Network Working Group                                            S. Kwan
Request for Comments: 3645                                       P. Garg
Updates: 2845                                                  J. Gilroy
Category: Standards Track                                      L. Esibov
                                                            J. Westhead
                                                        Microsoft Corp.
                                                                R. Hall
                                                    Lucent Technologies
                                                           October 2003


                Generic Security Service Algorithm for
       Secret Key Transaction Authentication for DNS (GSS-TSIG)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  The Secret Key Transaction Authentication for DNS (TSIG) protocol
  provides transaction level authentication for DNS.  TSIG is
  extensible through the definition of new algorithms.  This document
  specifies an algorithm based on the Generic Security Service
  Application Program Interface (GSS-API) (RFC2743).  This document
  updates RFC 2845.

















Kwan, et al.                Standards Track                     [Page 1]

RFC 3645                        GSS-TSIG                    October 2003


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
  2.  Algorithm Overview . . . . . . . . . . . . . . . . . . . . . .  3
      2.1.  GSS Details. . . . . . . . . . . . . . . . . . . . . . .  4
      2.2.  Modifications to the TSIG protocol (RFC 2845). . . . . .  4
  3.  Client Protocol Details. . . . . . . . . . . . . . . . . . . .  5
      3.1.  Negotiating Context. . . . . . . . . . . . . . . . . . .  5
          3.1.1.  Call GSS_Init_sec_context. . . . . . . . . . . . .  6
          3.1.2.  Send TKEY Query to Server. . . . . . . . . . . . .  8
          3.1.3.  Receive TKEY Query-Response from Server. . . . . .  8
      3.2.  Context Established. . . . . . . . . . . . . . . . . . . 11
          3.2.1.  Terminating a Context. . . . . . . . . . . . . . . 11
  4.  Server Protocol Details. . . . . . . . . . . . . . . . . . . . 12
      4.1.  Negotiating Context. . . . . . . . . . . . . . . . . . . 12
          4.1.1.  Receive TKEY Query from Client . . . . . . . . . . 12
          4.1.2.  Call GSS_Accept_sec_context. . . . . . . . . . . . 12
          4.1.3.  Send TKEY Query-Response to Client . . . . . . . . 13
      4.2.  Context Established. . . . . . . . . . . . . . . . . . . 15
          4.2.1.  Terminating a Context. . . . . . . . . . . . . . . 15
  5.  Sending and Verifying Signed Messages. . . . . . . . . . . . . 15
      5.1.  Sending a Signed Message - Call GSS_GetMIC . . . . . . . 15
      5.2.  Verifying a Signed Message - Call GSS_VerifyMIC. . . . . 16
  6.  Example usage of GSS-TSIG algorithm. . . . . . . . . . . . . . 18
  7.  Security Considerations. . . . . . . . . . . . . . . . . . . . 22
  8.  IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 22
  9.  Conformance. . . . . . . . . . . . . . . . . . . . . . . . . . 22
  10. Intellectual Property Statement. . . . . . . . . . . . . . . . 23
  11. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 23
  12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 24
      12.1.  Normative References. . . . . . . . . . . . . . . . . . 24
      12.2.  Informative References. . . . . . . . . . . . . . . . . 24
  13. Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 25
  14. Full Copyright Statement . . . . . . . . . . . . . . . . . . . 26

1.  Introduction

  The Secret Key Transaction Authentication for DNS (TSIG) [RFC2845]
  protocol was developed to provide a lightweight authentication and
  integrity of messages between two DNS entities, such as client and
  server or server and server.  TSIG can be used to protect dynamic
  update messages, authenticate regular message or to off-load
  complicated DNSSEC [RFC2535] processing from a client to a server and
  still allow the client to be assured of the integrity of the answers.







Kwan, et al.                Standards Track                     [Page 2]

RFC 3645                        GSS-TSIG                    October 2003


  The TSIG protocol [RFC2845] is extensible through the definition of
  new algorithms.  This document specifies an algorithm based on the
  Generic Security Service Application Program Interface (GSS-API)
  [RFC2743].  GSS-API is a framework that provides an abstraction of
  security to the application protocol developer.  The security
  services offered can include authentication, integrity, and
  confidentiality.

  The GSS-API framework has several benefits:

  *  Mechanism and protocol independence.  The underlying mechanisms
     that realize the security services can be negotiated on the fly
     and varied over time.  For example, a client and server MAY use
     Kerberos [RFC1964] for one transaction, whereas that same server
     MAY use SPKM [RFC2025] with a different client.

  *  The protocol developer is removed from the responsibility of
     creating and managing a security infrastructure.  For example, the
     developer does not need to create new key distribution or key
     management systems.  Instead the developer relies on the security
     service mechanism to manage this on its behalf.

  The scope of this document is limited to the description of an
  authentication mechanism only.  It does not discuss and/or propose an
  authorization mechanism.  Readers that are unfamiliar with GSS-API
  concepts are encouraged to read the characteristics and concepts
  section of [RFC2743] before examining this protocol in detail.  It is
  also assumed that the reader is familiar with [RFC2845], [RFC2930],
  [RFC1034] and [RFC1035].

  The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
  "RECOMMENDED", and "MAY" in this document are to be interpreted as
  described in BCP 14, RFC 2119 [RFC2119].

2.  Algorithm Overview

  In GSS, client and server interact to create a "security context".
  The security context can be used to create and verify transaction
  signatures on messages between the two parties.  A unique security
  context is required for each unique connection between client and
  server.

