Network Working Group                                          J. Schaad
Request for Comments: 3565                       Soaring Hawk Consulting
Category: Standards Track                                      July 2003


      Use of the Advanced Encryption Standard (AES) Encryption
           Algorithm in Cryptographic Message Syntax (CMS)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This document specifies the conventions for using the Advanced
  Encryption Standard (AES) algorithm for encryption with the
  Cryptographic Message Syntax (CMS).

Conventions used in this document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, RFC 2119
  [MUSTSHOULD].

1.  Overview

  This document specifies the conventions for using Advanced Encryption
  Standard (AES) content encryption algorithm with the Cryptographic
  Message Syntax [CMS] enveloped-data and encrypted-data content types.

  CMS values are generated using ASN.1 [X.208-88], using the Basic
  Encoding Rules (BER) [X.209-88] and the Distinguished Encoding Rules
  (DER) [X.509-88].









Schaad                      Standards Track                     [Page 1]

RFC 3565       Use of the AES Encryption Algorithm in CMS      July 2003


1.1.  AES

  The Advanced Encryption Standard (AES) [AES] was developed to replace
  DES [DES].  The AES Federal Information Processing Standard (FIPS)
  Publication specifies a cryptographic algorithm for use by U.S.
  Government organizations.  However, the AES will also be widely used
  by organizations, institutions, and individuals outside of the U.S.
  Government.

  Two researchers who developed and submitted the Rijndael algorithm
  for consideration are both cryptographers from Belgium: Dr. Joan
  Daemen of Proton World International and Dr. Vincent Rijmen, a
  postdoctoral researcher in the Electrical Engineering Department of
  Katholieke Universiteit Leuven.

  The National Institute of Standards and technology (NIST) selected
  the Rijndael algorithm for AES because it offers a combination of
  security, performance, efficiency, ease of implementation, and
  flexibility.  Specifically, Rijndael appears to be consistently a
  very good performer in both hardware and software across a wide range
  of computing environments regardless of its use in feedback or
  non-feedback modes.  Its key setup time is excellent, and its key
  agility is good.  The very low memory requirements of the Rijndael
  algorithm make it very well suited for restricted-space environments,
  in which it also demonstrates excellent performance.  The Rijndael
  algorithm operations are among the easiest to defend against power
  and timing attacks.  Additionally, it appears that some defense can
  be provided against such attacks without significantly impacting the
  algorithm's performance.  Finally, the algorithm's internal round
  structure appears to have good potential to benefit from
  instruction-level parallelism.

  The AES specifies three key sizes: 128, 192 and 256 bits.

2.  Enveloped-data Conventions

  The CMS enveloped-data content type consists of encrypted content and
  wrapped content-encryption keys for one or more recipients.  The AES
  algorithm is used to encrypt the content.

  Compliant software MUST meet the requirements for constructing an
  enveloped-data content type stated in [CMS] Section 6,
  "Enveloped-data Content Type".

  The AES content-encryption key MUST be randomly generated for each
  instance of an enveloped-data content type.  The content-encryption
  key (CEK) is used to encrypt the content.




Schaad                      Standards Track                     [Page 2]

RFC 3565       Use of the AES Encryption Algorithm in CMS      July 2003


  AES can be used with the enveloped-data content type using any of the
  following key management techniques defined in [CMS] Section 6.

  1) Key Transport: The AES CEK is uniquely wrapped for each recipient
  using the recipient's public RSA key and other values.  Section 2.2
  provides additional details.

  2) Key Agreement: The AES CEK is uniquely wrapped for each recipient
  using a pairwise symmetric key-encryption key (KEK) generated using
  an originator's randomly generated private key (ES-DH [DH]) or
  previously generated private key (SS-DH [DH]), the recipient's public
  DH key, and other values.  Section 2.3 provides additional details.

