Network Working Group                                          M. Matsui
Request for Comments: 3713                                   J. Nakajima
Category: Informational                  Mitsubishi Electric Corporation
                                                              S. Moriai
                                       Sony Computer Entertainment Inc.
                                                             April 2004


          A Description of the Camellia Encryption Algorithm

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2004).  All Rights Reserved.

Abstract

  This document describes the Camellia encryption algorithm.  Camellia
  is a block cipher with 128-bit block size and 128-, 192-, and 256-bit
  keys.  The algorithm description is presented together with key
  scheduling part and data randomizing part.

1.  Introduction

1.1.  Camellia

  Camellia was jointly developed by Nippon Telegraph and Telephone
  Corporation and Mitsubishi Electric Corporation in 2000
  [CamelliaSpec].  Camellia specifies the 128-bit block size and 128-,
  192-, and 256-bit key sizes, the same interface as the Advanced
  Encryption Standard (AES).  Camellia is characterized by its
  suitability for both software and hardware implementations as well as
  its high level of security.  From a practical viewpoint, it is
  designed to enable flexibility in software and hardware
  implementations on 32-bit processors widely used over the Internet
  and many applications, 8-bit processors used in smart cards,
  cryptographic hardware, embedded systems, and so on [CamelliaTech].
  Moreover, its key setup time is excellent, and its key agility is
  superior to that of AES.







Matsui, et al.               Informational                      [Page 1]

RFC 3713             Camellia Encryption Algorithm            April 2004


  Camellia has been scrutinized by the wide cryptographic community
  during several projects for evaluating crypto algorithms.  In
  particular, Camellia was selected as a recommended cryptographic
  primitive by the EU NESSIE (New European Schemes for Signatures,
  Integrity and Encryption) project [NESSIE] and also included in the
  list of cryptographic techniques for Japanese e-Government systems
  which were selected by the Japan CRYPTREC (Cryptography Research and
  Evaluation Committees) [CRYPTREC].

2.  Algorithm Description

  Camellia can be divided into "key scheduling part" and "data
  randomizing part".

2.1.  Terminology

  The following operators are used in this document to describe the
  algorithm.

     &    bitwise AND operation.
     |    bitwise OR operation.
     ^    bitwise exclusive-OR operation.
     <<   logical left shift operation.
     >>   logical right shift operation.
     <<<  left rotation operation.
     ~y   bitwise complement of y.
     0x   hexadecimal representation.

  Note that the logical left shift operation is done with the infinite
  data width.

  The constant values of MASK8, MASK32, MASK64, and MASK128 are defined
  as follows.

     MASK8   = 0xff;
     MASK32  = 0xffffffff;
     MASK64  = 0xffffffffffffffff;
     MASK128 = 0xffffffffffffffffffffffffffffffff;

2.2.  Key Scheduling Part

  In the key schedule part of Camellia, the 128-bit variables of KL and
  KR are defined as follows.  For 128-bit keys, the 128-bit key K is
  used as KL and KR is 0.  For 192-bit keys, the leftmost 128-bits of
  key K are used as KL and the concatenation of the rightmost 64-bits
  of K and the complement of the rightmost 64-bits of K are used as KR.
  For 256-bit keys, the leftmost 128-bits of key K are used as KL and
  the rightmost 128-bits of K are used as KR.



Matsui, et al.               Informational                      [Page 2]

RFC 3713             Camellia Encryption Algorithm            April 2004


  128-bit key K:
      KL = K;    KR = 0;

  192-bit key K:
      KL = K >> 64;
      KR = ((K & MASK64) << 64) | (~(K & MASK64));

  256-bit key K:
      KL = K >> 128;
      KR = K & MASK128;

  The 128-bit variables KA and KB are generated from KL and KR as
  follows.  Note that KB is used only if the length of the secret key
  is 192 or 256 bits.  D1 and D2 are 64-bit temporary variables.  F-
  function is described in Section 2.4.

