Network Working Group                                           B. Aboba
Request for Comments: 3579                                     Microsoft
Updates: 2869                                                 P. Calhoun
Category: Informational                                        Airespace
                                                         September 2003


         RADIUS (Remote Authentication Dial In User Service)
         Support For Extensible Authentication Protocol (EAP)

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This document defines Remote Authentication Dial In User Service
  (RADIUS) support for the Extensible Authentication Protocol (EAP), an
  authentication framework which supports multiple authentication
  mechanisms.  In the proposed scheme, the Network Access Server (NAS)
  forwards EAP packets to and from the RADIUS server, encapsulated
  within EAP-Message attributes.  This has the advantage of allowing
  the NAS to support any EAP authentication method, without the need
  for method-specific code, which resides on the RADIUS server.  While
  EAP was originally developed for use with PPP, it is now also in use
  with IEEE 802.

  This document updates RFC 2869.

















Aboba & Calhoun              Informational                      [Page 1]

RFC 3579                      RADIUS & EAP                September 2003


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
      1.1.  Specification of Requirements. . . . . . . . . . . . . .  3
      1.2.  Terminology. . . . . . . . . . . . . . . . . . . . . . .  3
  2.  RADIUS Support for EAP . . . . . . . . . . . . . . . . . . . .  4
      2.1.  Protocol Overview. . . . . . . . . . . . . . . . . . . .  5
      2.2.  Invalid Packets. . . . . . . . . . . . . . . . . . . . .  9
      2.3.  Retransmission . . . . . . . . . . . . . . . . . . . . . 10
      2.4.  Fragmentation. . . . . . . . . . . . . . . . . . . . . . 10
      2.5.  Alternative uses . . . . . . . . . . . . . . . . . . . . 11
      2.6.  Usage Guidelines . . . . . . . . . . . . . . . . . . . . 11
  3.  Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 14
      3.1.  EAP-Message. . . . . . . . . . . . . . . . . . . . . . . 15
      3.2.  Message-Authenticator. . . . . . . . . . . . . . . . . . 16
      3.3.  Table of Attributes. . . . . . . . . . . . . . . . . . . 18
  4.  Security Considerations. . . . . . . . . . . . . . . . . . . . 19
      4.1.  Security Requirements. . . . . . . . . . . . . . . . . . 19
      4.2.  Security Protocol. . . . . . . . . . . . . . . . . . . . 20
      4.3.  Security Issues. . . . . . . . . . . . . . . . . . . . . 22
  5.  IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 30
  6.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 30
      6.1.  Normative References . . . . . . . . . . . . . . . . . . 30
      6.2.  Informative References . . . . . . . . . . . . . . . . . 32
  Appendix A - Examples. . . . . . . . . . . . . . . . . . . . . . . 34
  Appendix B - Change Log. . . . . . . . . . . . . . . . . . . . . . 43
  Intellectual Property Statement. . . . . . . . . . . . . . . . . . 44
  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 44
  Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 45
  Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 46

1.  Introduction

  The Remote Authentication Dial In User Service (RADIUS) is an
  authentication, authorization and accounting protocol used to control
  network access.  RADIUS authentication and authorization is specified
  in [RFC2865], and RADIUS accounting is specified in [RFC2866]; RADIUS
  over IPv6 is specified in [RFC3162].

  The Extensible Authentication Protocol (EAP), defined in [RFC2284],
  is an authentication framework which supports multiple authentication
  mechanisms.  EAP may be used on dedicated links, switched circuits,
  and wired as well as wireless links.

  To date, EAP has been implemented with hosts and routers that connect
  via switched circuits or dial-up lines using PPP [RFC1661].  It has
  also been implemented with bridges supporting [IEEE802].  EAP
  encapsulation on IEEE 802 wired media is described in [IEEE8021X].



Aboba & Calhoun              Informational                      [Page 2]

RFC 3579                      RADIUS & EAP                September 2003


  RADIUS attributes are comprised of variable length Type-Length-Value
  3-tuples.  New attribute values can be added without disturbing
  existing implementations of the protocol.  This specification
  describes RADIUS attributes supporting the Extensible Authentication
  Protocol (EAP): EAP-Message and Message-Authenticator.  These
  attributes now have extensive field experience.  The purpose of this
  document is to provide clarification and resolve interoperability
  issues.

  As noted in [RFC2865], a Network Access Server (NAS) that does not
  implement a given service MUST NOT implement the RADIUS attributes
  for that service.  This implies that a NAS that is unable to offer
  EAP service MUST NOT implement the RADIUS attributes for EAP.  A NAS
  MUST treat a RADIUS Access-Accept requesting an unavailable service
  as an Access-Reject instead.

1.1.  Specification of Requirements

  In this document, several words are used to signify the requirements
  of the specification.  These words are often capitalized.  The key
  words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
  "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this document
  are to be interpreted as described in [RFC2119].

1.2.  Terminology

  This document frequently uses the following terms:

  authenticator
            The end of the link requiring the authentication.  Also
            known as the Network Access Server (NAS) or RADIUS client.
            Within IEEE 802.1X terminology, the term Authenticator is
            used.

  peer      The other end of the point-to-point link (PPP),
            point-to-point LAN segment (IEEE 802.1X) or wireless link,
            which is being authenticated by the authenticator.  In IEEE
            802.1X, this end is known as the Supplicant.

  authentication server
            An authentication server is an entity that provides an
            authentication service to an authenticator (NAS).  This
            service verifies from the credentials provided by the peer,
            the claim of identity made by the peer; it also may provide
            credentials allowing the peer to verify the identity of the
            authentication server.  Within this document it is assumed
            that the NAS operates as a pass-through, forwarding EAP
            packets between the RADIUS server and the EAP peer.



Aboba & Calhoun              Informational                      [Page 3]

RFC 3579                      RADIUS & EAP                September 2003


            Therefore the RADIUS server operates as an authentication
            server.

  silently discard
            This means the implementation discards the packet without
            further processing.  The implementation SHOULD provide the
            capability of logging the error, including the contents of
            the silently discarded packet, and SHOULD record the event
            in a statistics counter.

  displayable message
            This is interpreted to be a human readable string of
            characters, and MUST NOT affect operation of the protocol.
            The message encoding MUST follow the UTF-8 transformation
            format [RFC2279].

  Network Access Server (NAS)
            The device providing access to the network.  Also known as
            the Authenticator (IEEE 802.1X or EAP terminology) or
            RADIUS client.

  service   The NAS provides a service to the user, such as IEEE 802 or
            PPP.

  session   Each service provided by the NAS to a peer constitutes a
            session, with the beginning of the session defined as the
            point where service is first provided and the end of the
            session defined as the point where service is ended.  A
            peer may have multiple sessions in parallel or series if
            the NAS supports that, with each session generating a
            separate start and stop accounting record.

2.  RADIUS Support for EAP

  The Extensible Authentication Protocol (EAP), described in [RFC2284],
  provides a standard mechanism for support of additional
  authentication methods without the NAS to be upgraded to support each
  new method.  Through the use of EAP, support for a number of
  authentication schemes may be added, including smart cards, Kerberos
  [RFC1510], Public Key [RFC2716], One Time Passwords [RFC2284], and
  others.

  One of the advantages of the EAP architecture is its flexibility.
  EAP is used to select a specific authentication mechanism.  Rather
  than requiring the NAS to be updated to support each new
  authentication method, EAP permits the use of an authentication
  server implementing authentication methods, with the NAS acting as a
  pass-through for some or all methods and peers.



Aboba & Calhoun              Informational                      [Page 4]

RFC 3579                      RADIUS & EAP                September 2003


  A NAS MAY authenticate local peers while at the same time acting as a
  pass-through for non-local peers and authentication methods it does
  not implement locally.  A NAS implementing this specification is not
  required to use RADIUS to authenticate every peer.  However, once the
  NAS begins acting as a pass-through for a particular session, it can
  no longer perform local authentication for that session.

  In order to support EAP within RADIUS, two new attributes,
  EAP-Message and Message-Authenticator, are introduced in this
  document.  This section describes how these new attributes may be
  used for providing EAP support within RADIUS.

2.1.  Protocol Overview

  In RADIUS/EAP, RADIUS is used to shuttle RADIUS-encapsulated EAP
  Packets between the NAS and an authentication server.

  The authenticating peer and the NAS begin the EAP conversation by
  negotiating use of EAP.  Once EAP has been negotiated, the NAS SHOULD
  send an initial EAP-Request message to the authenticating peer.  This
  will typically be an EAP-Request/Identity, although it could be an
  EAP-Request for an authentication method (Types 4 and greater).  A
  NAS MAY be configured to initiate with a default authentication
  method.  This is useful in cases where the identity is determined by
  another means (such as Called-Station-Id, Calling-Station-Id and/or
  Originating-Line-Info); where a single authentication method is
  required, which includes its own identity exchange; where identity
  hiding is desired, so that the identity is not requested until after
  a protected channel has been set up.

  The peer replies with an EAP-Response.  The NAS MAY determine from
  the Response that it should proceed with local authentication.
  Alternatively, the NAS MAY act as a pass-through, encapsulating the
  EAP-Response within EAP-Message attribute(s) sent to the RADIUS
  server within a RADIUS Access-Request packet.  If the NAS sends an
  EAP-Request/Identity message as the initial packet, the peer responds
  with an EAP-Response/Identity.  The NAS may determine that the peer
  is local and proceed with local authentication.  If no match is found
  against the list of local users, the NAS encapsulates the
  EAP-Response/Identity message within an EAP-Message attribute,
  enclosed within an Access-Request packet.

  On receiving a valid Access-Request packet containing EAP-Message
  attribute(s), a RADIUS server compliant with this specification and
  wishing to authenticate with EAP MUST respond with an
  Access-Challenge packet containing EAP-Message attribute(s).  If the
  RADIUS server does not support EAP or does not wish to authenticate
  with EAP, it MUST respond with an Access-Reject.



Aboba & Calhoun              Informational                      [Page 5]

RFC 3579                      RADIUS & EAP                September 2003


  EAP-Message attribute(s) encapsulate a single EAP packet which the
  NAS decapsulates and passes on to the authenticating peer.  The peer
  then responds with an EAP-Response packet, which the NAS encapsulates
  within an Access-Request containing EAP-Message attribute(s).  EAP is
  a 'lock step' protocol, so that other than the initial Request, a new
  Request cannot be sent prior to receiving a valid Response.

