Network Working Group                                        Q. Xie, Ed.
Request for Comments: 3557                                Motorola, Inc.
Category: Standards Track                                      July 2003


                        RTP Payload Format for
European Telecommunications Standards Institute (ETSI) European Standard
          ES 201 108 Distributed Speech Recognition Encoding

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This document specifies an RTP payload format for encapsulating
  European Telecommunications Standards Institute (ETSI) European
  Standard (ES) 201 108 front-end signal processing feature streams for
  distributed speech recognition (DSR) systems.
























Xie                         Standards Track                     [Page 1]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


Table of Contents

  1.  Conventions and Acronyms . . . . . . . . . . . . . . . . . . .  2
  2.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
      2.1.  ETSI ES 201 108 DSR Front-end Codec. . . . . . . . . . .  3
      2.2.  Typical Scenarios for Using DSR Payload Format . . . . .  4
  3.  ES 201 108 DSR RTP Payload Format. . . . . . . . . . . . . . .  5
      3.1.  Consideration on Number of FPs in Each RTP Packet. . . .  6
      3.2.  Support for Discontinuous Transmission . . . . . . . . .  6
  4.  Frame Pair Formats . . . . . . . . . . . . . . . . . . . . . .  7
      4.1.  Format of Speech and Non-speech FPs. . . . . . . . . . .  7
      4.2.  Format of Null FP. . . . . . . . . . . . . . . . . . . .  8
      4.3.  RTP header usage . . . . . . . . . . . . . . . . . . . .  8
  5.  IANA Considerations. . . . . . . . . . . . . . . . . . . . . .  9
      5.1.  Mapping MIME Parameters into SDP . . . . . . . . . . . . 10
  6.  Security Considerations. . . . . . . . . . . . . . . . . . . . 11
  7.  Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 11
  8.  Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . 11
  9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 11
      9.1.  Normative References . . . . . . . . . . . . . . . . . . 11
      9.2.  Informative References . . . . . . . . . . . . . . . . . 12
  10. IPR Notices. . . . . . . . . . . . . . . . . . . . . . . . . . 12
  11. Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 13
  12. Editor's Address . . . . . . . . . . . . . . . . . . . . . . . 14
  13. Full Copyright Statement . . . . . . . . . . . . . . . . . . . 15

1.  Conventions and Acronyms

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  The following acronyms are used in this document:

  DSR  - Distributed Speech Recognition

  ETSI - the European Telecommunications Standards Institute

  FP   - Frame Pair

  DTX  - Discontinuous Transmission

2.  Introduction

  Motivated by technology advances in the field of speech recognition,
  voice interfaces to services (such as airline information systems,
  unified messaging) are becoming more prevalent.  In parallel, the
  popularity of mobile devices has also increased dramatically.



Xie                         Standards Track                     [Page 2]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


  However, the voice codecs typically employed in mobile devices were
  designed to optimize audible voice quality and not speech recognition
  accuracy, and using these codecs with speech recognizers can result
  in poor recognition performance.  For systems that can be accessed
  from heterogeneous networks using multiple speech codecs, recognition
  system designers are further challenged to accommodate the
  characteristics of these differences in a robust manner.  Channel
  errors and lost data packets in these networks result in further
  degradation of the speech signal.

  In traditional systems as described above, the entire speech
  recognizer lies on the server.  It is forced to use incoming speech
  in whatever condition it arrives after the network decodes the
  vocoded speech.  To address this problem, we use a distributed speech
  recognition (DSR) architecture.  In such a system, the remote device
  acts as a thin client, also known as the front-end, in communication
  with a speech recognition server, also called a speech engine.  The
  remote device processes the speech, compresses the data, and adds
  error protection to the bitstream in a manner optimal for speech
  recognition.  The speech engine then uses this representation
  directly, minimizing the signal processing necessary and benefiting
  from enhanced error concealment.

  To achieve interoperability with different client devices and speech
  engines, a common format is needed.  Within the "Aurora" DSR working
  group of the European Telecommunications Standards Institute (ETSI),
  a payload has been defined and was published as a standard [ES201108]
  in February 2000.

  For voice dialogues between a caller and a voice service, low latency
  is a high priority along with accurate speech recognition.  While
  jitter in the speech recognizer input is not particularly important,
  many issues related to speech interaction over an IP-based connection
  are still relevant.  Therefore, it is desirable to use the DSR
  payload in an RTP-based session.