  D1 = (KL ^ KR) >> 64;
  D2 = (KL ^ KR) & MASK64;
  D2 = D2 ^ F(D1, Sigma1);
  D1 = D1 ^ F(D2, Sigma2);
  D1 = D1 ^ (KL >> 64);
  D2 = D2 ^ (KL & MASK64);
  D2 = D2 ^ F(D1, Sigma3);
  D1 = D1 ^ F(D2, Sigma4);
  KA = (D1 << 64) | D2;
  D1 = (KA ^ KR) >> 64;
  D2 = (KA ^ KR) & MASK64;
  D2 = D2 ^ F(D1, Sigma5);
  D1 = D1 ^ F(D2, Sigma6);
  KB = (D1 << 64) | D2;

  The 64-bit constants Sigma1, Sigma2, ..., Sigma6 are used as "keys"
  in the F-function.  These constant values are, in hexadecimal
  notation, as follows.

  Sigma1 = 0xA09E667F3BCC908B;
  Sigma2 = 0xB67AE8584CAA73B2;
  Sigma3 = 0xC6EF372FE94F82BE;
  Sigma4 = 0x54FF53A5F1D36F1C;
  Sigma5 = 0x10E527FADE682D1D;
  Sigma6 = 0xB05688C2B3E6C1FD;

  64-bit subkeys are generated by rotating KL, KR, KA, and KB and
  taking the left- or right-half of them.







Matsui, et al.               Informational                      [Page 3]

RFC 3713             Camellia Encryption Algorithm            April 2004


  For 128-bit keys, 64-bit subkeys kw1, ..., kw4, k1, ..., k18,
  ke1, ..., ke4 are generated as follows.

  kw1 = (KL <<<   0) >> 64;
  kw2 = (KL <<<   0) & MASK64;
  k1  = (KA <<<   0) >> 64;
  k2  = (KA <<<   0) & MASK64;
  k3  = (KL <<<  15) >> 64;
  k4  = (KL <<<  15) & MASK64;
  k5  = (KA <<<  15) >> 64;
  k6  = (KA <<<  15) & MASK64;
  ke1 = (KA <<<  30) >> 64;
  ke2 = (KA <<<  30) & MASK64;
  k7  = (KL <<<  45) >> 64;
  k8  = (KL <<<  45) & MASK64;
  k9  = (KA <<<  45) >> 64;
  k10 = (KL <<<  60) & MASK64;
  k11 = (KA <<<  60) >> 64;
  k12 = (KA <<<  60) & MASK64;
  ke3 = (KL <<<  77) >> 64;
  ke4 = (KL <<<  77) & MASK64;
  k13 = (KL <<<  94) >> 64;
  k14 = (KL <<<  94) & MASK64;
  k15 = (KA <<<  94) >> 64;
  k16 = (KA <<<  94) & MASK64;
  k17 = (KL <<< 111) >> 64;
  k18 = (KL <<< 111) & MASK64;
  kw3 = (KA <<< 111) >> 64;
  kw4 = (KA <<< 111) & MASK64;

  For 192- and 256-bit keys, 64-bit subkeys kw1, ..., kw4, k1, ...,
  k24, ke1, ..., ke6 are generated as follows.

  kw1 = (KL <<<   0) >> 64;
  kw2 = (KL <<<   0) & MASK64;
  k1  = (KB <<<   0) >> 64;
  k2  = (KB <<<   0) & MASK64;
  k3  = (KR <<<  15) >> 64;
  k4  = (KR <<<  15) & MASK64;
  k5  = (KA <<<  15) >> 64;
  k6  = (KA <<<  15) & MASK64;
  ke1 = (KR <<<  30) >> 64;
  ke2 = (KR <<<  30) & MASK64;
  k7  = (KB <<<  30) >> 64;
  k8  = (KB <<<  30) & MASK64;
  k9  = (KL <<<  45) >> 64;
  k10 = (KL <<<  45) & MASK64;
  k11 = (KA <<<  45) >> 64;



