Network Working Group                                      U. Blumenthal
Request for Comments: 3414                                     B. Wijnen
STD: 62                                              Lucent Technologies
Obsoletes: 2574                                            December 2002
Category: Standards Track


         User-based Security Model (USM) for version 3 of the
             Simple Network Management Protocol (SNMPv3)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

  This document describes the User-based Security Model (USM) for
  Simple Network Management Protocol (SNMP) version 3 for use in the
  SNMP architecture.  It defines the Elements of Procedure for
  providing SNMP message level security.  This document also includes a
  Management Information Base (MIB) for remotely monitoring/managing
  the configuration parameters for this Security Model.  This document
  obsoletes RFC 2574.

Table of Contents

  1.        Introduction..........................................  4
  1.1.      Threats...............................................  4
  1.2.      Goals and Constraints.................................  6
  1.3.      Security Services.....................................  6
  1.4.      Module Organization...................................  7
  1.4.1.    Timeliness Module.....................................  8
  1.4.2.    Authentication Protocol...............................  8
  1.4.3.    Privacy Protocol......................................  8
  1.5.      Protection against Message Replay, Delay
            and Redirection.......................................  9
  1.5.1.    Authoritative SNMP engine.............................  9
  1.5.2.    Mechanisms............................................  9
  1.6.      Abstract Service Interfaces........................... 11




Blumenthal & Wijnen         Standards Track                     [Page 1]

RFC 3414                     USM for SNMPv3                December 2002


  1.6.1.    User-based Security Model Primitives
            for Authentication.................................... 11
  1.6.2.    User-based Security Model Primitives
            for Privacy........................................... 12
  2.        Elements of the Model................................. 12
  2.1.      User-based Security Model Users....................... 12
  2.2.      Replay Protection..................................... 13
  2.2.1.    msgAuthoritativeEngineID.............................. 14
  2.2.2.    msgAuthoritativeEngineBoots and
            msgAuthoritativeEngineTime............................ 14
  2.2.3.    Time Window........................................... 15
  2.3.      Time Synchronization.................................. 15
  2.4.      SNMP Messages Using this Security Model............... 16
  2.5.      Services provided by the User-based Security Model.... 17
  2.5.1.    Services for Generating an Outgoing SNMP Message...... 17
  2.5.2.    Services for Processing an Incoming SNMP Message...... 20
  2.6.      Key Localization Algorithm............................ 22
  3.        Elements of Procedure................................. 22
  3.1.      Generating an Outgoing SNMP Message................... 22
  3.2.      Processing an Incoming SNMP Message................... 26
  4.        Discovery............................................. 31
  5.        Definitions........................................... 32
  6.        HMAC-MD5-96 Authentication Protocol................... 51
  6.1.      Mechanisms............................................ 51
  6.1.1.    Digest Authentication Mechanism....................... 51
  6.2.      Elements of the Digest Authentication Protocol........ 52
  6.2.1.    Users................................................. 52
  6.2.2.    msgAuthoritativeEngineID.............................. 53
  6.2.3.    SNMP Messages Using this Authentication Protocol...... 53
  6.2.4.    Services provided by the HMAC-MD5-96
            Authentication Module................................. 53
  6.2.4.1.  Services for Generating an Outgoing SNMP Message...... 53
  6.2.4.2.  Services for Processing an Incoming SNMP Message...... 54
  6.3.      Elements of Procedure................................. 55
  6.3.1.    Processing an Outgoing Message........................ 55
  6.3.2.    Processing an Incoming Message........................ 56
  7.        HMAC-SHA-96 Authentication Protocol................... 57
  7.1.      Mechanisms............................................ 57
  7.1.1.    Digest Authentication Mechanism....................... 57
  7.2.      Elements of the HMAC-SHA-96 Authentication Protocol... 58
  7.2.1.    Users................................................. 58
  7.2.2.    msgAuthoritativeEngineID.............................. 58
  7.2.3.    SNMP Messages Using this Authentication Protocol...... 59
  7.2.4.    Services provided by the HMAC-SHA-96
            Authentication Module................................. 59
  7.2.4.1.  Services for Generating an Outgoing SNMP Message...... 59
  7.2.4.2.  Services for Processing an Incoming SNMP Message...... 60
  7.3.      Elements of Procedure................................. 61



Blumenthal & Wijnen         Standards Track                     [Page 2]

