Network Working Group                                         P. Congdon
Request for Comments: 3580                       Hewlett Packard Company
Category: Informational                                         B. Aboba
                                                              Microsoft
                                                               A. Smith
                                                       Trapeze Networks
                                                                G. Zorn
                                                          Cisco Systems
                                                               J. Roese
                                                              Enterasys
                                                         September 2003


   IEEE 802.1X Remote Authentication Dial In User Service (RADIUS)
                           Usage Guidelines

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This document provides suggestions on Remote Authentication Dial In
  User Service (RADIUS) usage by IEEE 802.1X Authenticators.  The
  material in this document is also included within a non-normative
  Appendix within the IEEE 802.1X specification, and is being presented
  as an IETF RFC for informational purposes.


















Congdon, et al.              Informational                      [Page 1]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
      1.1.  Terminology. . . . . . . . . . . . . . . . . . . . . . .  3
      1.2.  Requirements Language. . . . . . . . . . . . . . . . . .  4
  2.  RADIUS Accounting Attributes . . . . . . . . . . . . . . . . .  5
      2.1.  Acct-Terminate-Cause . . . . . . . . . . . . . . . . . .  5
      2.2.  Acct-Multi-Session-Id. . . . . . . . . . . . . . . . . .  6
      2.3.  Acct-Link-Count. . . . . . . . . . . . . . . . . . . . .  7
  3.  RADIUS Authentication. . . . . . . . . . . . . . . . . . . . .  7
      3.1.  User-Name. . . . . . . . . . . . . . . . . . . . . . . .  8
      3.2.  User-Password, CHAP-Password, CHAP-Challenge . . . . . .  8
      3.3.  NAS-IP-Address, NAS-IPv6-Address . . . . . . . . . . . .  8
      3.4.  NAS-Port . . . . . . . . . . . . . . . . . . . . . . . .  8
      3.5.  Service-Type . . . . . . . . . . . . . . . . . . . . . .  8
      3.6.  Framed-Protocol. . . . . . . . . . . . . . . . . . . . .  9
      3.7.  Framed-IP-Address, Framed-IP-Netmask . . . . . . . . . .  9
      3.8.  Framed-Routing . . . . . . . . . . . . . . . . . . . . .  9
      3.9.  Filter-ID. . . . . . . . . . . . . . . . . . . . . . . .  9
      3.10. Framed-MTU . . . . . . . . . . . . . . . . . . . . . . .  9
      3.11. Framed-Compression . . . . . . . . . . . . . . . . . . . 10
      3.12. Displayable Messages . . . . . . . . . . . . . . . . . . 10
      3.13. Callback-Number, Callback-ID . . . . . . . . . . . . . . 10
      3.14. Framed-Route, Framed-IPv6-Route. . . . . . . . . . . . . 11
      3.15. State, Class, Proxy-State. . . . . . . . . . . . . . . . 11
      3.16. Vendor-Specific. . . . . . . . . . . . . . . . . . . . . 11
      3.17. Session-Timeout. . . . . . . . . . . . . . . . . . . . . 11
      3.18. Idle-Timeout . . . . . . . . . . . . . . . . . . . . . . 12
      3.19. Termination-Action . . . . . . . . . . . . . . . . . . . 12
      3.20. Called-Station-Id. . . . . . . . . . . . . . . . . . . . 12
      3.21. Calling-Station-Id . . . . . . . . . . . . . . . . . . . 12
      3.22. NAS-Identifier . . . . . . . . . . . . . . . . . . . . . 12
      3.23. NAS-Port-Type. . . . . . . . . . . . . . . . . . . . . . 12
      3.24. Port-Limit . . . . . . . . . . . . . . . . . . . . . . . 13
      3.25. Password-Retry . . . . . . . . . . . . . . . . . . . . . 13
      3.26. Connect-Info . . . . . . . . . . . . . . . . . . . . . . 13
      3.27. EAP-Message. . . . . . . . . . . . . . . . . . . . . . . 13
      3.28. Message-Authenticator. . . . . . . . . . . . . . . . . . 13
      3.29. NAS-Port-Id. . . . . . . . . . . . . . . . . . . . . . . 13
      3.30. Framed-Pool, Framed-IPv6-Pool. . . . . . . . . . . . . . 14
      3.31. Tunnel Attributes. . . . . . . . . . . . . . . . . . . . 14
  4.  RC4 EAPOL-Key Descriptor . . . . . . . . . . . . . . . . . . . 15
  5.  Security Considerations. . . . . . . . . . . . . . . . . . . . 18
      5.1.  Packet Modification or Forgery . . . . . . . . . . . . . 18
      5.2.  Dictionary Attacks . . . . . . . . . . . . . . . . . . . 19
      5.3.  Known Plaintext Attacks. . . . . . . . . . . . . . . . . 19
      5.4.  Replay . . . . . . . . . . . . . . . . . . . . . . . . . 20
      5.5.  Outcome Mismatches . . . . . . . . . . . . . . . . . . . 20



Congdon, et al.              Informational                      [Page 2]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


      5.6.  802.11 Integration . . . . . . . . . . . . . . . . . . . 20
      5.7.  Key Management Issues. . . . . . . . . . . . . . . . . . 21
  6.  IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 22
  7.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 22
      7.1.  Normative References . . . . . . . . . . . . . . . . . . 22
      7.2.  Informative References . . . . . . . . . . . . . . . . . 23
  8.  Table of Attributes. . . . . . . . . . . . . . . . . . . . . . 25
  9.  Intellectual Property Statement  . . . . . . . . . . . . . . . 28
  10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 28
  11. Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 29
  12. Full Copyright Statement . . . . . . . . . . . . . . . . . . . 30

1.  Introduction

  IEEE 802.1X enables authenticated access to IEEE 802 media, including
  Ethernet, Token Ring, and 802.11 wireless LANs.  Although Remote
  Authentication Dial In User Service (RADIUS) support is optional
  within IEEE 802.1X, it is expected that many IEEE 802.1X
  Authenticators will function as RADIUS clients.

  IEEE 802.1X [IEEE8021X] provides "network port authentication" for
  IEEE 802 [IEEE802] media, including Ethernet [IEEE8023], Token Ring
  and 802.11 [IEEE80211] wireless LANS.

  IEEE 802.1X does not require use of a backend Authentication Server,
  and thus can be deployed with stand-alone bridges or Access Points,
  as well as in centrally managed scenarios.

  In situations where it is desirable to centrally manage
  authentication, authorization and accounting (AAA) for IEEE 802
  networks, deployment of a backend authentication and accounting
  server is desirable.  In such situations, it is expected that IEEE
  802.1X Authenticators will function as AAA clients.

  This document provides suggestions on RADIUS usage by IEEE 802.1X
  Authenticators.  Support for any AAA protocol is optional for IEEE
  802.1X Authenticators, and therefore this specification has been
  incorporated into a non-normative Appendix within the IEEE 802.1X
  specification.

1.1.  Terminology

  This document uses the following terms:

  Access Point (AP)
        A Station that provides access to the distribution services via
        the wireless medium for associated Stations.