  3) Previously Distributed Symmetric KEK:  The AES CEK is wrapped
  using a previously distributed symmetric KEK (such as a Mail List
  Key).  The methods by which the symmetric KEK is generated and
  distributed are beyond the scope of this document.  Section 2.4
  provides additional details.

  4) Password Encryption:  The AES CEK is wrapped using a KEK derived
  from a password or other shared secret.  Section 2.5 provides
  additional details.

  Documents defining the use of the Other Recipient Info structure will
  need to define the proper use for the AES algorithm if desired.

2.1.  EnvelopedData Fields

  The enveloped-data content type is ASN.1 encoded using the
  EnvelopedData syntax.  The fields of the EnvelopedData syntax MUST be
  populated as follows:

  The EnvelopedData version is determined based on a number of factors.

  See [CMS] section 6.1 for the algorithm to determine this value.

  The EnvelopedData recipientInfos CHOICE is dependent on the key
  management technique used.  Section 2.2, 2.3, 2.4 and 2.5 provide
  additional information.

  The EnvelopedData encryptedContentInfo contentEncryptionAlgorithm
  field MUST specify a symmetric encryption algorithm.  Implementations
  MUST support content encryption with AES, but implementations MAY
  support other algorithms as well.

  The EnvelopedData unprotectedAttrs MAY be present.





Schaad                      Standards Track                     [Page 3]

RFC 3565       Use of the AES Encryption Algorithm in CMS      July 2003


2.2.  KeyTransRecipientInfo Fields

  The enveloped-data content type is ASN.1 encoded using the
  EnvelopedData syntax.  The fields of the EnvelopedData syntax MUST be
  populated as follows:

  The KeyTransRecipientInfo version MUST be either 0 or 2.  If the
  RecipientIdentifier is the CHOICE issuerAndSerialNumber, then the
  version MUST be 0.  If the RecipientIdentifier is
  subjectKeyIdentifier, then the version MUST be 2.

  The KeyTransRecipientInfo RecipientIdentifier provides two
  alternatives for specifying the recipient's certificate, and thereby
  the recipient's public key.  The recipient's certificate MUST contain
  a RSA public key.  The CEK is encrypted with the recipient's RSA
  public key.  The issuerAndSerialNumber alternative identifies the
  recipient's certificate by the issuer's distinguished name and the
  certificate serial number; the subjectKeyIdentifier identifies the
  recipient's certificate by the X.509 subjectKeyIdentifier extension
  value.

  The KeyTransRecipientInfo keyEncryptionAlgorithm field specifies the
  key transport algorithm (i.e., RSAES-OAEP [RSA-OAEP]), and the
  associated parameters used to encrypt the CEK for the recipient.

  The KeyTransRecipientInfo encryptedKey is the result of encrypting
  the CEK with the recipient's RSA public key.

2.3.  KeyAgreeRecipientInfo Fields

  This section describes the conventions for using ES-DH or SS-DH and
  AES with the CMS enveloped-data content type to support key
  agreement.  When key agreement is used, then the RecipientInfo
  keyAgreeRecipientInfo CHOICE MUST be used.

  The KeyAgreeRecipient version MUST be 3.

  The EnvelopedData originatorInfo field MUST be the originatorKey
  alternative.  The originatorKey algorithm fields MUST contain the
  dh-public-number object identifier with absent parameters.  The
  originatorKey publicKey MUST contain the originator's ephemeral
  public key.

  The EnvelopedData ukm MAY be present.

  The EnvelopedData keyEncrytionAlgorithm MUST be the id-alg-ESDH
  algorithm identifier [CMSALG].




Schaad                      Standards Track                     [Page 4]

RFC 3565       Use of the AES Encryption Algorithm in CMS      July 2003


2.3.1.  ES-DH/AES Key Derivation

  Generation of the AES KEK to be used with the AES-key wrap algorithm
  is done using the method described in [DH].