2.1  ETSI ES 201 108 DSR Front-end Codec

  The ETSI Standard ES 201 108 for DSR [ES201108] defines a signal
  processing front-end and compression scheme for speech input to a
  speech recognition system.  Some relevant characteristics of this
  ETSI DSR front-end codec are summarized below.

  The coding algorithm, a standard mel-cepstral technique common to
  many speech recognition systems, supports three raw sampling rates: 8
  kHz, 11 kHz, and 16 kHz.  The mel-cepstral calculation is a frame-
  based scheme that produces an output vector every 10 ms.




Xie                         Standards Track                     [Page 3]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


  After calculation of the mel-cepstral representation, the
  representation is first quantized via split-vector quantization to
  reduce the data rate of the encoded stream.  Then, the quantized
  vectors from two consecutive frames are put into an FP, as described
  in more detail in Section 4.1.

2.2  Typical Scenarios for Using DSR Payload Format

  The diagrams in Figure 1 show some typical use scenarios of the ES
  201 108 DSR RTP payload format.

  +--------+                     +----------+
  |IP USER |  IP/UDP/RTP/DSR     |IP SPEECH |
  |TERMINAL|-------------------->|  ENGINE  |
  |        |                     |          |
  +--------+                     +----------+

    a) IP user terminal to IP speech engine

  +--------+  DSR over      +-------+                +----------+
  | Non-IP |  Circuit link  |       | IP/UDP/RTP/DSR |IP SPEECH |
  |  USER  |:::::::::::::::>|GATEWAY|--------------->|  ENGINE  |
  |TERMINAL|  ETSI payload  |       |                |          |
  +--------+  format        +-------+                +----------+

    b) non-IP user terminal to IP speech engine via a gateway

  +--------+                  +-------+  DSR over       +----------+
  |IP USER |  IP/UDP/RTP/DSR  |       |  circuit link   |  Non-IP  |
  |TERMINAL|----------------->|GATEWAY|::::::::::::::::>|  SPEECH  |
  |        |                  |       |  ETSI payload   |  ENGINE  |
  +--------+                  +-------+  format         +----------+

    c) IP user terminal to non-IP speech engine via a gateway

        Figure 1: Typical Scenarios for Using DSR Payload Format.

  For the different scenarios in Figure 1, the speech recognizer always
  resides in the speech engine.  A DSR front-end encoder inside the
  User Terminal performs front-end speech processing and sends the
  resultant data to the speech engine in the form of "frame pairs"
  (FPs).  Each FP contains two sets of encoded speech vectors
  representing 20ms of original speech.








Xie                         Standards Track                     [Page 4]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


3.  ES 201 108 DSR RTP Payload Format

  An ES 201 108 DSR RTP payload datagram consists of a standard RTP
  header [RFC3550] followed by a DSR payload.  The DSR payload itself
  is formed by concatenating a series of ES 201 108 DSR FPs (defined in
  Section 4).

  FPs are always packed bit-contiguously into the payload octets
  beginning with the most significant bit.  For ES 201 108 front-end,
  the size of each FP is 96 bits or 12 octets (see Sections 4.1 and
  4.2).  This ensures that a DSR payload will always end on an octet
  boundary.

  The following example shows a DSR RTP datagram carrying a DSR payload
  containing three 96-bit-long FPs (bit 0 is the MSB):

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  \                                                               \
  /                    RTP header in [RFC3550]                    /
  \                                                               \
  +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
  |                                                               |
  +                                                               +
  |                         FP #1 (96 bits)                       |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |                         FP #2 (96 bits)                       |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |                         FP #3 (96 bits)                       |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 2. An example of an ES 201 108 DSR RTP payload.








Xie                         Standards Track                     [Page 5]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


3.1 Consideration on Number of FPs in Each RTP Packet

  The number of FPs per payload packet should be determined by the
  latency and bandwidth requirements of the DSR application using this
  payload format.  In particular, using a smaller number of FPs per
  payload packet in a session will result in lowered bandwidth
  efficiency due to the RTP/UDP/IP header overhead, while using a
  larger number of FPs per packet will cause longer end-to-end delay
  and hence increased recognition latency.  Furthermore, carrying a
  larger number of FPs per packet will increase the possibility of
  catastrophic packet loss; the loss of a large number of consecutive
  FPs is a situation most speech recognizers have difficulty dealing
  with.

