Section
  3.

  Related class and type definitions are defined in modules.  A module
  may refer to definitions from other modules by importing identifiers
  from those modules.  Each module may serve one or multiple purposes:

  o  the definition of management classes,

  o  the definition of events,

  o  the definition of derived types,

  o  the definition of arbitrary untyped identities serving as values
     of pointers,




Strauss & Schoenwaelder       Experimental                      [Page 5]

RFC 3780                         SMIng                          May 2004


  o  the definition of SMIng extensions allowing the local module or
     other modules to specify information beyond the scope of the base
     SMIng in a machine readable notation.  Some extensions for the
     application of SMIng in the SNMP framework are defined in
     [RFC3781],

  o  the definition of information beyond the scope of the base SMIng
     statements, based on locally defined or imported SMIng extensions.

  Each module is identified by an upper-case identifier.  The names of
  all standard modules must be unique (but different versions of the
  same module should have the same name).  Developers of enterprise
  modules are encouraged to choose names for their modules that will
  have a low probability of colliding with standard or other enterprise
  modules, e.g., by using the enterprise or organization name as a
  prefix.

2.1.  Identifiers

  Identifiers are used to identify different kinds of SMIng items by
  name.  Each identifier is valid in a namespace which depends on the
  type of the SMIng item being defined:

  o  The global namespace contains all module identifiers.

  o  Each module defines a new namespace.  A module's namespace may
     contain definitions of extension identifiers, derived type
     identifiers, identity identifiers, and class identifiers.
     Furthermore, a module may import identifiers of these kinds from
     other modules.  All these identifiers are also visible within all
     inner namespaces of the module.

  o  Each class within a module defines a new namespace.  A class'
     namespace may contain definitions of attribute identifiers and
     event identifiers.

  o  Each enumeration type and bitset type defines a new namespace of
     its named numbers.  These named numbers are visible in each
     expression of a corresponding value, e.g., default values and
     sub-typing restrictions.

  o  Extensions may define additional namespaces and have additional
     rules of other namespaces' visibility.

  Within every namespace each identifier MUST be unique.






Strauss & Schoenwaelder       Experimental                      [Page 6]

RFC 3780                         SMIng                          May 2004


  Each identifier starts with an upper-case or lower-case character,
  dependent on the kind of SMIng item, followed by zero or more
  letters, digits, and hyphens.

  All identifiers defined in a namespace MUST be unique and SHOULD NOT
  only differ in case.  Identifiers MUST NOT exceed 64 characters in
  length.  Furthermore, the set of all identifiers defined in all
  modules of a single standardization body or organization SHOULD be
  unique and mnemonic.  This promotes a common language for humans to
  use when discussing a module.

  To reference an item that is defined in the local module, its
  definition MUST sequentially precede the reference.  Thus, there MUST
  NOT be any forward references.

  To reference an item that is defined in an external module it MUST be
  imported (Section 5.1).  Identifiers that are neither defined nor
  imported MUST NOT be visible in the local module.

  When identifiers from external modules are referenced, there is the
  possibility of name collisions.  As such, if different items with the
  same identifier are imported or if imported identifiers collide with
  identifiers of locally defined items, then this ambiguity is resolved
  by prefixing those identifiers with the names of their modules and
  the namespace operator `::', i.e., `Module::item'.  Of course, this
  notation can be used to refer to identifiers even when there is no
  name collision.

  Note that SMIng core language keywords MUST NOT be imported.  See the
  `...Keyword' rules of the SMIng ABNF grammar in Appendix B for a list
  of those keywords.

3.  Base Types and Derived Types

  SMIng has a set of base types, similar to those of many programming
  languages, but with some differences due to special requirements from
  the management information model.

  Additional types may be defined, derived from those base types or
  from other derived types.  Derived types may use subtyping to
  formally restrict the set of possible values.  An initial set of
  commonly used derived types is defined in the SMIng standard module
  NMRG-SMING [RFC3781].

  The different base types and their derived types allow different
  kinds of subtyping, namely size restrictions of octet strings
  (Section 3.1), range restrictions of numeric types (Section 3.4




Strauss & Schoenwaelder       Experimental                      [Page 7]

RFC 3780                         SMIng                          May 2004


  through Section 3.10), restricted pointer types (Section 3.2), and
  restrictions on the sets of named numbers for enumeration types
  (Section 3.11) and bit sets (Section 3.12).

3.1.  OctetString

  The OctetString base type represents arbitrary binary or textual
  data.  Although SMIng has a theoretical size limitation of 2^16-1
  (65535) octets for this base type, module designers should realize
  that there may be implementation and interoperability limitations for
  sizes in excess of 255 octets.

  Values of octet strings may be denoted as textual data enclosed in
  double quotes or as arbitrary binary data denoted as a `0x'-prefixed
  hexadecimal value of an even number of at least two hexadecimal
  digits, where each pair of hexadecimal digits represents a single
  octet.  Letters in hexadecimal values MAY be upper-case, but lower-
  case characters are RECOMMENDED.  Textual data may contain any number
  (possibly zero) of any 7-bit displayable ASCII characters, including
  tab characters, spaces, and line terminator characters (nl or cr &
  nl).  Some characters require a special encoding (see Section 4.2).
  Textual data may span multiple lines, where each subsequent line
  prefix containing only white space up to the column where the first
  line's data starts SHOULD be skipped by parsers for a better text
  formatting.

  When defining a type derived (directly or indirectly) from the
  OctetString base type, the size in octets may be restricted by
  appending a list of size ranges or explicit size values, separated by
  pipe `|' characters, with the whole list enclosed in parenthesis.  A
  size range consists of a lower bound, two consecutive dots `..', and
  an upper bound.  Each value can be given in decimal or `0x'-prefixed
  hexadecimal notation.  Hexadecimal numbers must have an even number
  of at least two digits.  Size restricting values MUST NOT be
  negative.  If multiple values or ranges are given, they all MUST be
  disjoint and MUST be in ascending order.  If a size restriction is
  applied to an already size restricted octet string, the new
  restriction MUST be equal or more limiting, that is, raising the
  lower bounds, reducing the upper bounds, removing explicit size
  values or ranges, or splitting ranges into multiple ranges with
  intermediate gaps.










Strauss & Schoenwaelder       Experimental                      [Page 8]

RFC 3780                         SMIng                          May 2004


  Value Examples:

     "This is a multiline
      textual data example."         // legal
     "This is "illegally" quoted."   // illegal quotes
     "This is \"legally\" quoted."   // legally encoded quotes
     "But this is 'ok', as well."    // legal apostrophe quoting
     ""                              // legal zero length
     0x123                           // illegal odd hex length
     0x534d496e670a                  // legal octet string

  Restriction Examples:

     OctetString (0 | 4..255)        // legal size spec
     OctetString (4)                 // legal exact size
     OctetString (-1 | 1)            // illegal negative size
     OctetString (5 | 0)             // illegal ordering
     OctetString (1 | 1..10)         // illegal overlapping

3.2.  Pointer

  The Pointer base type represents values that reference class
  instances, attributes of class instances, or arbitrary identities.
  The only values of the Pointer type that can be present in a module
  can refer to identities.  They are denoted as identifiers of the
  concerned identities.

  When defining a type derived (directly or indirectly) from the
  Pointer base type, the values may be restricted to a specific class,
  attribute or identity, and all (directly or indirectly) derived items
  thereof by appending the identifier of the appropriate construct
  enclosed in parenthesis.

  Value Examples:

     null                          // legal identity name
     snmpUDPDomain                 // legal identity name

  Restriction Examples:

     Pointer (snmpTransportDomain) // legal restriction

3.3.  ObjectIdentifier

  The ObjectIdentifier base type represents administratively assigned
  names for use with SNMP and COPS-PR.  This type SHOULD NOT be used in
  protocol independent SMIng modules.  It is meant to be used in SNMP
  and COPS-PR mappings of attributes of type Pointer (Section 3.2).



Strauss & Schoenwaelder       Experimental                      [Page 9]

RFC 3780                         SMIng                          May 2004


  Values of this type may be denoted as a sequence of numerical non-
  negative sub-identifier values in which each MUST NOT exceed 2^32-1
  (4294967295).  Sub-identifiers may be denoted in decimal or `0x'-
  prefixed hexadecimal.  They are separated by single dots and without
  any intermediate white space.  Alternatively (and preferred in most
  cases), the first element may be a previously defined or imported
  lower-case identifier, representing a static object identifier
  prefix.

  Although the number of sub-identifiers in SMIng object identifiers is
  not limited, module designers should realize that there may be
  implementations that stick with the SMIv1/v2 limit of 128 sub-
  identifiers.

  Object identifier derived types cannot be restricted in any way.

  Value Examples:

     1.3.6.1                     // legal numerical oid
     mib-2.1                     // legal oid with identifier prefix
     internet.4.1.0x0627.0x01    // legal oid with hex subids
     iso.-1                      // illegal negative subid
     iso.org.6                   // illegal non-heading identifier
     IF-MIB::ifNumber.0          // legal fully qualified instance oid

3.4.  Integer32

  The Integer32 base type represents integer values between
  -2^31 (-2147483648) and 2^31-1 (2147483647).

  Values of type Integer32 may be denoted as decimal or hexadecimal
  numbers, where only decimal numbers can be negative.  Decimal numbers
  other than zero MUST NOT have leading zero digits.  Hexadecimal
  numbers are prefixed by `0x' and MUST have an even number of at least
  two hexadecimal digits, where letters MAY be upper-case, but lower-
  case characters are RECOMMENDED.

  When defining a type derived (directly or indirectly) from the
  Integer32 base type, the set of possible values may be restricted by
  appending a list of ranges or explicit values, separated by pipe `|'
  characters, and the whole list enclosed in parenthesis.  A range
  consists of a lower bound, two consecutive dots `..', and an upper
  bound.  Each value can be given in decimal or `0x'-prefixed
  hexadecimal notation.  Hexadecimal numbers must have an even number
  of at least two digits.  If multiple values or ranges are given they
  all MUST be disjoint and MUST be in ascending order.  If a value
  restriction is applied to an already restricted type, the new
  restriction MUST be equal or more limiting, that is raising the lower



Strauss & Schoenwaelder       Experimental                     [Page 10]

RFC 3780                         SMIng                          May 2004


  bounds, reducing the upper bounds, removing explicit values or
  ranges, or splitting ranges into multiple ranges with intermediate
  gaps.

  Value Examples:

     015                         // illegal leading zero
     -123                        // legal negative value
     - 1                         // illegal intermediate space
     0xabc                       // illegal hexadecimal value length
     -0xff                       // illegal sign on hex value
     0x80000000                  // illegal value, too large
     0xf00f                      // legal hexadecimal value

  Restriction Examples:

     Integer32 (0 | 5..10)       // legal range spec
     Integer32 (5..10 | 2..3)    // illegal ordering
     Integer32 (4..8 | 5..10)    // illegal overlapping

3.5.  Integer64

  The Integer64 base type represents integer values between
  -2^63 (-9223372036854775808) and 2^63-1 (9223372036854775807).

  Values of type Integer64 may be denoted as decimal or hexadecimal
  numbers, where only decimal numbers can be negative.  Decimal numbers
  other than zero MUST NOT have leading zero digits.  Hexadecimal
  numbers are prefixed by `0x' and MUST have an even number of
  hexadecimal digits, where letters MAY be upper-case, but lower-case
  characters are RECOMMENDED.

  When defining a type derived (directly or indirectly) from the
  Integer64 base type, the set of possible values may be restricted by
  appending a list of ranges or explicit values, separated by pipe `|'
  characters, with the whole list enclosed in parenthesis.  A range
  consists of a lower bound, two consecutive dots `..', and an upper
  bound.  Each value can be given in decimal or `0x'-prefixed
  hexadecimal notation.  Hexadecimal numbers must have an even number
  of at least two digits.  If multiple values or ranges are given, they
  all MUST be disjoint and MUST be in ascending order.  If a value
  restriction is applied to an already restricted type, the new
  restriction MUST be equal or more limiting, that is raising the lower
  bounds, reducing the upper bounds, removing explicit values or
  ranges, or splitting ranges into multiple ranges with intermediate
  gaps.





Strauss & Schoenwaelder       Experimental                     [Page 11]

RFC 3780                         SMIng                          May 2004


  Value Examples:

     015                         // illegal leading zero
     -123                        // legal negative value
     - 1                         // illegal intermediate space
     0xabc                       // illegal hexadecimal value length
     -0xff                       // illegal sign on hex value
     0x80000000                  // legal value

  Restriction Examples:

     Integer64 (0 | 5..10)       // legal range spec
     Integer64 (5..10 | 2..3)    // illegal ordering
     Integer64 (4..8 | 5..10)    // illegal overlapping

3.6.  Unsigned32

  The Unsigned32 base type represents positive integer values between 0
  and 2^32-1 (4294967295).