Matsui, et al.               Informational                      [Page 4]

RFC 3713             Camellia Encryption Algorithm            April 2004


  k12 = (KA <<<  45) & MASK64;
  ke3 = (KL <<<  60) >> 64;
  ke4 = (KL <<<  60) & MASK64;
  k13 = (KR <<<  60) >> 64;
  k14 = (KR <<<  60) & MASK64;
  k15 = (KB <<<  60) >> 64;
  k16 = (KB <<<  60) & MASK64;
  k17 = (KL <<<  77) >> 64;
  k18 = (KL <<<  77) & MASK64;
  ke5 = (KA <<<  77) >> 64;
  ke6 = (KA <<<  77) & MASK64;
  k19 = (KR <<<  94) >> 64;
  k20 = (KR <<<  94) & MASK64;
  k21 = (KA <<<  94) >> 64;
  k22 = (KA <<<  94) & MASK64;
  k23 = (KL <<< 111) >> 64;
  k24 = (KL <<< 111) & MASK64;
  kw3 = (KB <<< 111) >> 64;
  kw4 = (KB <<< 111) & MASK64;

2.3.  Data Randomizing Part

2.3.1.  Encryption for 128-bit keys

  128-bit plaintext M is divided into the left 64-bit D1 and the right
  64-bit D2.

  D1 = M >> 64;
  D2 = M & MASK64;

  Encryption is performed using an 18-round Feistel structure with FL-
  and FLINV-functions inserted every 6 rounds. F-function, FL-function,
  and FLINV-function are described in Section 2.4.

  D1 = D1 ^ kw1;           // Prewhitening
  D2 = D2 ^ kw2;
  D2 = D2 ^ F(D1, k1);     // Round 1
  D1 = D1 ^ F(D2, k2);     // Round 2
  D2 = D2 ^ F(D1, k3);     // Round 3
  D1 = D1 ^ F(D2, k4);     // Round 4
  D2 = D2 ^ F(D1, k5);     // Round 5
  D1 = D1 ^ F(D2, k6);     // Round 6
  D1 = FL   (D1, ke1);     // FL
  D2 = FLINV(D2, ke2);     // FLINV
  D2 = D2 ^ F(D1, k7);     // Round 7
  D1 = D1 ^ F(D2, k8);     // Round 8
  D2 = D2 ^ F(D1, k9);     // Round 9
  D1 = D1 ^ F(D2, k10);    // Round 10



Matsui, et al.               Informational                      [Page 5]

RFC 3713             Camellia Encryption Algorithm            April 2004


  D2 = D2 ^ F(D1, k11);    // Round 11
  D1 = D1 ^ F(D2, k12);    // Round 12
  D1 = FL   (D1, ke3);     // FL
  D2 = FLINV(D2, ke4);     // FLINV
  D2 = D2 ^ F(D1, k13);    // Round 13
  D1 = D1 ^ F(D2, k14);    // Round 14
  D2 = D2 ^ F(D1, k15);    // Round 15
  D1 = D1 ^ F(D2, k16);    // Round 16
  D2 = D2 ^ F(D1, k17);    // Round 17
  D1 = D1 ^ F(D2, k18);    // Round 18
  D2 = D2 ^ kw3;           // Postwhitening
  D1 = D1 ^ kw4;

  128-bit ciphertext C is constructed from D1 and D2 as follows.

  C = (D2 << 64) | D1;

2.3.2.  Encryption for 192- and 256-bit keys

  128-bit plaintext M is divided into the left 64-bit D1 and the right
  64-bit D2.

  D1 = M >> 64;
  D2 = M & MASK64;

  Encryption is performed using a 24-round Feistel structure with FL-
  and FLINV-functions inserted every 6 rounds. F-function, FL-function,
  and FLINV-function are described in Section 2.4.