2.3.1.1.  Example 1

  ZZ is the 20 bytes 00 01 02 03 04 05 06 07 08 09
                     0a 0b 0c 0d 0e 0f 10 11 12 13

  The key wrap algorithm is AES-128 wrap, so we need 128 bits (16
  bytes) of keying material.

  No partyAInfo is used.

  Consequently, the input to SHA-1 is:

  00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 ; ZZ
  30 1b
     30 11
        06 09 60 86 48 01 65 03 04 01 05           ; AES-128 wrap OID
        04 04
           00 00 00 01                             ; Counter
     a2 06
        04 04
        00 00 00 80                                ; key length

  And the output is the 32 bytes:

  d6 d6 b0 94 c1 02 7a 7d e6 e3 11 72 94 a3 53 64 49 08 50 f9

  Consequently,

  K= d6 d6 b0 94 c1 02 7a 7d e6 e3 11 72 94 a3 53 64

















Schaad                      Standards Track                     [Page 5]

RFC 3565       Use of the AES Encryption Algorithm in CMS      July 2003


2.3.1.2.  Example 2

  ZZ is the 20 bytes 00 01 02 03 04 05 06 07 08 09
                     0a 0b 0c 0d 0e 0f 10 11 12 13

  The key wrap algorithm is AES-256 key wrap, so we need 256 bits (32
  bytes) of keying material.

  The partyAInfo used is the 64 bytes

  01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
  01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
  01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
  01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01

  Consequently, the input to first invocation of SHA-1 is:

  00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 ; ZZ
  30 5f
     30 11
        06 09 60 86 48 01 65 03 04 01 2d            ; AES-256 wrap OID
        04 04
           00 00 00 01                              ; Counter
     a0 42
        04 40
           01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01 ; partyAInfo

           01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
           01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
           01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
     a2 06
        04 04
           00 00 01 00                              ; key length

  And the output is the 20 bytes:

  88 90 58 5C 4E 28 1A 5C 11 67 CA A5 30 BE D5 9B 32 30 D8 93














Schaad                      Standards Track                     [Page 6]

RFC 3565       Use of the AES Encryption Algorithm in CMS      July 2003


  The input to second invocation of SHA-1 is:

  00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 ; ZZ
  30 5f
     30 11
        06 09 60 86 48 01 65 03 04 01 2d            ; AES-256 wrap OID
        04 04
           00 00 00 02                              ; Counter
     a0 42
        04 40
           01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01 ; partyAInfo

           01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
           01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
           01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 01
     a2 06
        04 04
           00 00 01 00                              ; key length

  And the output is the 20 bytes:

  CB A8 F9 22 BD 1B 56 A0 71 C9 6F 90 36 C6 04 2C AA 20 94 37

  Consequently,

  K = 88 90 58 5C 4E 28 1A 5C 11 67 CA A5 30 BE D5 9B
      32 30 D8 93 CB A8 F9 22 BD 1B 56 A0

2.3.2.  AES CEK Wrap Process

  The AES key wrap algorithm encrypts one AES key in another AES key.
  The algorithm produces an output 64-bits longer than the input AES
  CEK, the additional bits are a checksum.  The algorithm uses 6*n AES
  encryption/decryption operations where n is number of 64-bit blocks
  in the AES CEK.  Full details of the AES key wrap algorithm are
  available at [AES-WRAP].

  NIST has assigned the following OIDs to define the AES key wrap
  algorithm.

       id-aes128-wrap OBJECT IDENTIFIER ::= { aes 5 }
       id-aes192-wrap OBJECT IDENTIFIER ::= { aes 25 }
       id-aes256-wrap OBJECT IDENTIFIER ::= { aes 45 }

  In all cases the parameters field MUST be absent.  The OID gives the
  KEK key size, but does not make any statements as to the size of the
  wrapped AES CEK.  Implementations MAY use different KEK and CEK




Schaad                      Standards Track                     [Page 7]

RFC 3565       Use of the AES Encryption Algorithm in CMS      July 2003


  sizes.  Implements MUST support the CEK and the KEK having the same
  length.  If different lengths are supported, the KEK MUST be of equal
  or greater length than the CEK.