Congdon, et al.              Informational                      [Page 3]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  Association
        The service used to establish Access Point/Station mapping and
        enable Station invocation of the distribution system services.

  Authenticator
        An Authenticator is an entity that requires authentication from
        the Supplicant.  The Authenticator may be connected to the
        Supplicant at the other end of a point-to-point LAN segment or
        802.11 wireless link.

  Authentication Server
        An Authentication Server is an entity that provides an
        Authentication Service to an Authenticator.  This service
        verifies, from the credentials provided by the Supplicant, the
        claim of identity made by the Supplicant.

  Port Access Entity (PAE)
        The protocol entity associated with a physical or virtual
        (802.11) Port.  A given PAE may support the protocol
        functionality associated with the Authenticator, Supplicant or
        both.

  Station (STA)
        Any device that contains an IEEE 802.11 conformant medium
        access control (MAC) and physical layer (PHY) interface to the
        wireless medium (WM).

  Supplicant
        A Supplicant is an entity that is being authenticated by an
        Authenticator.  The Supplicant may be connected to the
        Authenticator at one end of a point-to-point LAN segment or
        802.11 wireless link.

1.2.  Requirements Language

  In this document, several words are used to signify the requirements
  of the specification.  These words are often capitalized.  The key
  words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
  "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this document
  are to be interpreted as described in [RFC2119].











Congdon, et al.              Informational                      [Page 4]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


2.  RADIUS Accounting Attributes

  With a few exceptions, the RADIUS accounting attributes defined in
  [RFC2866], [RFC2867], and [RFC2869] have the same meaning within IEEE
  802.1X sessions as they do in dialup sessions and therefore no
  additional commentary is needed.

  Attributes requiring more discussion include:

     Acct-Terminate-Cause
     Acct-Multi-Session-Id
     Acct-Link-Count

2.1.  Acct-Terminate-Cause

  This attribute indicates how the session was terminated, as described
  in [RFC2866].  [IEEE8021X] defines the following termination cause
  values, which are shown with their RADIUS equivalents in the table on
  the next page.

  IEEE 802.1X                       RADIUS
  dot1xAuthSessionTerminateCause    Acct-Terminate-Cause
  Value                             Value
  -------------                     --------------------
  SupplicantLogoff(1)               User Request (1)
  portFailure(2)                    Lost Carrier (2)
  SupplicantRestart(3)              Supplicant Restart (19)
  reauthFailed(4)                   Reauthentication Failure (20)
  authControlForceUnauth(5)         Admin Reset (6)
  portReInit(6)                     Port Reinitialized (21)
  portAdminDisabled(7)              Port Administratively Disabled (22)
  notTerminatedYet(999)             N/A

  When using this attribute, the User Request (1) termination cause
  corresponds to the situation in which the session terminated due to
  an EAPOL-Logoff received from the Supplicant.  When a session is
  moved due to roaming, the EAPOL state machines will treat this as a
  Supplicant Logoff.

  A Lost Carrier (2) termination cause indicates session termination
  due to loss of physical connectivity for reasons other than roaming
  between Access Points.  For example, if the Supplicant disconnects a
  point-to-point LAN connection, or moves out of range of an Access
  Point, this termination cause is used.  Lost Carrier (2) therefore
  equates to a Port Disabled condition in the EAPOL state machines.

  A Supplicant Restart (19) termination cause indicates
  re-initialization of the Supplicant state machines.



Congdon, et al.              Informational                      [Page 5]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  A Reauthentication Failure (20) termination cause indicates that a
  previously authenticated Supplicant has failed to re-authenticate
  successfully following expiry of the re-authentication timer or
  explicit re-authentication request by management action.

  Within [IEEE80211], periodic re-authentication may be useful in
  preventing reuse of an initialization vector with a given key.  Since
  successful re-authentication does not result in termination of the
  session, accounting packets are not sent as a result of
  re-authentication unless the status of the session changes.  For
  example:

  a. The session is terminated due to re-authentication failure.  In
     this case the Reauthentication Failure (20) termination cause is
     used.

  b. The authorizations are changed as a result of a successful
     re-authentication.  In this case, the Service Unavailable (15)
     termination cause is used.  For accounting purposes, the portion
     of the session after the authorization change is treated as a
     separate session.

  Where IEEE 802.1X authentication occurs prior to association,
  accounting packets are not sent until an association occurs.

  An Admin Reset (6) termination cause indicates that the Port has been
  administratively forced into the unauthorized state.

  A Port Reinitialized (21) termination cause indicates that the Port's
  MAC has been reinitialized.

  A Port Administratively Disabled (22) termination cause indicates
  that the Port has been administratively disabled.

2.2.  Acct-Multi-Session-Id

  The purpose of this attribute is to make it possible to link together
  multiple related sessions.  While [IEEE8021X] does not act on
  aggregated ports, it is possible for a Supplicant roaming between
  Access Points to cause multiple RADIUS accounting packets to be sent
  by different Access Points.

  Where supported by the Access Points, the Acct-Multi-Session-Id
  attribute can be used to link together the multiple related sessions
  of a roaming Supplicant.  In such a situation, if the session context
  is transferred between Access Points, accounting packets MAY be sent
  without a corresponding authentication and authorization exchange,




Congdon, et al.              Informational                      [Page 6]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  provided that Association has occurred.  However, in such a situation
  it is assumed that the Acct-Multi-Session-Id is transferred between
  the Access Points as part of the Inter-Access Point Protocol (IAPP).

  If the Acct-Multi-Session-Id were not unique between Access Points,
  then it is possible that the chosen Acct-Multi-Session-Id will
  overlap with an existing value allocated on that Access Point, and
  the Accounting Server would therefore be unable to distinguish a
  roaming session from a multi-link session.

  As a result, the Acct-Multi-Session-Id attribute is unique among all
  the bridges or Access Points, Supplicants and sessions.  In order to
  provide this uniqueness, it is suggested that the Acct-Multi-
  Session-Id be of the form:

  Original AP MAC Address | Supplicant MAC Address | NTP Timestamp

  Here "|" represents concatenation, the original AP MAC Address is the
  MAC address of the bridge or Access Point at which the session
  started, and the 64-bit NTP timestamp indicates the beginning of the
  original session.  In order to provide for consistency of the Acct-
  Multi-Session-Id between roaming sessions, the Acct-Multi-Session-Id
  may be moved between Access Points as part of IAPP or another handoff
  scheme.

  The use of an Acct-Multi-Session-Id of this form guarantees
  uniqueness among all Access Points, Supplicants and sessions.  Since
  the NTP timestamp does not wrap on reboot, there is no possibility
  that a rebooted Access Point could choose an Acct-Multi-Session-Id
  that could be confused with that of a previous session.

  Since the Acct-Multi-Session-Id is of type String as defined in
  [RFC2866], for use with IEEE 802.1X, it is encoded as an ASCII string
  of Hex digits.  Example:  "00-10-A4-23-19-C0-00-12-B2-
  14-23-DE-AF-23-83-C0-76-B8-44-E8"

2.3.  Acct-Link-Count

  The Acct-Link-Count attribute may be used to account for the number
  of ports that have been aggregated.