  Values of type Unsigned32 may be denoted as decimal or hexadecimal
  numbers.  Decimal numbers other than zero MUST NOT have leading zero
  digits.  Hexadecimal numbers are prefixed by `0x' and MUST have an
  even number of hexadecimal digits, where letters MAY be upper-case,
  but lower-case characters are RECOMMENDED.

  When defining a type derived (directly or indirectly) from the
  Unsigned32 base type, the set of possible values may be restricted by
  appending a list of ranges or explicit values, separated by pipe `|'
  characters, with the whole list enclosed in parenthesis.  A range
  consists of a lower bound, two consecutive dots `..', and an upper
  bound.  Each value can be given in decimal or `0x'-prefixed
  hexadecimal notation.  Hexadecimal numbers must have an even number
  of at least two digits.  If multiple values or ranges are given, they
  all MUST be disjoint and MUST be in ascending order.  If a value
  restriction is applied to an already restricted type, the new
  restriction MUST be equal or more limiting, that is raising the lower
  bounds, reducing the upper bounds, removing explicit values or
  ranges, or splitting ranges into multiple ranges with intermediate
  gaps.

  Value Examples:

     015                         // illegal leading zero
     -123                        // illegal negative value
     0xabc                       // illegal hexadecimal value length
     0x80000000                  // legal hexadecimal value
     0x8080000000                // illegal value, too large



Strauss & Schoenwaelder       Experimental                     [Page 12]

RFC 3780                         SMIng                          May 2004


  Restriction Examples:

     Unsigned32 (0 | 5..10)       // legal range spec
     Unsigned32 (5..10 | 2..3)    // illegal ordering
     Unsigned32 (4..8 | 5..10)    // illegal overlapping

3.7.  Unsigned64

  The Unsigned64 base type represents positive integer values between 0
  and 2^64-1 (18446744073709551615).

  Values of type Unsigned64 may be denoted as decimal or hexadecimal
  numbers.  Decimal numbers other than zero MUST NOT have leading zero
  digits.  Hexadecimal numbers are prefixed by `0x' and MUST have an
  even number of hexadecimal digits, where letters MAY be upper-case,
  but lower-case characters are RECOMMENDED.

  When defining a type derived (directly or indirectly) from the
  Unsigned64 base type, the set of possible values may be restricted by
  appending a list of ranges or explicit values, separated by pipe `|'
  characters, with the whole list enclosed in parenthesis.  A range
  consists of a lower bound, two consecutive dots `..', and an upper
  bound.  Each value can be given in decimal or `0x'-prefixed
  hexadecimal notation.  Hexadecimal numbers must have an even number
  of at least two digits.  If multiple values or ranges are given, they
  all MUST be disjoint and MUST be in ascending order.  If a value
  restriction is applied to an already restricted type, the new
  restriction MUST be equal or more limiting, that is raising the lower
  bounds, reducing the upper bounds, removing explicit values or
  ranges, or splitting ranges into multiple ranges with intermediate
  gaps.

  Value Examples:

     015                         // illegal leading zero
     -123                        // illegal negative value
     0xabc                       // illegal hexadecimal value length
     0x8080000000                // legal hexadecimal value

  Restriction Examples:

     Unsigned64 (1..10000000000) // legal range spec
     Unsigned64 (5..10 | 2..3)   // illegal ordering

3.8.  Float32

  The Float32 base type represents floating point values of single
  precision as described by [IEEE754].



Strauss & Schoenwaelder       Experimental                     [Page 13]

RFC 3780                         SMIng                          May 2004


  Values of type Float32 may be denoted as a decimal fraction with an
  optional exponent, as known from many programming languages.  See the
  grammar rule `floatValue' of Appendix B for the detailed syntax.
  Special values are `snan' (signalling Not-a-Number), `qnan' (quiet
  Not-a-Number), `neginf' (negative infinity), and `posinf' (positive
  infinity).  Note that -0.0 and +0.0 are different floating point
  values.  0.0 is equal to +0.0.

  When defining a type derived (directly or indirectly) from the
  Float32 base type, the set of possible values may be restricted by
  appending a list of ranges or explicit values, separated by pipe `|'
  characters, with the whole list enclosed in parenthesis.  A range
  consists of a lower bound, two consecutive dots `..', and an upper
  bound.  If multiple values or ranges are given, they all MUST be
  disjoint and MUST be in ascending order.  If a value restriction is
  applied to an already restricted type, the new restriction MUST be
  equal or more limiting, that is raising the lower bounds, reducing
  the upper bounds, removing explicit values or ranges, or splitting
  ranges into multiple ranges with intermediate gaps.  The special
  values `snan', `qnan', `neginf', and `posinf' must be explicitly
  listed in restrictions if they shall be included, where `snan' and
  `qnan' cannot be used in ranges.

  Note that encoding is not subject to this specification.  It has to
  be described by protocols that transport objects of type Float32.
  Note also that most floating point encodings disallow the
  representation of many values that can be written as decimal
  fractions as used in SMIng for human readability.  Therefore,
  explicit values in floating point type restrictions should be handled
  with care.

  Value Examples:

     00.1                       // illegal leading zero
     3.1415                     // legal value
     -2.5E+3                    // legal negative exponential value

  Restriction Examples:

     Float32 (-1.0..1.0)        // legal range spec
     Float32 (1 | 3.3 | 5)      // legal, probably unrepresentable 3.3
     Float32 (neginf..-0.0)     // legal range spec
     Float32 (-10.0..10.0 | 0)  // illegal overlapping








Strauss & Schoenwaelder       Experimental                     [Page 14]

RFC 3780                         SMIng                          May 2004


3.9.  Float64

  The Float64 base type represents floating point values of double
  precision as described by [IEEE754].

  Values of type Float64 may be denoted as a decimal fraction with an
  optional exponent, as known from many programming languages.  See the
  grammar rule `floatValue' of Appendix B for the detailed syntax.
  Special values are `snan' (signalling Not-a-Number), `qnan' (quiet
  Not-a-Number), `neginf' (negative infinity), and `posinf' (positive
  infinity).  Note that -0.0 and +0.0 are different floating point
  values.  0.0 is equal to +0.0.

  When defining a type derived (directly or indirectly) from the
  Float64 base type, the set of possible values may be restricted by
  appending a list of ranges or explicit values, separated by pipe `|'
  characters, with the whole list enclosed in parenthesis.  A range
  consists of a lower bound, two consecutive dots `..', and an upper
  bound.  If multiple values or ranges are given, they all MUST be
  disjoint and MUST be in ascending order.  If a value restriction is
  applied to an already restricted type, the new restriction MUST be
  equal or more limiting, that is raising the lower bounds, reducing
  the upper bounds, removing explicit values or ranges, or splitting
  ranges into multiple ranges with intermediate gaps.  The special
  values `snan', `qnan', `neginf', and `posinf' must be explicitly
  listed in restrictions if they shall be included, where `snan' and
  `qnan' cannot be used in ranges.

  Note that encoding is not subject to this specification.  It has to
  be described by protocols that transport objects of type Float64.
  Note also that most floating point encodings disallow the
  representation of many values that can be written as decimal
  fractions as used in SMIng for human readability.  Therefore,
  explicit values in floating point type restrictions should be handled
  with care.

  Value Examples:

     00.1                       // illegal leading zero
     3.1415                     // legal value
     -2.5E+3                    // legal negative exponential value

  Restriction Examples:

     Float64 (-1.0..1.0)        // legal range spec
     Float64 (1 | 3.3 | 5)      // legal, probably unrepresentable 3.3
     Float64 (neginf..-0.0)     // legal range spec
     Float64 (-10.0..10.0 | 0)  // illegal overlapping



Strauss & Schoenwaelder       Experimental                     [Page 15]

RFC 3780                         SMIng                          May 2004


3.10.  Float128

  The Float128 base type represents floating point values of quadruple
  precision as described by [IEEE754].

  Values of type Float128 may be denoted as a decimal fraction with an
  optional exponent, as known from many programming languages.  See the
  grammar rule `floatValue' of Appendix B for the detailed syntax.
  Special values are `snan' (signalling Not-a-Number), `qnan' (quiet
  Not-a-Number), `neginf' (negative infinity), and `posinf' (positive
  infinity).  Note that -0.0 and +0.0 are different floating point
  values.  0.0 is equal to +0.0.

  When defining a type derived (directly or indirectly) from the
  Float128 base type, the set of possible values may be restricted by
  appending a list of ranges or explicit values, separated by pipe `|'
  characters, with the whole list enclosed in parenthesis.  A range
  consists of a lower bound, two consecutive dots `..', and an upper
  bound.  If multiple values or ranges are given, they all MUST be
  disjoint and MUST be in ascending order.  If a value restriction is
  applied to an already restricted type, the new restriction MUST be
  equal or more limiting, that is raising the lower bounds, reducing
  the upper bounds, removing explicit values or ranges, or splitting
  ranges into multiple ranges with intermediate gaps.  The special
  values `snan', `qnan', `neginf', and `posinf' must be explicitly
  listed in restrictions if they shall be included, where `snan' and
  `qnan' cannot be used in ranges.

  Note that encoding is not subject to this specification.  It has to
  be described by protocols that transport objects of type Float128.
  Note also that most floating point encodings disallow the
  representation of many values that can be written as decimal
  fractions as used in SMIng for human readability.  Therefore,
  explicit values in floating point type restrictions should be handled
  with care.

  Value Examples:

     00.1                       // illegal leading zero
     3.1415                     // legal value
     -2.5E+3                    // legal negative exponential value

  Restriction Examples:

     Float128 (-1.0..1.0)        // legal range spec
     Float128 (1 | 3.3 | 5)      // legal, probably unrepresentable 3.3
     Float128 (neginf..-0.0)     // legal range spec
     Float128 (-10.0..10.0 | 0)  // illegal overlapping



Strauss & Schoenwaelder       Experimental                     [Page 16]

RFC 3780                         SMIng                          May 2004


3.11.  Enumeration

  The Enumeration base type represents values from a set of integers in
  the range between -2^31 (-2147483648) and 2^31-1 (2147483647), where
  each value has an assigned name.  The list of those named numbers has
  to be comma-separated, enclosed in parenthesis, and appended to the
  `Enumeration' keyword.  Each named number is denoted by its lower-
  case identifier followed by the assigned integer value, denoted as a
  decimal or `0x'-prefixed hexadecimal number, enclosed in parenthesis.
  Hexadecimal numbers must have an even number of at least two digits.
  Every name and every number in an enumeration type MUST be unique.
  It is RECOMMENDED that values be positive, start at 1, and be
  numbered contiguously.  All named numbers MUST be given in ascending
  order.

  Values of enumeration types may be denoted as decimal or `0x'-
  prefixed hexadecimal numbers or preferably as their assigned names.
  Hexadecimal numbers must have an even number of at least two digits.

  When types are derived (directly or indirectly) from an enumeration
  type, the set of named numbers may be equal or restricted by removing
  one or more named numbers, but no named numbers may be added or
  changed regarding its name, value, or both.

  Type and Value Examples:

  Enumeration (up(1), down(2), testing(3))
  Enumeration (down(2), up(1)) // illegal order

  0                            // legal (though not recommended) value
  up                           // legal value given by name
  2                            // legal value given by number

3.12.  Bits

  The Bits base type represents bit sets.  That is, a Bits value is a
  set of flags identified by small integer numbers starting at 0.  Each
  bit number has an assigned name.  The list of those named numbers has
  to be comma-separated, enclosed in parenthesis, and appended to the
  `Bits' keyword.  Each named number is denoted by its lower-case
  identifier followed by the assigned integer value, denoted as a
  decimal or `0x'-prefixed hexadecimal number, enclosed in parenthesis.
  Hexadecimal numbers must have an even number of at least two digits.
  Every name and every number in a bits type MUST be unique.  It is
  RECOMMENDED that numbers start at 0 and be numbered contiguously.
  Negative numbers are forbidden.  All named numbers MUST be given in
  ascending order.




Strauss & Schoenwaelder       Experimental                     [Page 17]

RFC 3780                         SMIng                          May 2004


  Values of bits types may be denoted as a comma-separated list of
  decimal or `0x'-prefixed hexadecimal numbers or preferably their
  assigned names enclosed in parenthesis.  Hexadecimal numbers must
  have an even number of at least two digits.  There MUST NOT be any
  element (by name or number) listed more than once.  Elements MUST be
  listed in ascending order.

  When defining a type derived (directly or indirectly) from a bits
  type, the set of named numbers may be restricted by removing one or
  more named numbers, but no named numbers may be added or changed
  regarding its name, value, or both.