2.4.  KEKRecipientInfo Fields

  This section describes the conventions for using AES with the CMS
  enveloped-data content type to support previously distributed
  symmetric KEKs.  When a previously distributed symmetric KEK is used
  to wrap the AES CEK, then the RecipientInfo KEKRecipientInfo CHOICE
  MUST be used.  The methods used to generate and distribute the
  symmetric KEK are beyond the scope of this document.  One possible
  method of distributing keys is documented in [SYMKEYDIST].

  The KEKRecipientInfo fields MUST be populated as specified in [CMS]
  Section 6.2.3, KEKRecipientInfo Type.

  The KEKRecipientInfo keyEncryptionAlgorithm algorithm field MUST be
  one of the OIDs defined in section 2.3.2 indicating that the AES wrap
  function is used to wrap the AES CEK.  The KEKRecipientInfo
  keyEncryptionAlgorithm parameters field MUST be absent.

  The KEKRecipientInfo encryptedKey field MUST include the AES CEK
  wrapped using the previously distributed symmetric KEK as input to
  the AES wrap function.

2.5.  PasswordRecipientInfo Fields

  This section describes the conventions for using AES with the CMS
  enveloped-data content type to support password-based key management.

  When a password derived KEK is used to wrap the AES CEK, then the
  RecipientInfo PasswordRecipientInfo CHOICE MUST be used.

  The keyEncryptionAlgorithm algorithm field MUST be one of the OIDs
  defined in section 2.3.2 indicating the AES wrap function is used to
  wrap the AES CEK.  The keyEncryptionAlgorithm parameters field MUST
  be absent.

  The encryptedKey field MUST be the result of the AES key wrap
  algorithm applied to the AES CEK value.

3.  Encrypted-data Conventions

  The CMS encrypted-data content type consists of encrypted content
  with implicit key management.  The AES algorithm is used to encrypt
  the content.




Schaad                      Standards Track                     [Page 8]

RFC 3565       Use of the AES Encryption Algorithm in CMS      July 2003


  Compliant software MUST meet the requirements for constructing an
  enveloped-data content type stated in [CMS] Section 8,
  "Encrypted-data Content Type".

  The encrypted-data content type is ASN.1 encoded using the
  EncryptededData syntax.  The fields of the EncryptedData syntax MUST
  be populated as follows:

  The EncryptedData version is determined based on a number of factors.

  See [CMS] section 9.1 for the algorithm to determine this value.

  The EncryptedData encryptedContentInfo contentEncryptionAlgorithm
  field MUST specify a symmetric encryption algorithm.  Implementations
  MUST support encryption using AES, but implementations MAY support
  other algorithms as well.

  The EncryptedData unprotectedAttrs MAY be present.

4.  Algorithm Identifiers and Parameters

  This section specified algorithm identifiers for the AES encryption
  algorithm.

4.1.  AES Algorithm Identifiers and Parameters

  The AES algorithm is defined in [AES].  RSAES-OAEP [RSA-OAEP] MAY be
  used to transport AES keys.

  AES is added to the set of symmetric content encryption algorithms
  defined in [CMSALG].  The AES content-encryption algorithm, in Cipher
  Block Chaining (CBC) mode, for the three different key sizes are
  identified by the following object identifiers:

      id-aes128-CBC OBJECT IDENTIFIER ::= { aes 2 }
      id-aes192-CBC OBJECT IDENTIFIER ::= { aes 22 }
      id-aes256-CBC OBJECT IDENTIFIER ::= { aes 42 }

  The AlgorithmIdentifier parameters field MUST be present, and the
  parameters field MUST contain a AES-IV:

      AES-IV ::= OCTET STRING (SIZE(16))

  Content encryption algorithm identifiers are located in the
  EnvelopedData EncryptedContentInfo contentEncryptionAlgorithm and the
  EncryptedData EncryptedContentInfo contentEncryptionAlgorithm fields.





