Network Working Group                                   J. Soininen, Ed.
Request for Comments: 3574                                         Nokia
Category: Informational                                      August 2003


               Transition Scenarios for 3GPP Networks

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This document describes different scenarios in Third Generation
  Partnership Project (3GPP) defined packet network, i.e., General
  Packet Radio Service (GPRS) that would need IP version 6 and IP
  version 4 transition.  The focus of this document is on the scenarios
  where the User Equipment (UE) connects to nodes in other networks,
  e.g., in the Internet.  GPRS network internal transition scenarios,
  i.e., between different GPRS elements in the network, are out of
  scope.   The purpose of the document is to list the scenarios for
  further discussion and study.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
  2.  Scope of the Document. . . . . . . . . . . . . . . . . . . . .  2
  3.  Brief Description of the 3GPP Network Environment. . . . . . .  2
      3.1 GPRS Architecture Basics . . . . . . . . . . . . . . . . .  3
      3.2 IP Multimedia Core Network Subsystem (IMS) . . . . . . . .  3
  4.  Transition Scenarios . . . . . . . . . . . . . . . . . . . . .  5
      4.1 GPRS Scenarios . . . . . . . . . . . . . . . . . . . . . .  5
      4.2 IMS Scenarios  . . . . . . . . . . . . . . . . . . . . . .  8
  5.  Security Considerations. . . . . . . . . . . . . . . . . . . .  9
  6.  Contributing Authors . . . . . . . . . . . . . . . . . . . . . 10
  7.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 10
  8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 10
      8.1.  Normative References . . . . . . . . . . . . . . . . . . 10
      8.2.  Informative References . . . . . . . . . . . . . . . . . 11
  9.  Editor's Address . . . . . . . . . . . . . . . . . . . . . . . 11
  10. Full Copyright Statement . . . . . . . . . . . . . . . . . . . 12




Soininen                     Informational                      [Page 1]

RFC 3574         Transition Scenarios for 3GPP Networks      August 2003


1.  Introduction

  This document describes the transition scenarios in 3GPP packet data
  networks that might come up in the deployment phase of IPv6.  The
  main purpose of this document is to identify and to document those
  scenarios for further discussion and study them in the v6ops working
  group.

  Just a brief overview of the 3GPP packet data network, GPRS, is given
  to help the reader to better understand the transition scenarios.  A
  better overview of the 3GPP specified GPRS can be found for example
  from [6].  The GPRS architecture is defined in [1].

2.  Scope of the Document

  The scope is to describe the possible transition scenarios in the
  3GPP defined GPRS network where a UE connects to, or is contacted
  from, the Internet or another UE.  The document describes scenarios
  with and without the usage of the SIP-based (Session Initiation
  Protocol [5]) IP Multimedia Core Network Subsystem (IMS).  The 3GPP
  releases 1999, 4, and 5 are considered as the basis.

  Out of scope are scenarios inside the GPRS network, i.e., on the
  different interfaces of the GPRS network.  This document neither
  changes 3GPP specifications, nor proposes changes to the current
  specifications.

  In addition, the possible transition scenarios are described.  The
  solutions will be documented in a separate document.

  All the possible scenarios are listed here.  Further analysis may
  show that some of the scenarios are not actually relevant in this
  context.

3.  Brief Description of the 3GPP Network Environment

  This section describes the most important concepts of the 3GPP
  environment for understanding the transition scenarios.  The first
  part of the description gives a brief overview to the GPRS network as
  such.  The second part concentrates on the IP Multimedia Core Network
  Subsystem (IMS).










Soininen                     Informational                      [Page 2]

RFC 3574         Transition Scenarios for 3GPP Networks      August 2003


3.1.  GPRS Architecture Basics

  This section gives an overview to the most important concepts of the
  3GPP packet architecture.  For more detailed description, please see
  [1].

  From the point of view of this document, the most relevant 3GPP
  architectural elements are the User Equipment (UE), and the Gateway
  GPRS Support Node (GGSN).  A simplified picture of the architecture
  is shown in Figure 1.

  The UE is the mobile phone.  It can either be an integrated device
  comprising a combined GPRS part, and the IP stack, or it might be a
  separate GPRS device, and separate equipment with the IP stack, e.g.,
  a laptop.

  The GGSN serves as an anchor-point for the GPRS mobility management.
  It also serves as the default router for the UE.

  The Peer node mentioned in the picture refers to a node with which
  the UE is communicating.

     --         ----       ************       ---------
    |UE|- ... -|GGSN|--+--* IPv4/v6 NW *--+--|Peer node|
     --         ----       ************       ---------

           Figure 1:  Simplified GPRS Architecture

  There is a dedicated link between the UE and the GGSN called the
  Packet Data Protocol (PDP) Context.  This link is created through the
  PDP Context activation process.  During the activation the UE is
  configured with its IP address and other information needed to
  maintain IP access, e.g., DNS server address.  There are three
  different types of PDP Contexts: IPv4, IPv6, and Point-to-Point
  Protocol (PPP).