3.  RADIUS Authentication

  This section describes how attributes defined in [RFC2865],
  [RFC2867], [RFC2868], [RFC2869], [RFC3162] and [RFC3579] are used in
  IEEE 802.1X authentication.





Congdon, et al.              Informational                      [Page 7]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


3.1.  User-Name

  In IEEE 802.1X, the Supplicant typically provides its identity via an
  EAP-Response/Identity message.  Where available, the Supplicant
  identity is included in the User-Name attribute, and included in the
  RADIUS Access-Request and Access-Reply messages as specified in
  [RFC2865] and [RFC3579].

  Alternatively, as discussed in [RFC3579] Section 2.1., the User-Name
  attribute may contain the Calling-Station-ID value, which is set to
  the Supplicant MAC address.

3.2.  User-Password, CHAP-Password, CHAP-Challenge

  Since IEEE 802.1X does not support PAP or CHAP authentication, the
  User-Password, CHAP-Password or CHAP-Challenge attributes are not
  used by IEEE 802.1X Authenticators acting as RADIUS clients.

3.3.  NAS-IP-Address, NAS-IPv6-Address

  For use with IEEE 802.1X, the NAS-IP-Address contains the IPv4
  address of the bridge or Access Point acting as an Authenticator, and
  the NAS-IPv6-Address contains the IPv6 address.  If the IEEE 802.1X
  Authenticator has more than one interface, it may be desirable to use
  a loopback address for this purpose so that the Authenticator will
  still be reachable even if one of the interfaces were to fail.

3.4.  NAS-Port

  For use with IEEE 802.1X the NAS-Port will contain the port number of
  the bridge, if this is available.  While an Access Point does not
  have physical ports, a unique "association ID" is assigned to every
  mobile Station upon a successful association exchange.  As a result,
  for an Access Point, if the association exchange has been completed
  prior to authentication, the NAS-Port attribute will contain the
  association ID, which is a 16-bit unsigned integer.  Where IEEE
  802.1X authentication occurs prior to association, a unique NAS-Port
  value may not be available.

3.5.  Service-Type

  For use with IEEE 802.1X, the Framed (2), Authenticate Only (8), and
  Call Check (10) values are most commonly used.

  A Service-Type of Framed indicates that appropriate 802 framing
  should be used for the connection.  A Service-Type of Authenticate
  Only (8) indicates that no authorization information needs to be
  returned in the Access-Accept.  As described in [RFC2865], a



Congdon, et al.              Informational                      [Page 8]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  Service-Type of Call Check is included in an Access-Request packet to
  request that the RADIUS server accept or reject the connection
  attempt, typically based on the Called-Station-ID (set to the bridge
  or Access Point MAC address) or Calling-Station-ID attributes (set to
  the Supplicant MAC address).  As noted in [RFC2865], it is
  recommended that in this case, the User-Name attribute be given the
  value of Calling-Station-Id.

3.6.  Framed-Protocol

  Since there is no value for IEEE 802 media, the Framed-Protocol
  attribute is not used by IEEE 802.1X Authenticators.

3.7.  Framed-IP-Address, Framed-IP-Netmask

  IEEE 802.1X does not provide a mechanism for IP address assignment.
  Therefore the Framed-IP-Address and Framed-IP-Netmask attributes can
  only be used by IEEE 802.1X Authenticators that support IP address
  assignment mechanisms.  Typically this capability is supported by
  layer 3 devices.

3.8.  Framed-Routing

  The Framed-Routing attribute indicates the routing method for the
  Supplicant.  It is therefore only relevant for IEEE 802.1X
  Authenticators that act as layer 3 devices, and cannot be used by a
  bridge or Access Point.

3.9.  Filter-ID

  This attribute indicates the name of the filter list to be applied to
  the Supplicant's session.  For use with an IEEE 802.1X Authenticator,
  it may be used to indicate either layer 2 or layer 3 filters.  Layer
  3 filters are typically only supported on IEEE 802.1X Authenticators
  that act as layer 3 devices.

3.10.  Framed-MTU

  This attribute indicates the maximum size of an IP packet that may be
  transmitted over the wire between the Supplicant and the
  Authenticator.  IEEE 802.1X Authenticators set this to the value
  corresponding to the relevant 802 medium, and include it in the
  RADIUS Access-Request.  The RADIUS server may send an EAP packet as
  large as Framed-MTU minus four (4) octets, taking into account the
  additional overhead for the IEEE 802.1X Version (1), Type (1) and
  Body Length (2) fields.  For EAP over IEEE 802 media, the Framed-MTU
  values (which do not include LLC/SNAP overhead) and maximum frame
  length values (not including the preamble) are as follows:



Congdon, et al.              Informational                      [Page 9]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


                                       Maximum Frame
  Media             Framed-MTU            Length
  =========        ===============     ==============
  Ethernet              1500              1522
  802.3                 1500              1522
  802.4                 8174              8193
  802.5 (4 Mbps)        4528              4550
  802.5 (16 Mbps)      18173             18200
  802.5 (100 Mb/s)     18173             18200
  802.6                 9191              9240
  802.9a                1500              1518
  802.11                2304              2346
  802.12 (Ethernet)     1500              1518
  802.12 (Token Ring)   4502              4528
  FDDI                  4479              4500

  NOTE - the Framed-MTU size for IEEE 802.11 media may change as a
  result of ongoing work being undertaken in the IEEE 802.11 Working
  Group.  Since some 802.11 stations cannot handle an MTU larger than
  1500 octets, it is recommended that RADIUS servers encountering a
  NAS-Port-Type value of 802.11 send EAP packets no larger than 1496
  octets.

3.11.  Framed-Compression

  [IEEE8021X] does not include compression support.  Therefore this
  attribute is not understood by [IEEE8021X] Authenticators.

3.12.  Displayable Messages

  The Reply-Message attribute, defined in section 5.18 of [RFC2865],
  indicates text which may be displayed to the user.  This is similar
  in concept to the EAP Notification Type, defined in [RFC2284].  As
  noted in [RFC3579], Section 2.6.5, when sending a displayable message
  to an [IEEE8021X] Authenticator, displayable messages are best sent
  within EAP-Message/EAP-Request/Notification attribute(s), and not
  within Reply-Message attribute(s).

3.13.  Callback-Number, Callback-ID

  These attributes are not understood by IEEE 802.1X Authenticators.










Congdon, et al.              Informational                     [Page 10]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


3.14.  Framed-Route, Framed-IPv6-Route

  The Framed-Route and Framed-IPv6-Route attributes provide routes that
  are to be configured for the Supplicant.  These attributes are
  therefore only relevant for IEEE 802.1X Authenticators that act as
  layer 3 devices, and cannot be understood by a bridge or Access
  Point.

3.15.  State, Class, Proxy-State

  These attributes are used for the same purposes as described in
  [RFC2865].