  Type and Value Examples:

     Bits (readable(0), writable(1), executable(2))
     Bits (writable(1), readable(0) // illegal order

     ()                          // legal empty value
     (readable, writable, 2)     // legal value
     (0, readable, executable)   // illegal, readable(0) appears twice
     (writable, 4)               // illegal, element 4 out of range

3.13.  Display Formats

  Attribute and type definitions allow the specification of a format to
  be used when a value of that attribute or an attribute of that type
  is displayed.  Format specifications are represented as textual data.

  When the attribute or type has an underlying base type of Integer32,
  Integer64, Unsigned32, or Unsigned64, the format consists of an
  integer-format specification containing two parts.  The first part is
  a single character suggesting a display format, either: `x' for
  hexadecimal, `d' for decimal, `o' for octal, or `b' for binary.  For
  all types, when rendering the value, leading zeros are omitted, and
  for negative values, a minus sign is rendered immediately before the
  digits.  The second part is always omitted for `x', `o', and `b', and
  need not be present for `d'.  If present, the second part starts with
  a hyphen and is followed by a decimal number, which defines the
  implied decimal point when rendering the value.  For example `d-2'
  suggests that a value of 1234 be rendered as `12.34'.

  When the attribute or type has an underlying base type of
  OctetString, the format consists of one or more octet-format
  specifications.  Each specification consists of five parts, with each
  part using and removing zero or more of the next octets from the






Strauss & Schoenwaelder       Experimental                     [Page 18]

RFC 3780                         SMIng                          May 2004


  value and producing the next zero or more characters to be displayed.
  The octets within the value are processed in order of significance,
  most significant first.

  The five parts of a octet-format specification are:

  1. The (optional) repeat indicator.  If present, this part is a `*',
     and indicates that the current octet of the value is to be used as
     the repeat count.  The repeat count is an unsigned integer (which
     may be zero) specifying how many times the remainder of this
     octet-format specification should be successively applied.  If the
     repeat indicator is not present, the repeat count is one.

  2. The octet length: one or more decimal digits specifying the number
     of octets of the value to be used and formatted by this octet-
     specification.  Note that the octet length can be zero.  If less
     than this number of octets remain in the value, then the lesser
     number of octets are used.

  3. The display format, either: `x' for hexadecimal, `d' for decimal,
     `o' for octal, `a' for ASCII, or `t' for UTF-8 [RFC3629].  If the
     octet length part is greater than one, and the display format part
     refers to a numeric format, then network byte-ordering (big-endian
     encoding) is used to interpret the octets in the value.  The
     octets processed by the `t' display format do not necessarily form
     an integral number of UTF-8 characters.  Trailing octets which do
     not form a valid UTF-8 encoded character are discarded.

  4. The (optional) display separator character.  If present, this part
     is a single character produced for display after each application
     of this octet-specification; however, this character is not
     produced for display if it would be immediately followed by the
     display of the repeat terminator character for this octet
     specification.  This character can be any character other than a
     decimal digit and a `*'.

  5. The (optional) repeat terminator character, which can be present
     only if the display separator character is present and this octet
     specification begins with a repeat indicator.  If present, this
     part is a single character produced after all the zero or more
     repeated applications (as given by the repeat count) of this octet
     specification.  This character can be any character other than a
     decimal digit and a `*'.

  Output of a display separator character or a repeat terminator
  character is suppressed if it would occur as the last character of
  the display.




Strauss & Schoenwaelder       Experimental                     [Page 19]

RFC 3780                         SMIng                          May 2004


  If the octets of the value are exhausted before all the octet format
  specifications have been used, then the excess specifications are
  ignored.  If additional octets remain in the value after interpreting
  all the octet format specifications, then the last octet format
  specification is re-interpreted to process the additional octets,
  until no octets remain in the value.

  Note that for some types, no format specifications are defined.  For
  derived types and attributes that are based on such types, format
  specifications SHOULD be omitted.  Implementations MUST ignore format
  specifications they cannot interpret.  Also note that the SMIng
  grammar (Appendix B) does not specify the syntax of format
  specifications.

  Display Format Examples:

     Base Type   Format              Example Value    Rendered Value
     ----------- ------------------- ---------------- -----------------
     OctetString 255a                "Hello World."   Hello World.
     OctetString 1x:                 "Hello!"         48:65:6c:6c:6f:21
     OctetString 1d:1d:1d.1d,1a1d:1d 0x0d1e0f002d0400 13:30:15.0,-4:0
     OctetString 1d.1d.1d.1d/2d      0x0a0000010400   10.0.0.1/1024
     OctetString *1x:/1x:            0x02aabbccddee   aa:bb/cc:dd:ee
     Integer32   d-2                 1234             12.34

4.  The SMIng File Structure

  The topmost container of SMIng information is a file.  An SMIng file
  may contain zero, one or more modules.  It is RECOMMENDED that
  modules be stored into separate files by their module names, where
  possible.  However, for dedicated purposes, it may be reasonable to
  collect several modules in a single file.

  The top level SMIng construct is the `module' statement (Section 5)
  that defines a single SMIng module.  A module contains a sequence of
  sections in an obligatory order with different kinds of definitions.
  Whether these sections contain statements or remain empty mainly
  depends on the purpose of the module.

4.1.  Comments

  Comments can be included at any position in an SMIng file, except
  between the characters of a single token like those of a quoted
  string.  However, it is RECOMMENDED that all substantive descriptions
  be placed within an appropriate description clause, so that the
  information is available to SMIng parsers.





Strauss & Schoenwaelder       Experimental                     [Page 20]

RFC 3780                         SMIng                          May 2004


  Comments commence with a pair of adjacent slashes `//' and end at the
  end of the line.

4.2.  Textual Data

  Some statements, namely `organization', `contact', `description',
  `reference', `abnf', `format', and `units', get a textual argument.
  This text, as well as representations of OctetString values, have to
  be enclosed in double quotes.  They may contain arbitrary characters
  with the following exceptional encoding rules:

  A backslash character introduces a special character, which depends
  on the character that immediately follows the backslash:

     \n      new line
     \t      a tab character
     \"      a double quote
     \\      a single backslash

  If the text contains a line break followed by whitespace which is
  used to indent the text according to the layout in the SMIng file,
  this prefixing whitespace is stripped from the text.

4.3.  Statements and Arguments

  SMIng has a very small set of basic grammar rules based on the
  concept of statements.  Each statement starts with a lower-case
  keyword identifying the statement, followed by a number (possibly
  zero) of arguments.  An argument may be quoted text, an identifier, a
  value of any base type, a list of identifiers enclosed in parenthesis
  `( )', or a statement block enclosed in curly braces `{ }'.  Since
  statement blocks are valid arguments, it is possible to nest
  statement sequences.  Each statement is terminated by a semicolon
  `;'.

  The core set of statements may be extended using the SMIng
  `extension' statement.  See Sections 6 and 11 for details.

  At places where a statement is expected, but an unknown lower-case
  word is read, those statements MUST be skipped up to the proper
  semicolon, including nested statement blocks.

5.  The module Statement

  The `module' statement is used as a container of all definitions of a
  single SMIng module.  It gets two arguments: an upper-case module
  name and a statement block that contains mandatory and optional
  statements and sections of statements in an obligatory order:



Strauss & Schoenwaelder       Experimental                     [Page 21]

RFC 3780                         SMIng                          May 2004


        module <MODULE-NAME> {

            <optional import statements>
            <organization statement>
            <contact statement>
            <description statement>
            <optional reference statement>
            <at least one revision statement>

            <optional extension statements>

            <optional typedef statements>

            <optional identity statements>

            <optional class statements>

        };

  The optional `import' statements (Section 5.1) are followed by the
  mandatory `organization' (Section 5.2), `contact' (Section 5.3), and
  `description' (Section 5.4) statements and the optional `reference'
  statement (Section 5.5), which in turn are followed by at least one
  mandatory `revision' statement (Section 5.6).  The part up to this
  point defines the module's meta information, i.e., information that
  describes the whole module but does not define any items used by
  applications in the first instance.  This part of a module is
  followed by its main definitions, namely SMIng extensions (Section
  6), derived types (Section 7), identities (Section 8), and classes
  (Section 9).

  See the `moduleStatement' rule of the SMIng grammar (Appendix B) for
  the formal syntax of the `module' statement.

5.1.  The module's import Statement

  The optional module's `import' statement is used to import
  identifiers from external modules into the local module's namespace.
  It gets two arguments: the name of the external module and a comma-
  separated list of one or more identifiers to be imported enclosed in
  parenthesis.

  Multiple `import' statements for the same module but with disjoint
  lists of identifiers are allowed, though NOT RECOMMENDED.  The same
  identifier from the same module MUST NOT be imported multiple times.
  To import identifiers with the same name from different modules might
  be necessary and is allowed.  To distinguish




Strauss & Schoenwaelder       Experimental                     [Page 22]

RFC 3780                         SMIng                          May 2004


  them in the local module, they have to be referred by qualified
  names.  Importing identifiers not used in the local module is NOT
  RECOMMENDED.

  See the `importStatement' rule of the SMIng grammar (Appendix B) for
  the formal syntax of the `import' statement.

5.2.  The module's organization Statement

  The module's `organization' statement, which must be present, gets
  one argument which is used to specify a textual description of the
  organization(s) under whose auspices this module was developed.

5.3.  The module's contact Statement

  The module's `contact' statement, which must be present, gets one
  argument which is used to specify the name, postal address, telephone
  number, and electronic mail address of the person to whom technical
  queries concerning this module should be sent.

5.4.  The module's description Statement

  The module's `description' statement, which must be present, gets one
  argument which is used to specify a high-level textual description of
  the contents of this module.

5.5.  The module's reference Statement

  The module's `reference' statement, which need not be present, gets
  one argument which is used to specify a textual cross-reference to
  some other document, either another module which defines related
  management information, or some other document which provides
  additional information relevant to this module.

5.6.  The module's revision Statement

  The module's `revision' statement is repeatedly used to specify the
  editorial revisions of the module, including the initial revision.
  It gets one argument which is a statement block that holds detailed
  information in an obligatory order.  A module MUST have at least one
  initial `revision' statement.  For every editorial change, a new one
  MUST be added in front of the revisions sequence, so that all
  revisions are in reverse chronological order.

  See the `revisionStatement' rule of the SMIng grammar (Appendix B)
  for the formal syntax of the `revision' statement.





Strauss & Schoenwaelder       Experimental                     [Page 23]

RFC 3780                         SMIng                          May 2004


5.6.1.  The revision's date Statement

  The revision's `date' statement, which must be present, gets one
  argument which is used to specify the date and time of the revision
  in the format `YYYY-MM-DD HH:MM' or `YYYY-MM-DD' which implies the
  time `00:00'.  The time is always given in UTC.

  See the `date' rule of the SMIng grammar (Appendix B) for the formal
  syntax of the revision's `date' statement.

5.6.2.  The revision's description Statement

  The revision's `description' statement, which must be present, gets
  one argument which is used to specify a high-level textual
  description of the revision.

5.7.  Usage Example

  Consider how a skeletal module might be constructed:

  module ACME-MIB {

    import NMRG-SMING (DisplayString);

    organization
              "IRTF Network Management Research Group (NMRG)";

    contact   "IRTF Network Management Research Group (NMRG)
               http://www.ibr.cs.tu-bs.de/projects/nmrg/

               Joe L. User

               ACME, Inc.
               42 Anywhere Drive
               Nowhere, CA 95134
               USA

               Phone: +1 800 555 0815
               EMail: [email protected]";

    description
              "The module for entities implementing the ACME protocol.

               Copyright (C) The Internet Society (2004).
               All Rights Reserved.
               This version of this MIB module is part of RFC 3780,
               see the RFC itself for legal notices.";




Strauss & Schoenwaelder       Experimental                     [Page 24]

RFC 3780                         SMIng                          May 2004


    revision {
      date            "2003-12-16";
      description
              "Initial revision, published as RFC 3780.";
    };

    // ... further definitions ...

  }; // end of module ACME-MIB.

6.  The extension Statement

  The `extension' statement defines new statements to be used in the
  local module following this extension statement definition or in
  external modules that may import this extension statement definition.
  The `extension' statement gets two arguments: a lower-case extension
  statement identifier and a statement block that holds detailed
  extension information in an obligatory order.

  Extension statement identifiers SHOULD NOT contain any upper-case
  characters.

  Note that the SMIng extension feature does not allow the formal
  specification of the context, or argument syntax and semantics of an
  extension.  Its only purpose is to declare the existence of an
  extension and to allow a unique reference to an extension.  See
  Section 11 for detailed information on extensions and [RFC3781] for
  mappings of SMIng definitions to SNMP, which is formally defined as
  an extension.