  The conversation continues until either a RADIUS Access-Reject or
  Access-Accept packet is received from the RADIUS server.  Reception
  of a RADIUS Access-Reject packet MUST result in the NAS denying
  access to the authenticating peer.  A RADIUS Access-Accept packet
  successfully ends the authentication phase.  The NAS MUST NOT
  "manufacture" a Success or Failure packet as the result of a timeout.
  After a suitable number of timeouts have elapsed, the NAS SHOULD
  instead end the EAP conversation.

  Using RADIUS, the NAS can act as a pass-through for an EAP
  conversation between the peer and authentication server, without
  needing to implement the EAP method used between them.  Where the NAS
  initiates the conversation by sending an EAP-Request for an
  authentication method, it may not be required that the NAS fully
  implement the EAP method reflected in the initial EAP-Request.
  Depending on the initial method, it may be sufficient for the NAS to
  be configured with the initial packet to be sent to the peer, and for
  the NAS to act as a pass-through for subsequent messages.  Note that
  since the NAS only encapsulates the EAP-Response in its initial
  Access-Request, the initial EAP-Request within the authentication
  method is not available to the RADIUS server.  For the RADIUS server
  to be able to continue the conversation, either the initial
  EAP-Request is vestigial, so that the RADIUS server need not be aware
  of it, or the relevant information from the initial EAP-Request (such
  as a nonce) is reflected in the initial EAP-Response, so that the
  RADIUS server can obtain it without having received the initial
  EAP-Request.

  Where the initial EAP-Request sent by the NAS is for an
  authentication Type (4 or greater), the peer MAY respond with a Nak
  indicating that it would prefer another authentication method that is
  not implemented locally.  In this case, the NAS SHOULD send
  Access-Request encapsulating the received EAP-Response/Nak.  This
  provides the RADIUS server with a hint about the authentication
  method(s) preferred by the peer, although it does not provide
  information on the Type of the original Request.  It also provides
  the server with the Identifier used in the initial EAP-Request, so
  that Identifier conflicts can be avoided.






Aboba & Calhoun              Informational                      [Page 6]

RFC 3579                      RADIUS & EAP                September 2003


  In order to evaluate whether the alternatives preferred by the
  authenticating peer are allowed, the RADIUS server will typically
  respond with an Access-Challenge containing EAP-Message attribute(s)
  encapsulating an EAP-Request/Identity (Type 1).  This allows the
  RADIUS server to determine the peer identity, so as to be able to
  retrieve the associated authentication policy.  Alternatively, an
  EAP-Request for an authentication method (Type 4 or greater) could be
  sent.  Since the RADIUS server may not be aware of the Type of the
  initial EAP-Request, it is possible for the RADIUS server to choose
  an unacceptable method, and for the peer to respond with another Nak.

  In order to permit non-EAP aware RADIUS proxies to forward the
  Access-Request packet, if the NAS initially sends an
  EAP-Request/Identity message to the peer, the NAS MUST copy the
  contents of the Type-Data field of the EAP-Response/Identity received
  from the peer into the User-Name attribute and MUST include the
  Type-Data field of the EAP-Response/Identity in the User-Name
  attribute in every subsequent Access-Request.  Since RADIUS proxies
  are assumed to act as a pass-through, they cannot be expected to
  parse an EAP-Response/Identity encapsulated within EAP-Message
  attribute(s).  If the NAS initially sends an EAP-Request for an
  authentication method, and the peer identity cannot be determined
  from the EAP-Response, then the User-Name attribute SHOULD be
  determined by another means.  As noted in [RFC2865] Section 5.6, it
  is recommended that Access-Requests use the value of the
  Calling-Station-Id as the value of the User-Name attribute.

  Having the NAS send the initial EAP-Request packet has a number of
  advantages:

  [1]  It saves a round trip between the NAS and RADIUS server.

  [2]  An Access-Request is only sent to the RADIUS server if the
       authenticating peer sends an EAP-Response, confirming that it
       supports EAP.  In situations where peers may be EAP unaware,
       initiating a RADIUS Access-Request on a "carrier sense" or
       "media up" indication may result in many authentication
       exchanges that cannot complete successfully.  For example, on
       wired networks [IEEE8021X] Supplicants typically do not initiate
       the 802.1X conversation with an EAPOL-Start.  Therefore an IEEE
       802.1X-enabled bridge may not be able to determine whether the
       peer supports EAP until it receives a Response to the initial
       EAP-Request.

  [3]  It allows some peers to be authenticated locally.






Aboba & Calhoun              Informational                      [Page 7]

RFC 3579                      RADIUS & EAP                September 2003


  Although having the NAS send the initial EAP-Request packet has
  substantial advantages, this technique cannot be universally
  employed.  There are circumstances in which the peer identity is
  already known (such as when authentication and accounting is handled
  based on Called-Station-Id, Calling-Station-Id and/or
  Originating-Line-Info), but where the appropriate EAP method may vary
  based on that identity.

  Rather than sending an initial EAP-Request packet to the
  authenticating peer, on detecting the presence of the peer, the NAS
  MAY send an Access-Request packet to the RADIUS server containing an
  EAP-Message attribute signifying EAP-Start.  The RADIUS server will
  typically respond with an Access-Challenge containing EAP-Message
  attribute(s) encapsulating an EAP-Request/Identity (Type 1).
  However, an EAP-Request for an authentication method (Type 4 or
  greater) can also be sent by the server.

  EAP-Start is indicated by sending an EAP-Message attribute with a
  length of 2 (no data).  The Calling-Station-Id SHOULD be included in
  the User-Name attribute.  This may result in a RADIUS Access-Request
  being sent by the NAS to the RADIUS server without first confirming
  that the peer supports EAP.  Since this technique can result in a
  large number of uncompleted RADIUS conversations, in situations where
  EAP unaware peers are common, or where peer support for EAP cannot be
  determined on initial contact (e.g. [IEEE8021X] Supplicants not
  initiating the conversation with an EAPOL-Start) it SHOULD NOT be
  employed by default.

  For proxied RADIUS requests, there are two methods of processing.  If
  the domain is determined based on the Calling-Station-Id,
  Called-Station-Id and/or Originating-Line-Info, the RADIUS server may
  proxy the initial RADIUS Access-Request/EAP-Start.  If the realm is
  determined based on the peer identity, the local RADIUS server MUST
  respond with a RADIUS Access-Challenge including an EAP-Message
  attribute encapsulating an EAP-Request/Identity packet.  The response
  from the authenticating peer SHOULD be proxied to the final
  authentication server.

  If an Access-Request is sent to a RADIUS server which does not
  support the EAP-Message attribute, then an Access-Reject MUST be sent
  in response.  On receiving an Access-Reject, the NAS MUST deny access
  to the authenticating peer.









Aboba & Calhoun              Informational                      [Page 8]

RFC 3579                      RADIUS & EAP                September 2003


2.2.  Invalid Packets

  While acting as a pass-through, the NAS MUST validate the EAP header
  fields (Code, Identifier, Length) prior to forwarding an EAP packet
  to or from the RADIUS server.  On receiving an EAP packet from the
  peer, the NAS checks the Code (2) and Length fields, and matches the
  Identifier value against the current Identifier, supplied by the
  RADIUS server in the most recently validated EAP-Request.  On
  receiving an EAP packet from the RADIUS server (encapsulated within
  an Access-Challenge), the NAS checks the Code (1) and Length fields,
  then updates the current Identifier value.  Pending EAP Responses
  that do not match the current Identifier value are silently discarded
  by the NAS.

  Since EAP method fields (Type, Type-Data) are typically not validated
  by a NAS operating as a pass-through, despite these checks it is
  possible for a NAS to forward an invalid EAP packet to or from the
  RADIUS server.  A RADIUS server receiving EAP-Message attribute(s) it
  does not understand SHOULD make the determination of whether the
  error is fatal or non-fatal based on the EAP Type.  A RADIUS server
  determining that a fatal error has occurred MUST send an
  Access-Reject containing an EAP-Message attribute encapsulating
  EAP-Failure.

  A RADIUS server determining that a non-fatal error has occurred MAY
  send an Access-Challenge to the NAS including EAP-Message
  attribute(s) as well as an Error-Cause attribute [RFC3576] with value
  202 (decimal), "Invalid EAP Packet (Ignored)".  The Access-Challenge
  SHOULD encapsulate within EAP-Message attribute(s) the most recently
  sent EAP-Request packet (including the same Identifier value).  On
  receiving such an Access-Challenge, a NAS implementing previous
  versions of this specification will decapsulate the EAP-Request and
  send it to the peer, which will retransmit the EAP-Response.

  A NAS compliant with this specification, on receiving an
  Access-Challenge with an Error-Cause attribute of value 202 (decimal)
  SHOULD discard the EAP-Response packet most recently transmitted to
  the RADIUS server and check whether additional EAP-Response packets
  have been received matching the current Identifier value.  If so, a
  new EAP-Response packet, if available, MUST be sent to the RADIUS
  server within an Access-Request, and the EAP-Message attribute(s)
  included within the Access-Challenge are silently discarded.  If no
  EAP-Response packet is available, then the EAP-Request encapsulated
  within the Access-Challenge is sent to the peer, and the
  retransmission timer is reset.






Aboba & Calhoun              Informational                      [Page 9]

RFC 3579                      RADIUS & EAP                September 2003


  In order to provide protection against Denial of Service (DoS)
  attacks, it is advisable for the NAS to allocate a finite buffer for
  EAP packets received from the peer, and to discard packets according
  to an appropriate policy once that buffer has been exceeded.  Also,
  the RADIUS server is advised to permit only a modest number of
  invalid EAP packets within a single session, prior to terminating the
  session with an Access-Reject.  By default a value of 5 invalid EAP
  packets is recommended.

2.3.  Retransmission

  As noted in [RFC2284], if an EAP packet is lost in transit between
  the authenticating peer and the NAS (or vice versa), the NAS will
  retransmit.

  It may be necessary to adjust retransmission strategies and
  authentication timeouts in certain cases.  For example, when a token
  card is used additional time may be required to allow the user to
  find the card and enter the token.  Since the NAS will typically not
  have knowledge of the required parameters, these need to be provided
  by the RADIUS server.  This can be accomplished by inclusion of
  Session-Timeout attribute within the Access-Challenge packet.