  Creating a security context involves a negotiation between client and
  server.  Once a context has been established, it has a finite
  lifetime for which it can be used to secure messages.  Thus there are
  three states of a context associated with a connection:





Kwan, et al.                Standards Track                     [Page 3]

RFC 3645                        GSS-TSIG                    October 2003


                             +----------+
                             |          |
                             V          |
                     +---------------+  |
                     | Uninitialized |  |
                     |               |  |
                     +---------------+  |
                             |          |
                             V          |
                     +---------------+  |
                     | Negotiating   |  |
                     | Context       |  |
                     +---------------+  |
                             |          |
                             V          |
                     +---------------+  |
                     | Context       |  |
                     | Established   |  |
                     +---------------+  |
                             |          |
                             +----------+

  Every connection begins in the uninitialized state.

2.1.  GSS Details

  Client and server MUST be locally authenticated and have acquired
  default credentials before using this protocol as specified in
  Section 1.1.1 "Credentials" in RFC 2743 [RFC2743].

  The GSS-TSIG algorithm consists of two stages:

  I.  Establish security context.  The Client and Server use the
      GSS_Init_sec_context and GSS_Accept_sec_context APIs to generate
      the tokens that they pass to each other using [RFC2930] as a
      transport mechanism.

  II. Once the security context is established it is used to generate
      and verify signatures using GSS_GetMIC and GSS_VerifyMIC APIs.
      These signatures are exchanged by the Client and Server as a part
      of the TSIG records exchanged in DNS messages sent between the
      Client and Server, as described in [RFC2845].

2.2.  Modifications to the TSIG protocol (RFC 2845)

  Modification to RFC 2845 allows use of TSIG through signing server's
  response in an explicitly specified place in multi message exchange
  between two DNS entities even if client's request wasn't signed.



Kwan, et al.                Standards Track                     [Page 4]

RFC 3645                        GSS-TSIG                    October 2003


  Specifically, Section 4.2 of RFC 2845 MUST be modified as follows:

  Replace:
     "The server MUST not generate a signed response to an unsigned
     request."

  With:
     "The server MUST not generate a signed response to an unsigned
     request, except in case of response to client's unsigned TKEY
     query if secret key is established on server side after server
     processed client's query.  Signing responses to unsigned TKEY
     queries MUST be explicitly specified in the description of an
     individual secret key establishment algorithm."

3.  Client Protocol Details

  A unique context is required for each server to which the client
  sends secure messages.  A context is identified by a context handle.
  A client maintains a mapping of servers to handles:

     (target_name, key_name, context_handle)

  The value key_name also identifies a context handle.  The key_name is
  the owner name of the TKEY and TSIG records sent between a client and
  a server to indicate to each other which context MUST be used to
  process the current request.

  DNS client and server MAY use various underlying security mechanisms
  to establish security context as described in sections 3 and 4.  At
  the same time, in order to guarantee interoperability between DNS
  clients and servers that support GSS-TSIG it is REQUIRED that
  security mechanism used by client enables use of Kerberos v5 (see
  Section 9 for more information).

3.1.  Negotiating Context

  In GSS, establishing a security context involves the passing of
  opaque tokens between the client and the server.  The client
  generates the initial token and sends it to the server.  The server
  processes the token and if necessary, returns a subsequent token to
  the client.  The client processes this token, and so on, until the
  negotiation is complete.  The number of times the client and server
  exchange tokens depends on the underlying security mechanism.  A
  completed negotiation results in a context handle.







Kwan, et al.                Standards Track                     [Page 5]

RFC 3645                        GSS-TSIG                    October 2003


  The TKEY resource record [RFC2930] is used as the vehicle to transfer
  tokens between client and server.  The TKEY record is a general
  mechanism for establishing secret keys for use with TSIG.  For more
  information, see [RFC2930].

3.1.1.  Call GSS_Init_sec_context

  To obtain the first token to be sent to a server, a client MUST call
  GSS_Init_sec_context API.

  The following input parameters MUST be used.  The outcome of the call
  is indicated with the output values below.  Consult Sections 2.2.1,
  "GSS_Init_sec_context call", of [RFC2743] for syntax definitions.

  INPUTS
    CREDENTIAL HANDLE claimant_cred_handle = NULL (NULL specifies "use
        default").  Client MAY instead specify some other valid
        handle to its credentials.
    CONTEXT HANDLE input_context_handle  = 0
    INTERNAL NAME  targ_name             = "DNS@<target_server_name>"
    OBJECT IDENTIFIER mech_type          = Underlying security
        mechanism chosen by implementers.  To guarantee
        interoperability of the implementations of the GSS-TSIG
        mechanism client MUST specify a valid underlying security
        mechanism that enables use of Kerberos v5 (see Section 9 for
        more information).
    OCTET STRING   input_token           = NULL
    BOOLEAN        replay_det_req_flag   = TRUE
    BOOLEAN        mutual_req_flag       = TRUE
    BOOLEAN        deleg_req_flag        = TRUE
    BOOLEAN        sequence_req_flag     = TRUE
    BOOLEAN        anon_req_flag         = FALSE
    BOOLEAN        integ_req_flag        = TRUE
    INTEGER        lifetime_req          = 0 (0 requests a default
        value).  Client MAY instead specify another upper bound for the
        lifetime of the context to be established in seconds.
    OCTET STRING   chan_bindings         = Any valid channel bindings
        as specified in Section 1.1.6 "Channel Bindings" in [RFC2743]

  OUTPUTS
    INTEGER        major_status
    CONTEXT HANDLE output_context_handle
    OCTET STRING   output_token
    BOOLEAN        replay_det_state
    BOOLEAN        mutual_state
    INTEGER        minor_status
    OBJECT IDENTIFIER mech_type
    BOOLEAN        deleg_state



Kwan, et al.                Standards Track                     [Page 6]

RFC 3645                        GSS-TSIG                    October 2003


    BOOLEAN        sequence_state
    BOOLEAN        anon_state
    BOOLEAN        trans_state
    BOOLEAN        prot_ready_state
    BOOLEAN        conf_avail
    BOOLEAN        integ_avail
    INTEGER        lifetime_rec

  If returned major_status is set to one of the following errors:

    GSS_S_DEFECTIVE_TOKEN
    GSS_S_DEFECTIVE_CREDENTIAL
    GSS_S_BAD_SIG (GSS_S_BAD_MIC)
    GSS_S_NO_CRED
    GSS_S_CREDENTIALS_EXPIRED
    GSS_S_BAD_BINDINGS
    GSS_S_OLD_TOKEN
    GSS_S_DUPLICATE_TOKEN
    GSS_S_NO_CONTEXT
    GSS_S_BAD_NAMETYPE
    GSS_S_BAD_NAME
    GSS_S_BAD_MECH
    GSS_S_FAILURE

  then the client MUST abandon the algorithm and MUST NOT use the GSS-
  TSIG algorithm to establish this security context.  This document
  does not prescribe which other mechanism could be used to establish a
  security context.  Next time when this client needs to establish
  security context, the client MAY use GSS-TSIG algorithm.

  Success values of major_status are GSS_S_CONTINUE_NEEDED and
  GSS_S_COMPLETE.  The exact success code is important during later
  processing.

  The values of replay_det_state and mutual_state indicate if the
  security package provides replay detection and mutual authentication,
  respectively.  If returned major_status is GSS_S_COMPLETE AND one or
  both of these values are FALSE, the client MUST abandon this
  algorithm.

  Client's behavior MAY depend on other OUTPUT parameters according to
  the policy local to the client.

  The handle output_context_handle is unique to this negotiation and is
  stored in the client's mapping table as the context_handle that maps
  to target_name.





Kwan, et al.                Standards Track                     [Page 7]

RFC 3645                        GSS-TSIG                    October 2003


3.1.2.  Send TKEY Query to Server

  An opaque output_token returned by GSS_Init_sec_context is
  transmitted to the server in a query request with QTYPE=TKEY.  The
  token itself will be placed in a Key Data field of the RDATA field in
  the TKEY resource record in the additional records section of the
  query.  The owner name of the TKEY resource record set queried for
  and the owner name of the supplied TKEY resource record in the
  additional records section MUST be the same.  This name uniquely
  identifies the security context to both the client and server, and
  thus the client SHOULD use a value which is globally unique as
  described in [RFC2930].  To achieve global uniqueness, the name MAY
  contain a UUID/GUID [ISO11578].

     TKEY Record
       NAME = client-generated globally unique domain name string
              (as described in [RFC2930])
       RDATA
          Algorithm Name      = gss-tsig
          Mode                = 3 (GSS-API negotiation - per [RFC2930])
          Key Size            = size of output_token in octets
          Key Data            = output_token

  The remaining fields in the TKEY RDATA, i.e., Inception, Expiration,
  Error, Other Size and Data Fields, MUST be set according to
  [RFC2930].

  The query is transmitted to the server.

  Note: if the original client call to GSS_Init_sec_context returned
  any major_status other than GSS_S_CONTINUE_NEEDED or GSS_S_COMPLETE,
  then the client MUST NOT send TKEY query.  Client's behavior in this
  case is described above in Section 3.1.1.

3.1.3.  Receive TKEY Query-Response from Server

  Upon the reception of the TKEY query the DNS server MUST respond
  according to the description in Section 4.  This section specifies
  the behavior of the client after it receives the matching response to
  its query.

  The next processing step depends on the value of major_status from
  the most recent call that client performed to GSS_Init_sec_context:
  either GSS_S_COMPLETE or GSS_S_CONTINUE.







Kwan, et al.                Standards Track                     [Page 8]

RFC 3645                        GSS-TSIG                    October 2003


3.1.3.1.  Value of major_status == GSS_S_COMPLETE

  If the last call to GSS_Init_sec_context yielded a major_status value
  of GSS_S_COMPLETE and a non-NULL output_token was sent to the server,
  then the client side component of the negotiation is complete and the
  client is awaiting confirmation from the server.

  Confirmation is in the form of a query response with RCODE=NOERROR
  and with the last client supplied TKEY record in the answer section
  of the query.  The response MUST be signed with a TSIG record.  Note
  that the server is allowed to sign a response to unsigned client's
  query due to modification to the RFC 2845 specified in Section 2.2
  above.  The signature in the TSIG record MUST be verified using the
  procedure detailed in section 5, Sending and Verifying Signed
  Messages.  If the response is not signed, OR if the response is
  signed but the signature is invalid, then an attacker has tampered
  with the message in transit or has attempted to send the client a
  false response.  In this case, the client MAY continue waiting for a
  response to its last TKEY query until the time period since the
  client sent last TKEY query expires.  Such a time period is specified
  by the policy local to the client.  This is a new option that allows
  the DNS client to accept multiple answers for one query ID and select
  one (not necessarily the first one) based on some criteria.

  If the signature is verified, the context state is advanced to
  Context Established.  Proceed to section 3.2 for usage of the
  security context.

3.1.3.2.  Value of major_status == GSS_S_CONTINUE_NEEDED

  If the last call to GSS_Init_sec_context yielded a major_status value
  of GSS_S_CONTINUE_NEEDED, then the negotiation is not yet complete.
  The server will return to the client a query response with a TKEY
  record in the Answer section.  If the DNS message error is not
  NO_ERROR or error field in the TKEY record is not 0 (i.e., no error),
  then the client MUST abandon this negotiation sequence.  The client
  MUST delete an active context by calling GSS_Delete_sec_context
  providing the associated context_handle.  The client MAY repeat the
  negotiation sequence starting with the uninitialized state as
  described in section 3.1.  To prevent infinite looping the number of
  attempts to establish a security context MUST be limited to ten or
  less.