3.16.  Vendor-Specific

  Vendor-specific attributes are used for the same purposes as
  described in [RFC2865].  The MS-MPPE-Send-Key and MS-MPPE-Recv-Key
  attributes, described in section 2.4 of [RFC2548], MAY be used to
  encrypt and authenticate the RC4 EAPOL-Key descriptor [IEEE8021X,
  Section 7.6].  Examples of the derivation of the MS-MPPE-Send-Key and
  MS-MPPE-Recv-Key attributes from the master key negotiated by an EAP
  method are given in [RFC2716].  Details of the EAPOL-Key descriptor
  are provided in Section 4.

3.17.  Session-Timeout

  When sent along in an Access-Accept without a Termination-Action
  attribute or with a Termination-Action attribute set to Default, the
  Session-Timeout attribute specifies the maximum number of seconds of
  service provided prior to session termination.

  When sent in an Access-Accept along with a Termination-Action value
  of RADIUS-Request, the Session-Timeout attribute specifies the
  maximum number of seconds of service provided prior to re-
  authentication.  In this case, the Session-Timeout attribute is used
  to load the reAuthPeriod constant within the Reauthentication Timer
  state machine of 802.1X.  When sent with a Termination-Action value
  of RADIUS-Request, a Session-Timeout value of zero indicates the
  desire to perform another authentication (possibly of a different
  type) immediately after the first authentication has successfully
  completed.

  When sent in an Access-Challenge, this attribute represents the
  maximum number of seconds that an IEEE 802.1X Authenticator should
  wait for an EAP-Response before retransmitting.  In this case, the
  Session-Timeout attribute is used to load the suppTimeout constant
  within the backend state machine of IEEE 802.1X.




Congdon, et al.              Informational                     [Page 11]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


3.18.  Idle-Timeout

  The Idle-Timeout attribute is described in [RFC2865].  For IEEE 802
  media other than 802.11 the media are always on.  As a result the
  Idle-Timeout attribute is typically only used with wireless media
  such as IEEE 802.11.  It is possible for a wireless device to wander
  out of range of all Access Points.  In this case, the Idle-Timeout
  attribute indicates the maximum time that a wireless device may
  remain idle.

3.19.  Termination-Action

  This attribute indicates what action should be taken when the service
  is completed.  The value RADIUS-Request (1) indicates that re-
  authentication should occur on expiration of the Session-Time.  The
  value Default (0) indicates that the session should terminate.

3.20.  Called-Station-Id

  For IEEE 802.1X Authenticators, this attribute is used to store the
  bridge or Access Point MAC address in ASCII format (upper case only),
  with octet values separated by a "-".  Example: "00-10-A4-23-19-C0".
  In IEEE 802.11, where the SSID is known, it SHOULD be appended to the
  Access Point MAC address, separated from the MAC address with a ":".
  Example "00-10-A4-23-19-C0:AP1".

3.21.  Calling-Station-Id

  For IEEE 802.1X Authenticators, this attribute is used to store the
  Supplicant MAC address in ASCII format (upper case only), with octet
  values separated by a "-".  Example: "00-10-A4-23-19-C0".

3.22.  NAS-Identifier

  This attribute contains a string identifying the IEEE 802.1X
  Authenticator originating the Access-Request.

3.23.  NAS-Port-Type

  For use with IEEE 802.1X, NAS-Port-Type values of Ethernet (15)
  Wireless - IEEE 802.11 (19), Token Ring (20) and FDDI (21) may be
  used.









Congdon, et al.              Informational                     [Page 12]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


3.24.  Port-Limit

  This attribute has no meaning when sent to an [IEEE8021X]
  Authenticator.

3.25.  Password-Retry

  In IEEE 802.1X, the Authenticator always transitions to the HELD
  state after an authentication failure.  Thus this attribute does not
  make sense for IEEE 802.1X.

3.26.  Connect-Info

  This attribute is sent by a bridge or Access Point to indicate the
  nature of the Supplicant's connection.  When sent in the Access-
  Request it is recommended that this attribute contain information on
  the speed of the Supplicant's connection.  For 802.11, the following
  format is recommended: "CONNECT 11Mbps 802.11b".  If sent in the
  Accounting STOP, this attribute may be used to summarize statistics
  relating to session quality.  For example, in IEEE 802.11, the
  Connect-Info attribute may contain information on the number of link
  layer retransmissions.  The exact format of this attribute is
  implementation specific.

3.27.  EAP-Message

  Since IEEE 802.1X provides for encapsulation of EAP as described in
  [RFC2284] and [IEEE8021X], the EAP-Message attribute defined in
  [RFC3579] is used to encapsulate EAP packets for transmission from
  the IEEE 802.1X Authenticator to the Authentication Server. [RFC3579]
  Section 2.2. describes how the Authentication Server handles invalid
  EAP packets passed to it by the Authenticator.

3.28.  Message-Authenticator

  As noted in [RFC3579] Section 3.1., the Message-Authenticator
  attribute MUST be used to protect packets within a RADIUS/EAP
  conversation.

3.29.  NAS-Port-Id

  This attribute is used to identify the IEEE 802.1X Authenticator port
  which authenticates the Supplicant.  The NAS-Port-Id differs from the
  NAS-Port in that it is a string of variable length whereas the NAS-
  Port is a 4 octet value.






Congdon, et al.              Informational                     [Page 13]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


3.30.  Framed-Pool, Framed-IPv6-Pool

  IEEE 802.1X does not provide a mechanism for IP address assignment.
  Therefore the Framed-Pool and Framed-IPv6-Pool attributes can only be
  used by IEEE 802.1X Authenticators that support IP address assignment
  mechanisms.  Typically this capability is supported by layer 3
  devices.

3.31.  Tunnel Attributes

  Reference [RFC2868] defines RADIUS tunnel attributes used for
  authentication and authorization, and [RFC2867] defines tunnel
  attributes used for accounting.  Where the IEEE 802.1X Authenticator
  supports tunneling, a compulsory tunnel may be set up for the
  Supplicant as a result of the authentication.

  In particular, it may be desirable to allow a port to be placed into
  a particular Virtual LAN (VLAN), defined in [IEEE8021Q], based on the
  result of the authentication.  This can be used, for example, to
  allow a wireless host to remain on the same VLAN as it moves within a
  campus network.

  The RADIUS server typically indicates the desired VLAN by including
  tunnel attributes within the Access-Accept.  However, the IEEE 802.1X
  Authenticator may also provide a hint as to the VLAN to be assigned
  to the Supplicant by including Tunnel attributes within the Access-
  Request.

  For use in VLAN assignment, the following tunnel attributes are used:

  Tunnel-Type=VLAN (13)
  Tunnel-Medium-Type=802
  Tunnel-Private-Group-ID=VLANID

  Note that the VLANID is 12-bits, taking a value between 1 and 4094,
  inclusive.  Since the Tunnel-Private-Group-ID is of type String as
  defined in [RFC2868], for use with IEEE 802.1X, the VLANID integer
  value is encoded as a string.