  A UE can have one or more simultaneous PDP Contexts open to the same
  or to different GGSNs.  The PDP Context can be either of the same or
  different types.

3.2.  IP Multimedia Core Network Subsystem (IMS)

  IP Multimedia Core Network Subsystem (IMS) is an architecture for
  supporting multimedia services via a SIP infrastructure.  It is
  specified in 3GPP Release 5.  This section provides an overview of
  the 3GPP IMS and is not intended to be comprehensive.  A more
  detailed description can be found in [2], [3] and [4].




Soininen                     Informational                      [Page 3]

RFC 3574         Transition Scenarios for 3GPP Networks      August 2003


  The IMS comprises a set of SIP proxies, servers, and registrars.  In
  addition, there are Media Gateways (MGWs) that offer connections to
  non-IP networks such as the Public Switched Telephony Network (PSTN).
  A simplified overview of the IMS is depicted in figure 2.

            +-------------+  +-------------------------------------+
            |             |  |                           +------+  |
            |             |  |                           |S-CSCF|---
      |     |             |  |                           +------+  |
    +-|+    |             |  |                            /        |
    |  |    |   SIP Sig.  |  |    +------+          +------+       |
    |  |----|------+------|--|----|P-CSCF|----------|I-CSCF|       |
    |  |    |             |  |    +------+          +------+       |
    |  |-----------+------------------------------------------------
    +--+    |  User traf. |  |                                     |
     UE     |             |  |                                     |
            | GPRS access |  |     IP Multimedia CN Subsystem      |
            +-------------+  +-------------------------------------+

             Figure 2: Overview of the 3GPP IMS architecture

  The SIP proxies, servers, and registrars shown in Figure 2 are as
  follows.

    - P-CSCF (Proxy-Call Session Control Function) is the first
      contact point within the IMS for the subscriber.

    - I-CSCF (Interrogating-CSCF) is the contact point within an
      operator's network for all connections destined to a subscriber
      of that network operator, or a roaming subscriber currently
      located within that network operator's service area.

    - S-CSCF (Serving-CSCF) performs the session control services for
      the subscriber.  It also acts as a SIP Registrar.

  IMS capable UEs utilize the GPRS network as an access network for
  accessing the IMS.  Thus, a UE has to have an activated PDP Context
  to the IMS before it can proceed to use the IMS services.  The PDP
  Context activation is explained briefly in section 3.1.

  The IMS is exclusively IPv6.  Thus, the activated PDP Context is of
  PDP Type IPv6.  This means that a 3GPP IP Multimedia terminal uses
  exclusively IPv6 to access the IMS, and the IMS SIP server and proxy
  support exclusively IPv6.  Hence, all the traffic going to the IMS is
  IPv6, even if the UE is dual stack capable - this comprises both
  signaling and user traffic.





Soininen                     Informational                      [Page 4]

RFC 3574         Transition Scenarios for 3GPP Networks      August 2003


  This, of course, does not prevent the usage of other unrelated
  services (e.g., corporate access) on IPv4.

4.  Transition Scenarios

  This section is divided into two main parts - GPRS scenarios, and
  scenarios with the IP Multimedia Subsystem (IMS).  The first part -
  GPRS scenarios - concentrates on scenarios with a User Equipment (UE)
  connecting to services in the Internet, e.g., mail, web.  The second
  part - IMS scenarios - then describes how an IMS capable UE can
  connect to other SIP-capable nodes in the Internet using the IMS
  services.

4.1.  GPRS Scenarios

  This section describes the scenarios that might occur when a GPRS UE
  contacts services, or nodes outside the GPRS network, e.g., web-
  server in the Internet.

  Transition scenarios of the GPRS internal interfaces are outside of
  the scope of this document.

  The following scenarios are described here.  In all of the scenarios,
  the UE is part of a network where there is at least one router of the
  same IP version, i.e., GGSN, and it is connecting to a node in a
  different network.

  The scenarios here apply also for PDP Context type Point-to-Point
  Protocol (PPP) where PPP is terminated at the GGSN.  On the other
  hand, where the PPP PDP Context is terminated e.g., at an external
  ISP, the environment is the same as for general ISP cases.

     1) Dual Stack UE connecting to IPv4 and IPv6 nodes
     2) IPv6 UE connecting to an IPv6 node through an IPv4 network
     3) IPv4 UE connecting to an IPv4 node through an IPv6 network
     4) IPv6 UE connecting to an IPv4 node
     5) IPv4 UE connecting to an IPv6 node

  1) Dual Stack UE connecting to IPv4 and IPv6 nodes

     The GPRS system has been designed in a manner that there is the
     possibility to have simultaneous IPv4, and IPv6 PDP Contexts open.
     Thus, in cases where the UE is dual stack capable, and in the
     network there is a GGSN (or separate GGSNs) that supports both
     connections to IPv4 and IPv6 networks, it is possible to connect
     to both at the same time.  Figure 3 depicts this scenario.