  It is therefore RECOMMENDED that the number of FPs per DSR payload
  packet be minimized, subject to meeting the application's
  requirements on network bandwidth efficiency.  RTP header compression
  techniques, such as those defined in [RFC2508] and [RFC3095], should
  be considered to improve network bandwidth efficiency.

3.2 Support for Discontinuous Transmission

  The DSR RTP payloads may be used to support discontinuous
  transmission (DTX) of speech, which allows that DSR FPs are sent only
  when speech has been detected at the terminal equipment.

  In DTX a set of DSR frames coding an unbroken speech segment
  transmitted from the terminal to the server is called a transmission
  segment.  A DSR frame inside such a transmission segment can be
  either a speech frame or a non-speech frame, depending on the nature
  of the section of the speech signal it represents.

  The end of a transmission segment is determined at the sending end
  equipment when the number of consecutive non-speech frames exceeds a
  pre-set threshold, called the hangover time.  A typical value used
  for the hangover time is 1.5 seconds.

  After all FPs in a transmission segment are sent, the front-end
  SHOULD indicate the end of the current transmission segment by
  sending one or more Null FPs (defined in Section 4.2).











Xie                         Standards Track                     [Page 6]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


4.  Frame Pair Formats

4.1 Format of Speech and Non-speech FPs

  The following mel-cepstral frame MUST be used, as defined in
  [ES201108]:

  As defined in [ES201108], pairs of the quantized 10ms mel-cepstral
  frames MUST be grouped together and protected with a 4-bit CRC,
  forming a 92-bit long FP:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Frame #1  (44 bits)                      |
  +                       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       |          Frame #2 (44 bits)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+                       +-+-+-+-+-+-+-+-+
  |                                               | CRC   |0|0|0|0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The length of each frame is 44 bits representing 10ms of voice. The
  following mel-cepstral frame formats MUST be used when forming an FP:

  Frame #1 in FP:
  ===============
      (MSB)                                     (LSB)
        0     1     2     3     4     5     6     7
     +-----+-----+-----+-----+-----+-----+-----+-----+
     :  idx(2,3) |            idx(0,1)               |    Octet 1
     +-----+-----+-----+-----+-----+-----+-----+-----+
     :       idx(4,5)        |     idx(2,3) (cont)   :    Octet 2
     +-----+-----+-----+-----+-----+-----+-----+-----+
     |             idx(6,7)              |idx(4,5)(cont)  Octet 3
     +-----+-----+-----+-----+-----+-----+-----+-----+
      idx(10,11) |              idx(8,9)             |    Octet 4
     +-----+-----+-----+-----+-----+-----+-----+-----+
     :       idx(12,13)      |   idx(10,11) (cont)   :    Octet 5
     +-----+-----+-----+-----+-----+-----+-----+-----+
                             |   idx(12,13) (cont)   :    Octet 6/1
                             +-----+-----+-----+-----+










Xie                         Standards Track                     [Page 7]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


  Frame #2 in FP:
  ===============
      (MSB)                                     (LSB)
        0     1     2     3     4     5     6     7
     +-----+-----+-----+-----+
     :        idx(0,1)       |                            Octet 6/2
     +-----+-----+-----+-----+-----+-----+-----+-----+
     |              idx(2,3)             |idx(0,1)(cont)  Octet 7
     +-----+-----+-----+-----+-----+-----+-----+-----+
     :  idx(6,7) |              idx(4,5)             |    Octet 8
     +-----+-----+-----+-----+-----+-----+-----+-----+
     :        idx(8,9)       |      idx(6,7) (cont)  :    Octet 9
     +-----+-----+-----+-----+-----+-----+-----+-----+
     |          idx(10,11)               |idx(8,9)(cont)  Octet 10
     +-----+-----+-----+-----+-----+-----+-----+-----+
     |                   idx(12,13)                  |    Octet 11
     +-----+-----+-----+-----+-----+-----+-----+-----+

  Therefore, each FP represents 20ms of original speech.  Note, as
  shown above, each FP MUST be padded with 4 zeros to the end in order
  to make it aligned to the 32-bit word boundary.  This makes the size
  of an FP 96 bits, or 12 octets.  Note, this padding is separate from
  padding indicated by the P bit in the RTP header.