  When Tunnel attributes are sent, it is necessary to fill in the Tag
  field.  As noted in [RFC2868], section 3.1:

     The Tag field is one octet in length and is intended to provide a
     means of grouping attributes in the same packet which refer to the
     same tunnel.  Valid values for this field are 0x01 through 0x1F,
     inclusive.  If the Tag field is unused, it MUST be zero (0x00).





Congdon, et al.              Informational                     [Page 14]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  For use with Tunnel-Client-Endpoint, Tunnel-Server-Endpoint, Tunnel-
  Private-Group-ID, Tunnel-Assignment-ID, Tunnel-Client-Auth-ID or
  Tunnel-Server-Auth-ID attributes (but not Tunnel-Type, Tunnel-
  Medium-Type, Tunnel-Password, or Tunnel-Preference), a tag field of
  greater than 0x1F is interpreted as the first octet of the following
  field.

  Unless alternative tunnel types are provided, (e.g. for IEEE 802.1X
  Authenticators that may support tunneling but not VLANs), it is only
  necessary for tunnel attributes to specify a single tunnel.  As a
  result, where it is only desired to specify the VLANID, the tag field
  SHOULD be set to zero (0x00) in all tunnel attributes.  Where
  alternative tunnel types are to be provided, tag values between 0x01
  and 0x1F SHOULD be chosen.

4.  RC4 EAPOL-Key Frame

  The RC4 EAPOL-Key frame is created and transmitted by the
  Authenticator in order to provide media specific key information.
  For example, within 802.11 the RC4 EAPOL-Key frame can be used to
  distribute multicast/broadcast ("default") keys, or unicast ("key
  mapping") keys.  The "default" key is the same for all Stations
  within a broadcast domain.

  The RC4 EAPOL-Key frame is not acknowledged and therefore the
  Authenticator does not know whether the Supplicant has received it.
  If it is lost, then the Supplicant and Authenticator will not have
  the same keying material, and communication will fail.  If this
  occurs, the problem is typically addressed by re-running the
  authentication.

  The RC4 EAPOL-Key frame is sent from the Authenticator to the
  Supplicant in order to provision the "default" key, and subsequently
  in order to refresh the "default" key.  It may also be used to
  refresh the key-mapping key.  Rekey is typically only required with
  weak ciphersuites such as WEP, defined in [IEEE80211].

  Where keys are required, an EAP method that derives keys is typically
  selected.  Therefore the initial "key mapping" keys can be derived
  from EAP keying material, without requiring the Authenticator to send
  an RC4 EAPOL-Key frame to the Supplicant.  An example of how EAP
  keying material can be derived and used is presented in [RFC2716].









Congdon, et al.              Informational                     [Page 15]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  While the RC4 EAPOL-Key frame is defined in [IEEE8021X], a more
  complete description is provided on the next page.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    |  Packet Type  |  Packet Body Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |          Key  Length          |Replay Counter...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Replay Counter...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Replay Counter    |   Key IV...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Key IV...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Key IV...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Key IV...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Key IV...         |F| Key Index   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Key Signature...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Key Signature...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Key Signature...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Key Signature...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Key...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Version
     The Version field is one octet.  For IEEE 802.1X, it contains the
     value 0x01.

  Packet Type
     The Packet Type field is one octet, and determines the type of
     packet being transmitted.  For an EAPOL-Key Descriptor, the Packet
     Type field contains 0x03.

  Packet Body Length
     The Packet Body Length is two octets, and contains the length of
     the EAPOL-Key descriptor in octets, not including the Version,
     Packet Type and Packet Body Length fields.





Congdon, et al.              Informational                     [Page 16]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  Type
     The Type field is a single octet.  The Key descriptor is defined
     differently for each Type; this specification documents only the
     RC4 Key Descriptor (Type = 0x01).

  Key Length
     The Key Length field is two octets.  If Packet Body Length = 44 +
     Key Length, then the Key Field contains the key in encrypted form,
     of length Key Length.  This is 5 octets (40 bits) for WEP, and 13
     octets (104 bits) for WEP-128.  If Packet Body Length = 44, then
     the Key field is absent, and Key Length represents the number of
     least significant octets from the MS-MPPE-Send-Key attribute
     [RFC2548] to be used as the keying material.  Note that the MS-
     MPPE-Send-Key and MS-MPPE-Recv-Key attributes are defined from the
     point of view of the Authenticator.  From the Supplicant point of
     reference, the terms are reversed.  Thus the MS-MPPE-Recv-Key on
     the Supplicant corresponds to the MS-MPPE-Send-Key on the
     Authenticator, and the MS-MPPE-Send-Key on the Supplicant
     corresponds to the MS-MPPE-Recv-Key on the Authenticator.

  Replay Counter
     The Replay Counter field is 8 octets.  It does not repeat within
     the life of the keying material used to encrypt the Key field and
     compute the Key Signature field.  A 64-bit NTP timestamp MAY be
     used as the Replay Counter.

  Key IV
     The Key IV field is 16 octets and includes a 128-bit
     cryptographically random number.

  F
     The Key flag (F) is a single bit, describing the type of key that
     is included in the Key field.  Values are:

     0 = for broadcast (default key)
     1 = for unicast (key mapping key)

  Key Index
     The Key Index is 7 bits.

  Key Signature
     The Key Signature field is 16 octets.  It contains an HMAC-MD5
     message integrity check computed over the EAPOL-Key descriptor,
     starting from the Version field, with the Key field filled in if
     present, but with the Key Signature field set to zero.  For the
     computation, the 32 octet (256 bit) MS-MPPE-Send-Key [RFC2548] is
     used as the HMAC-MD5 key.




Congdon, et al.              Informational                     [Page 17]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  Key
     If Packet Body Length = 44 + Key Length, then the Key Field
     contains the key in encrypted form, of length Key Length.  If
     Packet Body Length = 44, then the Key field is absent, and the
     least significant Key Length octets from the MS-MPPE-Send-Key
     attribute is used as the keying material.  Where the Key field is
     encrypted using RC4, the RC4 encryption key used to encrypt this
     field is formed by concatenating the 16 octet (128 bit) Key-IV
     field with the 32 octet MS-MPPE-Recv-Key attribute.  This yields a
     48 octet RC4 key (384 bits).

5.  Security Considerations

  Since this document describes the use of RADIUS for purposes of
  authentication, authorization, and accounting in IEEE 802.1X-enabled
  networks, it is vulnerable to all of the threats that are present in
  other RADIUS applications.  For a discussion of these threats, see
  [RFC2607], [RFC2865], [RFC3162], [RFC3579], and [RFC3576].

  Vulnerabilities include:

     Packet modification or forgery
     Dictionary attacks
     Known plaintext attacks
     Replay
     Outcome mismatches
     802.11 integration
     Key management issues

5.1.  Packet Modification or Forgery

  RADIUS, defined in [RFC2865], does not require all Access-Requests to
  be authenticated or integrity protected.  However, IEEE 802.1X is
  based on EAP.  As described in [3579], Section 3.1.:

     The Message-Authenticator attribute MUST be used to protect all
     Access-Request, Access-Challenge, Access-Accept, and Access-Reject
     packets containing an EAP-Message attribute.