  If Session-Timeout is present in an Access-Challenge packet that also
  contains an EAP-Message, the value of the Session-Timeout is used to
  set the EAP retransmission timer for that EAP Request, and that
  Request alone.  Once the EAP-Request has been sent, the NAS sets the
  retransmission timer, and if it expires without having received an
  EAP-Response corresponding to the Request, then the EAP-Request is
  retransmitted.

2.4.  Fragmentation

  Using the EAP-Message attribute, it is possible for the RADIUS server
  to encapsulate an EAP packet that is larger than the MTU on the link
  between the NAS and the peer.  Since it is not possible for the
  RADIUS server to use MTU discovery to ascertain the link MTU, the
  Framed-MTU attribute may be included in an Access-Request packet
  containing an EAP-Message attribute so as to provide the RADIUS
  server with this information.  A RADIUS server having received a
  Framed-MTU attribute in an Access-Request packet MUST NOT send any
  subsequent packet in this EAP conversation containing EAP-Message
  attributes whose values, when concatenated, exceed the length
  specified by the Framed-MTU value, taking the link type (specified by
  the NAS-Port-Type attribute) into account.  For example, as noted in
  [RFC3580] Section 3.10, for a NAS-Port-Type value of IEEE 802.11, the





Aboba & Calhoun              Informational                     [Page 10]

RFC 3579                      RADIUS & EAP                September 2003


  RADIUS server may send an EAP packet as large as Framed-MTU minus
  four (4) octets, taking into account the additional overhead for the
  IEEE 802.1X Version (1), Type (1) and Body Length (2) fields.

2.5.  Alternative Uses

  Currently the conversation between security servers and the RADIUS
  server is often proprietary because of lack of standardization.  In
  order to increase standardization and provide interoperability
  between RADIUS vendors and  security vendors, it is recommended that
  RADIUS- encapsulated EAP be used for this conversation.

  This has the advantage of allowing the RADIUS server to support EAP
  without the need for authentication-specific code within the RADIUS
  server.  Authentication-specific code can then reside on a security
  server instead.

  In the case where RADIUS-encapsulated EAP is used in a conversation
  between a RADIUS server and a security server, the security server
  will typically return an Access-Accept message without inclusion of
  the expected attributes currently returned in an Access-Accept.  This
  means that the RADIUS server MUST add these attributes prior to
  sending an Access-Accept message to the NAS.

2.6.  Usage Guidelines

2.6.1.  Identifier Space

  In EAP, each session has its own unique Identifier space.  RADIUS
  server implementations MUST be able to distinguish between EAP
  packets with the same Identifier existing within distinct sessions,
  originating on the same NAS.  For this purpose, sessions can be
  distinguished based on NAS and session identification attributes.
  NAS identification attributes include NAS-Identifier,
  NAS-IPv6-Address and NAS-IPv4-Address.  Session identification
  attributes include User-Name, NAS-Port, NAS-Port-Type, NAS-Port-Id,
  Called-Station-Id, Calling-Station-Id and Originating-Line-Info.

2.6.2.  Role Reversal

  Since EAP is a peer-to-peer protocol, an independent and simultaneous
  authentication may take place in the reverse direction.  Both peers
  may act as authenticators and authenticatees at the same time.

  However, role reversal is not supported by this specification.  A
  RADIUS server MUST respond to an Access-Request encapsulating an
  EAP-Request with an Access-Reject.  In order to avoid retransmissions




Aboba & Calhoun              Informational                     [Page 11]

RFC 3579                      RADIUS & EAP                September 2003


  by the peer, the Access-Reject SHOULD include an EAP-Response/Nak
  packet indicating no preferred method, encapsulated within
  EAP-Message attribute(s).

2.6.3.  Conflicting Messages

  The NAS MUST make its access control decision based solely on the
  RADIUS Packet Type (Access-Accept/Access-Reject).  The access control
  decision MUST NOT be based on the contents of the EAP packet
  encapsulated in one or more EAP-Message attributes, if present.

  Access-Accept packets SHOULD have only one EAP-Message attribute in
  them, containing EAP Success; similarly, Access-Reject packets SHOULD
  have only one EAP-Message attribute in them, containing EAP Failure.

  Where the encapsulated EAP packet does not match the result implied
  by the RADIUS Packet Type, the combination is likely to cause
  confusion, because the NAS and peer will arrive at different
  conclusions as to the outcome of the authentication.

  For example, if the NAS receives an Access-Reject with an
  encapsulated EAP Success, it will not grant access to the peer.
  However, on receiving the EAP Success, the peer will be lead to
  believe that it authenticated successfully.

  If the NAS receives an Access-Accept with an encapsulated EAP
  Failure, it will grant access to the peer.  However, on receiving an
  EAP Failure, the peer will be lead to believe that it failed
  authentication.  If no EAP-Message attribute is included within an
  Access-Accept or Access-Reject, then the peer may not be informed as
  to the outcome of the authentication, while the NAS will take action
  to allow or deny access.

  As described in [RFC2284], the EAP Success and Failure packets are
  not acknowledged, and these packets terminate the EAP conversation.
  As a result, if these packets are encapsulated within an
  Access-Challenge, no response will be received, and therefore the NAS
  will send no further Access-Requests to the RADIUS server for the
  session.  As a result, the RADIUS server will not indicate to the NAS
  whether to allow or deny access, while the peer will be informed as
  to the outcome of the authentication.










Aboba & Calhoun              Informational                     [Page 12]

RFC 3579                      RADIUS & EAP                September 2003


  To avoid these conflicts, the following combinations SHOULD NOT be
  sent by a RADIUS server:

     Access-Accept/EAP-Message/EAP Failure
     Access-Accept/no EAP-Message attribute
     Access-Accept/EAP-Start
     Access-Reject/EAP-Message/EAP Success
     Access-Reject/no EAP-Message attribute
     Access-Reject/EAP-Start
     Access-Challenge/EAP-Message/EAP Success
     Access-Challenge/EAP-Message/EAP Failure
     Access-Challenge/no EAP-Message attribute
     Access-Challenge/EAP-Start

  Since the responsibility for avoiding conflicts lies with the RADIUS
  server, the NAS MUST NOT "manufacture" EAP packets in order to
  correct contradictory messages that it receives.  This behavior,
  originally mandated within [IEEE8021X], will be deprecated in the
  future.

2.6.4.  Priority

  A RADIUS Access-Accept or Access-Reject packet may contain EAP-
  Message attribute(s). In order to ensure the correct processing of
  RADIUS packets, the NAS MUST first process the attributes, including
  the EAP-Message attribute(s), prior to processing the Accept/Reject
  indication.

2.6.5.  Displayable Messages

  The Reply-Message attribute, defined in [RFC2865], Section 5.18,
  indicates text which may be displayed to the peer.  This is similar
  in concept to EAP Notification, defined in [RFC2284].  When sending a
  displayable message to a NAS during an EAP conversation, the RADIUS
  server MUST encapsulate displayable messages within
  EAP-Message/EAP-Request/Notification attribute(s).  Reply-Message
  attribute(s) MUST NOT be included in any RADIUS message containing an
  EAP-Message attribute.  An EAP-Message/EAP-Request/Notification
  SHOULD NOT be included within an Access-Accept or Access-Reject
  packet.

  In some existing implementations, a NAS receiving Reply-Message
  attribute(s) copies the Text field(s) into the Type-Data field of an
  EAP-Request/Notification packet, fills in the Identifier field, and
  sends this to the peer.  However, several issues arise from this:






Aboba & Calhoun              Informational                     [Page 13]

RFC 3579                      RADIUS & EAP                September 2003


  [1]  Unexpected Responses.  On receiving an EAP-Request/Notification,
       the peer will send an EAP-Response/Notification, and the NAS
       will pass this on to the RADIUS server, encapsulated within
       EAP-Message attribute(s).  However, the RADIUS server may not be
       expecting an Access-Request containing an
       EAP-Message/EAP-Response/Notification attribute.

       For example, consider what happens when a Reply-Message is
       included within an Access-Accept or Access-Reject packet with no
       EAP-Message attribute(s) present.  If the value of the
       Reply-Message attribute is copied into the Type-Data of an
       EAP-Request/Notification and sent to the peer, this will result
       in an Access-Request containing an
       EAP-Message/EAP-Response/Notification attribute being sent by
       the NAS to the RADIUS server.  Since an Access-Accept or
       Access-Reject packet terminates the RADIUS conversation, such an
       Access-Request would not be expected, and could be interpreted
       as the start of another conversation.

  [2]  Identifier conflicts.  While the EAP-Request/Notification is an
       EAP packet containing an Identifier field, the Reply-Message
       attribute does not contain an Identifier field.  As a result, a
       NAS receiving a Reply-Message attribute and wishing to translate
       this to an EAP-Request/Notification will need to choose an
       Identifier value.  It is possible that the chosen Identifier
       value will conflict with a value chosen by the RADIUS server for
       another packet within the EAP conversation, potentially causing
       confusion between a new packet and a retransmission.

  To avoid these problems, a NAS receiving a Reply-Message attribute
  from the RADIUS server SHOULD silently discard the attribute, rather
  than attempting to translate it to an EAP Notification Request.

3.  Attributes

  The NAS-Port or NAS-Port-Id attributes SHOULD be included by the NAS
  in Access-Request packets, and either NAS-Identifier, NAS-IP-Address
  or NAS-IPv6-Address attributes MUST be included.  In order to permit
  forwarding of the Access-Reply by EAP-unaware proxies, if a User-Name
  attribute was included in an Access-Request, the RADIUS server MUST
  include the User-Name attribute in subsequent Access-Accept packets.
  Without the User-Name attribute, accounting and billing becomes
  difficult to manage.  The User-Name attribute within the Access-
  Accept packet need not be the same as the User-Name attribute in the
  Access-Request.






Aboba & Calhoun              Informational                     [Page 14]

RFC 3579                      RADIUS & EAP                September 2003


3.1.  EAP-Message

  Description

     This attribute encapsulates EAP [RFC2284] packets so as to allow
     the NAS to authenticate peers via EAP without having to understand
     the EAP method it is passing through.

     The NAS places EAP messages received from the authenticating peer
     into one or more EAP-Message attributes and forwards them to the
     RADIUS server within an Access-Request message.  If multiple
     EAP-Message attributes are contained within an Access-Request or
     Access-Challenge packet, they MUST be in order and they MUST be
     consecutive attributes in the Access-Request or Access-Challenge
     packet.  The RADIUS server can return EAP-Message attributes in
     Access-Challenge, Access-Accept and Access-Reject packets.