  If the DNS message error is NO_ERROR and the error field in the TKEY
  record is 0 (i.e., no error), then the client MUST pass a token
  specified in the Key Data field in the TKEY resource record to





Kwan, et al.                Standards Track                     [Page 9]

RFC 3645                        GSS-TSIG                    October 2003


  GSS_Init_sec_context using the same parameters values as in previous
  call except values for CONTEXT HANDLE input_context_handle and OCTET
  STRING input_token as described below:

  INPUTS
    CONTEXT HANDLE input_context_handle  = context_handle (this is the
         context_handle corresponding to the key_name which is the
         owner name of the TKEY record in the answer section in the
         TKEY query response)

    OCTET STRING   input_token           = token from Key field of
                                           TKEY record

  Depending on the following OUTPUT values of GSS_Init_sec_context

       INTEGER        major_status
       OCTET STRING   output_token

  the client MUST take one of the following actions:

  If OUTPUT major_status is set to one of the following values:

       GSS_S_DEFECTIVE_TOKEN
       GSS_S_DEFECTIVE_CREDENTIAL
       GSS_S_BAD_SIG (GSS_S_BAD_MIC)
       GSS_S_NO_CRED
       GSS_S_CREDENTIALS_EXPIRED
       GSS_S_BAD_BINDINGS
       GSS_S_OLD_TOKEN
       GSS_S_DUPLICATE_TOKEN
       GSS_S_NO_CONTEXT
       GSS_S_BAD_NAMETYPE
       GSS_S_BAD_NAME
       GSS_S_BAD_MECH
       GSS_S_FAILURE

  the client MUST abandon this negotiation sequence.  This means that
  the client MUST delete an active context by calling
  GSS_Delete_sec_context providing the associated context_handle.  The
  client MAY repeat the negotiation sequence starting with the
  uninitialized state as described in section 3.1.  To prevent infinite
  looping the number of attempts to establish a security context MUST
  be limited to ten or less.

  If OUTPUT major_status is GSS_S_CONTINUE_NEEDED OR GSS_S_COMPLETE
  then client MUST act as described below.





Kwan, et al.                Standards Track                    [Page 10]

RFC 3645                        GSS-TSIG                    October 2003


  If the response from the server was signed, and the OUTPUT
  major_status is GSS_S_COMPLETE,then the signature in the TSIG record
  MUST be verified using the procedure detailed in section 5, Sending
  and Verifying Signed Messages.  If the signature is invalid, then the
  client MUST abandon this negotiation sequence.  This means that the
  client MUST delete an active context by calling
  GSS_Delete_sec_context providing the associated context_handle.  The
  client MAY repeat the negotiation sequence starting with the
  uninitialized state as described in section 3.1.  To prevent infinite
  looping the number of attempts to establish a security context MUST
  be limited to ten or less.

  If major_status is GSS_S_CONTINUE_NEEDED the negotiation is not yet
  finished.  The token output_token MUST be passed to the server in a
  TKEY record by repeating the negotiation sequence beginning with
  section 3.1.2.  The client MUST place a limit on the number of
  continuations in a context negotiation to prevent endless looping.
  Such limit SHOULD NOT exceed value of 10.

  If major_status is GSS_S_COMPLETE and output_token is non-NULL, the
  client-side component of the negotiation is complete but the token
  output_token MUST be passed to the server by repeating the
  negotiation sequence beginning with section 3.1.2.

  If major_status is GSS_S_COMPLETE and output_token is NULL, context
  negotiation is complete.  The context state is advanced to Context
  Established.  Proceed to section 3.2 for usage of the security
  context.

3.2.  Context Established

  When context negotiation is complete, the handle context_handle MUST
  be used for the generation and verification of transaction
  signatures.

  The procedures for sending and receiving signed messages are
  described in section 5, Sending and Verifying Signed Messages.

3.2.1.  Terminating a Context

  When the client is not intended to continue using the established
  security context, the client SHOULD delete an active context by
  calling GSS_Delete_sec_context providing the associated
  context_handle, AND client SHOULD delete the established context on
  the DNS server by using TKEY RR with the Mode field set to 5, i.e.,
  "key deletion" [RFC2930].





Kwan, et al.                Standards Track                    [Page 11]

RFC 3645                        GSS-TSIG                    October 2003


4.  Server Protocol Details

  As on the client-side, the result of a successful context negotiation
  is a context handle used in future generation and verification of the
  transaction signatures.

  A server MAY be managing several contexts with several clients.
  Clients identify their contexts by providing a key name in their
  request.  The server maintains a mapping of key names to handles:

     (key_name, context_handle)

4.1.  Negotiating Context

  A server MUST recognize TKEY queries as security context negotiation
  messages.

4.1.1.  Receive TKEY Query from Client

  Upon receiving a query with QTYPE = TKEY, the server MUST examine
  whether the Mode and Algorithm Name fields of the TKEY record in the
  additional records section of the message contain values of 3 and
  gss-tsig, respectively.  If they do, then the (key_name,
  context_handle) mapping table is searched for the key_name matching
  the owner name of the TKEY record in the additional records section
  of the query.  If the name is found in the table and the security
  context for this name is established and not expired, then the server
  MUST respond to the query with BADNAME error in the TKEY error field.
  If the name is found in the table and the security context is not
  established, the corresponding context_handle is used in subsequent
  GSS operations.  If the name is found but the security context is
  expired, then the server deletes this security context, as described
  in Section 4.2.1, and interprets this query as a start of new
  security context negotiation and performs operations described in
  Section 4.1.2 and 4.1.3.  If the name is not found, then the server
  interprets this query as a start of new security context negotiation
  and performs operations described in Section 4.1.2 and 4.1.3.

4.1.2.  Call GSS_Accept_sec_context

  The server performs its side of a context negotiation by calling
  GSS_Accept_sec_context.  The following input parameters MUST be used.
  The outcome of the call is indicated with the output values below.
  Consult Sections 2.2.2 "GSS_Accept_sec_context call" of the RFC 2743
  [RFC2743] for syntax definitions.