  As a result, when used with IEEE 802.1X, all RADIUS packets MUST be
  authenticated and integrity protected.  In addition, as described in
  [3579], Section 4.2.:

     To address the security vulnerabilities of RADIUS/EAP,
     implementations of this specification SHOULD support IPsec
     [RFC2401] along with IKE [RFC2409] for key management.  IPsec ESP
     [RFC2406] with non-null transform SHOULD be supported, and IPsec
     ESP with a non-null encryption transform and authentication



Congdon, et al.              Informational                     [Page 18]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


     support SHOULD be used to provide per-packet confidentiality,
     authentication, integrity and replay protection.  IKE SHOULD be
     used for key management.

5.2.  Dictionary Attacks

  As discussed in [RFC3579] Section 4.3.3., the RADIUS shared secret is
  vulnerable to offline dictionary attack, based on capture of the
  Response Authenticator or Message-Authenticator attribute.  In order
  to decrease the level of vulnerability, [RFC2865], Section 3
  recommends:

     The secret (password shared between the client and the RADIUS
     server) SHOULD be at least as large and unguessable as a well-
     chosen password.  It is preferred that the secret be at least 16
     octets.

  In addition, the risk of an offline dictionary attack can be further
  mitigated by employing IPsec ESP with a non-null transform in order
  to encrypt the RADIUS conversation, as described in [RFC3579],
  Section 4.2.

5.3.  Known Plaintext Attacks

  Since IEEE 802.1X is based on EAP, which does not support PAP, the
  RADIUS User-Password attribute is not used to carry hidden user
  passwords.  The hiding mechanism utilizes MD5, defined in [RFC1321],
  in order to generate a key stream based on the RADIUS shared secret
  and the Request Authenticator.  Where PAP is in use, it is possible
  to collect key streams corresponding to a given Request Authenticator
  value, by capturing RADIUS conversations corresponding to a PAP
  authentication attempt using a known password.  Since the User-
  Password is known, the key stream corresponding to a given Request
  Authenticator can be determined and stored.

  The vulnerability is described in detail in [RFC3579], Section 4.3.4.
  Even though IEEE 802.1X Authenticators do not support PAP
  authentication, a security vulnerability can still exist where the
  same RADIUS shared secret is used for hiding User-Password as well as
  other attributes.  This can occur, for example, if the same RADIUS
  proxy handles authentication requests for both IEEE 802.1X (which may
  hide the Tunnel-Password, MS-MPPE-Send-Key and MS-MPPE-Recv-Key
  attributes) and GPRS (which may hide the User-Password attribute).

  The threat can be mitigated by protecting RADIUS with IPsec ESP with
  a non-null transform, as described in [RFC3579], Section 4.2.  In
  addition, the same RADIUS shared secret MUST NOT be used for both
  IEEE 802.1X authentication and PAP authentication.



Congdon, et al.              Informational                     [Page 19]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


5.4.  Replay

  As noted in [RFC3579] Section 4.3.5., the RADIUS protocol provides
  only limited support for replay protection.  Replay protection for
  RADIUS authentication and accounting can be provided by enabling
  IPsec replay protection with RADIUS, as described in [RFC3579],
  Section 4.2.

  As with the Request Authenticator, for use with IEEE 802.1X
  Authenticators, the Acct-Session-Id SHOULD be globally and temporally
  unique.

5.5.  Outcome Mismatches

  [RFC3579] Section 2.6.3. discusses the issues that arise when the EAP
  packet encapsulated in an EAP-Message attribute does not agree with
  the RADIUS Packet Type.  For example, an EAP Success packet might be
  encapsulated within an Access-Reject; an EAP Failure might be sent
  within an Access-Accept; or an EAP Success or Failure might be sent
  within an Access-Challenge.

  As described in [RFC3579] Section 2.6.3., these conflicting messages
  are likely to cause confusion.  To ensure that access decisions made
  by IEEE 802.1X Authenticators conform to the wishes of the RADIUS
  server, it is necessary for the Authenticator to make the decision
  solely based on the authentication result (Access-Accept/Reject) and
  not based on the contents of EAP-Message attributes, if present.

5.6.  802.11 Integration

  [IEEE8021X] was developed for use on wired IEEE 802 networks such as
  Ethernet, and therefore does not describe how to securely adapt IEEE
  802.1X for use with 802.11.  This is left to an enhanced security
  specification under development within IEEE 802.11.

  For example, [IEEE8021X] does not specify whether authentication
  occurs prior to, or after association, nor how the derived keys are
  used within various ciphersuites.  It also does not specify
  ciphersuites addressing the vulnerabilities discovered in WEP,
  described in [Berkeley], [Arbaugh], [Fluhrer], and [Stubbl].
  [IEEE8021X] only defines an authentication framework, leaving the
  definition of the authentication methods to other documents, such as
  [RFC2716].

  Since [IEEE8021X] does not address 802.11 integration issues,
  implementors are strongly advised to consult additional IEEE 802.11
  security specifications for guidance on how to adapt IEEE 802.1X for
  use with 802.11.  For example, it is likely that the IEEE 802.11



Congdon, et al.              Informational                     [Page 20]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  enhanced security specification will define its own IEEE 802.11 key
  hierarchy as well as new EAPOL-Key descriptors.

5.7.  Key Management Issues

  The EAPOL-Key descriptor described in Section 4. is likely to be
  deprecated in the future, when the IEEE 802.11 enhanced security
  group completes its work.  Known security issues include:

  [1]  Default key-only support.  IEEE 802.1X enables the derivation of
       per-Station unicast keys, known in [IEEE80211] as "key mapping
       keys."  Keys used to encrypt multicast/broadcast traffic are
       known as "default keys".  However, in some 802.11
       implementations, the unicast keys, derived as part of the EAP
       authentication process, are used solely in order to encrypt,
       authenticate and integrity protect the EAPOL-Key descriptor, as
       described in Section 4.  These implementations only support use
       of default keys (ordinarily only used with multicast/broadcast
       traffic) to secure all traffic, unicast or multicast/broadcast,
       resulting in inherent security weaknesses.

       Where per-Station key-mapping keys (e.g. unicast keys) are
       unsupported, any Station possessing the default key can decrypt
       traffic from other Stations or impersonate them.  When used
       along with a weak cipher (e.g. WEP), implementations supporting
       only default keys provide more material for attacks such as
       those described in [Fluhrer] and [Stubbl].  If in addition, the
       default key is not refreshed periodically, IEEE 802.1X dynamic
       key derivation provides little or no security benefit.  For an
       understanding of the issues with WEP, see [Berkeley], [Arbaugh],
       [Fluhrer], and [Stubbl].

  [2]  Reuse of keying material.  The EAPOL-Key descriptor specified in
       section 4 uses the same keying material (MS-MPPE-Recv-Key) both
       to encrypt the Key field within the EAPOL-Key descriptor, and to
       encrypt data passed between the Station and Access Point.
       Multi-purpose keying material is frowned upon, since multiple
       uses can leak information helpful to an attacker.