     When RADIUS is used to enable EAP authentication, Access-Request,
     Access-Challenge, Access-Accept, and Access-Reject packets SHOULD
     contain one or more EAP-Message attributes.  Where more than one
     EAP-Message attribute is included, it is assumed that the
     attributes are to be concatenated to form a single EAP packet.

     Multiple EAP packets MUST NOT be encoded within EAP-Message
     attributes contained within a single Access-Challenge,
     Access-Accept, Access-Reject or Access-Request packet.

     It is expected that EAP will be used to implement a variety of
     authentication methods, including methods involving strong
     cryptography.  In order to prevent attackers from subverting EAP
     by attacking RADIUS/EAP, (for example, by modifying EAP Success or
     EAP Failure packets) it is necessary that RADIUS provide
     per-packet authentication and integrity protection.

     Therefore the Message-Authenticator attribute MUST be used to
     protect all Access-Request, Access-Challenge, Access-Accept, and
     Access-Reject packets containing an EAP-Message attribute.

     Access-Request packets including EAP-Message attribute(s) without
     a Message-Authenticator attribute SHOULD be silently discarded by
     the RADIUS server.  A RADIUS server supporting the EAP-Message
     attribute MUST calculate the correct value of the
     Message-Authenticator and MUST silently discard the packet if it
     does not match the value sent.  A RADIUS server not supporting the
     EAP-Message attribute MUST return an Access-Reject if it receives
     an Access-Request containing an EAP-Message attribute.





Aboba & Calhoun              Informational                     [Page 15]

RFC 3579                      RADIUS & EAP                September 2003


     Access-Challenge, Access-Accept, or Access-Reject packets
     including EAP-Message attribute(s) without a Message-Authenticator
     attribute SHOULD be silently discarded by the NAS.  A NAS
     supporting the EAP-Message attribute MUST calculate the correct
     value of the Message-Authenticator and MUST silently discard the
     packet if it does not match the value sent.

     A summary of the EAP-Message attribute format is shown below.  The
     fields are transmitted from left to right.

      0                   1                   2
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     |     String...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     79 for EAP-Message

  Length

     >= 3

  String

     The String field contains an EAP packet, as defined in [RFC2284].
     If multiple EAP-Message attributes are present in a packet their
     values should be concatenated; this allows EAP packets longer than
     253 octets to be transported by RADIUS.

3.2.  Message-Authenticator

  Description

     This attribute MAY be used to authenticate and integrity-protect
     Access-Requests in order to prevent spoofing.  It MAY be used in
     any Access-Request.  It MUST be used in any Access-Request,
     Access-Accept, Access-Reject or Access-Challenge that includes an
     EAP-Message attribute.

     A RADIUS server receiving an Access-Request with a
     Message-Authenticator attribute present MUST calculate the correct
     value of the Message-Authenticator and silently discard the packet
     if it does not match the value sent.






Aboba & Calhoun              Informational                     [Page 16]

RFC 3579                      RADIUS & EAP                September 2003


     A RADIUS client receiving an Access-Accept, Access-Reject or
     Access-Challenge with a Message-Authenticator attribute present
     MUST calculate the correct value of the Message-Authenticator and
     silently discard the packet if it does not match the value sent.

     This attribute is not required in Access-Requests which include
     the User-Password attribute, but is useful for preventing attacks
     on other types of authentication.  This attribute is intended to
     thwart attempts by an attacker to setup a "rogue" NAS, and perform
     online dictionary attacks against the RADIUS server.  It does not
     afford protection against "offline" attacks where the attacker
     intercepts packets containing (for example) CHAP challenge and
     response, and performs a dictionary attack against those packets
     offline.

     A summary of the Message-Authenticator attribute format is shown
     below.  The fields are transmitted from left to right.

      0                   1                   2
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     |     String...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     80 for Message-Authenticator

  Length

     18

  String

     When present in an Access-Request packet, Message-Authenticator is
     an HMAC-MD5 [RFC2104] hash of the entire Access-Request packet,
     including Type, ID, Length and Authenticator, using the shared
     secret as the key, as follows.

     Message-Authenticator = HMAC-MD5 (Type, Identifier, Length,
     Request Authenticator, Attributes)

     When the message integrity check is calculated the signature
     string should be considered to be sixteen octets of zero.







Aboba & Calhoun              Informational                     [Page 17]

RFC 3579                      RADIUS & EAP                September 2003


     For Access-Challenge, Access-Accept, and Access-Reject packets,
     the Message-Authenticator is calculated as follows, using the
     Request-Authenticator from the Access-Request this packet is in
     reply to:

     Message-Authenticator = HMAC-MD5 (Type, Identifier, Length,
     Request Authenticator, Attributes)

     When the message integrity check is calculated the signature
     string should be considered to be sixteen octets of zero.  The
     shared secret is used as the key for the HMAC-MD5 message
     integrity check.  The Message-Authenticator is calculated and
     inserted in the packet before the Response Authenticator is
     calculated.

3.3.  Table of Attributes

  The following table provides a guide to which attributes may be found
  in packets including EAP-Message attribute(s), and in what quantity.
  The EAP-Message and Message-Authenticator attributes specified in
  this document MUST NOT be present in an Accounting-Request.  If a
  table entry is omitted, the values found in [RFC2548], [RFC2865],
  [RFC2868], [RFC2869] and [RFC3162] should be assumed.

Request  Accept  Reject  Challenge   #    Attribute
0-1      0-1     0       0            1   User-Name
0        0       0       0            2   User-Password [Note 1]
0        0       0       0            3   CHAP-Password [Note 1]
0        0       0       0           18   Reply-Message
0        0       0       0           60   CHAP-Challenge
0        0       0       0           70   ARAP-Password [Note 1]
0        0       0       0           75   Password-Retry
1+       1+      1+      1+          79   EAP-Message [Note 1]
1        1       1       1           80   Message-Authenticator [Note 1]
0-1      0       0       0           94   Originating-Line-Info [Note 3]
0        0       0-1     0-1        101   Error-Cause [Note 2]
Request  Accept  Reject  Challenge   #    Attribute

  [Note 1] An Access-Request that contains either a User-Password or
  CHAP-Password or ARAP-Password or one or more EAP-Message attributes
  MUST NOT contain more than one type of those four attributes.  If it
  does not contain any of those four attributes, it SHOULD contain a
  Message-Authenticator.  If any packet type contains an EAP-Message
  attribute it MUST also contain a Message-Authenticator.  A RADIUS
  server receiving an Access-Request not containing any of those four
  attributes and also not containing a Message-Authenticator attribute
  SHOULD silently discard it.




Aboba & Calhoun              Informational                     [Page 18]

RFC 3579                      RADIUS & EAP                September 2003


  [Note 2] The Error-Cause attribute is defined in [RFC3576].

  [Note 3] The Originating-Line-Info attribute is defined in [NASREQ].

  The following table defines the meaning of the above table entries.

  0     This attribute MUST NOT be present.
  0+    Zero or more instances of this attribute MAY be present.
  0-1   Zero or one instance of this attribute MAY be present.
  1     Exactly one instance of this attribute MUST be present.
  1+    One or more of these attributes MUST be present.

4.  Security Considerations

4.1.  Security Requirements

  RADIUS/EAP is used in order to provide authentication and
  authorization for network access.  As a result, both the RADIUS and
  EAP portions of the conversation are potential targets of an attack.
  Threats are discussed in [RFC2607], [RFC2865], and [RFC3162].
  Examples include:

  [1]  An adversary may attempt to acquire confidential data and
       identities by snooping RADIUS packets.

  [2]  An adversary may attempt to modify packets containing RADIUS
       messages.

  [3]  An adversary may attempt to inject packets into a RADIUS
       conversation.

  [4]  An adversary may launch a dictionary attack against the RADIUS
       shared secret.

  [5]  An adversary may launch a known plaintext attack, hoping to
       recover the key stream corresponding to a Request Authenticator.

  [6]  An adversary may attempt to replay a RADIUS exchange.

  [7]  An adversary may attempt to disrupt the EAP negotiation, in
       order to weaken the authentication, or gain access to peer
       passwords.

  [8]  An authenticated NAS may attempt to forge NAS or session
       identification attributes,

  [9]  A rogue (unauthenticated) NAS may attempt to impersonate a
       legitimate NAS.



Aboba & Calhoun              Informational                     [Page 19]

RFC 3579                      RADIUS & EAP                September 2003


  [10] An attacker may attempt to act as a man-in-the-middle.

  To address these threats, it is necessary to support confidentiality,
  data origin authentication, integrity, and replay protection on a
  per-packet basis.  Bi-directional authentication between the RADIUS
  client and server also needs to be provided.  There is no requirement
  that the identities of RADIUS clients and servers be kept
  confidential (e.g., from a passive eavesdropper).

4.2.  Security Protocol

  To address the security vulnerabilities of RADIUS/EAP,
  implementations of this specification SHOULD support IPsec [RFC2401]
  along with IKE [RFC2409] for key management.  IPsec ESP [RFC2406]
  with non-null transform SHOULD be supported, and IPsec ESP with a
  non-null encryption transform and authentication support SHOULD be
  used to provide per-packet confidentiality, authentication, integrity
  and replay protection.  IKE SHOULD be used for key management.

  Within RADIUS [RFC2865], a shared secret is used for hiding of
  attributes such as User-Password, as well as in computation of the
  Response Authenticator.  In RADIUS accounting [RFC2866], the shared
  secret is used in computation of both the Request Authenticator and
  the Response Authenticator.

  Since in RADIUS a shared secret is used to provide confidentiality as
  well as integrity protection and authentication, only use of IPsec
  ESP with a non-null transform can provide security services
  sufficient to substitute for RADIUS application-layer security.
  Therefore, where IPSEC AH or ESP null is used, it will typically
  still be necessary to configure a RADIUS shared secret.

  Where RADIUS is run over IPsec ESP with a non-null transform, the
  secret shared between the NAS and the RADIUS server MAY NOT be
  configured.  In this case, a shared secret of zero length MUST be
  assumed.  However, a RADIUS server that cannot know whether incoming
  traffic is IPsec-protected MUST be configured with a non-null RADIUS
  shared secret.