Kwan, et al.                Standards Track                    [Page 12]

RFC 3645                        GSS-TSIG                    October 2003


  INPUTS
    CONTEXT HANDLE input_context_handle  = 0 if new negotiation,
                                           context_handle matching
                                        key_name if ongoing negotiation
    OCTET STRING   input_token           = token specified in the Key
          field from TKEY RR (from Additional records Section of
          the client's query)

    CREDENTIAL HANDLE acceptor_cred_handle = NULL (NULL specifies "use
          default").  Server MAY instead specify some other valid
          handle to its credentials.
    OCTET STRING   chan_bindings          = Any valid channel bindings
          as specified in Section 1.1.6 "Channel Bindings" in [RFC2743]

  OUTPUTS
    INTEGER        major_status
    CONTEXT_HANDLE output_context_handle
    OCTET STRING   output_token
    INTEGER        minor_status
    INTERNAL NAME  src_name
    OBJECT IDENTIFIER  mech_type
    BOOLEAN        deleg_state
    BOOLEAN        mutual_state
    BOOLEAN        replay_det_state
    BOOLEAN        sequence_state
    BOOLEAN        anon_state
    BOOLEAN        trans_state
    BOOLEAN        prot_ready_state
    BOOLEAN        conf_avail
    BOOLEAN        integ_avail
    INTEGER        lifetime_rec
    CONTEXT_HANDLE delegated_cred_handle

  If this is the first call to GSS_Accept_sec_context in a new
  negotiation, then output_context_handle is stored in the server's
  key-mapping table as the context_handle that maps to the name of the
  TKEY record.

4.1.3.  Send TKEY Query-Response to Client

  The server MUST respond to the client with a TKEY query response with
  RCODE = NOERROR, that contains a TKEY record in the answer section.

  If OUTPUT major_status is one of the following errors the error field
  in the TKEY record set to BADKEY.






Kwan, et al.                Standards Track                    [Page 13]

RFC 3645                        GSS-TSIG                    October 2003


       GSS_S_DEFECTIVE_TOKEN
       GSS_S_DEFECTIVE_CREDENTIAL
       GSS_S_BAD_SIG (GSS_S_BAD_MIC)
       GSS_S_DUPLICATE_TOKEN
       GSS_S_OLD_TOKEN
       GSS_S_NO_CRED
       GSS_S_CREDENTIALS_EXPIRED
       GSS_S_BAD_BINDINGS
       GSS_S_NO_CONTEXT
       GSS_S_BAD_MECH
       GSS_S_FAILURE

  If OUTPUT major_status is set to  GSS_S_COMPLETE or
  GSS_S_CONTINUE_NEEDED then server MUST act as described below.

  If major_status is GSS_S_COMPLETE the server component of the
  negotiation is finished.  If output_token is non-NULL, then it MUST
  be returned to the client in a Key Data field of the RDATA in TKEY.
  The error field in the TKEY record is set to NOERROR.  The message
  MUST be signed with a TSIG record as described in section 5, Sending
  and Verifying Signed Messages.  Note that server is allowed to sign a
  response to unsigned client's query due to modification to the RFC
  2845 specified in Section 2.2 above.  The context state is advanced
  to Context Established.  Section 4.2 discusses the usage of the
  security context.

  If major_status is GSS_S_COMPLETE and output_token is NULL, then the
  TKEY record received from the client MUST be returned in the Answer
  section of the response.  The message MUST be signed with a TSIG
  record as described in section 5, Sending and Verifying Signed
  Messages.  Note that server is allowed to sign a response to unsigned
  client's query due to modification to the RFC 2845 specified in
  section 2.2 above.  The context state is advanced to Context
  Established.  Section 4.2 discusses the usage of the security
  context.

  If major_status is GSS_S_CONTINUE_NEEDED, the server component of the
  negotiation is not yet finished.  The server responds to the TKEY
  query with a standard query response, placing in the answer section a
  TKEY record containing output_token in the Key Data RDATA field.  The
  error field in the TKEY record is set to NOERROR.  The server MUST
  limit the number of times that a given context is allowed to repeat,
  to prevent endless looping.  Such limit SHOULD NOT exceed value of
  10.







Kwan, et al.                Standards Track                    [Page 14]

RFC 3645                        GSS-TSIG                    October 2003


  In all cases, except if major_status is GSS_S_COMPLETE and
  output_token is NULL, other TKEY record fields MUST contain the
  following values:

       NAME = key_name
       RDATA
          Algorithm Name      = gss-tsig
          Mode                = 3 (GSS-API negotiation - per [RFC2930])
          Key Size            = size of output_token in octets

  The remaining fields in the TKEY RDATA, i.e., Inception, Expiration,
  Error, Other Size and Data Fields, MUST be set according to
  [RFC2930].

4.2.  Context Established

  When context negotiation is complete, the handle context_handle is
  used for the generation and verification of transaction signatures.
  The handle is valid for a finite amount of time determined by the
  underlying security mechanism.  A server MAY unilaterally terminate a
  context at any time (see section 4.2.1).

  Server SHOULD limit the amount of memory used to cache established
  contexts.

  The procedures for sending and receiving signed messages are given in
  section 5, Sending and Verifying Signed Messages.

4.2.1.  Terminating a Context

  A server can terminate any established context at any time.  The
  server MAY hint to the client that the context is being deleted by
  including a TKEY RR in a response with the Mode field set to 5, i.e.,
  "key deletion" [RFC2930].  An active context is deleted by calling
  GSS_Delete_sec_context providing the associated context_handle.

5.  Sending and Verifying Signed Messages

5.1.  Sending a Signed Message - Call GSS_GetMIC

  The procedure for sending a signature-protected message is specified
  in [RFC2845].  The data to be passed to the signature routine
  includes the whole DNS message with specific TSIG variables appended.
  For the exact format, see [RFC2845].  For this protocol, use the
  following TSIG variable values:






Kwan, et al.                Standards Track                    [Page 15]

RFC 3645                        GSS-TSIG                    October 2003


     TSIG Record
       NAME = key_name that identifies this context
       RDATA
          Algorithm Name = gss-tsig

  Assign the remaining fields in the TSIG RDATA appropriate values as
  described in [RFC2845].