  [3]  Weak algorithms.  The algorithm used to encrypt the Key field
       within the EAPOL-Key descriptor is similar to the algorithm used
       in WEP, and as a result, shares some of the same weaknesses.  As
       with WEP, the RC4 stream cipher is used to encrypt the key.  As
       input to the RC4 engine, the IV and key are concatenated rather
       than being combined within a mixing function.  As with WEP, the
       IV is not a counter, and therefore there is little protection
       against reuse.




Congdon, et al.              Informational                     [Page 21]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  As a result of these vulnerabilities, implementors intending to use
  the EAPOL-Key descriptor described in this document are urged to
  consult the 802.11 enhanced security specification for a more secure
  alternative.  It is also advisable to consult the evolving literature
  on WEP vulnerabilities, in order to better understand the risks, as
  well as to obtain guidance on setting an appropriate re-keying
  interval.

6.  IANA Considerations

  This specification does not create any RADIUS attributes nor any new
  number spaces for IANA administration.  However, it does require
  assignment of new values to existing RADIUS attributes.  These
  include:

  Attribute              Values Required
  =========              ===============
  NAS-Port-Type          Token-Ring (20), FDDI (21)
  Tunnel-Type            VLAN (13)
  Acct-Terminate-Cause   Supplicant Restart (19)
                         Reauthentication Failure (20)
                         Port Reinitialized (21)
                         Port Administratively Disabled (22)

7.  References

7.1.  Normative References

  [RFC1321]      Rivest, R., "The MD5 Message-Digest Algorithm", RFC
                 1321, April 1992.

  [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2284]      Blunk, L. and J. Vollbrecht, "PPP Extensible
                 Authentication Protocol (EAP)", RFC 2284, March 1998.

  [RFC2865]      Rigney, C., Willens, S., Rubens, A. and W. Simpson,
                 "Remote Authentication Dial In User Service (RADIUS)",
                 RFC 2865, June 2000.

  [RFC2866]      Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

  [RFC2867]      Zorn, G., Aboba, B. and D. Mitton, "RADIUS Accounting
                 Modifications for Tunnel Protocol Support", RFC 2867,
                 June 2000.





Congdon, et al.              Informational                     [Page 22]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  [RFC2868]      Zorn, G., Leifer, D., Rubens, A., Shriver, J.,
                 Holdrege, M. and I. Goyret, "RADIUS Attributes for
                 Tunnel Protocol Support", RFC 2868, June 2000.

  [RFC2869]      Rigney, C., Willats, W. and P. Calhoun, "RADIUS
                 Extensions", RFC 2869, June 2000.

  [RFC3162]      Aboba, B., Zorn, G. and D. Mitton, "RADIUS and IPv6",
                 RFC 3162, August 2001.

  [RFC3280]      Housley, R., Polk, W., Ford, W. and D. Solo, "Internet
                 X.509 Public Key Infrastructure Certificate and
                 Certificate Revocation List (CRL) Profile", RFC 3280,
                 April 2002.

  [RFC3576]      Chiba, M., Dommety, G., Eklund, M., Mitton, D. and B.
                 Aboba, "Dynamic Authorization Extensions to Remote
                 Authentication Dial In User Service (RADIUS)", RFC
                 3576, July 2003.

  [RFC3579]      Aboba, B. and P. Calhoun, "RADIUS (Remote
                 Authentication Dial In User Service) Support For
                 Extensible Authentication Protocol (EAP)", RFC 3579,
                 September 2003.

  [IEEE8021X]    IEEE Standards for Local and Metropolitan Area
                 Networks:  Port based Network Access Control, IEEE Std
                 802.1X-2001, June 2001.

7.2.  Informative References

  [RFC2104]      Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
                 Keyed-Hashing for Message Authentication", RFC 2104,
                 February 1997.

  [RFC2434]      Narten, T. and H. Alvestrand, "Guidelines for Writing
                 an IANA Considerations Section in RFCs", BCP 26, RFC
                 2434, October 1998.

  [RFC2548]      Zorn, G., "Microsoft Vendor-specific RADIUS
                 Attributes", RFC 2548, March 1999.

  [RFC2607]      Aboba, B. and J. Vollbrecht, "Proxy Chaining and
                 Policy Implementation in Roaming", RFC 2607, June
                 1999.

  [RFC2716]      Aboba, B. and D. Simon, "PPP EAP TLS Authentication
                 Protocol", RFC 2716, October 1999.



Congdon, et al.              Informational                     [Page 23]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  [MD5Attack]    Dobbertin, H., "The Status of MD5 After a Recent
                 Attack."  CryptoBytes Vol.2 No.2, Summer 1996.

  [IEEE802]      IEEE Standards for Local and Metropolitan Area
                 Networks:  Overview and Architecture, ANSI/IEEE Std
                 802, 1990.

  [IEEE8021Q]    IEEE Standards for Local and Metropolitan Area
                 Networks:  Draft Standard for Virtual Bridged Local
                 Area Networks, P802.1Q, January 1998.

  [IEEE8023]     ISO/IEC 8802-3 Information technology -
                 Telecommunications and information exchange between
                 systems - Local and metropolitan area networks -
                 Common specifications - Part 3:  Carrier Sense
                 Multiple Access with Collision Detection (CSMA/CD)
                 Access Method and Physical Layer Specifications, (also
                 ANSI/IEEE Std 802.3- 1996), 1996.

  [IEEE80211]    Information technology - Telecommunications and
                 information exchange between systems - Local and
                 metropolitan area networks - Specific Requirements
                 Part 11:  Wireless LAN Medium Access Control (MAC) and
                 Physical Layer (PHY) Specifications, IEEE Std.
                 802.11-1999, 1999.

  [Berkeley]     Borisov, N., Goldberg, I. and D. Wagner, "Intercepting
                 Mobile Communications: The Insecurity of 802.11", ACM
                 SIGMOBILE, Seventh Annual International Conference on
                 Mobile Computing and Networking, July 2001, Rome,
                 Italy.

  [Arbaugh]      Arbaugh, W., Shankar, N. and J.Y.C. Wan, "Your 802.11
                 Wireless Network has No Clothes", Department of
                 Computer Science, University of Maryland, College
                 Park, March 2001.

  [Fluhrer]      Fluhrer, S., Mantin, I. and A. Shamir, "Weaknesses in
                 the Key Scheduling Algorithm of RC4", Eighth Annual
                 Workshop on Selected Areas in Cryptography, Toronto,
                 Canada, August 2001.

  [Stubbl]       Stubblefield, A., Ioannidis, J. and A. Rubin, "Using
                 the Fluhrer, Mantin and Shamir Attack to Break WEP",
                 2002 NDSS Conference.






Congdon, et al.              Informational                     [Page 24]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


8.  Table of Attributes

  The following table provides a guide to which attributes MAY be sent
  and received as part of IEEE 802.1X authentication.  L3 denotes
  attributes that require layer 3 capabilities, and thus may not be
  supported by all Authenticators.  For each attribute, the reference
  provides the definitive information on usage.