  When IPsec ESP is used with RADIUS, per-packet authentication,
  integrity and replay protection MUST be used.  3DES-CBC MUST be
  supported as an encryption transform and AES-CBC SHOULD be supported.
  AES-CBC SHOULD be offered as a preferred encryption transform if
  supported.  HMAC-SHA1-96 MUST be supported as an authentication
  transform.  DES-CBC SHOULD NOT be used as the encryption transform.






Aboba & Calhoun              Informational                     [Page 20]

RFC 3579                      RADIUS & EAP                September 2003


  A typical IPsec policy for an IPsec-capable RADIUS client is
  "Initiate IPsec, from me to any destination port UDP 1812".  This
  causes an IPsec SA to be set up by the RADIUS client prior to sending
  RADIUS traffic.  If some RADIUS servers contacted by the client do
  not support IPsec, then a more granular policy will be required:
  "Initiate IPsec, from me to IPsec-Capable-RADIUS-Server, destination
  port UDP 1812".

  For an IPsec-capable RADIUS server, a typical IPsec policy is "Accept
  IPsec, from any to me, destination port 1812".  This causes the
  RADIUS server to accept (but not require) use of IPsec.  It may not
  be appropriate to require IPsec for all RADIUS clients connecting to
  an IPsec-enabled RADIUS server, since some RADIUS clients may not
  support IPsec.

  Where IPsec is used for security, and no RADIUS shared secret is
  configured, it is important that the RADIUS client and server perform
  an authorization check.  Before enabling a host to act as a RADIUS
  client, the RADIUS server SHOULD check whether the host is authorized
  to provide network access.  Similarly, before enabling a host to act
  as a RADIUS server, the RADIUS client SHOULD check whether the host
  is authorized for that role.

  RADIUS servers can be configured with the IP addresses (for IKE
  Aggressive Mode with pre-shared keys) or FQDNs (for certificate
  authentication) of RADIUS clients.  Alternatively, if a separate
  Certification Authority (CA) exists for RADIUS clients, then the
  RADIUS server can configure this CA as a trust anchor [RFC3280] for
  use with IPsec.

  Similarly, RADIUS clients can be configured with the IP addresses
  (for IKE Aggressive Mode with pre-shared keys) or FQDNs (for
  certificate authentication) of RADIUS servers.  Alternatively, if a
  separate CA exists for RADIUS servers, then the RADIUS client can
  configure this CA as a trust anchor for use with IPsec.

  Since unlike SSL/TLS, IKE does not permit certificate policies to be
  set on a per-port basis, certificate policies need to apply to all
  uses of IPsec on RADIUS clients and servers.  In IPsec deployments
  supporting only certificate authentication, a management station
  initiating an IPsec-protected telnet session to the RADIUS server
  would need to obtain a certificate chaining to the RADIUS client CA.
  Issuing such a certificate might not be appropriate if the management
  station was not authorized as a RADIUS client.

  Where RADIUS clients may obtain their IP address dynamically (such as
  an Access Point supporting DHCP), IKE Main Mode with pre-shared keys
  [RFC2409] SHOULD NOT be used, since this requires use of a group



Aboba & Calhoun              Informational                     [Page 21]

RFC 3579                      RADIUS & EAP                September 2003


  pre-shared key; instead, Aggressive Mode SHOULD be used.  IKEv2, a
  work in progress, may address this issue in the future.  Where RADIUS
  client addresses are statically assigned, either Aggressive Mode or
  Main Mode MAY be used.  With certificate authentication, Main Mode
  SHOULD be used.

  Care needs to be taken with IKE Phase 1 Identity Payload selection in
  order to enable mapping of identities to pre-shared keys even with
  Aggressive Mode.  Where the ID_IPV4_ADDR or ID_IPV6_ADDR Identity
  Payloads are used and addresses are dynamically assigned, mapping of
  identities to keys is not possible, so that group pre-shared keys are
  still a practical necessity.  As a result, the ID_FQDN identity
  payload SHOULD be employed in situations where Aggressive mode is
  utilized along with pre-shared keys and IP addresses are dynamically
  assigned.  This approach also has other advantages, since it allows
  the RADIUS server and client to configure themselves based on the
  fully qualified domain name of their peers.

  Note that with IPsec, security services are negotiated at the
  granularity of an IPsec SA, so that RADIUS exchanges requiring a set
  of security services different from those negotiated with existing
  IPsec SAs will need to negotiate a new IPsec SA.  Separate IPsec SAs
  are also advisable where quality of service considerations dictate
  different handling RADIUS conversations.  Attempting to apply
  different quality of service to connections handled by the same IPsec
  SA can result in reordering, and falling outside the replay window.
  For a discussion of the issues, see [RFC2983].

4.3.  Security Issues

  This section provides more detail on the vulnerabilities identified
  in Section 4.1., and how they may be mitigated.  Vulnerabilities
  include:

  Privacy issues
  Spoofing and hijacking
  Dictionary attacks
  Known plaintext attacks
  Replay attacks
  Negotiation attacks
  Impersonation
  Man in the middle attacks
  Separation of authenticator and authentication server
  Multiple databases







Aboba & Calhoun              Informational                     [Page 22]

RFC 3579                      RADIUS & EAP                September 2003


4.3.1.  Privacy Issues

  Since RADIUS messages may contain the User-Name attribute as well as
  NAS-IP-Address or NAS-Identifier attributes, an attacker snooping on
  RADIUS traffic may be able to determine the geographic location of
  peers in real time.  In wireless networks, it is often assumed that
  RADIUS traffic is physically secure, since it typically travels over
  the wired network and that this limits the release of location
  information.

  However, it is possible for an authenticated attacker to spoof ARP
  packets [RFC826] so as to cause diversion of RADIUS traffic onto the
  wireless network.  In this way an attacker may obtain RADIUS packets
  from which it can glean peer location information, or which it can
  subject to a known plaintext or offline dictionary attack.  To
  address these vulnerabilities, implementations of this specification
  SHOULD use IPsec ESP with non-null transform and per-packet
  encryption, authentication, integrity and replay protection to
  protect both RADIUS authentication [RFC2865] and accounting [RFC2866]
  traffic, as described in Section 4.2.

4.3.2.  Spoofing and Hijacking

  Access-Request packets with a User-Password attribute establish the
  identity of both the user and the NAS sending the Access-Request,
  because of the way the shared secret between the NAS and RADIUS
  server is used.  Access-Request packets with CHAP-Password or
  EAP-Message attributes do not have a User-Password attribute.  As a
  result, the Message-Authenticator attribute SHOULD be used in
  Access-Request packets that do not have a User-Password attribute, in
  order to establish the identity of the NAS sending the request.

  An attacker may attempt to inject packets into the conversation
  between the NAS and the RADIUS server, or between the RADIUS server
  and the security server.  RADIUS [RFC2865] does not support
  encryption other than attribute hiding.  As described in [RFC2865],
  only Access-Reply and Access-Challenge packets are integrity
  protected.  Moreover, the per-packet authentication and integrity
  protection mechanism described in [RFC2865] has known weaknesses
  [MD5Attack], making it a tempting target for attackers looking to
  subvert RADIUS/EAP.

  To provide stronger security, the Message-Authenticator attribute
  MUST be used in all RADIUS packets containing an EAP-Message
  attribute.  Implementations of this specification SHOULD use IPsec
  ESP with non-null transform and per-packet encryption,
  authentication, integrity and replay protection, as described in
  Section 4.2.



Aboba & Calhoun              Informational                     [Page 23]

RFC 3579                      RADIUS & EAP                September 2003


4.3.3.  Dictionary Attacks

  The RADIUS shared secret is vulnerable to offline dictionary attack,
  based on capture of the Response Authenticator or
  Message-Authenticator attribute.  In order to decrease the level of
  vulnerability, [RFC2865] recommends:

     The secret (password shared between the client and the RADIUS
     server) SHOULD be at least as large and unguessable as a
     well-chosen password.  It is preferred that the secret be at least
     16 octets.

  The risk of an offline dictionary attack can be further reduced by
  employing IPsec ESP with non-null transform in order to encrypt the
  RADIUS conversation, as described in Section 4.2.

4.3.4.  Known Plaintext Attacks

  Since EAP [RFC2284] does not support PAP, the RADIUS User-Password
  attribute is not used to carry hidden user passwords within
  RADIUS/EAP conversations.  The User-Password hiding mechanism,
  defined in [RFC2865] utilizes MD5, defined in [RFC1321], in order to
  generate a key stream based on the RADIUS shared secret and the
  Request  Authenticator.  Where PAP is in use, it is possible to
  collect key streams corresponding to a given Request Authenticator
  value, by capturing RADIUS conversations corresponding to a PAP
  authentication attempt, using a known password.  Since the
  User-Password is known, the key stream corresponding to a given
  Request Authenticator can be determined and stored.

  Since the key stream may have been determined previously from a known
  plaintext attack, if the Request Authenticator repeats, attributes
  encrypted using the RADIUS attribute hiding mechanism should be
  considered compromised.  In addition to the User-Password attribute,
  which is not used with EAP, this includes attributes such as
  Tunnel-Password [RFC2868, section 3.5] and MS-MPPE-Send-Key and
  MS-MPPE-Recv-Key attributes [RFC2548, section 2.4], which include a
  Salt field as part of the hiding algorithm.

  To avoid this, [RFC2865], Section 3 advises:

     Since it is expected that the same secret MAY be used to
     authenticate with servers in disparate geographic regions, the
     Request Authenticator field SHOULD exhibit global and temporal
     uniqueness.






Aboba & Calhoun              Informational                     [Page 24]

RFC 3579                      RADIUS & EAP                September 2003


  Where the Request Authenticator repeats, the Salt field defined in
  [RFC2548], Section 2.4 does not provide protection against
  compromise.  This is because MD5 [RFC1321], rather than HMAC-MD5
  [RFC2104], is used to generate the key stream, which is calculated
  from the 128-bit RADIUS shared secret (S), the  128-bit Request
  Authenticator (R), and the Salt field (A), using the formula b(1) =
  MD5(S + R + A).  Since the Salt field is placed at the end, if the
  Request Authenticator were to repeat on a network where PAP is in
  use, then the salted keystream could be calculated from the
  User-Password keystream by continuing the MD5 calculation based on
  the Salt field (A), which is sent in the clear.

  Even though EAP does not support PAP authentication, a security
  vulnerability can still exist where the same RADIUS shared secret is
  used for hiding User-Password as well as other attributes.  This can
  occur, for example, if the same RADIUS proxy handles authentication
  requests for both EAP and PAP.