  The signature is generated by calling GSS_GetMIC.  The following
  input parameters MUST be used.  The outcome of the call is indicated
  with the output values specified below.  Consult Sections 2.3.1
  "GSS_GetMIC call" of the RFC 2743[RFC2743] for syntax definitions.

  INPUTS
    CONTEXT HANDLE context_handle = context_handle for key_name
    OCTET STRING   message        = outgoing message plus TSIG
                                    variables (per [RFC2845])
    INTEGER qop_req               = 0 (0 requests a default
        value).  Caller MAY instead specify other valid value (for
        details see Section 1.2.4 in [RFC2743])

  OUTPUTS
    INTEGER        major_status
    INTEGER        minor_status
    OCTET STRING   per_msg_token

  If major_status is GSS_S_COMPLETE, then signature generation
  succeeded.  The signature in per_msg_token is inserted into the
  Signature field of the TSIG RR and the message is transmitted.

  If major_status is GSS_S_CONTEXT_EXPIRED, GSS_S_CREDENTIALS_EXPIRED
  or GSS_S_FAILURE the caller MUST delete the security context, return
  to the uninitialized state and SHOULD negotiate a new security
  context, as described above in Section 3.1

  If major_status is GSS_S_NO_CONTEXT, the caller MUST remove the entry
  for key_name from the (target_ name, key_name, context_handle)
  mapping table, return to the uninitialized state and SHOULD negotiate
  a new security context, as described above in Section 3.1

  If major_status is GSS_S_BAD_QOP, the caller SHOULD repeat the
  GSS_GetMIC call with allowed QOP value.  The number of such
  repetitions MUST be limited to prevent infinite loops.

5.2.  Verifying a Signed Message - Call GSS_VerifyMIC

  The procedure for verifying a signature-protected message is
  specified in [RFC2845].



Kwan, et al.                Standards Track                    [Page 16]

RFC 3645                        GSS-TSIG                    October 2003


  The NAME of the TSIG record determines which context_handle maps to
  the context that MUST be used to verify the signature.  If the NAME
  does not map to an established context, the server MUST send a
  standard TSIG error response to the client indicating BADKEY in the
  TSIG error field (as described in [RFC2845]).

  For the GSS algorithm, a signature is verified by using
  GSS_VerifyMIC:

  INPUTS
    CONTEXT HANDLE context_handle = context_handle for key_name
    OCTET STRING   message        = incoming message plus TSIG
                                    variables (per [RFC2845])
    OCTET STRING   per_msg_token  = Signature field from TSIG RR

  OUTPUTS
    INTEGER        major_status
    INTEGER        minor_status
    INTEGER        qop_state

  If major_status is GSS_S_COMPLETE, the signature is authentic and the
  message was delivered intact.  Per [RFC2845], the timer values of the
  TSIG record MUST also be valid before considering the message to be
  authentic.  The caller MUST not act on the request or response in the
  message until these checks are verified.

  When a server is processing a client request, the server MUST send a
  standard TSIG error response to the client indicating BADKEY in the
  TSIG error field as described in [RFC2845], if major_status is set to
  one of the following values

       GSS_S_DEFECTIVE_TOKEN
       GSS_S_BAD_SIG (GSS_S_BAD_MIC)
       GSS_S_DUPLICATE_TOKEN
       GSS_S_OLD_TOKEN
       GSS_S_UNSEQ_TOKEN
       GSS_S_GAP_TOKEN
       GSS_S_CONTEXT_EXPIRED
       GSS_S_NO_CONTEXT
       GSS_S_FAILURE

  If the timer values of the TSIG record are invalid, the message MUST
  NOT be considered authentic.  If this error checking fails when a
  server is processing a client request, the appropriate error response
  MUST be sent to the client according to [RFC2845].






Kwan, et al.                Standards Track                    [Page 17]

RFC 3645                        GSS-TSIG                    October 2003


6.  Example usage of GSS-TSIG algorithm

  This Section describes an example where a Client, client.example.com,
  and a Server, server.example.com, establish a security context
  according to the algorithm described above.

 I.  Client initializes security context negotiation

 To establish a security context with a server, server.example.com, the
 Client calls GSS_Init_sec_context with the following parameters.
 (Note that some INPUT and OUTPUT parameters not critical for this
 algorithm are not described in this example.)

    CONTEXT HANDLE input_context_handle  = 0
    INTERNAL NAME  targ_name             = "[email protected]"
    OCTET STRING   input_token           = NULL
    BOOLEAN        replay_det_req_flag   = TRUE
    BOOLEAN        mutual_req_flag       = TRUE

 The OUTPUTS parameters returned by GSS_Init_sec_context include
    INTEGER        major_status = GSS_S_CONTINUE_NEEDED
    CONTEXT HANDLE output_context_handle context_handle
    OCTET STRING   output_token output_token
    BOOLEAN        replay_det_state = TRUE
    BOOLEAN        mutual_state = TRUE

 Client verifies that replay_det_state and mutual_state values are
 TRUE.  Since the major_status is GSS_S_CONTINUE_NEEDED, which is a
 success OUTPUT major_status value, client stores context_handle that
 maps to "[email protected]" and proceeds to the next step.

 II.  Client sends a query with QTYPE = TKEY to server

 Client sends a query with QTYPE = TKEY for a client-generated globally
 unique domain name string, 789.client.example.com.server.example.com.
 Query contains a TKEY record in its Additional records section with
 the following fields.  (Note that some fields not specific to this
 algorithm are not specified.)