  802.1X        #   Attribute
    X           1   User-Name [RFC2865]
                2   User-Password [RFC2865]
                3   CHAP-Password [RFC2865]
    X           4   NAS-IP-Address [RFC2865]
    X           5   NAS-Port [RFC2865]
    X           6   Service-Type [RFC2865]
                7   Framed-Protocol [RFC2865]
    L3          8   Framed-IP-Address [RFC2865]
    L3          9   Framed-IP-Netmask [RFC2865]
    L3         10   Framed-Routing [RFC2865]
    X          11   Filter-Id [RFC2865]
    X          12   Framed-MTU [RFC2865]
               13   Framed-Compression [RFC2865]
    L3         14   Login-IP-Host [RFC2865]
    L3         15   Login-Service [RFC2865]
    L3         16   Login-TCP-Port [RFC2865]
               18   Reply-Message [RFC2865]
               19   Callback-Number [RFC2865]
               20   Callback-Id [RFC2865]
    L3         22   Framed-Route [RFC2865]
    L3         23   Framed-IPX-Network [RFC2865]
    X          24   State [RFC2865]
    X          25   Class [RFC2865]
    X          26   Vendor-Specific [RFC2865]
    X          27   Session-Timeout [RFC2865]
    X          28   Idle-Timeout [RFC2865]
    X          29   Termination-Action [RFC2865]
    X          30   Called-Station-Id [RFC2865]
    X          31   Calling-Station-Id [RFC2865]
    X          32   NAS-Identifier [RFC2865]
    X          33   Proxy-State [RFC2865]
               34   Login-LAT-Service [RFC2865]
               35   Login-LAT-Node [RFC2865]
               36   Login-LAT-Group [RFC2865]
  802.1X        #   Attribute







Congdon, et al.              Informational                     [Page 25]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  802.1X        #   Attribute
    L3         37   Framed-AppleTalk-Link [RFC2865]
    L3         38   Framed-AppleTalk-Network [RFC2865]
    L3         39   Framed-AppleTalk-Zone [RFC2865]
    X          40   Acct-Status-Type [RFC2866]
    X          41   Acct-Delay-Time [RFC2866]
    X          42   Acct-Input-Octets [RFC2866]
    X          43   Acct-Output-Octets [RFC2866]
    X          44   Acct-Session-Id [RFC2866]
    X          45   Acct-Authentic [RFC2866]
    X          46   Acct-Session-Time [RFC2866]
    X          47   Acct-Input-Packets [RFC2866]
    X          48   Acct-Output-Packets [RFC2866]
    X          49   Acct-Terminate-Cause [RFC2866]
    X          50   Acct-Multi-Session-Id [RFC2866]
    X          51   Acct-Link-Count [RFC2866]
    X          52   Acct-Input-Gigawords [RFC2869]
    X          53   Acct-Output-Gigawords [RFC2869]
    X          55   Event-Timestamp [RFC2869]
               60   CHAP-Challenge [RFC2865]
    X          61   NAS-Port-Type [RFC2865]
               62   Port-Limit [RFC2865]
               63   Login-LAT-Port [RFC2865]
    X          64   Tunnel-Type [RFC2868]
    X          65   Tunnel-Medium-Type [RFC2868]
    L3         66   Tunnel-Client-Endpoint [RFC2868]
    L3         67   Tunnel-Server-Endpoint [RFC2868]
    L3         68   Acct-Tunnel-Connection [RFC2867]
    L3         69   Tunnel-Password [RFC2868]
               70   ARAP-Password [RFC2869]
               71   ARAP-Features [RFC2869]
               72   ARAP-Zone-Access [RFC2869]
               73   ARAP-Security [RFC2869]
               74   ARAP-Security-Data [RFC2869]
               75   Password-Retry [RFC2869]
               76   Prompt [RFC2869]
    X          77   Connect-Info [RFC2869]
    X          78   Configuration-Token [RFC2869]
    X          79   EAP-Message [RFC3579]
    X          80   Message-Authenticator [RFC3579]
    X          81   Tunnel-Private-Group-ID [RFC2868]
    L3         82   Tunnel-Assignment-ID [RFC2868]
    X          83   Tunnel-Preference [RFC2868]
               84   ARAP-Challenge-Response [RFC2869]
  802.1X        #   Attribute






Congdon, et al.              Informational                     [Page 26]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


  802.1X        #   Attribute
    X          85   Acct-Interim-Interval [RFC2869]
    X          86   Acct-Tunnel-Packets-Lost [RFC2867]
    X          87   NAS-Port-Id [RFC2869]
    L3         88   Framed-Pool [RFC2869]
    L3         90   Tunnel-Client-Auth-ID [RFC2868]
    L3         91   Tunnel-Server-Auth-ID [RFC2868]
    X          95   NAS-IPv6-Address [RFC3162]
               96   Framed-Interface-Id [RFC3162]
    L3         97   Framed-IPv6-Prefix [RFC3162]
    L3         98   Login-IPv6-Host [RFC3162]
    L3         99   Framed-IPv6-Route [RFC3162]
    L3        100   Framed-IPv6-Pool [RFC3162]
    X         101   Error-Cause [RFC3576]
  802.1X        #   Attribute

  Key
  ===
  X         = May be used with IEEE 802.1X authentication
  L3        = Implemented only by Authenticators with Layer 3
              capabilities






























Congdon, et al.              Informational                     [Page 27]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


9.  Intellectual Property Statement

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards- related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.

10.  Acknowledgments

  The authors would like to acknowledge Bob O'Hara of Airespace, David
  Halasz of Cisco, Tim Moore, Sachin Seth and Ashwin Palekar of
  Microsoft, Andrea Li, Albert Young and Dave Bagby of 3Com for
  contributions to this document.























Congdon, et al.              Informational                     [Page 28]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


11.  Authors' Addresses

  Paul Congdon
  Hewlett Packard Company
  HP ProCurve Networking
  8000 Foothills Blvd, M/S 5662
  Roseville, CA  95747

  Phone: +1 916 785 5753
  Fax:   +1 916 785 8478
  EMail: [email protected]

  Bernard Aboba
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA 98052

  Phone: +1 425 706 6605
  Fax:   +1 425 936 7329
  EMail: [email protected]

  Andrew Smith
  Trapeze Networks
  5753 W. Las Positas Blvd.
  Pleasanton, CA 94588-4084

  Fax: +1 415 345 1827
  EMail: [email protected]

  John Roese
  Enterasys

  Phone: +1 603 337 1506
  EMail: [email protected]

  Glen Zorn
  Cisco Systems, Inc.
  500 108th Avenue N.E., Suite 500
  Bellevue, WA 98004

  Phone: +1 425 438 8218
  Fax:   +1 425 438 1848
  EMail: [email protected]








Congdon, et al.              Informational                     [Page 29]

RFC 3580                   IEEE 802.1X RADIUS             September 2003


12.  Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assignees.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Congdon, et al.              Informational                     [Page 30]