  The threat can be mitigated by protecting RADIUS with IPsec ESP with
  non-null transform, as described in Section 4.2.  Where RADIUS shared
  secrets are configured, the RADIUS shared secret used by a NAS
  supporting EAP MUST NOT be reused by a NAS utilizing the
  User-Password attribute, since improper shared secret hygiene could
  lead to compromise of hidden attributes.

4.3.5.  Replay Attacks

  The RADIUS protocol provides only limited support for replay
  protection.  RADIUS Access-Requests include liveness via the 128-bit
  Request Authenticator.  However, the Request Authenticator is not a
  replay counter.  Since RADIUS servers may not maintain a cache of
  previous Request Authenticators, the Request Authenticator does not
  provide replay protection.

  RADIUS accounting [RFC2866] does not support replay protection at the
  protocol level.  Due to the need to support failover between RADIUS
  accounting servers, protocol-based replay protection is not
  sufficient to prevent duplicate accounting records.  However, once
  accepted by the accounting server, duplicate accounting records can
  be detected by use of the the Acct-Session-Id [RFC2866, section 5.5]
  and Event-Timestamp [RFC2869, section 5.3] attributes.

  Unlike RADIUS authentication, RADIUS accounting does not use the
  Request Authenticator as a nonce.  Instead, the Request Authenticator
  contains an MD5 hash calculated over the Code, Identifier, Length,
  and request attributes of the Accounting Request packet, plus the
  shared secret.  The Response Authenticator also contains an MD5 hash
  calculated over the Code, Identifier and Length, the Request



Aboba & Calhoun              Informational                     [Page 25]

RFC 3579                      RADIUS & EAP                September 2003


  Authenticator field from the Accounting-Request packet being replied
  to, the response attributes and the shared secret.

  Since the Accounting Response Authenticator depends in part on the
  Accounting Request Authenticator, it is not possible to replay an
  Accounting-Response unless the Request Authenticator repeats.  While
  it is possible to utilize EAP methods such as EAP TLS [RFC2716] which
  include liveness checks on both sides, not all EAP messages will
  include liveness so that this provides incomplete protection.

  Strong replay protection for RADIUS authentication and accounting can
  be provided by enabling IPsec replay protection with RADIUS, as
  described in Section 4.2.

4.3.6.  Negotiation Attacks

  In a negotiation attack a rogue NAS, tunnel server, RADIUS proxy or
  RADIUS server attempts to cause the authenticating peer to choose a
  less secure authentication method.  For example, a session that would
  normally be authenticated with EAP would instead be authenticated via
  CHAP or PAP; alternatively, a connection that would normally be
  authenticated via a more secure EAP method such as EAP-TLS [RFC2716]
  might be made to occur via a less secure EAP method, such as
  MD5-Challenge.  The threat posed by rogue devices, once thought to be
  remote, has gained currency given compromises of telephone company
  switching systems, such as those described in [Masters].

  Protection against negotiation attacks requires the elimination of
  downward negotiations.  The RADIUS exchange may be further protected
  by use of IPsec, as described in Section 4.2.  Alternatively, where
  IPsec is not used, the vulnerability can be mitigated via
  implementation of per-connection policy on the part of the
  authenticating peer, and per-peer policy on the part of the RADIUS
  server.  For the authenticating peer, authentication policy should be
  set on a per-connection basis.  Per-connection policy allows an
  authenticating peer to negotiate a strong EAP method when connecting
  to one service, while negotiating a weaker EAP method for another
  service.

  With per-connection policy, an authenticating peer will only attempt
  to negotiate EAP for a session in which EAP support is expected.  As
  a result, there is a presumption that an authenticating peer
  selecting EAP requires that level of security.  If it cannot be
  provided, it is likely that there is some kind of misconfiguration,
  or even that the authenticating peer is contacting the wrong server.
  Should the NAS not be able to negotiate EAP, or should the
  EAP-Request sent by the NAS be of a different EAP type than what is
  expected, the authenticating peer MUST disconnect.  An authenticating



Aboba & Calhoun              Informational                     [Page 26]

RFC 3579                      RADIUS & EAP                September 2003


  peer expecting EAP to be negotiated for a session MUST NOT negotiate
  a weaker method, such as CHAP or PAP.  In wireless networks, the
  service advertisement itself may be spoof-able, so that an attacker
  could fool the peer into negotiating an authentication method
  suitable for a less secure network.

  For a NAS, it may not be possible to determine whether a peer is
  required to authenticate with EAP until the peer's identity is known.
  For example, for shared-uses NASes it is possible for one reseller to
  implement EAP while another does not.  Alternatively, some peer might
  be authenticated locally by the NAS while other peers are
  authenticated via RADIUS.  In such cases, if any peers of the NAS
  MUST do EAP, then the NAS MUST attempt to negotiate EAP for every
  session.  This avoids forcing a peer to support more than one
  authentication type, which could weaken security.

  If CHAP is negotiated, the NAS will pass the User-Name and
  CHAP-Password attributes to the RADIUS server in an Access-Request
  packet.  If the peer is not required to use EAP, then the RADIUS
  server will respond with an Access-Accept or Access-Reject packet as
  appropriate.  However, if CHAP has been negotiated but EAP is
  required, the RADIUS server MUST respond with an Access-Reject,
  rather than an Access-Challenge/EAP-Message/EAP-Request packet.  The
  authenticating peer MUST refuse to renegotiate authentication, even
  if the renegotiation is from CHAP to EAP.

  If EAP is negotiated but is not supported by the RADIUS proxy or
  server, then the server or proxy MUST respond with an Access-Reject.
  In these cases, a PPP NAS MUST send an LCP-Terminate and disconnect
  the peer.  This is the correct behavior since the authenticating peer
  is expecting EAP to be negotiated, and that expectation cannot be
  fulfilled.  An EAP-capable authenticating peer MUST refuse to
  renegotiate the authentication protocol if EAP had initially been
  negotiated.  Note that problems with a non-EAP capable RADIUS proxy
  could prove difficult to diagnose, since a peer connecting from one
  location (with an EAP-capable proxy) might be able to successfully
  authenticate via EAP, while the same peer connecting at another
  location (and encountering an EAP-incapable proxy) might be
  consistently disconnected.

4.3.7.  Impersonation

  [RFC2865] Section 3 states:

     A RADIUS server MUST use the source IP address of the RADIUS UDP
     packet to decide which shared secret to use, so that RADIUS
     requests can be proxied.




Aboba & Calhoun              Informational                     [Page 27]

RFC 3579                      RADIUS & EAP                September 2003


  When RADIUS requests are forwarded by a proxy, the NAS-IP-Address or
  NAS-IPv6-Address attributes may not match the source address.  Since
  the NAS-Identifier attribute need not contain an FQDN, this attribute
  also may not correspond to the source address, even indirectly, with
  or without a proxy present.

  As a result, the authenticity check performed by a RADIUS server or
  proxy does not verify the correctness of NAS identification
  attributes.  This makes it possible for a rogue NAS to forge
  NAS-IP-Address, NAS-IPv6-Address or NAS-Identifier attributes within
  a RADIUS Access-Request in order to impersonate another NAS.  It is
  also possible for a rogue NAS to forge session identification
  attributes such as Called-Station-Id, Calling-Station-Id, and
  Originating-Line-Info.

  This could fool the RADIUS server into subsequently sending
  Disconnect or CoA-Request messages [RFC3576] containing forged
  session identification attributes to a NAS targeted by an attacker.

  To address these vulnerabilities RADIUS proxies SHOULD check whether
  NAS identification attributes (NAS-IP-Address, NAS-IPv6-Address,
  NAS-Identifier) match the source address of packets originating from
  the NAS.  Where a match is not found, an Access-Reject SHOULD be
  sent, and an error SHOULD be logged.

  However, such a check may not always be possible.  Since the
  NAS-Identifier attribute need not correspond to an FQDN, it may not
  be resolvable to an IP address to be matched against the source
  address.  Also, where a NAT exists between the RADIUS client and
  proxy, checking the NAS-IP-Address or NAS-IPv6-Address attributes may
  not be feasible.

  To allow verification of NAS and session identification parameters,
  EAP methods can support the secure exchange of these parameters
  between the EAP peer and EAP server.  NAS identification attributes
  include NAS-IP-Address, NAS-IPv6-Address and Called-Station-Id;
  session identification attributes include User-Name and
  Calling-Station-Id.  The secure exchange of these parameters between
  the EAP peer and server enables the RADIUS server to check whether
  the attributes provided by the NAS match those provided by the peer;
  similarly, the peer can check the parameters provided by the NAS
  against those provided by the EAP server.  This enables detection of
  a rogue NAS.








Aboba & Calhoun              Informational                     [Page 28]

RFC 3579                      RADIUS & EAP                September 2003


4.3.8.  Man in the Middle Attacks

  RADIUS only provides security on a hop-by-hop basis, even where IPsec
  is used.  As a result, an attacker gaining control of a RADIUS proxy
  could attempt to modify EAP packets in transit.  To protect against
  this, EAP methods SHOULD incorporate their own per-packet integrity
  protection and authentication mechanisms.

4.3.9.  Separation of Authenticator and Authentication Server

  As noted in [RFC2716], it is possible for the EAP peer and
  authenticator to mutually authenticate, and derive a Master Session
  Key (MSK) for a ciphersuite used to protect subsequent data traffic.
  This does not present an issue on the peer, since the peer and EAP
  client reside on the same machine; all that is required is for the
  EAP client module to derive and pass a Transient Session Key (TSK) to
  the ciphersuite module.

  The situation is more complex when EAP is used with RADIUS, since the
  authenticator and authentication server may not reside on the same
  host.

  In the case where the authenticator and authentication server reside
  on different machines, there are several implications for security.
  First, mutual authentication will occur between the peer and the
  authentication server, not between the peer and the authenticator.
  This means that it is not possible for the peer to validate the
  identity of the NAS or tunnel server that it is speaking to, using
  EAP alone.