  See the `extensionStatement' rule of the SMIng grammar (Appendix B)
  for the formal syntax of the `extension' statement.

6.1.  The extension's status Statement

  The extension's `status' statement, which must be present, gets one
  argument which is used to specify whether this extension definition
  is current or historic.  The value `current' means that the
  definition is current and valid.  The value `obsolete' means the
  definition is obsolete and should not be implemented and/or can be
  removed if previously implemented.  While the value `deprecated' also
  indicates an obsolete definition, it permits new/continued
  implementation in order to foster interoperability with older/
  existing implementations.







Strauss & Schoenwaelder       Experimental                     [Page 25]

RFC 3780                         SMIng                          May 2004


6.2.  The extension's description Statement

  The extension's `description' statement, which must be present, gets
  one argument which is used to specify a high-level textual
  description of the extension statement.

  It is RECOMMENDED that information on the extension's context, its
  semantics, and implementation conditions be included.  See also
  Section 11.

6.3.  The extension's reference Statement

  The extension's `reference' statement, which need not be present,
  gets one argument which is used to specify a textual cross-reference
  to some other document, either another module which defines related
  extension definitions, or some other document which provides
  additional information relevant to this extension.

6.4.  The extension's abnf Statement

  The extension's `abnf' statement, which need not be present, gets one
  argument which is used to specify a formal ABNF [RFC2234] grammar
  definition of the extension.  This grammar can reference rule names
  from the core SMIng grammar (Appendix B).

  Note that the `abnf' statement should contain only pure ABNF and no
  additional text, though comments prefixed by a semicolon are allowed
  but should probably be moved to the description statement.  Note that
  double quotes within the ABNF grammar have to be represented as `\"'
  according to Section 4.2.

6.5.  Usage Example

  extension severity {
    status  current;
    description
           "The optional severity extension statement can only
            be applied to the statement block of an SMIng class'
            event definition. If it is present it denotes the
            severity level of the event in a range from 0
            (emergency) to 7 (debug).";
    abnf
           "severityStatement = severityKeyword sep number optsep \";\"
            severityKeyword   = \"severity\"";
  };






Strauss & Schoenwaelder       Experimental                     [Page 26]

RFC 3780                         SMIng                          May 2004


7.  The typedef Statement

  The `typedef' statement defines new data types to be used in the
  local module or in external modules.  It gets two arguments:  an
  upper-case type identifier and a statement block that holds detailed
  type information in an obligatory order.

  Type identifiers SHOULD NOT consist of all upper-case characters and
  SHOULD NOT contain hyphens.

  See the `typedefStatement' rule of the SMIng grammar (Appendix B) for
  the formal syntax of the `typedef' statement.

7.1.  The typedef's type Statement

  The typedef's `type' statement, which must be present, gets one
  argument which is used to specify the type from which this type is
  derived.  Optionally, type restrictions may be applied to the new
  type by appending subtyping information according to the rules of the
  base type.  See Section 3 for SMIng base types and their type
  restrictions.

7.2.  The typedef's default Statement

  The typedef's `default' statement, which need not be present, gets
  one argument which is used to specify an acceptable default value for
  attributes of this type.  A default value may be used when an
  attribute instance is created.  That is, the value is a "hint" to
  implementors.

  The value of the `default' statement must, of course, correspond to
  the (probably restricted) type specified in the typedef's `type'
  statement.

  The default value of a type may be overwritten by a default value of
  an attribute of this type.

  Note that for some types, default values make no sense.

7.3.  The typedef's format Statement

  The typedef's `format' statement, which need not be present, gets one
  argument which is used to give a hint as to how the value of an
  instance of an attribute of this type might be displayed.  See
  Section 3.13 for a description of format specifications.






Strauss & Schoenwaelder       Experimental                     [Page 27]

RFC 3780                         SMIng                          May 2004


  If no format is specified, it is inherited from the type given in the
  `type' statement.  On the other hand, the format specification of a
  type may be semantically refined by a format specification of an
  attribute of this type.

7.4.  The typedef's units Statement

  The typedef's `units' statement, which need not be present, gets one
  argument which is used to specify a textual definition of the units
  associated with attributes of this type.

  If no units are specified, they are inherited from the type given in
  the `type' statement.  On the other hand, the units specification of
  a type may be semantically refined by a units specification of an
  attribute of this type.

  The units specification has to be appropriate for values displayed
  according to the typedef's format specification, if present.  For
  example, if the type defines frequency values of type Unsigned64
  measured in thousands of Hertz, the format specification should be
  `d-3' and the units specification should be `Hertz' or `Hz'.  If the
  format specification would be omitted, the units specification should
  be `Milli-Hertz' or `mHz'.  Authors of SMIng modules should pay
  attention to keep format and units specifications in sync.
  Application implementors MUST NOT implement units specifications
  without implementing format specifications.

7.5.  The typedef's status Statement

  The typedef's `status' statement, which must be present, gets one
  argument which is used to specify whether this type definition is
  current or historic.  The value `current' means that the definition
  is current and valid.  The value `obsolete' means the definition is
  obsolete and should not be implemented and/or can be removed if
  previously implemented.  While the value `deprecated' also indicates
  an obsolete definition, it permits new/continued implementation in
  order to foster interoperability with older/existing implementations.

  Derived types SHOULD NOT be defined as `current' if their underlying
  type is `deprecated' or `obsolete'.  Similarly, they SHOULD NOT be
  defined as `deprecated' if their underlying type is `obsolete'.
  Nevertheless, subsequent revisions of the underlying type cannot be
  avoided, but SHOULD be taken into account in subsequent revisions of
  the local module.







Strauss & Schoenwaelder       Experimental                     [Page 28]

RFC 3780                         SMIng                          May 2004


7.6.  The typedef's description Statement

  The typedef's `description' statement, which must be present, gets
  one argument which is used to specify a high-level textual
  description of the newly defined type.

  It is RECOMMENDED that all semantic definitions necessary for
  implementation, and to embody any information which would otherwise
  be communicated in any commentary annotations associated with this
  type definition be included.

7.7.  The typedef's reference Statement

  The typedef's `reference' statement, which need not be present, gets
  one argument which is used to specify a textual cross-reference to
  some other document, either another module which defines related type
  definitions, or some other document which provides additional
  information relevant to this type definition.

7.8.  Usage Examples

  typedef RptrOperStatus {
    type            Enumeration (other(1), ok(2), rptrFailure(3),
                                 groupFailure(4), portFailure(5),
                                 generalFailure(6));
    default         other;       // undefined by default.
    status          deprecated;
    description
            "A type to indicate the operational state
             of a repeater.";
    reference
            "[IEEE 802.3 Mgt], 30.4.1.1.5, aRepeaterHealthState.";
  };

  typedef SnmpTransportDomain {
    type            Pointer (snmpTransportDomain);
    status          current;
    description
            "A pointer to an SNMP transport domain identity.";
  };

  typedef DateAndTime {
    type            OctetString (8 | 11);
    format          "2d-1d-1d,1d:1d:1d.1d,1a1d:1d";
    status          current;
    description
            "A date-time specification.
             ...



Strauss & Schoenwaelder       Experimental                     [Page 29]

RFC 3780                         SMIng                          May 2004


             Note that if only local time is known, then timezone
             information (fields 8-10) is not present.";
    reference
            "RFC 2579, SNMPv2-TC.DateAndTime.";
  };

  typedef Frequency {
    type            Unsigned64;
    format          "d-3"
    units           "Hertz";
    status          current;
    description
            "A wide-range frequency specification measured
             in thousands of Hertz.";
  };

8.  The identity Statement

  The `identity' statement is used to define a new abstract and untyped
  identity.  Its only purpose is to denote its name, semantics, and
  existence.  An identity can be defined either from scratch or derived
  from a parent identity.  The `identity' statement gets the following
  two arguments: The first argument is a lower-case identity
  identifier.  The second argument is a statement block that holds
  detailed identity information in an obligatory order.

  See the `identityStatement' rule of the SMIng grammar (Appendix B)
  for the formal syntax of the `identity' statement.

8.1.  The identity's parent Statement

  The identity's `parent' statement must be present for a derived
  identity and must be absent for an identity defined from scratch.  It
  gets one argument which is used to specify the parent identity from
  which this identity shall be derived.

8.2.  The identity's status Statement

  The identity's `status' statement, which must be present, gets one
  argument which is used to specify whether this identity definition is
  current or historic.  The value `current' means that the definition
  is current and valid.  The value `obsolete' means the definition is
  obsolete and should not be implemented and/or can be removed if
  previously implemented.  While the value `deprecated' also indicates
  an obsolete definition, it permits new/continued implementation in
  order to foster interoperability with older/existing implementations.





Strauss & Schoenwaelder       Experimental                     [Page 30]

RFC 3780                         SMIng                          May 2004


  Derived identities SHOULD NOT be defined as `current' if their parent
  identity is `deprecated' or `obsolete'.  Similarly, they SHOULD NOT
  be defined as `deprecated' if their parent identity is `obsolete'.
  Nevertheless, subsequent revisions of the parent identity cannot be
  avoided, but SHOULD be taken into account in subsequent revisions of
  the local module.

8.3.  The identity' description Statement

  The identity's `description' statement, which must be present, gets
  one argument which is used to specify a high-level textual
  description of the newly defined identity.

  It is RECOMMENDED that all semantic definitions necessary for
  implementation, and to embody any information which would otherwise
  be communicated in any commentary annotations associated with this
  identity definition be included.

8.4.  The identity's reference Statement

  The identity's `reference' statement, which need not be present, gets
  one argument which is used to specify a textual cross-reference to
  some other document, either another module which defines related
  identity definitions, or some other document which provides
  additional information relevant to this identity definition.

8.5.  Usage Examples

  identity null {
    status  current;
    description
            "An identity used to represent null pointer values.";
  };

  identity snmpTransportDomain {
    status  current;
    description
            "A generic SNMP transport domain identity.";
  };

  identity snmpUDPDomain {
    parent  snmpTransportDomain;
    status  current;
    description
            "The SNMP over UDP transport domain.";
  };





Strauss & Schoenwaelder       Experimental                     [Page 31]

RFC 3780                         SMIng                          May 2004


9.  The class Statement

  The `class' statement is used to define a new class that represents a
  container of related attributes and events (Section 9.2, Section
  9.4).  A class can be defined either from scratch or derived from a
  parent class.  A derived class inherits all attributes and events of
  the parent class and can be extended by additional attributes and
  events.

  The `class' statement gets the following two arguments: The first
  argument is an upper-case class identifier.  The second argument is a
  statement block that holds detailed class information in an
  obligatory order.

  See the `classStatement' rule of the SMIng grammar (Appendix B) for
  the formal syntax of the `class' statement.

9.1.  The class' extends Statement

  The class' `extends' statement must be present for a class derived
  from a parent class and must be absent for a class defined from
  scratch.  It gets one argument which is used to specify the parent
  class from which this class shall be derived.

9.2.  The class' attribute Statement

  The class' `attribute' statement, which can be present zero, one or
  multiple times, gets two arguments: the attribute name and a
  statement block that holds detailed attribute information in an
  obligatory order.

9.2.1.  The attribute's type Statement

  The attribute's `type' statement must be present.  It gets at least
  one argument which is used to specify the type of the attribute:
  either a type name or a class name.  In case of a type name, it may
  be restricted by a second argument according to the restriction rules
  described in Section 3.

9.2.2.  The attribute's access Statement

  The attribute's `access' statement must be present for attributes
  typed by a base type or derived type, and must be absent for
  attributes typed by a class.  It gets one argument which is used to
  specify whether it makes sense to read and/or write an instance of
  the attribute, or to include its value in an event.  This is the
  maximal level of access for the attribute.  This maximal level of
  access is independent of any administrative authorization policy.



Strauss & Schoenwaelder       Experimental                     [Page 32]

RFC 3780                         SMIng                          May 2004


  The value `readwrite' indicates that read and write access makes
  sense.  The value `readonly' indicates that read access makes sense,
  but write access is never possible.  The value `eventonly' indicates
  an object which is accessible only via an event.

  These values are ordered, from least to greatest access level:
  `eventonly', `readonly', `readwrite'.

9.2.3.  The attribute's default Statement

  The attribute's `default' statement need not be present for
  attributes typed by a base type or derived type, and must be absent
  for attributes typed by a class.  It gets one argument which is used
  to specify an acceptable default value for this attribute.  A default
  value may be used when an attribute instance is created.  That is,
  the value is a "hint" to implementors.

  The value of the `default' statement must, of course, correspond to
  the (probably restricted) type specified in the attribute's `type'
  statement.