Soininen                     Informational                      [Page 5]

RFC 3574         Transition Scenarios for 3GPP Networks      August 2003


      +-------------+
      |             |
      |     UE      |                                    +------+
      |             |                                    | IPv4 |
      |             |                                   /|      |
      |------|------+                                  / +------+
      | IPv6 | IPv4 |                     +--------+  /
      +-------------+       IPv4          |        | /
          |      |------------------------|        |/
          |                               |        |
          |                 IPv6          |  GGSN  |\
          |-------------------------------|        | \
                          +-----------+   |        |  \  +------+
                          | GPRS Core |   |        |   \ | IPv6 |
                          +-----------+   +--------+    \|      |
                                                         +------+

                         Figure 3: Dual-Stack Case

     However, the IPv4 addresses may be a scarce resource for the
     mobile operator or an ISP.  In that case, it might not be possible
     for the UE to have a globally unique IPv4 address allocated all
     the time.  Hence, the UE could either activate the IPv4 PDP
     Context only when needed, or be allocated an IPv4 address from a
     private address space.

  2) IPv6 UE connecting to an IPv6 node through an IPv4 network

     Especially in the initial stages of IPv6 deployment, there are
     cases where an IPv6 node would need to connect to the IPv6
     Internet through a network that is IPv4.  For instance, this can
     be seen in current fixed networks, where the access is provided
     via IPv4 only, but there is an IPv6 network deeper in the
     Internet.  This scenario is shown in Figure 4.

       +------+                  +------+
       |      |                  |      |                 +------+
       |  UE  |------------------|      |-----------------|      |
       |      |    +-----------+ | GGSN |     +---------+ | IPv6 |
       | IPv6 |    | GPRS Core | |      |     | IPv4 Net| |      |
       +------+    +-----------+ +------+     +---------+ +------+

               Figure 4: IPv6 nodes communicating over IPv4

     In this case, in the GPRS system, the UE would be IPv6 capable,
     and the GPRS network would provide an IPv6 capable GGSN in the
     network.  However, there is an IPv4 network between the GGSN, and
     the peer node.



Soininen                     Informational                      [Page 6]

RFC 3574         Transition Scenarios for 3GPP Networks      August 2003


  3) IPv4 UE connecting to an IPv4 node through an IPv6 network

     Further in the future, there are cases where the legacy UEs are
     still IPv4 only, capable of connecting only to the legacy IPv4
     Internet.  However, the GPRS operator network has already been
     upgraded to IPv6.  Figure 5 represents this scenario.

      +------+                  +------+
      |      |                  |      |                 +------+
      |  UE  |------------------|      |-----------------|      |
      |      |    +-----------+ | GGSN |     +---------+ | IPv4 |
      | IPv4 |    | GPRS Core | |      |     | IPv6 Net| |      |
      +------+    +-----------+ +------+     +---------+ +------+

              Figure 5: IPv4 nodes communicating over IPv6

     In this case, the operator would still provide an IPv4 capable
     GGSN, and a connection through the IPv6 network to the IPv4
     Internet.

  4) IPv6 UE connecting to an IPv4 node

     In this scenario, an IPv6 UE connects to an IPv4 node in the IPv4
     Internet.  As an example, an IPv6 UE connects to an IPv4 web
     server in the legacy Internet.  In the figure 6, this kind of
     possible installation is described.

      +------+                  +------+
      |      |                  |      |     +---+    +------+
      |  UE  |------------------|      |-----|   |----|      |
      |      |    +-----------+ | GGSN |     | ? |    | IPv4 |
      | IPv6 |    | GPRS Core | |      |     |   |    |      |
      +------+    +-----------+ +------+     +---+    +------+

           Figure 6: IPv6 node communicating with IPv4 node
















Soininen                     Informational                      [Page 7]

RFC 3574         Transition Scenarios for 3GPP Networks      August 2003


  5) IPv4 UE connecting to an IPv6 node

     This is similar to the case above, but in the opposite direction.
     Here an IPv4 UE connects to an IPv6 node in the IPv6 Internet.  As
     an example, a legacy IPv4 UE is connected to an IPv6 server in the
     IPv6 Internet.  Figure 7 depicts this configuration.