  D1 = D1 ^ kw1;           // Prewhitening
  D2 = D2 ^ kw2;
  D2 = D2 ^ F(D1, k1);     // Round 1
  D1 = D1 ^ F(D2, k2);     // Round 2
  D2 = D2 ^ F(D1, k3);     // Round 3
  D1 = D1 ^ F(D2, k4);     // Round 4
  D2 = D2 ^ F(D1, k5);     // Round 5
  D1 = D1 ^ F(D2, k6);     // Round 6
  D1 = FL   (D1, ke1);     // FL
  D2 = FLINV(D2, ke2);     // FLINV
  D2 = D2 ^ F(D1, k7);     // Round 7
  D1 = D1 ^ F(D2, k8);     // Round 8
  D2 = D2 ^ F(D1, k9);     // Round 9
  D1 = D1 ^ F(D2, k10);    // Round 10
  D2 = D2 ^ F(D1, k11);    // Round 11
  D1 = D1 ^ F(D2, k12);    // Round 12
  D1 = FL   (D1, ke3);     // FL
  D2 = FLINV(D2, ke4);     // FLINV
  D2 = D2 ^ F(D1, k13);    // Round 13



Matsui, et al.               Informational                      [Page 6]

RFC 3713             Camellia Encryption Algorithm            April 2004


  D1 = D1 ^ F(D2, k14);    // Round 14
  D2 = D2 ^ F(D1, k15);    // Round 15
  D1 = D1 ^ F(D2, k16);    // Round 16
  D2 = D2 ^ F(D1, k17);    // Round 17
  D1 = D1 ^ F(D2, k18);    // Round 18
  D1 = FL   (D1, ke5);     // FL
  D2 = FLINV(D2, ke6);     // FLINV
  D2 = D2 ^ F(D1, k19);    // Round 19
  D1 = D1 ^ F(D2, k20);    // Round 20
  D2 = D2 ^ F(D1, k21);    // Round 21
  D1 = D1 ^ F(D2, k22);    // Round 22
  D2 = D2 ^ F(D1, k23);    // Round 23
  D1 = D1 ^ F(D2, k24);    // Round 24
  D2 = D2 ^ kw3;           // Postwhitening
  D1 = D1 ^ kw4;

  128-bit ciphertext C is constructed from D1 and D2 as follows.

  C = (D2 << 64) | D1;

2.3.3.  Decryption

  The decryption procedure of Camellia can be done in the same way as
  the encryption procedure by reversing the order of the subkeys.

  That is to say:

  128-bit key:
      kw1 <-> kw3
      kw2 <-> kw4
      k1  <-> k18
      k2  <-> k17
      k3  <-> k16
      k4  <-> k15
      k5  <-> k14
      k6  <-> k13
      k7  <-> k12
      k8  <-> k11
      k9  <-> k10
      ke1 <-> ke4
      ke2 <-> ke3

  192- or 256-bit key:
      kw1 <-> kw3
      kw2 <-> kw4
      k1  <-> k24
      k2  <-> k23
      k3  <-> k22



Matsui, et al.               Informational                      [Page 7]

RFC 3713             Camellia Encryption Algorithm            April 2004


      k4  <-> k21
      k5  <-> k20
      k6  <-> k19
      k7  <-> k18
      k8  <-> k17
      k9  <-> k16
      k10 <-> k15
      k11 <-> k14
      k12 <-> k13
      ke1 <-> ke6
      ke2 <-> ke5
      ke3 <-> ke4

2.4.  Components of Camellia

2.4.1.  F-function

  F-function takes two parameters.  One is 64-bit input data F_IN.  The
  other is 64-bit subkey KE.  F-function returns 64-bit data F_OUT.