    NAME = 789.client.example.com.server.example.com.
    RDATA
       Algorithm Name      = gss-tsig
       Mode                = 3 (GSS-API negotiation - per [RFC2930])
       Key Size            = size of output_token in octets
       Key Data            = output_token






Kwan, et al.                Standards Track                    [Page 18]

RFC 3645                        GSS-TSIG                    October 2003


 After the key_name 789.client.example.com.server.example.com.
 is generated it is stored in the client's (target_name, key_name,
 context_handle) mapping table.

 III.  Server receives a query with QTYPE = TKEY

 When server receives a query with QTYPE = TKEY, the server verifies
 that Mode and Algorithm fields in the TKEY record in the Additional
 records section of the query are set to 3 and "gss-tsig" respectively.
 It finds that the key_name 789.client.example.com.server.example.com.
 is not listed in its (key_name, context_handle) mapping table.

 IV.  Server calls GSS_Accept_sec_context

 To continue security context negotiation server calls
 GSS_Accept_sec_context with the following parameters.  (Note that
 some INPUT and OUTPUT parameters not critical for this algorithm
 are not described in this example.)

  INPUTS
    CONTEXT HANDLE input_context_handle  = 0
    OCTET STRING   input_token           = token specified in the Key
                             field from TKEY RR (from Additional
                             records section of the client's query)

 The OUTPUTS parameters returned by GSS_Accept_sec_context include
    INTEGER        major_status = GSS_S_CONTINUE_NEEDED
    CONTEXT_HANDLE output_context_handle context_handle
    OCTET STRING   output_token output_token

 Server stores the mapping of the
 789.client.example.com.server.example.com. to OUTPUT context_handle
 in its (key_name, context_handle) mapping table.

 V.  Server responds to the TKEY query

 Since the major_status = GSS_S_CONTINUE_NEEDED in the last server's
 call to GSS_Accept_sec_context, the server responds to the TKEY query
 placing in the answer section a TKEY record containing output_token in
 the Key Data RDATA field.  The error field in the TKEY record is set
 to 0.  The RCODE in the query response is set to NOERROR.

 VI.  Client processes token returned by server

 When the client receives the TKEY query response from the server, the
 client calls GSS_Init_sec_context with the following parameters.
 (Note that some INPUT and OUTPUT parameters not critical for this
 algorithm are not described in this example.)



Kwan, et al.                Standards Track                    [Page 19]

RFC 3645                        GSS-TSIG                    October 2003


    CONTEXT HANDLE input_context_handle  = the context_handle stored
         in the client's mapping table entry ([email protected].,
         789.client.example.com.server.example.com., context_handle)
    INTERNAL NAME  targ_name             = "[email protected]"
    OCTET STRING   input_token           = token from Key field of TKEY
         record from the Answer section of the server's response
    BOOLEAN        replay_det_req_flag   = TRUE
    BOOLEAN        mutual_req_flag       = TRUE

 The OUTPUTS parameters returned by GSS_Init_sec_context include
    INTEGER        major_status = GSS_S_COMPLETE
    CONTEXT HANDLE output_context_handle = context_handle
    OCTET STRING   output_token = output_token
    BOOLEAN        replay_det_state = TRUE
    BOOLEAN        mutual_state = TRUE

 Since the major_status is set to GSS_S_COMPLETE the client side
 security context is established, but since the output_token is not
 NULL client MUST send a TKEY query to the server as described below.

 VII.  Client sends a query with QTYPE = TKEY to server

 Client sends to the server a TKEY query for the
 789.client.example.com.server.example.com. name.  Query contains a
 TKEY record in its Additional records section with the following
 fields.  (Note that some INPUT and OUTPUT parameters not critical to
 this algorithm are not described in this example.)

    NAME = 789.client.example.com.server.example.com.
    RDATA
       Algorithm Name      = gss-tsig
       Mode                = 3 (GSS-API negotiation - per [RFC2930])
       Key Size            = size of output_token in octets
       Key Data            = output_token

 VIII.  Server receives a TKEY query

 When the server receives a TKEY query, the server verifies that Mode
 and Algorithm fields in the TKEY record in the Additional records
 section of the query are set to 3 and gss-tsig, respectively.  It
 finds that the key_name 789.client.example.com.server.example.com. is
 listed in its (key_name, context_handle) mapping table.









Kwan, et al.                Standards Track                    [Page 20]

RFC 3645                        GSS-TSIG                    October 2003


 IX.  Server calls GSS_Accept_sec_context

 To continue security context negotiation server calls
 GSS_Accept_sec_context with the following parameters (Note that some
 INPUT and OUTPUT parameters not critical for this algorithm are not
 described in this example)

  INPUTS
    CONTEXT HANDLE input_context_handle  = context_handle from the
          (789.client.example.com.server.example.com., context_handle)
          entry in the server's mapping table
    OCTET STRING   input_token           = token specified in the Key
          field of TKEY RR (from Additional records Section of
          the client's query)

 The OUTPUTS parameters returned by GSS_Accept_sec_context include
    INTEGER        major_status = GSS_S_COMPLETE
    CONTEXT_HANDLE output_context_handle = context_handle
    OCTET STRING   output_token = NULL

 Since major_status = GSS_S_COMPLETE, the security context on the
 server side is established, but the server still needs to respond to
 the client's TKEY query, as described below.  The security context
 state is advanced to Context Established.

 X.  Server responds to the TKEY query

 Since the major_status = GSS_S_COMPLETE in the last server's call to
 GSS_Accept_sec_context and the output_token is NULL, the server
 responds to the TKEY query placing in the answer section a TKEY record
 that was sent by the client in the Additional records section of the
 client's latest TKEY query.  In addition, this server places a
 TSIG record in additional records section of its response.  Server
 calls GSS_GetMIC to generate a signature to include it in the TSIG
 record.  The server specifies the following GSS_GetMIC INPUT
 parameters:

    CONTEXT HANDLE context_handle = context_handle from the
          (789.client.example.com.server.example.com., context_handle)
          entry in the server's mapping table
    OCTET STRING   message        = outgoing message plus TSIG
                                  variables (as described in [RFC2845])

 The OUTPUTS parameters returned by GSS_GetMIC include
    INTEGER        major_status = GSS_S_COMPLETE
    OCTET STRING   per_msg_token

 Signature field in the TSIG record is set to per_msg_token.