  The attribute's default value overrides the default value of the
  underlying type definition if both are present.

9.2.4.  The attribute's format Statement

  The attribute's `format' statement need not be present for attributes
  typed by a base type or derived type, and must be absent for
  attributes typed by a class.  It gets one argument which is used to
  give a hint as to how the value of an instance of this attribute
  might be displayed.  See Section 3.13 for a description of format
  specifications.

  The attribute's format specification overrides the format
  specification of the underlying type definition if both are present.

9.2.5.  The attribute's units Statement

  The attribute's `units' statement need not be present for attributes
  typed by a base type or derived type, and must be absent for
  attributes typed by a class.  It gets one argument which is used to
  specify a textual definition of the units associated with this
  attribute.

  The attribute's units specification overrides the units specification
  of the underlying type definition if both are present.





Strauss & Schoenwaelder       Experimental                     [Page 33]

RFC 3780                         SMIng                          May 2004


  The units specification has to be appropriate for values displayed
  according to the attribute's format specification if present.  For
  example, if the attribute represents a frequency value of type
  Unsigned64 measured in thousands of Hertz, the format specification
  should be `d-3' and the units specification should be `Hertz' or
  `Hz'.  If the format specification would be omitted, the units
  specification should be `Milli-Hertz' or `mHz'.  Authors of SMIng
  modules should pay attention to keep format and units specifications
  of type and attribute definitions in sync.  Application implementors
  MUST NOT implement units specifications without implementing format
  specifications.

9.2.6.  The attribute's status Statement

  The attribute's `status' statement must be present.  It gets one
  argument which is used to specify whether this attribute definition
  is current or historic.  The value `current' means that the
  definition is current and valid.  The value `obsolete' means the
  definition is obsolete and should not be implemented and/or can be
  removed if previously implemented.  While the value `deprecated' also
  indicates an obsolete definition, it permits new/continued
  implementation in order to foster interoperability with older/
  existing implementations.

  Attributes SHOULD NOT be defined as `current' if their type or their
  containing class is `deprecated' or `obsolete'.  Similarly, they
  SHOULD NOT be defined as `deprecated' if their type or their
  containing class is `obsolete'.  Nevertheless, subsequent revisions
  of used type definition cannot be avoided, but SHOULD be taken into
  account in subsequent revisions of the local module.

9.2.7.  The attribute's description Statement

  The attribute's `description' statement, which must be present, gets
  one argument which is used to specify a high-level textual
  description of this attribute.

  It is RECOMMENDED that all semantic definitions necessary for the
  implementation of this attribute be included.

9.2.8.  The attribute's reference Statement

  The attribute's `reference' statement, which need not be present,
  gets one argument which is used to specify a textual cross-reference
  to some other document, either another module which defines related
  attribute definitions, or some other document which provides
  additional information relevant to this attribute definition.




Strauss & Schoenwaelder       Experimental                     [Page 34]

RFC 3780                         SMIng                          May 2004


9.3.  The class' unique Statement

  The class' `unique' statement, which need not be present, gets one
  argument that specifies a comma-separated list of attributes of this
  class, enclosed in parenthesis.  If present, this list of attributes
  makes up a unique identification of all possible instances of this
  class.  It can be used as a unique key in underlying protocols.

  If the list is empty, the class should be regarded as a scalar class
  with only a single instance.

  If the `unique' statement is not present, the class is not meant to
  be instantiated directly, but to be contained in other classes or the
  parent class of other refining classes.

  If present, the attribute list MUST NOT contain any attribute more
  than once and the attributes should be ordered where appropriate so
  that the attributes that are most significant in most situations
  appear first.

9.4.  The class' event Statement

  The class' `event' statement is used to define an event related to an
  instance of this class that can occur asynchronously.  It gets two
  arguments: a lower-case event identifier and a statement block that
  holds detailed information in an obligatory order.

  See the `eventStatement' rule of the SMIng grammar (Appendix B) for
  the formal syntax of the `event' statement.

9.4.1.  The event's status Statement

  The event's `status' statement, which must be present, gets one
  argument which is used to specify whether this event definition is
  current or historic.  The value `current' means that the definition
  is current and valid.  The value `obsolete' means the definition is
  obsolete and should not be implemented and/or can be removed if
  previously implemented.  While the value `deprecated' also indicates
  an obsolete definition, it permits new/continued implementation in
  order to foster interoperability with older/existing implementations.

9.4.2.  The event's description Statement

  The event's `description' statement, which must be present, gets one
  argument which is used to specify a high-level textual description of
  this event.





Strauss & Schoenwaelder       Experimental                     [Page 35]

RFC 3780                         SMIng                          May 2004


  It is RECOMMENDED that all semantic definitions necessary for the
  implementation of this event be included.  In particular, which
  instance of the class is associated with an event of this type SHOULD
  be documented.

9.4.3.  The event's reference Statement

  The event's `reference' statement, which need not be present, gets
  one argument which is used to specify a textual cross-reference to
  some other document, either another module which defines related
  event definitions, or some other document which provides additional
  information relevant to this event definition.

9.5.  The class' status Statement

  The class' `status' statement, which must be present, gets one
  argument which is used to specify whether this class definition is
  current or historic.  The value `current' means that the definition
  is current and valid.  The value `obsolete' means the definition is
  obsolete and should not be implemented and/or can be removed if
  previously implemented.  While the value `deprecated' also indicates
  an obsolete definition, it permits new/continued implementation in
  order to foster interoperability with older/existing implementations.

  Derived classes SHOULD NOT be defined as `current' if their parent
  class is `deprecated' or `obsolete'.  Similarly, they SHOULD NOT be
  defined as `deprecated' if their parent class is `obsolete'.
  Nevertheless, subsequent revisions of the parent class cannot be
  avoided, but SHOULD be taken into account in subsequent revisions of
  the local module.

9.6.  The class' description Statement

  The class' `description' statement, which must be present, gets one
  argument which is used to specify a high-level textual description of
  the newly defined class.

  It is RECOMMENDED that all semantic definitions necessary for
  implementation, and to embody any information which would otherwise
  be communicated in any commentary annotations associated with this
  class definition be included.










Strauss & Schoenwaelder       Experimental                     [Page 36]

RFC 3780                         SMIng                          May 2004


9.7.  The class' reference Statement

  The class' `reference' statement, which need not be present, gets one
  argument which is used to specify a textual cross-reference to some
  other document, either another module which defines related class
  definitions, or some other document which provides additional
  information relevant to this class definition.

9.8.  Usage Example

  Consider how an event might be described that signals a status change
  of an interface:

  class Interface {
    // ...
    attribute speed {
      type        Gauge32;
      access      readonly;
      units       "bps";
      status      current;
      description
           "An estimate of the interface's current bandwidth
            in bits per second.";
    };
    // ...
    attribute adminStatus {
      type        AdminStatus;
      access      readwrite;
      status      current;
      description
           "The desired state of the interface.";
    };
    attribute operStatus {
      type        OperStatus;
      access      readonly;
      status      current;
      description
           "The current operational state of the interface.";
    };

    event linkDown {
      status      current;
      description
              "A linkDown event signifies that the ifOperStatus
               attribute for this interface instance is about to
               enter the down state from some other state (but not
               from the notPresent state).  This other state is
               indicated by the included value of ifOperStatus.";



Strauss & Schoenwaelder       Experimental                     [Page 37]

RFC 3780                         SMIng                          May 2004


    };

    status        current;
    description
              "A physical or logical network interface.";

  };

10.  Extending a Module

  As experience is gained with a module, it may be desirable to revise
  that module.  However, changes are not allowed if they have any
  potential to cause interoperability problems between an
  implementation using an original specification and an implementation
  using an updated specification(s).

  For any change, some statements near the top of the module MUST be
  updated to include information about the revision: specifically, a
  new `revision' statement (Section 5.6) must be included in front of
  the `revision' statements.  Furthermore, any necessary changes MUST
  be applied to other statements, including the `organization' and
  `contact' statements (Section 5.2, Section 5.3).

  Note that any definition contained in a module is available to be
  imported by any other module, and is referenced in an `import'
  statement via the module name.  Thus, a module name MUST NOT be
  changed.  Specifically, the module name (e.g., `ACME-MIB' in the
  example of Section 5.7) MUST NOT be changed when revising a module
  (except to correct typographical errors), and definitions MUST NOT be
  moved from one module to another.

  Also note that obsolete definitions MUST NOT be removed from modules
  since their identifiers may still be referenced by other modules.

  A definition may be revised in any of the following ways:

  o  In `typedef' statement blocks, a `type' statement containing an
     `Enumeration' or `Bits' type may have new named numbers added.

  o  In `typedef' statement blocks, the value of a `type' statement may
     be replaced by another type if the new type is derived (directly
     or indirectly) from the same base type, has the same set of
     values, and has identical semantics.

  o  In `attribute' statements where the `type' sub-statement specifies
     a class, the class may be replaced by another class if the new
     class is derived (directly or indirectly) from the base class and
     both classes have identical semantics.



Strauss & Schoenwaelder       Experimental                     [Page 38]

RFC 3780                         SMIng                          May 2004


  o  In `attribute' statements where the `type' sub-statement specifies
     a base type, a defined type, or an implicitly derived type (i.e.,
     not a class), that type may be replaced by another type if the new
     type is derived (directly or indirectly) from the same base type,
     has the same set of values, and has identical semantics.

  o  In any statement block, a `status' statement value of `current'
     may be revised as `deprecated' or `obsolete'.  Similarly, a
     `status' statement value of `deprecated' may be revised as
     `obsolete'.  When making such a change, the `description'
     statement SHOULD be updated to explain the rationale.

  o  In `typedef' and `attribute' statement blocks, a `default'
     statement may be added or updated.

  o  In `typedef' and `attribute' statement blocks, a `units' statement
     may be added.

  o  A class may be augmented by adding new attributes.

  o  In any statement block, clarifications and additional information
     may be included in the `description' statement.

  o  In any statement block, a `reference' statement may be added or
     updated.

  o  Entirely new extensions, types, identities, and classes may be
     defined, using previously unassigned identifiers.

  Otherwise, if the semantics of any previous definition are changed
  (i.e., if a non-editorial change is made to any definition other than
  those specifically allowed above), then this MUST be achieved by a
  new definition with a new identifier.  In case of a class where the
  semantics of any attributes are changed, the new class can be defined
  by derivation from the old class and refining the changed attributes.

  Note that changing the identifier associated with an existing
  definition is considered a semantic change, as these strings may be
  used in an `import' statement.

11.  SMIng Language Extensibility

  While the core SMIng language has a well defined set of statements
  (Section 5 through Section 9.4) that are used to specify those
  aspects of management information commonly regarded as necessary
  without management protocol specific information, there may be





Strauss & Schoenwaelder       Experimental                     [Page 39]

RFC 3780                         SMIng                          May 2004


  further information people wish to express.  Describing additional
  information informally in description statements has a disadvantage
  in that this information cannot be parsed by any program.

  SMIng allows modules to include statements that are unknown to a
  parser but fulfil some core grammar rules (Section 4.3).
  Furthermore, additional statements may be defined by the `extension'
  statement (Section 6).  Extensions can be used in the local module or
  in other modules that import the extension.  This has some
  advantages:

  o  A parser can differentiate between statements known as extensions
     and unknown statements.  This enables the parser to complain about
     unknown statements, e.g., due to typos.

  o  If an extension's definition contains a formal ABNF grammar
     definition and a parser is able to interpret this ABNF definition,
     this enables the parser to also complain about the wrong usage of
     an extension.

  o  Since there might be some common need for extensions, there is a
     relatively high probability of extension name collisions
     originated by different organizations, as long as there is no
     standardized extension for that purpose.  The requirement to
     explicitly import extension statements allows those extensions to
     be distinguished.

  o  The supported extensions of an SMIng implementation, e.g., an
     SMIng module compiler, can be clearly expressed.

  The only formal effect of an extension statement definition is to
  declare its existence and status, and optionally its ABNF grammar.
  All additional aspects SHOULD be described in the `description'
  statement:

  o  The detailed semantics of the new statement SHOULD be described.

  o  The contexts in which the new statement can be used SHOULD be
     described, e.g., a new statement may be designed to be used only
     in the statement block of a module, but not in other nested
     statement blocks.  Others may be applicable in multiple contexts.
     In addition, the point in the sequence of an obligatory order of
     other statements, where the new statement may be inserted, might
     be prescribed.

  o  The circumstances that make the new statement mandatory or
     optional SHOULD be described.




Strauss & Schoenwaelder       Experimental                     [Page 40]

RFC 3780                         SMIng                          May 2004


  o  The syntax of the new statement SHOULD at least be described
     informally, if not supplied formally in an `abnf' statement.

  o  It might be reasonable to give some suggestions under which
     conditions the implementation of the new statement is adequate and
     how it could be integrated into existent implementations.