Schaad                      Standards Track                     [Page 9]

RFC 3565       Use of the AES Encryption Algorithm in CMS      July 2003


  Content encryption algorithms are used to encrypt the content located
  in the EnvelopedData EncryptedContentInfo encryptedContent and the
  EncryptedData EncryptedContentInfo encryptedContent fields.

5.  SMIMECapabilities Attribute Conventions

  An S/MIME client SHOULD announce the set of cryptographic functions
  it supports by using the S/MIME capabilities attribute.  This
  attribute provides a partial list of object identifiers of
  cryptographic functions and MUST be signed by the client.  The
  algorithm OIDs SHOULD be logically separated in functional categories
  and MUST be ordered with respect to their preference.

  RFC 2633 [MSG], Section 2.5.2 defines the SMIMECapabilities signed
  attribute (defined as a SEQUENCE of SMIMECapability SEQUENCEs) to be
  used to specify a partial list of algorithms that the software
  announcing the SMIMECapabilities can support.

5.1.  AES S/MIME Capability Attributes

  If an S/MIME client is required to support symmetric encryption with
  AES, the capabilities attribute MUST contain the AES object
  identifier specified above in the category of symmetric algorithms.
  The parameter with this encoding MUST be absent.

  The encodings for the mandatory key sizes are:

        Key Size                   Capability
         128          30 0B 06 09 60 86 48 01 65 03 04 01 02
         196          30 0B 06 09 60 86 48 01 65 03 04 01 16
         256          30 0B 06 09 60 86 48 01 65 03 04 01 2A

  When a sending agent creates an encrypted message, it has to decide
  which type of encryption algorithm to use.  In general the decision
  process involves information obtained from the capabilities lists
  included in messages received from the recipient, as well as other
  information such as private agreements, user preferences, legal
  restrictions, and so on.  If users require AES for symmetric
  encryption, the S/MIME clients on both the sending and receiving side
  MUST support it, and it MUST be set in the user preferences.











Schaad                      Standards Track                    [Page 10]

RFC 3565       Use of the AES Encryption Algorithm in CMS      July 2003


6.  Security Considerations

  If RSA-OAEP [PKCS#1v2.0] and RSA PKCS #1 v1.5 [PKCS#1v1.5] are both
  used to transport the same CEK, then an attacker can still use the
  Bleichenbacher attack against the RSA PKCS #1 v1.5 encrypted key.  It
  is generally unadvisable to mix both RSA-OAEP and RSA PKCS#1 v1.5 in
  the same set of recipients.

  Implementations must protect the RSA private key and the CEK.
  Compromise of the RSA private key may result in the disclosure of all
  messages protected with that key.  Compromise of the CEK may result
  in disclosure of the associated encrypted content.

  The generation of AES CEKs relies on random numbers.  The use of
  inadequate pseudo-random number generators (PRNGs) to generate these
  values can result in little or no security.  An attacker may find it
  much easier to reproduce the PRNG environment that produced the keys,
  searching the resulting small set of possibilities, rather than brute
  force searching the whole key space.  The generation of quality
  random numbers is difficult.  RFC 1750 [RANDOM] offers important
  guidance in this area.

  When wrapping a CEK with a KEK, the KEK MUST always be at least the
  same length as the CEK.  An attacker will generally work at the
  weakest point in an encryption system.  This would be the smaller of
  the two key sizes for a brute force attack.

Normative References

  [AES]         National Institute of Standards.  FIPS Pub 197:
                Advanced Encryption Standard (AES).  26 November 2001.

  [CMS]         Housley, R., "Cryptographic Message Syntax (CMS)", RFC
                3369, August 2002.

  [AES-WRAP]    Schaad, J. and R. Housley, "Advanced Encryption
                Standard (AES) Key Wrap Algorithm", RFC 3394, September
                2002.