  As described in Section 4.2, when RADIUS/EAP is used to encapsulate
  EAP packets, IPsec SHOULD be used to provide per-packet
  authentication, integrity, replay protection and confidentiality.
  The Message-Authenticator attribute is also required in RADIUS
  Access-Requests containing an EAP-Message attribute sent from the NAS
  or tunnel server to the RADIUS server.  Since the
  Message-Authenticator attribute involves an HMAC-MD5 message
  integrity check, it is possible for the RADIUS server to verify the
  integrity of the Access-Request as well as the NAS or tunnel server's
  identity, even where IPsec is not used.  Similarly, Access-Challenge
  packets containing an EAP-Message attribute sent from the RADIUS
  server to the NAS are also authenticated and integrity protected
  using an HMAC-MD5 message integrity check, enabling the NAS or tunnel
  server to determine the integrity of the packet and verify the
  identity of the RADIUS server, even where IPsec is not used.
  Moreover, EAP packets sent using methods that contain their own
  integrity protection cannot be successfully modified by a rogue NAS
  or tunnel server.



Aboba & Calhoun              Informational                     [Page 29]

RFC 3579                      RADIUS & EAP                September 2003


  The second issue that arises where the authenticator and
  authentication server reside on separate hosts is that the EAP Master
  Session Key (MSK) negotiated between the peer and authentication
  server will need to be transmitted to the authenticator.  Therefore a
  mechanism needs to be provided to transmit the MSK from the
  authentication server to the NAS or tunnel server that needs it.  The
  specification of the key transport and wrapping mechanism is outside
  the scope of this document.  However, it is expected that the
  wrapping mechanism will provide confidentiality, integrity and replay
  protection, and data origin authentication.

4.3.10.  Multiple Databases

  In many cases a security server will be deployed along with a RADIUS
  server in order to provide EAP services.  Unless the security server
  also functions as a RADIUS server, two separate user databases will
  exist, each containing information about the security requirements
  for the user.  This represents a weakness, since security may be
  compromised by a successful attack on either of the servers, or their
  databases.  With multiple user databases, adding a new user may
  require multiple operations, increasing the chances for error.  The
  problems are further magnified in the case where user information is
  also being kept in an LDAP server.  In this case, three stores of
  user information may exist.

  In order to address these threats, consolidation of databases is
  recommended.  This can be achieved by having both the RADIUS server
  and security server store information in the same database; by having
  the security server provide a full RADIUS implementation; or by
  consolidating both the  security server and the RADIUS server onto
  the same machine.

5.  IANA Considerations

  This specification does not create any new registries, or define any
  new RADIUS attributes or values.

6.  References

6.1.  Normative References

  [RFC1321]      Rivest, R., "The MD5 Message-Digest Algorithm", RFC
                 1321, April 1992.

  [RFC2104]      Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
                 Keyed-Hashing for Message Authentication", RFC 2104,
                 February 1997.




Aboba & Calhoun              Informational                     [Page 30]

RFC 3579                      RADIUS & EAP                September 2003


  [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2279]      Yergeau, F., "UTF-8, a transformation format of ISO
                 10646", RFC 2279, January 1998.

  [RFC2284]      Blunk, L. and J. Vollbrecht, "PPP Extensible
                 Authentication Protocol (EAP)", RFC 2284, March 1998.

  [RFC2401]      Atkinson, R. and S. Kent, "Security Architecture for
                 the Internet Protocol", RFC 2401, November 1998.

  [RFC2406]      Kent, S. and R. Atkinson, "IP Encapsulating Security
                 Payload (ESP)", RFC 2406, November 1998.

  [RFC2409]      Harkins, D. and D. Carrel, "The Internet Key Exchange
                 (IKE)", RFC 2409, November 1998.

  [RFC2486]      Aboba, B. and M. Beadles, "The Network Access
                 Identifier", RFC 2486, January 1999.

  [RFC2865]      Rigney, C., Willens, S., Rubens, A. and W. Simpson,
                 "Remote Authentication Dial In User Service (RADIUS)",
                 RFC 2865, June 2000.

  [RFC2988]      Paxson, V. and M. Allman, "Computing TCP's
                 Retransmission Timer", RFC 2988, November 2000.

  [RFC3162]      Aboba, B., Zorn, G. and D. Mitton, "RADIUS and IP6",
                 RFC 3162, August 2001.

  [RFC3280]      Housley, R., Polk, W., Ford, W. and D. Solo, "Internet
                 X.509 Public Key Infrastructure Certificate and
                 Certificate Revocation List (CRL) Profile", RFC 3280,
                 April 2002.

  [RFC3576]      Chiba, M., Dommety, G., Eklund, M., Mitton, D. and B.
                 Aboba, "Dynamic Authorization Extensions to Remote
                 Authentication Dial In User Service (RADIUS)", RFC
                 3576, July 2003.











Aboba & Calhoun              Informational                     [Page 31]

RFC 3579                      RADIUS & EAP                September 2003


6.2.  Informative References

  [RFC826]       Plummer, D., "An Ethernet Address Resolution
                 Protocol", STD 37, RFC 826, November 1982.

  [RFC1510]      Kohl, J. and C. Neuman, "The Kerberos Network
                 Authentication Service (V5)", RFC 1510, September
                 1993.

  [RFC1661]      Simpson, W., "The Point-to-Point Protocol (PPP)", STD
                 51, RFC 1661, July 1994.

  [RFC2548]      Zorn, G., "Microsoft Vendor-specific RADIUS
                 Attributes", RFC 2548, March 1999.

  [RFC2607]      Aboba, B. and J. Vollbrecht, "Proxy Chaining and
                 Policy Implementation in Roaming", RFC 2607, June
                 1999.

  [RFC2716]      Aboba, B. and D. Simon,"PPP EAP TLS Authentication
                 Protocol", RFC 2716, October 1999.

  [RFC2866]      Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

  [RFC2867]      Zorn, G., Aboba, B. and D. Mitton, "RADIUS Accounting
                 Modifications for Tunnel Protocol Support", RFC 2867,
                 June 2000.

  [RFC2868]      Zorn, G., Leifer, D., Rubens, A., Shriver, J.,
                 Holdrege, M. and I. Goyret, "RADIUS Attributes for
                 Tunnel Protocol Support", RFC 2868, June 2000.

  [RFC2869]      Rigney, C., Willats, W. and P. Calhoun, "RADIUS
                 Extensions", RFC 2869, June 2000.

  [RFC2983]      Black, D. "Differentiated Services and Tunnels", RFC
                 2983, October 2000.

  [RFC3580]      Congdon, P., Aboba, B., Smith, A., Zorn, G. and J.
                 Roese, "IEEE 802.1X Remote Authentication Dial In User
                 Service (RADIUS) Usage Guidelines", RFC 3580,
                 September 2003.

  [IEEE802]      IEEE Standards for Local and Metropolitan Area
                 Networks:  Overview and Architecture, ANSI/IEEE Std
                 802, 1990.





Aboba & Calhoun              Informational                     [Page 32]

RFC 3579                      RADIUS & EAP                September 2003


  [IEEE8021X]    IEEE Standards for Local and Metropolitan Area
                 Networks:  Port based Network Access Control, IEEE Std
                 802.1X-2001, June 2001.

  [MD5Attack]    Dobbertin, H., "The Status of MD5 After a Recent
                 Attack", CryptoBytes Vol.2 No.2, Summer 1996.

  [Masters]      Slatalla, M. and  J. Quittner, "Masters of Deception."
                 HarperCollins, New York, 1995.

  [NASREQ]       Calhoun, P., et al., "Diameter Network Access Server
                 Application", Work in Progress.







































Aboba & Calhoun              Informational                     [Page 33]

RFC 3579                      RADIUS & EAP                September 2003


Appendix A - Examples

  The examples below illustrate conversations between an authenticating
  peer, NAS, and RADIUS server.  The OTP and EAP-TLS protocols are used
  only for illustrative purposes; other authentication protocols could
  also have been used, although they might show somewhat different
  behavior.

  Where the NAS sends an EAP-Request/Identity as the initial packet,
  the exchange appears as follows:

Authenticating peer     NAS                    RADIUS server
-------------------     ---                    -------------
                       <- EAP-Request/
                       Identity
EAP-Response/
Identity (MyID) ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       (MyID) ->
                                              <- RADIUS
                                              Access-Challenge/
                                              EAP-Message/EAP-Request
                                              OTP/OTP Challenge
                       <- EAP-Request/
                       OTP/OTP Challenge
EAP-Response/
OTP, OTPpw ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       OTP, OTPpw ->
                                               <- RADIUS
                                               Access-Accept/
                                               EAP-Message/EAP-Success
                                               (other attributes)
                       <- EAP-Success















Aboba & Calhoun              Informational                     [Page 34]

RFC 3579                      RADIUS & EAP                September 2003


  In the case where the NAS initiates with an EAP-Request for EAP TLS
  [RFC2716], and the identity is determined based on the contents of
  the client certificate, the exchange will appear as follows:

Authenticating peer     NAS                    RADIUS server
-------------------     ---                    -------------
                       <- EAP-Request/
                       EAP-Type=EAP-TLS
                       (TLS Start, S bit set)
EAP-Response/
EAP-Type=EAP-TLS
(TLS client_hello)->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       EAP-Type=EAP-TLS->
                                             <-RADIUS Access-Challenge/
                                             EAP-Message/
                                             EAP-Request/
                                             EAP-Type=EAP-TLS
                        <- EAP-Request/
                        EAP-Type=EAP-TLS
                        (TLS server_hello,
                        TLS certificate,
                  [TLS server_key_exchange,]
                  [TLS certificate_request,]
                      TLS server_hello_done)
EAP-Response/
EAP-Type=EAP-TLS
(TLS certificate,
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished)->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       EAP-Type=EAP-TLS->
                                             <-RADIUS Access-Challenge/
                                             EAP-Message/
                                             EAP-Request/
                                             EAP-Type=EAP-TLS
                       <- EAP-Request/
                       EAP-Type=EAP-TLS
                       (TLS change_cipher_spec,
                       TLS finished)







Aboba & Calhoun              Informational                     [Page 35]

RFC 3579                      RADIUS & EAP                September 2003


EAP-Response/
EAP-Type=EAP-TLS ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       EAP-Type=EAP-TLS->
                                             <-RADIUS Access-Accept/
                                             EAP-Message/EAP-Success
                                             (other attributes)
                       <- EAP-Success

  In the case where the NAS first sends an EAP-Start packet to the
  RADIUS server,  the conversation would appear as follows:

Authenticating peer     NAS                    RADIUS server
-------------------     ---                    -------------
                       RADIUS Access-Request/
                       EAP-Message/Start ->
                                              <- RADIUS
                                              Access-Challenge/
                                              EAP-Message/EAP-Request/
                                              Identity
                       <- EAP-Request/
                       Identity
EAP-Response/
Identity (MyID) ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       Identity (MyID) ->
                                               <- RADIUS
                                               Access-Challenge/
                                               EAP-Message/EAP-Request/
                                               OTP/OTP Challenge
                       <- EAP-Request/
                       OTP/OTP Challenge
EAP-Response/
OTP, OTPpw ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       OTP, OTPpw ->
                                               <- RADIUS
                                               Access-Accept/
                                               EAP-Message/EAP-Success
                                               (other attributes)
                       <- EAP-Success







Aboba & Calhoun              Informational                     [Page 36]

RFC 3579                      RADIUS & EAP                September 2003


  In the case where the NAS initiates with an EAP-Request for EAP TLS
  [RFC2716], but the peer responds with a Nak, indicating that it would
  prefer another method not implemented locally on the NAS, the
  exchange will appear as follows:

Authenticating peer     NAS                    RADIUS server
-------------------     ---                    -------------
                       <- EAP-Request/
                       EAP-Type=EAP-TLS
                       (TLS Start, S bit set)
EAP-Response/
EAP-Type=Nak
(Alternative(s))->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       Nak ->
                                              <- RADIUS
                                              Access-Challenge/
                                              EAP-Message/EAP-Request/
                                              Identity
                       <- EAP-Request/
                       Identity
EAP-Response/
Identity (MyID) ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       (MyID) ->
                                              <- RADIUS
                                              Access-Challenge/
                                              EAP-Message/EAP-Request
                                              OTP/OTP Challenge
                       <- EAP-Request/
                       OTP/OTP Challenge
EAP-Response/
OTP, OTPpw ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       OTP, OTPpw ->
                                               <- RADIUS
                                               Access-Accept/
                                               EAP-Message/EAP-Success
                                               (other attributes)
                       <- EAP-Success








Aboba & Calhoun              Informational                     [Page 37]

RFC 3579                      RADIUS & EAP                September 2003


  In the case where the authenticating peer attempts to authenticate
  the NAS, the conversation would appear as follows:

Authenticating peer     NAS                    RADIUS Server
-------------------     ---                    -------------
EAP-Request/
Challenge, MD5 ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Request/
                       Challenge, MD5 ->
                                               <- RADIUS
                                               Access-Reject/
                                               EAP-Message/
                                               EAP-Response/
                                               Nak (no alternative)

                       <- EAP-Response/Nak
                        (no alternative)
EAP-Failure ->
































Aboba & Calhoun              Informational                     [Page 38]

RFC 3579                      RADIUS & EAP                September 2003


  In the case where an invalid EAP Response is inserted by an attacker,
  the conversation would appear as follows:

Authenticating peer     NAS                    RADIUS server
-------------------     ---                    -------------
                       <- EAP-Request/
                       EAP-Type=Foo
EAP-Response/
EAP-Type=Foo ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       EAP-Type=Foo ->
                                              <- RADIUS
                                              Access-Challenge/
                                              EAP-Message/EAP-Request/
                                              EAP-Type=Foo
                       <- EAP-Request/
                       EAP-Type=Foo
Attacker spoof:
EAP-Response/
EAP-Type=Bar ->

Good guy:
EAP-Response/
EAP-Type=Foo ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       EAP-Type=Bar ->

                                              <- RADIUS
                                              Access-Challenge/
                                              EAP-Message/EAP-Request/
                                              EAP-Type=Foo,
                                              Error-Cause="Invalid EAP
                                               Packet (Ignored)"
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       EAP-Type=Foo ->
                                              <- Access-Accept/
                                              EAP-Message/Success
                       <- EAP Success










Aboba & Calhoun              Informational                     [Page 39]

RFC 3579                      RADIUS & EAP                September 2003


  In the case where the client fails EAP authentication, and an error
  message is sent prior to disconnection, the conversation would appear
  as follows:

Authenticating peer     NAS                    RADIUS server
-------------------     ---                    -------------
                       RADIUS Access-Request/
                       EAP-Message/Start ->
                                              <- RADIUS
                                              Access-Challenge/
                                              EAP-Message/EAP-Response/
                                              Identity
                       <- EAP-Request/
                       Identity
EAP-Response/
Identity (MyID) ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       (MyID) ->
                                               <- RADIUS
                                               Access-Challenge/
                                               EAP-Message/EAP-Request
                                               OTP/OTP Challenge
                       <- EAP-Request/
                       OTP/OTP Challenge
EAP-Response/
OTP, OTPpw ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       OTP, OTPpw ->
                                               <- RADIUS
                                               Access-Challenge/
                                               EAP-Message/EAP-Request/
                                               Notification
                       <- EAP-Request/
                          Notification

EAP-Response/
Notification ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       Notification ->
                                                <- RADIUS
                                                Access-Reject/
                                                EAP-Message/EAP-Failure
                       <- EAP-Failure
                       (client disconnected)




Aboba & Calhoun              Informational                     [Page 40]

RFC 3579                      RADIUS & EAP                September 2003


  In the case that the RADIUS server or proxy does not support EAP-
  Message, but no error message is sent, the conversation would appear
  as follows:

Authenticating peer     NAS                       RADIUS server
-------------------     ---                       -------------
                       RADIUS Access-Request/
                       EAP-Message/Start ->
                                                 <- RADIUS
                                                 Access-Reject
                       (User Disconnected)

In the case where the local RADIUS server does support EAP-Message, but
the remote RADIUS server does not, the conversation would appear as
follows:

Authenticating peer     NAS                       RADIUS server
-------------------     ---                       -------------
                       RADIUS Access-Request/
                       EAP-Message/Start ->
                                                 <- RADIUS
                                                 Access-Challenge/
                                                 EAP-Message/
                                                 EAP-Response/
                                                 Identity
                       <- EAP-Request/
                       Identity

EAP-Response/
Identity
(MyID) ->
                       RADIUS Access-Request/
                       EAP-Message/EAP-Response/
                       (MyID) ->
                                                 <- RADIUS
                                                 Access-Reject
                                                 (proxied from remote
                                                  RADIUS server)
                       (User Disconnected)












Aboba & Calhoun              Informational                     [Page 41]

RFC 3579                      RADIUS & EAP                September 2003


  In the case where PPP is the link and the authenticating peer does
  not support EAP, but where EAP is required for that user, the
  conversation would appear as follows:

Authenticating peer     NAS                       RADIUS server
-------------------     ---                       -------------
                       <- PPP LCP Request-EAP
                       auth
PPP LCP NAK-EAP
auth ->
                       <- PPP LCP Request-CHAP
                       auth
PPP LCP ACK-CHAP
auth ->
                       <- PPP CHAP Challenge
PPP CHAP Response ->
                       RADIUS Access-Request/
                       User-Name,
                       CHAP-Password ->
                                                 <- RADIUS
                                                 Access-Reject
                       <-  PPP LCP Terminate
                       (User Disconnected)

In the case where PPP is the link, the NAS does not support EAP, but
where EAP is required for that user, the conversation would appear as
follows:

Authenticating peer     NAS                       RADIUS server
-------------------     ---                       -------------
                       <- PPP LCP Request-CHAP
                       auth

PP LCP ACK-CHAP
auth ->
                       <- PPP CHAP Challenge
PPP CHAP Response ->
                       RADIUS Access-Request/
                       User-Name,
                       CHAP-Password ->

                                                <- RADIUS
                                                Access-Reject
                       <-  PPP LCP Terminate
                       (User Disconnected)






Aboba & Calhoun              Informational                     [Page 42]

RFC 3579                      RADIUS & EAP                September 2003


Appendix B - Change Log

  The following changes have been made from RFC 2869:

  A NAS may simultaneously support both local authentication and
  pass-through; once the NAS enters pass-through mode within a session,
  it cannot revert back to local authentication.  Also EAP is
  explicitly described as a 'lock step' protocol. (Section 2).

  The NAS may initiate with an EAP-Request for an authentication Type.
  If the Request is NAK'd, the NAS should send an initial
  Access-Request with an EAP-Message attribute containing an
  EAP-Response/Nak.

  The RADIUS server may treat an invalid EAP Response as a non-fatal
  error (Section 2.2)

  For use with RADIUS/EAP, the Password-Retry (Section 2.3) and
  Reply-Message (2.6.5) attributes are deprecated.

  Each EAP session has a unique Identifier space (Section 2.6.1).

  Role reversal is not supported (Section 2.6.2).

  Message combinations (e.g. Access-Accept/EAP-Failure) that conflict
  are discouraged (Section 2.6.3).

  Only a single EAP packet may be encapsulated within a RADIUS message
  (Section 3.1).

  An Access-Request lacking explicit authentication as well as a
  Message- Authenticator attribute SHOULD be silently discarded
  (Section 3.3).

  The Originating-Line-Info attribute is supported (Section 3.3).

  IPsec ESP with non-null transform SHOULD be used and the usage model
  is described in detail (Section 4.2).

  Additional discussion of security vulnerabilities (Section 4.1) and
  potential fixes (Section 4.3).

  Separated normative (Section 6.1) and informative (Section 6.2)
  references.







Aboba & Calhoun              Informational                     [Page 43]

RFC 3579                      RADIUS & EAP                September 2003


  Added additional examples (Appendix A): a NAS initiating with an
  EAP-Request for an authentication Type; attempted role reversal.

Intellectual Property Statement

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.

Acknowledgments

  Thanks to Dave Dawson and Karl Fox of Ascend, Glen Zorn of Cisco
  Systems, Jari Arkko of Ericsson and Ashwin Palekar, Tim Moore and
  Narendra Gidwani of Microsoft for useful discussions of this problem
  space.  The authors would also like to acknowledge Tony Jeffree,
  Chair of IEEE 802.1 for his assistance in resolving RADIUS/EAP issues
  in IEEE 802.1X-2001.


















Aboba & Calhoun              Informational                     [Page 44]

RFC 3579                      RADIUS & EAP                September 2003


Authors' Addresses

  Bernard Aboba
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA 98052

  Phone:  +1 425 706 6605
  Fax:    +1 425 936 7329
  EMail:   [email protected]


  Pat R. Calhoun
  Airespace
  110 Nortech Parkway
  San Jose, California, 95134
  USA

  Phone:  +1 408 635 2023
  Fax:    +1 408 635 2020
  EMail:  [email protected]






























Aboba & Calhoun              Informational                     [Page 45]

RFC 3579                      RADIUS & EAP                September 2003


Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assignees.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Aboba & Calhoun              Informational                     [Page 46]