  The 4-bit CRC MUST be calculated using the formula defined in 6.2.4
  in [ES201108]. The definition of the indices and the determination of
  their value are also described in [ES201108].

4.2 Format of Null FP

  A Null FP for the ES 201 108 front-end codec is defined by setting
  the content of the first and second frame in the FP to null (i.e.,
  filling the first 88 bits of the FP with 0's).  The 4-bit CRC MUST be
  calculated the same way as described in 6.2.4 in [ES201108], and 4
  zeros MUST be padded to the end of the Null FP to make it 32-bit word
  aligned.

4.3 RTP header usage

  The format of the RTP header is specified in [RFC3550].  This payload
  format uses the fields of the header in a manner consistent with that
  specification.

  The RTP timestamp corresponds to the sampling instant of the first
  sample encoded for the first FP in the packet.  The timestamp clock
  frequency is the same as the sampling frequency, so the timestamp
  unit is in samples.




Xie                         Standards Track                     [Page 8]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


  As defined by ES 201 108 front-end codec, the duration of one FP is
  20 ms, corresponding to 160, 220, or 320 encoded samples with
  sampling rate of 8, 11, or 16 kHz being used at the front-end,
  respectively. Thus, the timestamp is increased by 160, 220, or 320
  for each consecutive FP, respectively.

  The DSR payload for ES 201 108 front-end codes is always an integral
  number of octets.  If additional padding is required for some other
  purpose, then the P bit in the RTP in the header may be set and
  padding appended as specified in [RFC3550].

  The RTP header marker bit (M) should be set following the general
  rules defined in [RFC3551].

  The assignment of an RTP payload type for this new packet format is
  outside the scope of this document, and will not be specified here.
  It is expected that the RTP profile under which this payload format
  is being used will assign a payload type for this encoding or specify
  that the payload type is to be bound dynamically.

5.  IANA Considerations

  One new MIME subtype registration is required for this payload type,
  as defined below.

  This section also defines the optional parameters that may be used to
  describe a DSR session.  The parameters are defined here as part of
  the MIME subtype registration.  A mapping of the parameters into the
  Session Description Protocol (SDP) [RFC2327] is also provided in 5.1
  for those applications that use SDP.

  Media Type name: audio

  Media subtype name: dsr-es201108

  Required parameters: none

  Optional parameters:

  rate: Indicates the sample rate of the speech.  Valid values include:
     8000, 11000, and 16000.  If this parameter is not present, 8000
     sample rate is assumed.

  maxptime: The maximum amount of media which can be encapsulated in
     each packet, expressed as time in milliseconds.  The time shall be
     calculated as the sum of the time the media present in the packet
     represents.  The time SHOULD be a multiple of the frame pair size
     (i.e., one FP <-> 20ms).



Xie                         Standards Track                     [Page 9]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


     If this parameter is not present, maxptime is assumed to be 80ms.

     Note, since the performance of most speech recognizers are
     extremely sensitive to consecutive FP losses, if the user of the
     payload format expects a high packet loss ratio for the session,
     it MAY consider to explicitly choose a maxptime value for the
     session that is shorter than the default value.

  ptime: see RFC2327 [RFC2327].

  Encoding considerations : This type is defined for transfer via RTP
     [RFC3550] as described in Sections 3 and 4 of RFC 3557.

  Security considerations : See Section 6 of RFC 3557.

  Person & email address to contact for further information:
     [email protected]

  Intended usage: COMMON.  It is expected that many VoIP applications
     (as well as mobile applications) will use this type.

  Author/Change controller:
     [email protected]
     IETF Audio/Video transport working group

5.1 Mapping MIME Parameters into SDP

  The information carried in the MIME media type specification has a
  specific mapping to fields in the Session Description Protocol (SDP)
  [RFC2327], which is commonly used to describe RTP sessions.  When SDP
  is used to specify sessions employing ES 201 018 DSR codec, the
  mapping is as follows:

  o  The MIME type ("audio") goes in SDP "m=" as the media name.

  o  The MIME subtype ("dsr-es201108") goes in SDP "a=rtpmap" as the
     encoding name.

  o  The optional parameter "rate" also goes in "a=rtpmap" as clock
     rate.

  o  The optional parameters "ptime" and "maxptime" go in the SDP
     "a=ptime" and "a=maxptime" attributes, respectively.