Kwan, et al.                Standards Track                    [Page 21]

RFC 3645                        GSS-TSIG                    October 2003


 XI.  Client processes token returned by server

 Client receives the TKEY query response from the server.  Since the
 major_status was GSS_S_COMPLETE in the last client's call to
 GSS_Init_sec_context, the client verifies that the server's response
 is signed.  To validate the signature, the client calls
 GSS_VerifyMIC with the following parameters:

  INPUTS
    CONTEXT HANDLE context_handle = context_handle for
                 789.client.example.com.server.example.com. key_name
    OCTET STRING   message        = incoming message plus TSIG
                                 variables (as described in [RFC2845])
    OCTET STRING   per_msg_token  = Signature field from TSIG RR
                 included in the server's query response

 Since the OUTPUTS parameter major_status = GSS_S_COMPLETE, the
 signature is validated, security negotiation is complete and the
 security context state is advanced to Context Established.  These
 client and server will use the established security context to sign
 and validate the signatures when they exchange packets with each
 other until the context expires.

7.  Security Considerations

  This document describes a protocol for DNS security using GSS-API.
  The security provided by this protocol is only as effective as the
  security provided by the underlying GSS mechanisms.

  All the security considerations from RFC 2845, RFC 2930 and RFC 2743
  apply to the protocol described in this document.

8.  IANA Considerations

  The IANA has reserved the TSIG Algorithm name gss-tsig for the use in
  the Algorithm fields of TKEY and TSIG resource records.  This
  Algorithm name refers to the algorithm described in this document.
  The requirement to have this name registered with IANA is specified
  in RFC 2845.

9.  Conformance

  The GSS API using SPNEGO [RFC2478] provides maximum flexibility to
  choose the underlying security mechanisms that enables security
  context negotiation.  GSS API using SPNEGO [RFC2478] enables client
  and server to negotiate and choose such underlying security
  mechanisms on the fly.  To support such flexibility, DNS clients and
  servers SHOULD specify SPNEGO mech_type in their GSS API calls.  At



Kwan, et al.                Standards Track                    [Page 22]

RFC 3645                        GSS-TSIG                    October 2003


  the same time, in order to guarantee interoperability between DNS
  clients and servers that support GSS-TSIG it is required that

  -  DNS servers specify SPNEGO mech_type
  -  GSS APIs called by DNS client support Kerberos v5
  -  GSS APIs called by DNS server support SPNEGO [RFC2478] and
     Kerberos v5.

  In addition to these, GSS APIs used by DNS client and server MAY also
  support other underlying security mechanisms.

10.  Intellectual Property Statement

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.

11.  Acknowledgements

  The authors of this document would like to thank the following people
  for their contribution to this specification:  Chuck Chan, Mike
  Swift, Ram Viswanathan, Olafur Gudmundsson, Donald E. Eastlake, 3rd
  and Erik Nordmark.












Kwan, et al.                Standards Track                    [Page 23]

RFC 3645                        GSS-TSIG                    October 2003


12.  References

12.1.  Normative References

  [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2478] Baize, E. and D. Pinkas, "The Simple and Protected GSS-API
            Negotiation Mechanism", RFC 2478, December 1998.

  [RFC2743] Linn, J., "Generic Security Service Application Program
            Interface, Version 2 , Update 1", RFC 2743, January 2000.

  [RFC2845] Vixie, P., Gudmundsson, O., Eastlake 3rd, D. and B.
            Wellington, "Secret Key Transaction Authentication for DNS
            (TSIG)", RFC 2845, May 2000.

  [RFC2930] Eastlake 3rd, D., "Secret Key Establishment for DNS (TKEY
            RR)", RFC 2930, September 2000.

12.2.  Informative References


  [ISO11578] "Information technology", "Open Systems Interconnection",
             "Remote Procedure Call", ISO/IEC 11578:1996,
             http://www.iso.ch/cate/d2229.html.

  [RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
            STD 13, RFC 1034, November 1987.

  [RFC1035] Mockapetris, P., "Domain Names - Implementation and
            Specification", STD 13, RFC 1034, November 1987.

  [RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC
            1964, June 1996.

  [RFC2025] Adams, C., "The Simple Public-Key GSS-API Mechanism
            (SPKM)", RFC 2025, October 1996.

  [RFC2137] Eastlake 3rd, D., "Secure Domain Name System Dynamic
            Update", RFC 2137, April 1997.

  [RFC2535] Eastlake 3rd, D., "Domain Name System Security Extensions",
            RFC 2535, March 1999.







Kwan, et al.                Standards Track                    [Page 24]

RFC 3645                        GSS-TSIG                    October 2003


13.  Authors' Addresses

  Stuart Kwan
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA  98052
  USA
  EMail: [email protected]

  Praerit Garg
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA  98052
  USA
  EMail: [email protected]

  James Gilroy
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA  98052
  USA
  EMail: [email protected]

  Levon Esibov
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA  98052
  USA
  EMail: [email protected]

  Randy Hall
  Lucent Technologies
  400 Lapp Road
  Malvern PA 19355
  USA
  EMail: [email protected]

  Jeff Westhead
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA  98052
  USA
  EMail: [email protected]








Kwan, et al.                Standards Track                    [Page 25]

RFC 3645                        GSS-TSIG                    October 2003


14.  Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assignees.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Kwan, et al.                Standards Track                    [Page 26]