  Some possible extension applications are:

  o  The formal mapping of SMIng definitions into the SNMP [RFC3781]
     framework is defined as an SMIng extension.  Other mappings may
     follow in the future.

  o  Inlined annotations to definitions.  For example, a vendor may
     wish to describe additional information to class and attribute
     definitions in private modules.  An example are severity levels of
     events in the statement block of an `event' statement.

  o  Arbitrary annotations to external definitions.  For example, a
     vendor may wish to describe additional information to definitions
     in a "standard" module.  This allows a vendor to implement
     "standard" modules as well as additional private features, without
     redundant module definitions, but on top of "standard" module
     definitions.

12.  Security Considerations

  This document defines a language with which to write and read
  descriptions of management information.  The language itself has no
  security impact on the Internet.

13.  Acknowledgements

  Since SMIng started as a close successor of SMIv2, some paragraphs
  and phrases are directly taken from the SMIv2 specifications
  [RFC2578], [RFC2579], [RFC2580] written by Jeff Case, Keith
  McCloghrie, David Perkins, Marshall T. Rose, Juergen Schoenwaelder,
  and Steven L. Waldbusser.

  The authors would like to thank all participants of the 7th NMRG
  meeting held in Schloss Kleinheubach from 6-8 September 2000, which
  was a major step towards the current status of this memo, namely
  Heiko Dassow, David Durham, Keith McCloghrie, and Bert Wijnen.

  Furthermore, several discussions within the SMING Working Group
  reflected experience with SMIv2 and influenced this specification at
  some points.




Strauss & Schoenwaelder       Experimental                     [Page 41]

RFC 3780                         SMIng                          May 2004


14.  References

14.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
             Specifications: ABNF", RFC 2234, November 1997.

14.2.  Informative References

  [RFC3216]  Elliott, C., Harrington, D., Jason, J., Schoenwaelder, J.,
             Strauss, F. and W. Weiss, "SMIng Objectives", RFC 3216,
             December 2001.

  [RFC3781]  Strauss, F. and J. Schoenwaelder, "Next Generation
             Structure of Management Information (SMIng) Mappings to
             the Simple Network Management Protocol (SNMP)", RFC 3781,
             May 2004.

  [RFC2578]  McCloghrie, K., Perkins, D. and J. Schoenwaelder,
             "Structure of Management Information Version 2 (SMIv2)",
             STD 58, RFC 2578, April 1999.

  [RFC2579]  McCloghrie, K., Perkins, D. and J. Schoenwaelder, "Textual
             Conventions for SMIv2", STD 59, RFC 2579, April 1999.

  [RFC2580]  McCloghrie, K., Perkins, D. and J. Schoenwaelder,
             "Conformance Statements for SMIv2", STD 60, RFC 2580,
             April 1999.

  [RFC3159]  McCloghrie, K., Fine, M., Seligson, J., Chan, K., Hahn,
             S., Sahita, R., Smith, A. and F. Reichmeyer, "Structure of
             Policy Provisioning Information (SPPI)", RFC 3159, August
             2001.

  [RFC1155]  Rose, M. and K. McCloghrie, "Structure and Identification
             of Management Information for TCP/IP-based Internets", STD
             16, RFC 1155, May 1990.

  [RFC1212]  Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD
             16, RFC 1212, March 1991.

  [RFC1215]  Rose, M., "A Convention for Defining Traps for use with
             the SNMP", RFC 1215, March 1991.





Strauss & Schoenwaelder       Experimental                     [Page 42]

RFC 3780                         SMIng                          May 2004


  [ASN1]     International Organization for Standardization,
             "Specification of Abstract Syntax Notation One (ASN.1)",
             International Standard 8824, December 1987.

  [RFC3411]  Harrington, D., Presuhn, R. and B. Wijnen, "An
             Architecture for Describing Simple Network Management
             Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
             December 2002.

  [IEEE754]  Institute of Electrical and Electronics Engineers, "IEEE
             Standard for Binary Floating-Point Arithmetic", ANSI/IEEE
             Standard 754-1985, August 1985.

  [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
             10646", STD 63, RFC 3629, November 2003.

  [RFC3084]  Chan, K., Seligson, J., Durham, D., Gai, S., McCloghrie,
             K., Herzog, S., Reichmeyer, F., Yavatkar, R. and A. Smith,
             "COPS Usage for Policy Provisioning", RFC 3084, March
             2001.































Strauss & Schoenwaelder       Experimental                     [Page 43]

RFC 3780                         SMIng                          May 2004


Appendix A. NMRG-SMING Module

  Most SMIng modules are built on top of the definitions of some
  commonly used derived types.  The definitions of these derived types
  are contained in the NMRG-SMING module which is defined below.  Its
  derived types are generally applicable for modeling all areas of
  management information.  Among these derived types are counter types,
  string types, and date and time related types.

  This module is derived from RFC 2578 [RFC2578] and RFC 2579
  [RFC2579].

module NMRG-SMING {

   organization    "IRTF Network Management Research Group (NMRG)";

   contact         "IRTF Network Management Research Group (NMRG)
                    http://www.ibr.cs.tu-bs.de/projects/nmrg/

                    Frank Strauss
                    TU Braunschweig
                    Muehlenpfordtstrasse 23
                    38106 Braunschweig
                    Germany
                    Phone: +49 531 391 3266
                    EMail: [email protected]

                    Juergen Schoenwaelder
                    International University Bremen
                    P.O. Box 750 561
                    28725 Bremen
                    Germany
                    Phone: +49 421 200 3587
                    EMail: [email protected]";

   description     "Core type definitions for SMIng. Several
                    type definitions are SMIng versions of
                    similar SMIv2 or SPPI definitions.

                    Copyright (C) The Internet Society (2004).
                    All Rights Reserved.
                    This version of this module is part of
                    RFC 3780, see the RFC itself for full
                    legal notices.";







Strauss & Schoenwaelder       Experimental                     [Page 44]

RFC 3780                         SMIng                          May 2004


   revision {
       date        "2003-12-16";
       description "Initial revision, published as RFC 3780.";
   };

   typedef Gauge32 {
       type        Unsigned32;
       description
          "The Gauge32 type represents a non-negative integer,
           which may increase or decrease, but shall never
           exceed a maximum value, nor fall below a minimum
           value.  The maximum value can not be greater than
           2^32-1 (4294967295 decimal), and the minimum value
           can not be smaller than 0.  The value of a Gauge32
           has its maximum value whenever the information
           being modeled is greater than or equal to its
           maximum value, and has its minimum value whenever
           the information being modeled is smaller than or
           equal to its minimum value.  If the information
           being modeled subsequently decreases below
           (increases above) the maximum (minimum) value, the
           Gauge32 also decreases (increases).";
       reference
          "RFC 2578, Sections 2. and 7.1.7.";
   };

   typedef Counter32 {
       type        Unsigned32;
       description
          "The Counter32 type represents a non-negative integer
           which monotonically increases until it reaches a
           maximum value of 2^32-1 (4294967295 decimal), when it
           wraps around and starts increasing again from zero.

           Counters have no defined `initial' value, and thus, a
           single value of a Counter has (in general) no information
           content.  Discontinuities in the monotonically increasing
           value normally occur at re-initialization of the
           management system, and at other times as specified in the
           description of an attribute using this type.  If such
           other times can occur, for example, the creation of a
           class instance that contains an attribute of type
           Counter32 at times other than re-initialization, then a
           corresponding attribute should be defined, with an
           appropriate type, to indicate the last discontinuity.
           Examples of appropriate types include: TimeStamp32,
           TimeStamp64, DateAndTime, TimeTicks32 or TimeTicks64
           (other types defined in this module).



Strauss & Schoenwaelder       Experimental                     [Page 45]

RFC 3780                         SMIng                          May 2004


           The value of the access statement for attributes with
           a type value of Counter32 should be either `readonly'
           or `eventonly'.

           A default statement should not be used for attributes
           with a type value of Counter32.";
       reference
          "RFC 2578, Sections 2. and 7.1.6.";
   };

   typedef Gauge64 {
       type        Unsigned64;
       description
          "The Gauge64 type represents a non-negative integer,
           which may increase or decrease, but shall never
           exceed a maximum value, nor fall below a minimum
           value.  The maximum value can not be greater than
           2^64-1 (18446744073709551615), and the minimum value
           can not be smaller than 0.  The value of a Gauge64
           has its maximum value whenever the information
           being modeled is greater than or equal to its
           maximum value, and has its minimum value whenever
           the information being modeled is smaller than or
           equal to its minimum value.  If the information
           being modeled subsequently decreases below
           (increases above) the maximum (minimum) value, the
           Gauge64 also decreases (increases).";
   };

   typedef Counter64 {
       type        Unsigned64;
       description
          "The Counter64 type represents a non-negative integer
           which monotonically increases until it reaches a
           maximum value of 2^64-1 (18446744073709551615), when
           it wraps around and starts increasing again from zero.

           Counters have no defined `initial' value, and thus, a
           single value of a Counter has (in general) no
           information content.  Discontinuities in the
           monotonically increasing value normally occur at
           re-initialization of the management system, and at
           other times as specified in the description of an
           attribute using this type.  If such other times can
           occur, for example, the creation of a class
           instance that contains an attribute of type Counter32
           at times other than re-initialization, then
           a corresponding attribute should be defined, with an



Strauss & Schoenwaelder       Experimental                     [Page 46]

RFC 3780                         SMIng                          May 2004


           appropriate type, to indicate the last discontinuity.
           Examples of appropriate types include: TimeStamp32,
           TimeStamp64, DateAndTime, TimeTicks32 or TimeTicks64
           (other types defined in this module).

           The value of the access statement for attributes with
           a type value of Counter64 should be either `readonly'
           or `eventonly'.

           A default statement should not be used for attributes
           with a type value of Counter64.";
       reference
          "RFC 2578, Sections 2. and 7.1.10.";
   };

   typedef Opaque {
       type        OctetString;
       status      obsolete;
       description
          "******* THIS TYPE DEFINITION IS OBSOLETE *******

           The Opaque type is provided solely for
           backward-compatibility, and shall not be used for
           newly-defined attributes and derived types.

           The Opaque type supports the capability to pass
           arbitrary ASN.1 syntax.  A value is encoded using
           the ASN.1 Basic Encoding Rules into a string of
           octets.  This, in turn, is encoded as an
           OctetString, in effect `double-wrapping' the
           original ASN.1 value.

           Note that a conforming implementation need only be
           able to accept and recognize opaquely-encoded data.
           It need not be able to unwrap the data and then
           interpret its contents.

           A requirement on `standard' modules is that no
           attribute may have a type value of Opaque and no
           type may be derived from the Opaque type.";
       reference
          "RFC 2578, Sections 2. and 7.1.9.";
   };

   typedef IpAddress {
       type        OctetString (4);
       status      deprecated;
       description



Strauss & Schoenwaelder       Experimental                     [Page 47]

RFC 3780                         SMIng                          May 2004


          "******* THIS TYPE DEFINITION IS DEPRECATED *******

           The IpAddress type represents a 32-bit Internet
           IPv4 address.  It is represented as an OctetString
           of length 4, in network byte-order.

           Note that the IpAddress type is present for
           historical reasons.";
       reference
          "RFC 2578, Sections 2. and 7.1.5.";
   };

   typedef TimeTicks32 {
       type        Unsigned32;
       description
          "The TimeTicks32 type represents a non-negative integer
           which represents the time, modulo 2^32 (4294967296
           decimal), in hundredths of a second between two epochs.
           When attributes are defined which use this type, the
           description of the attribute identifies both of the
           reference epochs.

           For example, the TimeStamp32 type (defined in this
           module) is based on the TimeTicks32 type.";
       reference
          "RFC 2578, Sections 2. and 7.1.8.";
   };

   typedef TimeTicks64 {
       type        Unsigned64;
       description
          "The TimeTicks64 type represents a non-negative integer
           which represents the time, modulo 2^64
           (18446744073709551616 decimal), in hundredths of a second
           between two epochs.  When attributes are defined which use
           this type, the description of the attribute identifies
           both of the reference epochs.

           For example, the TimeStamp64 type (defined in this
           module) is based on the TimeTicks64 type.";
   };

   typedef TimeStamp32 {
       type        TimeTicks32;
       description
          "The value of an associated TimeTicks32 attribute at
           which a specific occurrence happened.  The specific
           occurrence must be defined in the description of any



Strauss & Schoenwaelder       Experimental                     [Page 48]

RFC 3780                         SMIng                          May 2004


           attribute defined using this type.  When the specific
           occurrence occurred prior to the last time the
           associated TimeTicks32 attribute was zero, then the
           TimeStamp32 value is zero.  Note that this requires all
           TimeStamp32 values to be reset to zero when the value of
           the associated TimeTicks32 attribute reaches 497+ days
           and wraps around to zero.