Xie                         Standards Track                    [Page 10]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


  Example of usage of ES 201 108 DSR:

     m=audio 49120 RTP/AVP 101
     a=rtpmap:101 dsr-es201108/8000
     a=maxptime:40

6.  Security Considerations

  Implementations using the payload defined in this specification are
  subject to the security considerations discussed in the RTP
  specification [RFC3550] and the RTP profile [RFC3551].  This payload
  does not specify any different security services.

7.  Contributors

  The following individuals contributed to the design of this payload
  format and the writing of this document: Q. Xie (Motorola), D. Pearce
  (Motorola), S. Balasuriya (Motorola), Y. Kim (VerbalTek), S. H. Maes
  (IBM), and, Hari Garudadri (Qualcomm).

8.  Acknowledgments

  The design presented here benefits greatly from an earlier work on
  DSR RTP payload design by Jeff Meunier and Priscilla Walther.  The
  authors also wish to thank Brian Eberman, John Lazzaro, Magnus
  Westerlund, Rainu Pierce, Priscilla Walther, and others for their
  review and valuable comments on this document.

9.  References

9.1  Normative References

  [ES201108]   European Telecommunications Standards Institute (ETSI)
               Standard ES 201 108, "Speech Processing, Transmission
               and Quality Aspects (STQ); Distributed Speech
               Recognition; Front-end Feature Extraction Algorithm;
               Compression Algorithms," Ver. 1.1.2, April 11, 2000.

  [RFC3550]    Schulzrinne, H., Casner, S., Jacobson, V. and R.
               Frederick, "RTP: A Transport Protocol for Real-Time
               Applications", RFC 3550, July 2003.

  [RFC2026]    Bradner, S., "The Internet Standards Process -- Revision
               3", BCP 9, RFC 2026, October 1996.

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.




Xie                         Standards Track                    [Page 11]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


  [RFC2327]    Handley, M. and V. Jacobson, "SDP: Session Description
               Protocol", RFC 2327, April 1998.

9.2  Informative References

  [RFC3551]    Schulzrinne, H. and S. Casner, "RTP Profile for Audio
               and Video Conferences with Minimal Control", RFC 3551,
               July 2003.

  [RFC2508]    Casner, S. and V. Jacobson, "Compressing IP/UDP/RTP
               Headers for Low-Speed Serial Links", RFC 2508, February
               1999.

  [RFC3095]    Bormann, C., Burmeister, C., Degermark, M., Fukushima,
               H., Hannu, H., Jonsson, L-E, Hakenberg, R., Koren, T.,
               Le, K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro,
               K., Wiebke, T., Yoshimura, T. and H. Zheng, "RObust
               Header Compression (ROHC): Framework and four profiles",
               RFC 3095, July 2001.

10.  IPR Notices

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made be made available, or the result of an attempt
  made to obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.











Xie                         Standards Track                    [Page 12]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


11.  Authors' Addresses

  David Pearce
  Motorola Labs
  UK Research Laboratory
  Jays Close
  Viables Industrial Estate
  Basingstoke, HANTS, RG22 4PD

  Phone: +44 (0)1256 484 436
  EMail: [email protected]


  Senaka Balasuriya
  Motorola, Inc.
  600 U.S Highway 45
  Libertyville, IL 60048, USA

  Phone: +1-847-523-0440
  EMail: [email protected]


  Yoon Kim
  VerbalTek, Inc.
  2921 Copper Rd.
  Santa Clara, CA 95051

  Phone: +1-408-768-4974
  EMail: [email protected]


  Stephane H. Maes, PhD,
  Oracle
  500 Oracle Parkway, M/S 4op634
  Redwood City, CA 94065 USA

  Phone: +1-650-607-6296.
  EMail: [email protected]


  Hari Garudadri
  Qualcomm Inc.
  5775, Morehouse Dr.
  San Diego, CA 92121-1714, USA

  Phone: +1-858-651-6383
  EMail: [email protected]




Xie                         Standards Track                    [Page 13]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


12.  Editor's Address

  Qiaobing Xie
  Motorola, Inc.
  1501 W. Shure Drive, 2-F9
  Arlington Heights, IL 60004, USA

  Phone: +1-847-632-3028
  EMail: [email protected]










































Xie                         Standards Track                    [Page 14]

RFC 3557         RTP Payload Format for DSR ES 201 108         July 2003


13.  Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Xie                         Standards Track                    [Page 15]