  F(F_IN, KE)
  begin
      var x as 64-bit unsigned integer;
      var t1, t2, t3, t4, t5, t6, t7, t8 as 8-bit unsigned integer;
      var y1, y2, y3, y4, y5, y6, y7, y8 as 8-bit unsigned integer;
      x  = F_IN ^ KE;
      t1 =  x >> 56;
      t2 = (x >> 48) & MASK8;
      t3 = (x >> 40) & MASK8;
      t4 = (x >> 32) & MASK8;
      t5 = (x >> 24) & MASK8;
      t6 = (x >> 16) & MASK8;
      t7 = (x >>  8) & MASK8;
      t8 =  x        & MASK8;
      t1 = SBOX1[t1];
      t2 = SBOX2[t2];
      t3 = SBOX3[t3];
      t4 = SBOX4[t4];
      t5 = SBOX2[t5];
      t6 = SBOX3[t6];
      t7 = SBOX4[t7];
      t8 = SBOX1[t8];
      y1 = t1 ^ t3 ^ t4 ^ t6 ^ t7 ^ t8;
      y2 = t1 ^ t2 ^ t4 ^ t5 ^ t7 ^ t8;
      y3 = t1 ^ t2 ^ t3 ^ t5 ^ t6 ^ t8;
      y4 = t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7;
      y5 = t1 ^ t2 ^ t6 ^ t7 ^ t8;
      y6 = t2 ^ t3 ^ t5 ^ t7 ^ t8;



Matsui, et al.               Informational                      [Page 8]

RFC 3713             Camellia Encryption Algorithm            April 2004


      y7 = t3 ^ t4 ^ t5 ^ t6 ^ t8;
      y8 = t1 ^ t4 ^ t5 ^ t6 ^ t7;
      F_OUT = (y1 << 56) | (y2 << 48) | (y3 << 40) | (y4 << 32)
      | (y5 << 24) | (y6 << 16) | (y7 <<  8) | y8;
      return FO_OUT;
  end.

  SBOX1, SBOX2, SBOX3, and SBOX4 are lookup tables with 8-bit input/
  output data.  SBOX2, SBOX3, and SBOX4 are defined using SBOX1 as
  follows:

      SBOX2[x] = SBOX1[x] <<< 1;
      SBOX3[x] = SBOX1[x] <<< 7;
      SBOX4[x] = SBOX1[x <<< 1];

  SBOX1 is defined by the following table.  For example, SBOX1[0x3d]
  equals 86.

  SBOX1:
        0   1   2   3   4   5   6   7   8   9   a   b   c   d   e   f
  00: 112 130  44 236 179  39 192 229 228 133  87  53 234  12 174  65
  10:  35 239 107 147  69  25 165  33 237  14  79  78  29 101 146 189
  20: 134 184 175 143 124 235  31 206  62  48 220  95  94 197  11  26
  30: 166 225  57 202 213  71  93  61 217   1  90 214  81  86 108  77
  40: 139  13 154 102 251 204 176  45 116  18  43  32 240 177 132 153
  50: 223  76 203 194  52 126 118   5 109 183 169  49 209  23   4 215
  60:  20  88  58  97 222  27  17  28  50  15 156  22  83  24 242  34
  70: 254  68 207 178 195 181 122 145  36   8 232 168  96 252 105  80
  80: 170 208 160 125 161 137  98 151  84  91  30 149 224 255 100 210
  90:  16 196   0  72 163 247 117 219 138   3 230 218   9  63 221 148
  a0: 135  92 131   2 205  74 144  51 115 103 246 243 157 127 191 226
  b0:  82 155 216  38 200  55 198  59 129 150 111  75  19 190  99  46
  c0: 233 121 167 140 159 110 188 142  41 245 249 182  47 253 180  89
  d0: 120 152   6 106 231  70 113 186 212  37 171  66 136 162 141 250
  e0: 114   7 185  85 248 238 172  10  54  73  42 104  60  56 241 164
  f0:  64  40 211 123 187 201  67 193  21 227 173 244 119 199 128 158

2.4.2.  FL- and FLINV-functions

  FL-function takes two parameters.  One is 64-bit input data FL_IN.
  The other is 64-bit subkey KE.  FL-function returns 64-bit data
  FL_OUT.