      +------+                  +------+
      |      |                  |      |     +---+    +------+
      |  UE  |------------------|      |-----|   |----|      |
      |      |    +-----------+ | GGSN |     | ? |    | IPv6 |
      | IPv4 |    | GPRS Core | |      |     |   |    |      |
      +------+    +-----------+ +------+     +---+    +------+

          Figure 7: IPv4 node communicating with IPv6 node

4.2.  IMS Scenarios

  As described in section 3.2, IMS is exclusively IPv6.  Thus, the
  number of possible transition scenarios is reduced dramatically.  In
  the following, the possible transition scenarios are listed.

     1) UE connecting to a node in an IPv4 network through IMS
     2) Two IPv6 IMS connected via an IPv4 network

  1) UE connecting to a node in an IPv4 network through IMS

     This scenario occurs when an IMS UE (IPv6) connects to a node in
     the IPv4 Internet through the IMS, or vice versa.  This happens
     when the other node is a part of a different system than 3GPP,
     e.g., a fixed PC, with only IPv4 capabilities.  This scenario is
     shown in the Figure 8.

      +------+     +------+     +-----+
      |      |     |      |     |     |  +---+  +------+
      |  UE  |-...-|      |-----| IMS |--|   |--|      |
      |      |     | GGSN |     |     |  | ? |  | IPv4 |
      | IPv6 |     |      |     |     |  |   |  |      |
      +------+     +------+     +-----+  +---+  +------+

          Figure 8: IMS UE connecting to an IPv4 node










Soininen                     Informational                      [Page 8]

RFC 3574         Transition Scenarios for 3GPP Networks      August 2003


  2) Two IPv6 IMS connected via an IPv4 network

     At the early stages of IMS deployment, there may be cases where
     two IMS islands are only connected via an IPv4 network such as the
     legacy Internet.  See Figure 9 for illustration.

      +------+     +------+     +-----+          +-----+
      |      |     |      |     |     |          |     |
      |  UE  |-...-|      |-----| IMS |----------|     |
      |      |     | GGSN |     |     | +------+ | IMS |
      | IPv6 |     |      |     |     | | IPv4 | |     |
      +------+     +------+     +-----+ +------+ +-----+

         Figure 9: Two IMS islands connected over IPv4

5.  Security Considerations

  This document describes possible transition scenarios for 3GPP
  networks for future study.  Solutions and mechanism are explored in
  other documents.  The description of the 3GPP network scenarios does
  not have any security issues.






























Soininen                     Informational                      [Page 9]

RFC 3574         Transition Scenarios for 3GPP Networks      August 2003


6.  Contributing Authors

  This document is a result of a joint effort of a design team.  The
  members of the design team are listed in the following.

     Alain Durand, Sun Microsystems
     <[email protected]>

     Karim El-Malki, Ericsson Radio Systems
     <[email protected]>

     Niall Richard Murphy, Enigma Consulting Limited
     <[email protected]>

     Hugh Shieh, AT&T Wireless
     <[email protected]>

     Jonne Soininen, Nokia
     <[email protected]>

     Hesham Soliman, Ericsson Radio Systems
     <[email protected]>

     Margaret Wasserman, Wind River
     <[email protected]>

     Juha Wiljakka, Nokia
     <[email protected]>

7.  Acknowledgements

  The authors would like to thank Basavaraj Patil, Tuomo Sipila, Fred
  Templin, Rod Van Meter, Pekka Savola, Francis Dupont, Christine
  Fisher, Alain Baudot, Rod Walsh, and Jens Staack for good input, and
  comments that helped writing this document.

8.  References

8.1.  Normative References

  [1] 3GPP TS 23.060 v 5.2.0, "General Packet Radio Service (GPRS);
      Service description; Stage 2(Release 5)", June 2002.

  [2] 3GPP TS 23.228 v 5.3.0, " IP Multimedia Subsystem (IMS); Stage
      2(Release 5)", January 2002.






Soininen                     Informational                     [Page 10]

RFC 3574         Transition Scenarios for 3GPP Networks      August 2003


  [3] 3GPP TS 24.228 V5.0.0, "Signalling flows for the IP multimedia
      call control based on SIP and SDP; Stage 3 (Release 5)", March
      2002.

  [4] 3GPP TS 24.229 V5.0.0, "IP Multimedia Call Control Protocol based
      on SIP and SDP; Stage 3 (Release 5)", March 2002.

  [5] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
      Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
      Session Initiation Protocol", RFC 3261, June 2002.

8.2.  Informative References

  [6] Wasserman, M., "Recommendations for IPv6 in Third Generation
      Partnership Project (3GPP) Standards", RFC 3314, September 2002.

9.  Editor's Address

  Jonne Soininen
  Nokia
  313 Fairchild Dr.
  Mountain View, CA, USA

  Phone:  +1-650-864-6794
  EMail:  [email protected]


























Soininen                     Informational                     [Page 11]

RFC 3574         Transition Scenarios for 3GPP Networks      August 2003


10.  Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assignees.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Soininen                     Informational                     [Page 12]