  [CMSALG]      Housley, R., "Cryptographic Message Syntax (CMS)
                Algorithms, RFC 3370, August 2002.

  [DES]         National Institute of Standards and Technology. FIPS
                Pub 46: Data Encryption Standard.  15 January 1977.

  [DH]          Rescorla, E., "Diffie-Hellman Key Agreement Method",
                RFC 2631, June 1999.




Schaad                      Standards Track                    [Page 11]

RFC 3565       Use of the AES Encryption Algorithm in CMS      July 2003


  [MUSTSHOULD]  Bradner, S., "Key Words for Use in RFCs to Indicate
                Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RSA-OAEP]    Housley, R. "Use of the RSAES-OAEP Key Transport
                Algorithm in the Cryptographic Message Syntax (CMS)",
                RFC 3560, July 2003.

  [X.208-88]    CCITT.  Recommendation X.208: Specification of Abstract
                Syntax Notation One (ASN.1).  1988.

  [X.209-88]    CCITT.  Recommendation X.209: Specification of Basic
                Encoding Rules for Abstract Syntax Notation One
                (ASN.1). 1988.

  [X.509-88]    CCITT.  Recommendation X.509: The Directory -
                Authentication Framework.  1988.

Informational References

  [MSG]         Ramsdell, B., Editor, "S/MIME Version 3 Message
                Specification", RFC 2633, June 1999.

  [PKCS#1v1.5]  Kaliski, B., "PKCS #1: RSA Encryption, Version 1.5",
                RFC 2313, March 1998.

  [PKCS#1v2.0]  Kaliski, B., "PKCS #1: RSA Encryption, Version 2.0",
                RFC 2437, October 1998.

  [RANDOM]      Eastlake, D., Crocker, S. and J. Schiller, "Randomness
                Recommendations for Security", RFC 1750, December 1994.

  [SYMKEYDIST]  Turner, S., "CMS Symmetric Key Management and
                Distribution", Work in Progress, January 2003.

Acknowledgements

  This document is the result of contributions from many professionals.
  We appreciate the hard work of all members of the IETF S/MIME Working
  Group.












Schaad                      Standards Track                    [Page 12]

RFC 3565       Use of the AES Encryption Algorithm in CMS      July 2003


Appendix A  ASN.1 Module

CMSAesRsaesOaep {iso(1) member-body(2) us(840) rsadsi(113549)
     pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-cms-aes(19) }


DEFINITIONS IMPLICIT TAGS ::=
BEGIN

-- EXPORTS ALL --
IMPORTS
   -- PKIX
     AlgorithmIdentifier
         FROM PKIXExplicit88 {iso(1) identified-organization(3) dod(6)
             internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
             id-pkix1-explicit(18)};

-- AES information object identifiers --

aes OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840)
              organization(1) gov(101) csor(3)_ nistAlgorithms(4)  1 }

-- AES using CBC-chaining mode for key sizes of 128, 192, 256

id-aes128-CBC OBJECT IDENTIFIER ::= { aes 2 }
id-aes192-CBC OBJECT IDENTIFIER ::= { aes 22 }
id-aes256-CBC OBJECT IDENTIFIER ::= { aes 42 }

-- AES-IV is a the parameter for all the above object identifiers.

AES-IV ::= OCTET STRING (SIZE(16))


-- AES Key Wrap Algorithm Identifiers  - Parameter is absent

id-aes128-wrap OBJECT IDENTIFIER ::= { aes 5 }
id-aes192-wrap OBJECT IDENTIFIER ::= { aes 25 }
id-aes256-wrap OBJECT IDENTIFIER ::= { aes 45 }


END

Author's Address

  Jim Schaad
  Soaring Hawk Consulting

  EMail: [email protected]



Schaad                      Standards Track                    [Page 13]

RFC 3565       Use of the AES Encryption Algorithm in CMS      July 2003


Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assignees.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Schaad                      Standards Track                    [Page 14]