           The associated TimeTicks32 attribute should be specified
           in the description of any attribute using this type.
           If no TimeTicks32 attribute has been specified, the
           default scalar attribute sysUpTime is used.";
       reference
          "RFC 2579, Section 2.";
   };

   typedef TimeStamp64 {
       type        TimeTicks64;
       description
          "The value of an associated TimeTicks64 attribute at which
           a specific occurrence happened.  The specific occurrence
           must be defined in the description of any attribute
           defined using this type.  When the specific occurrence
           occurred prior to the last time the associated TimeTicks64
           attribute was zero, then the TimeStamp64 value is zero.
           The associated TimeTicks64 attribute must be specified in
           the description of any attribute using this
           type. TimeTicks32 attributes must not be used as
           associated attributes.";
   };

   typedef TimeInterval32 {
       type        Integer32 (0..2147483647);
       description
          "A period of time, measured in units of 0.01 seconds.

           The TimeInterval32 type uses Integer32 rather than
           Unsigned32 for compatibility with RFC 2579.";
       reference
          "RFC 2579, Section 2.";
   };

   typedef TimeInterval64 {
       type        Integer64;
       description
          "A period of time, measured in units of 0.01 seconds.
           Note that negative values are allowed.";
   };



Strauss & Schoenwaelder       Experimental                     [Page 49]

RFC 3780                         SMIng                          May 2004


   typedef DateAndTime {
       type        OctetString (8 | 11);
       default     0x0000000000000000000000;
       format      "2d-1d-1d,1d:1d:1d.1d,1a1d:1d";
       description
          "A date-time specification.

           field  octets  contents                  range
           -----  ------  --------                  -----
            1      1-2   year*                     0..65535
            2       3    month                     1..12 | 0
            3       4    day                       1..31 | 0
            4       5    hour                      0..23
            5       6    minutes                   0..59
            6       7    seconds                   0..60
                         (use 60 for leap-second)
            7       8    deci-seconds              0..9
            8       9    direction from UTC        '+' / '-'
            9      10    hours from UTC*           0..13
           10      11    minutes from UTC          0..59

           * Notes:
           - the value of year is in big-endian encoding
           - daylight saving time in New Zealand is +13

           For example, Tuesday May 26, 1992 at 1:30:15 PM EDT would
           be displayed as:

                        1992-5-26,13:30:15.0,-4:0

           Note that if only local time is known, then timezone
           information (fields 8-10) is not present.

           The two special values of 8 or 11 zero bytes denote an
           unknown date-time specification.";
       reference
          "RFC 2579, Section 2.";
   };

   typedef TruthValue {
       type        Enumeration (true(1), false(2));
       description
          "Represents a boolean value.";
       reference
          "RFC 2579, Section 2.";
   };

   typedef PhysAddress {



Strauss & Schoenwaelder       Experimental                     [Page 50]

RFC 3780                         SMIng                          May 2004


       type        OctetString;
       format      "1x:";
       description
          "Represents media- or physical-level addresses.";
       reference
          "RFC 2579, Section 2.";
   };

   typedef MacAddress {
       type        OctetString (6);
       format      "1x:";
       description
          "Represents an IEEE 802 MAC address represented in the
           `canonical' order defined by IEEE 802.1a, i.e., as if it
           were transmitted least significant bit first, even though
           802.5 (in contrast to other 802.x protocols) requires MAC
           addresses to be transmitted most significant bit first.";
       reference
          "RFC 2579, Section 2.";
   };

   // The DisplayString definition below does not impose a size
   // restriction and is thus not the same as the DisplayString
   // definition in RFC 2579. The DisplayString255 definition is
   // provided for mapping purposes.

   typedef DisplayString {
       type        OctetString;
       format      "1a";
       description
          "Represents textual information taken from the NVT ASCII
           character set, as defined in pages 4, 10-11 of RFC 854.

           To summarize RFC 854, the NVT ASCII repertoire specifies:

            - the use of character codes 0-127 (decimal)

            - the graphics characters (32-126) are interpreted as
              US ASCII

            - NUL, LF, CR, BEL, BS, HT, VT and FF have the special
              meanings specified in RFC 854

            - the other 25 codes have no standard interpretation

            - the sequence 'CR LF' means newline

            - the sequence 'CR NUL' means carriage-return



Strauss & Schoenwaelder       Experimental                     [Page 51]

RFC 3780                         SMIng                          May 2004


            - an 'LF' not preceded by a 'CR' means moving to the
              same column on the next line.

            - the sequence 'CR x' for any x other than LF or NUL is
              illegal.  (Note that this also means that a string may
              end with either 'CR LF' or 'CR NUL', but not with CR.)
       ";
   };

   typedef DisplayString255 {
       type        DisplayString (0..255);
       description
          "A DisplayString with a maximum length of 255 characters.
           Any attribute defined using this syntax may not exceed 255
           characters in length.

           The DisplayString255 type has the same semantics as the
           DisplayString textual convention defined in RFC 2579.";
       reference
          "RFC 2579, Section 2.";
   };

   // The Utf8String and Utf8String255 definitions below facilitate
   // internationalization. The definition is consistent with the
   // definition of SnmpAdminString in RFC 2571.

   typedef Utf8String {
       type        OctetString;
       format      "65535t";      // is there a better way ?
       description
          "A human readable string represented using the ISO/IEC IS
           10646-1 character set, encoded as an octet string using
           the UTF-8 transformation format described in RFC 3629.

           Since additional code points are added by amendments to
           the 10646 standard from time to time, implementations must
           be prepared to encounter any code point from 0x00000000 to
           0x7fffffff.  Byte sequences that do not correspond to the
           valid UTF-8 encoding of a code point or are outside this
           range are prohibited.

           The use of control codes should be avoided. When it is
           necessary to represent a newline, the control code
           sequence CR LF should be used.

           The use of leading or trailing white space should be
           avoided.




Strauss & Schoenwaelder       Experimental                     [Page 52]

RFC 3780                         SMIng                          May 2004


           For code points not directly supported by user interface
           hardware or software, an alternative means of entry and
           display, such as hexadecimal, may be provided.

           For information encoded in 7-bit US-ASCII, the UTF-8
           encoding is identical to the US-ASCII encoding.

           UTF-8 may require multiple bytes to represent a single
           character / code point; thus the length of a Utf8String in
           octets may be different from the number of characters
           encoded.  Similarly, size constraints refer to the number
           of encoded octets, not the number of characters
           represented by an encoding.";
   };

   typedef Utf8String255 {
       type        Utf8String (0..255);
       format      "255t";
       description
          "A Utf8String with a maximum length of 255 octets.  Note
           that the size of an Utf8String is measured in octets, not
           characters.";
   };

   identity null {
       description
          "An identity used to represent null pointer values.";
   };

};

Appendix B. SMIng ABNF Grammar

  The SMIng grammar conforms to the Augmented Backus-Naur Form (ABNF)
  [RFC2234].

;;
;; sming.abnf -- SMIng grammar in ABNF notation (RFC 2234).
;;
;; @(#) $Id: sming.abnf,v 1.33 2003/10/23 19:31:55 strauss Exp $
;;
;; Copyright (C) The Internet Society (2004). All Rights Reserved.
;;

smingFile               = optsep *(moduleStatement optsep)

;;
;; Statement rules.



Strauss & Schoenwaelder       Experimental                     [Page 53]

RFC 3780                         SMIng                          May 2004


;;

moduleStatement         = moduleKeyword sep ucIdentifier optsep
                             "{" stmtsep
                             *(importStatement stmtsep)
                             organizationStatement stmtsep
                             contactStatement stmtsep
                             descriptionStatement stmtsep
                             *1(referenceStatement stmtsep)
                             1*(revisionStatement stmtsep)
                             *(extensionStatement stmtsep)
                             *(typedefStatement stmtsep)
                             *(identityStatement stmtsep)
                             *(classStatement stmtsep)
                         "}" optsep ";"

extensionStatement      = extensionKeyword sep lcIdentifier optsep
                             "{" stmtsep
                             statusStatement stmtsep
                             descriptionStatement stmtsep
                             *1(referenceStatement stmtsep)
                             *1(abnfStatement stmtsep)
                         "}" optsep ";"

typedefStatement        = typedefKeyword sep ucIdentifier optsep
                             "{" stmtsep
                             typedefTypeStatement stmtsep
                             *1(defaultStatement stmtsep)
                             *1(formatStatement stmtsep)
                             *1(unitsStatement stmtsep)
                             statusStatement stmtsep
                             descriptionStatement stmtsep
                             *1(referenceStatement stmtsep)
                         "}" optsep ";"

identityStatement       = identityStmtKeyword sep lcIdentifier optsep
                             "{" stmtsep
                             *1(parentStatement stmtsep)
                             statusStatement stmtsep
                             descriptionStatement stmtsep
                             *1(referenceStatement stmtsep)
                         "}" optsep ";"

classStatement          = classKeyword sep ucIdentifier optsep
                             "{" stmtsep
                             *1(extendsStatement stmtsep)
                             *(attributeStatement stmtsep)
                             *1(uniqueStatement stmtsep)



Strauss & Schoenwaelder       Experimental                     [Page 54]

RFC 3780                         SMIng                          May 2004


                             *(eventStatement stmtsep)
                             statusStatement stmtsep
                             descriptionStatement stmtsep
                             *1(referenceStatement stmtsep)
                         "}" optsep ";"

attributeStatement      = attributeKeyword sep
                             lcIdentifier optsep
                             "{" stmtsep
                             typeStatement stmtsep
                             *1(accessStatement stmtsep)
                             *1(defaultStatement stmtsep)
                             *1(formatStatement stmtsep)
                             *1(unitsStatement stmtsep)
                             statusStatement stmtsep
                             descriptionStatement stmtsep
                             *1(referenceStatement stmtsep)
                         "}" optsep ";"

uniqueStatement         = uniqueKeyword optsep
                             "(" optsep qlcIdentifierList
                             optsep ")" optsep ";"

eventStatement          = eventKeyword sep lcIdentifier
                             optsep "{" stmtsep
                             statusStatement stmtsep
                             descriptionStatement stmtsep
                             *1(referenceStatement stmtsep)
                         "}" optsep ";"

importStatement         = importKeyword sep ucIdentifier optsep
                             "(" optsep
                             identifierList optsep
                         ")" optsep ";"

revisionStatement       = revisionKeyword optsep "{" stmtsep
                             dateStatement stmtsep
                             descriptionStatement stmtsep
                         "}" optsep ";"

typedefTypeStatement    = typeKeyword sep refinedBaseType optsep ";"

typeStatement           = typeKeyword sep
                         (refinedBaseType / refinedType) optsep ";"

parentStatement         = parentKeyword sep qlcIdentifier optsep ";"

extendsStatement        = extendsKeyword sep qucIdentifier optsep ";"



Strauss & Schoenwaelder       Experimental                     [Page 55]

RFC 3780                         SMIng                          May 2004


dateStatement           = dateKeyword sep date optsep ";"

organizationStatement   = organizationKeyword sep text optsep ";"

contactStatement        = contactKeyword sep text optsep ";"

formatStatement         = formatKeyword sep format optsep ";"

unitsStatement          = unitsKeyword sep units optsep ";"

statusStatement         = statusKeyword sep status optsep ";"

accessStatement         = accessKeyword sep access optsep ";"

defaultStatement        = defaultKeyword sep anyValue optsep ";"

descriptionStatement    = descriptionKeyword sep text optsep ";"

referenceStatement      = referenceKeyword sep text optsep ";"

abnfStatement           = abnfKeyword sep text optsep ";"

;;
;;
;;

refinedBaseType         = ObjectIdentifierKeyword /
                         OctetStringKeyword *1(optsep numberSpec) /
                         PointerKeyword *1(optsep pointerSpec) /
                         Integer32Keyword *1(optsep numberSpec) /
                         Unsigned32Keyword *1(optsep numberSpec) /
                         Integer64Keyword *1(optsep numberSpec) /
                         Unsigned64Keyword *1(optsep numberSpec) /
                         Float32Keyword *1(optsep floatSpec) /
                         Float64Keyword *1(optsep floatSpec) /
                         Float128Keyword *1(optsep floatSpec) /
                         EnumerationKeyword
                                     optsep namedSignedNumberSpec /
                         BitsKeyword optsep namedNumberSpec

refinedType             = qucIdentifier *1(optsep anySpec)

anySpec                 = pointerSpec / numberSpec / floatSpec

pointerSpec             = "(" optsep qlcIdentifier optsep ")"