  FL(FL_IN, KE)
  begin
      var x1, x2 as 32-bit unsigned integer;
      var k1, k2 as 32-bit unsigned integer;
      x1 = FL_IN >> 32;



Matsui, et al.               Informational                      [Page 9]

RFC 3713             Camellia Encryption Algorithm            April 2004


      x2 = FL_IN & MASK32;
      k1 = KE >> 32;
      k2 = KE & MASK32;
      x2 = x2 ^ ((x1 & k1) <<< 1);
      x1 = x1 ^ (x2 | k2);
      FL_OUT = (x1 << 32) | x2;
  end.

  FLINV-function is the inverse function of the FL-function.

  FLINV(FLINV_IN, KE)
  begin
      var y1, y2 as 32-bit unsigned integer;
      var k1, k2 as 32-bit unsigned integer;
      y1 = FLINV_IN >> 32;
      y2 = FLINV_IN & MASK32;
      k1 = KE >> 32;
      k2 = KE & MASK32;
      y1 = y1 ^ (y2 | k2);
      y2 = y2 ^ ((y1 & k1) <<< 1);
      FLINV_OUT = (y1 << 32) | y2;
  end.

3.  Object Identifiers

  The Object Identifier for Camellia with 128-bit key in Cipher Block
  Chaining (CBC) mode is as follows:

     id-camellia128-cbc OBJECT IDENTIFIER ::=
         { iso(1) member-body(2) 392 200011 61 security(1)
           algorithm(1) symmetric-encryption-algorithm(1)
           camellia128-cbc(2) }

  The Object Identifier for Camellia with 192-bit key in Cipher Block
  Chaining (CBC) mode is as follows:

     id-camellia192-cbc OBJECT IDENTIFIER ::=
         { iso(1) member-body(2) 392 200011 61 security(1)
           algorithm(1) symmetric-encryption-algorithm(1)
           camellia192-cbc(3) }

  The Object Identifier for Camellia with 256-bit key in Cipher Block
  Chaining (CBC) mode is as follows:

     id-camellia256-cbc OBJECT IDENTIFIER ::=
         { iso(1) member-body(2) 392 200011 61 security(1)
           algorithm(1) symmetric-encryption-algorithm(1)
           camellia256-cbc(4) }



Matsui, et al.               Informational                     [Page 10]

RFC 3713             Camellia Encryption Algorithm            April 2004


  The above algorithms need Initialization Vector (IV).  To determine
  the value of IV, the above algorithms take parameters as follows:

     CamelliaCBCParameter ::= CamelliaIV  --  Initialization Vector

     CamelliaIV ::= OCTET STRING (SIZE(16))

  When these object identifiers are used, plaintext is padded before
  encryption according to RFC2315 [RFC2315].

4.  Security Considerations

  The recent advances in cryptanalytic techniques are remarkable.  A
  quantitative evaluation of security against powerful cryptanalytic
  techniques such as differential cryptanalysis and linear
  cryptanalysis is considered to be essential in designing any new
  block cipher.  We evaluated the security of Camellia by utilizing
  state-of-the-art cryptanalytic techniques.  We confirmed that
  Camellia has no differential and linear characteristics that hold
  with probability more than 2^(-128), which means that it is extremely
  unlikely that differential and linear attacks will succeed against
  the full 18-round Camellia.  Moreover, Camellia was designed to offer
  security against other advanced cryptanalytic attacks including
  higher order differential attacks, interpolation attacks, related-key
  attacks, truncated differential attacks, and so on [Camellia].

5.  Informative References

  [CamelliaSpec] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai,
                 S., Nakajima, J. and T. Tokita, "Specification of
                 Camellia --- a 128-bit Block Cipher".
                 http://info.isl.ntt.co.jp/camellia/

  [CamelliaTech] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai,
                 S., Nakajima, J. and T. Tokita, "Camellia: A 128-Bit
                 Block Cipher Suitable for Multiple Platforms".
                 http://info.isl.ntt.co.jp/camellia/

  [Camellia]     Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai,
                 S., Nakajima, J. and T. Tokita, "Camellia: A 128-Bit
                 Block Cipher Suitable for Multiple Platforms - Design
                 and Analysis -", In Selected Areas in Cryptography,
                 7th Annual International Workshop, SAC 2000, Waterloo,
                 Ontario, Canada, August 2000, Proceedings, Lecture
                 Notes in Computer Science 2012, pp.39-56, Springer-
                 Verlag, 2001.