Strauss & Schoenwaelder       Experimental                     [Page 56]

RFC 3780                         SMIng                          May 2004


numberSpec              = "(" optsep numberElement
                             *furtherNumberElement
                             optsep ")"

furtherNumberElement    = optsep "|" optsep numberElement

numberElement           = signedNumber *1numberUpperLimit

numberUpperLimit        = optsep ".." optsep signedNumber

floatSpec               = "(" optsep floatElement
                             *furtherFloatElement
                             optsep ")"

furtherFloatElement     = optsep "|" optsep floatElement

floatElement            = floatValue *1floatUpperLimit

floatUpperLimit         = optsep ".." optsep floatValue

namedNumberSpec         = "(" optsep namedNumberList optsep ")"

namedNumberList         = namedNumberItem
                             *(optsep "," optsep namedNumberItem)

namedNumberItem         = lcIdentifier optsep "(" optsep number
                             optsep ")"

namedSignedNumberSpec   = "(" optsep namedSignedNumberList optsep ")"

namedSignedNumberList   = namedSignedNumberItem
                             *(optsep "," optsep
                                          namedSignedNumberItem)

namedSignedNumberItem   = lcIdentifier optsep "(" optsep signedNumber
                             optsep ")"

identifierList          = identifier
                             *(optsep "," optsep identifier)

qIdentifierList         = qIdentifier
                             *(optsep "," optsep qIdentifier)

qlcIdentifierList       = qlcIdentifier
                             *(optsep "," optsep qlcIdentifier)

bitsValue               = "(" optsep bitsList optsep ")"




Strauss & Schoenwaelder       Experimental                     [Page 57]

RFC 3780                         SMIng                          May 2004


bitsList                = *1(lcIdentifier
                             *(optsep "," optsep lcIdentifier))

;;
;; Other basic rules.
;;

identifier              = ucIdentifier / lcIdentifier

qIdentifier             = qucIdentifier / qlcIdentifier

ucIdentifier            = ucAlpha *63(ALPHA / DIGIT / "-")

qucIdentifier           = *1(ucIdentifier "::") ucIdentifier

lcIdentifier            = lcAlpha *63(ALPHA / DIGIT / "-")

qlcIdentifier           = *1(ucIdentifier "::") lcIdentifier

attrIdentifier          = lcIdentifier *("." lcIdentifier)

qattrIdentifier         = *1(ucIdentifier ".") attrIdentifier

cattrIdentifier         = ucIdentifier "."
                             lcIdentifier *("." lcIdentifier)

qcattrIdentifier        = qucIdentifier "."
                             lcIdentifier *("." lcIdentifier)

text                    = textSegment *(optsep textSegment)

textSegment             = DQUOTE *textAtom DQUOTE
                         ; See Section 4.2.

textAtom                = textVChar / HTAB / SP / lineBreak

date                    = DQUOTE 4DIGIT "-" 2DIGIT "-" 2DIGIT
                             *1(" " 2DIGIT ":" 2DIGIT)
                             DQUOTE
                         ; always in UTC

format                  = textSegment

units                   = textSegment

anyValue                = bitsValue /
                         signedNumber /
                         hexadecimalNumber /



Strauss & Schoenwaelder       Experimental                     [Page 58]

RFC 3780                         SMIng                          May 2004


                         floatValue /
                         text /
                         objectIdentifier
                         ; Note: `objectIdentifier' includes the
                         ; syntax of enumeration labels and
                         ; identities.
                         ; They are not named literally to
                         ; avoid reduce/reduce conflicts when
                         ; building LR parsers based on this
                         ; grammar.

status                  = currentKeyword /
                         deprecatedKeyword /
                         obsoleteKeyword

access                  = eventonlyKeyword /
                         readonlyKeyword /
                         readwriteKeyword

objectIdentifier        = (qlcIdentifier / subid "." subid)
                             *127("." subid)

subid                   = decimalNumber

number                  = hexadecimalNumber / decimalNumber

negativeNumber          = "-" decimalNumber

signedNumber            = number / negativeNumber

decimalNumber           = "0" / (nonZeroDigit *DIGIT)

zeroDecimalNumber       = 1*DIGIT

hexadecimalNumber       = %x30 %x78 ; "0x" with x only lower-case
                         1*(HEXDIG HEXDIG)

floatValue              = neginfKeyword /
                         posinfKeyword /
                         snanKeyword /
                         qnanKeyword /
                         signedNumber "." zeroDecimalNumber
                             *1("E" ("+"/"-") zeroDecimalNumber)

;;
;; Rules to skip unknown statements
;; with arbitrary arguments and blocks.
;;



Strauss & Schoenwaelder       Experimental                     [Page 59]

RFC 3780                         SMIng                          May 2004


unknownStatement        = unknownKeyword optsep *unknownArgument
                             optsep ";"

unknownArgument         = ("(" optsep unknownList optsep ")") /
                         ("{" optsep *unknownStatement optsep "}") /
                         qucIdentifier /
                         anyValue /
                         anySpec

unknownList             = namedNumberList /
                         qIdentifierList

unknownKeyword          = lcIdentifier

;;
;; Keyword rules.
;;
;; Typically, keywords are represented by tokens returned from the
;; lexical analyzer.  Note, that the lexer has to be stateful to
;; distinguish keywords from identifiers depending on the context
;; position in the input stream.
;;

moduleKeyword       =  %x6D %x6F %x64 %x75 %x6C %x65
importKeyword       =  %x69 %x6D %x70 %x6F %x72 %x74
revisionKeyword     =  %x72 %x65 %x76 %x69 %x73 %x69 %x6F %x6E
dateKeyword         =  %x64 %x61 %x74 %x65
organizationKeyword =  %x6F %x72 %x67 %x61 %x6E %x69 %x7A %x61 %x74
                      %x69 %x6F %x6E
contactKeyword      =  %x63 %x6F %x6E %x74 %x61 %x63 %x74
descriptionKeyword  =  %x64 %x65 %x73 %x63 %x72 %x69 %x70 %x74 %x69
                      %x6F %x6E
referenceKeyword    =  %x72 %x65 %x66 %x65 %x72 %x65 %x6E %x63 %x65
extensionKeyword    =  %x65 %x78 %x74 %x65 %x6E %x73 %x69 %x6F %x6E
typedefKeyword      =  %x74 %x79 %x70 %x65 %x64 %x65 %x66
typeKeyword         =  %x74 %x79 %x70 %x65
parentKeyword       =  %x70 %x61 %x72 %x65 %x6E %x74
identityStmtKeyword =  %x69 %x64 %x65 %x6E %x74 %x69 %x74 %x79
classKeyword        =  %x63 %x6C %x61 %x73 %x73
extendsKeyword      =  %x65 %x78 %x74 %x65 %x6E %x64 %x73
attributeKeyword    =  %x61 %x74 %x74 %x72 %x69 %x62 %x75 %x74 %x65
uniqueKeyword       =  %x75 %x6E %x69 %x71 %x75 %x65
eventKeyword        =  %x65 %x76 %x65 %x6E %x74
formatKeyword       =  %x66 %x6F %x72 %x6D %x61 %x74
unitsKeyword        =  %x75 %x6E %x69 %x74 %x73
statusKeyword       =  %x73 %x74 %x61 %x74 %x75 %x73
accessKeyword       =  %x61 %x63 %x63 %x65 %x73 %x73
defaultKeyword      =  %x64 %x65 %x66 %x61 %x75 %x6C %x74



Strauss & Schoenwaelder       Experimental                     [Page 60]

RFC 3780                         SMIng                          May 2004


abnfKeyword         =  %x61 %x62 %x6E %x66

;; Base type keywords.

OctetStringKeyword  =  %x4F %x63 %x74 %x65 %x74 %x53 %x74 %x72 %x69
                      %x6E %x67
PointerKeyword      =  %x50 %x6F %x69 %x6E %x74 %x65 %x72
ObjectIdentifierKeyword  =  %x4F %x62 %x6A %x65 %x63 %x74 %x49 %x64
                      %x65 %x6E %x74 %x69 %x66 %x69 %x65 %x72
Integer32Keyword    =  %x49 %x6E %x74 %x65 %x67 %x65 %x72 %x33 %x32
Unsigned32Keyword   =  %x55 %x6E %x73 %x69 %x67 %x6E %x65 %x64 %x33
                      %x32
Integer64Keyword    =  %x49 %x6E %x74 %x65 %x67 %x65 %x72 %x36 %x34
Unsigned64Keyword   =  %x55 %x6E %x73 %x69 %x67 %x6E %x65 %x64 %x36
                      %x34
Float32Keyword      =  %x46 %x6C %x6F %x61 %x74 %x33 %x32
Float64Keyword      =  %x46 %x6C %x6F %x61 %x74 %x36 %x34
Float128Keyword     =  %x46 %x6C %x6F %x61 %x74 %x31 %x32 %x38
BitsKeyword         =  %x42 %x69 %x74 %x73
EnumerationKeyword  =  %x45 %x6E %x75 %x6D %x65 %x72 %x61 %x74 %x69
                      %x6F %x6E

;; Status keywords.

currentKeyword      =  %x63 %x75 %x72 %x72 %x65 %x6E %x74
deprecatedKeyword   =  %x64 %x65 %x70 %x72 %x65 %x63 %x61 %x74 %x65
                      %x64
obsoleteKeyword     =  %x6F %x62 %x73 %x6F %x6C %x65 %x74 %x65

;; Access keywords.

eventonlyKeyword    =  %x65 %x76 %x65 %x6E %x74 %x6F %x6E %x6C %x79
readonlyKeyword     =  %x72 %x65 %x61 %x64 %x6F %x6E %x6C %x79
readwriteKeyword    =  %x72 %x65 %x61 %x64 %x77 %x72 %x69 %x74 %x65

;; Special floating point values' keywords.

neginfKeyword       =  %x6E %x65 %x67 %x69 %x6E %x66
posinfKeyword       =  %x70 %x6F %x73 %x69 %x6E %x66
snanKeyword         =  %x73 %x6E %x61 %x6E
qnanKeyword         =  %x71 %x6E %x61 %x6E

;;
;; Some low level rules.
;; These tokens are typically skipped by the lexical analyzer.
;;





Strauss & Schoenwaelder       Experimental                     [Page 61]

RFC 3780                         SMIng                          May 2004


sep                     = 1*(comment / lineBreak / WSP)
                         ; unconditional separator

optsep                  = *(comment / lineBreak / WSP)

stmtsep                 = *(comment /
                           lineBreak /
                           WSP /
                           unknownStatement)

comment                 = "//" *(WSP / VCHAR) lineBreak

lineBreak               = CRLF / LF

;;
;; Encoding specific rules.
;;

textVChar               = %x21 / %x23-7E
                         ; any VCHAR except DQUOTE

ucAlpha                 = %x41-5A

lcAlpha                 = %x61-7A

nonZeroDigit            = %x31-39

;;
;; RFC 2234 core rules.
;;

ALPHA          =  %x41-5A / %x61-7A
                      ; A-Z / a-z

CR             =  %x0D
                      ; carriage return

CRLF           =  CR LF
                      ; Internet standard newline

DIGIT          =  %x30-39
                      ; 0-9

DQUOTE         =  %x22
                      ; " (Double Quote)

HEXDIG         =  DIGIT /
                 %x61 / %x62 / %x63 / %x64 / %x65 / %x66



Strauss & Schoenwaelder       Experimental                     [Page 62]

RFC 3780                         SMIng                          May 2004


                      ; only lower-case a..f

HTAB           =  %x09
                      ; horizontal tab

LF             =  %x0A
                      ; linefeed

SP             =  %x20
                      ; space

VCHAR          =  %x21-7E
                      ; visible (printing) characters

WSP            =  SP / HTAB
                      ; white space

;; End of ABNF

Authors' Addresses

  Frank Strauss
  TU Braunschweig
  Muehlenpfordtstrasse 23
  38106 Braunschweig
  Germany

  Phone: +49 531 391 3266
  EMail: [email protected]
  URI:   http://www.ibr.cs.tu-bs.de/

  Juergen Schoenwaelder
  International University Bremen
  P.O. Box 750 561
  28725 Bremen
  Germany

  Phone: +49 421 200 3587
  EMail: [email protected]
  URI:   http://www.eecs.iu-bremen.de/











Strauss & Schoenwaelder       Experimental                     [Page 63]

RFC 3780                         SMIng                          May 2004


Full Copyright Statement

  Copyright (C) The Internet Society (2004).  This document is subject
  to the rights, licenses and restrictions contained in BCP 78, and
  except as set forth therein, the authors retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.









Strauss & Schoenwaelder       Experimental                     [Page 64]