Matsui, et al.               Informational                     [Page 11]

RFC 3713             Camellia Encryption Algorithm            April 2004


  [CRYPTREC]     "CRYPTREC Advisory Committee Report FY2002", Ministry
                 of Public Management, Home Affairs, Posts and
                 Telecommunications, and Ministry of Economy, Trade and
                 Industry, March 2003.
                 http://www.soumu.go.jp/joho_tsusin/security/
                 cryptrec.html,
                 CRYPTREC home page by Information-technology Promotion
                 Agency, Japan (IPA)
                 http://www.ipa.go.jp/security/enc/CRYPTREC/index-
                 e.html

  [NESSIE]       New European Schemes for Signatures, Integrity and
                 Encryption (NESSIE) project.
                 http://www.cryptonessie.org

  [RFC2315]      Kaliski, B., "PKCS #7: Cryptographic Message Syntax
                 Version 1.5", RFC 2315, March 1998.


































Matsui, et al.               Informational                     [Page 12]

RFC 3713             Camellia Encryption Algorithm            April 2004


Appendix A.  Example Data of Camellia

  Here are test data for Camellia in hexadecimal form.

  128-bit key
      Key       : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
      Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
      Ciphertext: 67 67 31 38 54 96 69 73 08 57 06 56 48 ea be 43

  192-bit key
      Key       : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
                : 00 11 22 33 44 55 66 77
      Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
      Ciphertext: b4 99 34 01 b3 e9 96 f8 4e e5 ce e7 d7 9b 09 b9

  256-bit key
      Key       : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
                : 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
      Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
      Ciphertext: 9a cc 23 7d ff 16 d7 6c 20 ef 7c 91 9e 3a 75 09































Matsui, et al.               Informational                     [Page 13]

RFC 3713             Camellia Encryption Algorithm            April 2004


Acknowledgements

  Shiho Moriai worked for NTT when this document was developed.

Authors' Addresses

  Mitsuru Matsui
  Mitsubishi Electric Corporation
  Information Technology R&D Center
  5-1-1 Ofuna, Kamakura
  Kanagawa 247-8501, Japan

  Phone: +81-467-41-2190
  Fax:   +81-467-41-2185
  EMail: [email protected]


  Junko Nakajima
  Mitsubishi Electric Corporation
  Information Technology R&D Center
  5-1-1 Ofuna, Kamakura
  Kanagawa 247-8501, Japan

  Phone: +81-467-41-2190
  Fax:   +81-467-41-2185
  EMail: [email protected]


  Shiho Moriai
  Sony Computer Entertainment Inc.

  Phone: +81-3-6438-7523
  Fax:   +81-3-6438-8629
  EMail: [email protected]
         [email protected] (Camellia team)
















Matsui, et al.               Informational                     [Page 14]

RFC 3713             Camellia Encryption Algorithm            April 2004


Full Copyright Statement

  Copyright (C) The Internet Society (2004).  This document is subject
  to the rights, licenses and restrictions contained in BCP 78 and
  except as set forth therein, the authors retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
  REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
  INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
  IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed
  to pertain to the implementation or use of the technology
  described in this document or the extent to which any license
  under such rights might or might not be available; nor does it
  represent that it has made any independent effort to identify any
  such rights.  Information on the procedures with respect to
  rights in RFC documents can be found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use
  of such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository
  at http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention
  any copyrights, patents or patent applications, or other
  proprietary rights that may cover technology that may be required
  to implement this standard.  Please address the information to the
  IETF at [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.









Matsui, et al.               Informational                     [Page 15]