RFC 3414                     USM for SNMPv3                December 2002


  7.3.1.    Processing an Outgoing Message........................ 61
  7.3.2.    Processing an Incoming Message........................ 61
  8.        CBC-DES Symmetric Encryption Protocol................. 63
  8.1.      Mechanisms............................................ 63
  8.1.1.    Symmetric Encryption Protocol......................... 63
  8.1.1.1.  DES key and Initialization Vector..................... 64
  8.1.1.2.  Data Encryption....................................... 65
  8.1.1.3.  Data Decryption....................................... 65
  8.2.      Elements of the DES Privacy Protocol.................. 65
  8.2.1.    Users................................................. 65
  8.2.2.    msgAuthoritativeEngineID.............................. 66
  8.2.3.    SNMP Messages Using this Privacy Protocol............. 66
  8.2.4.    Services provided by the DES Privacy Module........... 66
  8.2.4.1.  Services for Encrypting Outgoing Data................. 66
  8.2.4.2.  Services for Decrypting Incoming Data................. 67
  8.3.      Elements of Procedure................................. 68
  8.3.1.    Processing an Outgoing Message........................ 68
  8.3.2.    Processing an Incoming Message........................ 69
  9.        Intellectual Property................................. 69
  10.       Acknowledgements...................................... 70
  11.       Security Considerations............................... 71
  11.1.     Recommended Practices................................. 71
  11.2.     Defining Users........................................ 73
  11.3.     Conformance........................................... 74
  11.4.     Use of Reports........................................ 75
  11.5.     Access to the SNMP-USER-BASED-SM-MIB.................. 75
  12.       References............................................ 75
  A.1.      SNMP engine Installation Parameters................... 78
  A.2.      Password to Key Algorithm............................. 80
  A.2.1.    Password to Key Sample Code for MD5................... 81
  A.2.2.    Password to Key Sample Code for SHA................... 82
  A.3.      Password to Key Sample Results........................ 83
  A.3.1.    Password to Key Sample Results using MD5.............. 83
  A.3.2.    Password to Key Sample Results using SHA.............. 83
  A.4.      Sample encoding of msgSecurityParameters.............. 83
  A.5.      Sample keyChange Results.............................. 84
  A.5.1.    Sample keyChange Results using MD5.................... 84
  A.5.2.    Sample keyChange Results using SHA.................... 85
  B.        Change Log............................................ 86
            Editors' Addresses.................................... 87
            Full Copyright Statement.............................. 88










Blumenthal & Wijnen         Standards Track                     [Page 3]

RFC 3414                     USM for SNMPv3                December 2002


1. Introduction

  The Architecture for describing Internet Management Frameworks
  [RFC3411] describes that an SNMP engine is composed of:

  1) a Dispatcher,
  2) a Message Processing Subsystem,
  3) a Security Subsystem, and
  4) an Access Control Subsystem.

  Applications make use of the services of these subsystems.

  It is important to understand the SNMP architecture and the
  terminology of the architecture to understand where the Security
  Model described in this document fits into the architecture and
  interacts with other subsystems within the architecture.  The reader
  is expected to have read and understood the description of the SNMP
  architecture, as defined in [RFC3411].

  This memo describes the User-based Security Model as it is used
  within the SNMP Architecture.  The main idea is that we use the
  traditional concept of a user (identified by a userName) with which
  to associate security information.

  This memo describes the use of HMAC-MD5-96 and HMAC-SHA-96 as the
  authentication protocols and the use of CBC-DES as the privacy
  protocol.  The User-based Security Model however allows for other
  such protocols to be used instead of or concurrent with these
  protocols.  Therefore, the description of HMAC-MD5-96, HMAC-SHA-96
  and CBC-DES are in separate sections to reflect their self-contained
  nature and to indicate that they can be replaced or supplemented in
  the future.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

1.1. Threats

  Several of the classical threats to network protocols are applicable
  to the network management problem and therefore would be applicable
  to any SNMP Security Model.  Other threats are not applicable to the
  network management problem.  This section discusses principal
  threats, secondary threats, and threats which are of lesser
  importance.

  The principal threats against which this SNMP Security Model should
  provide protection are:



Blumenthal & Wijnen         Standards Track                     [Page 4]

RFC 3414                     USM for SNMPv3                December 2002


  - Modification of Information The modification threat is the danger
    that some unauthorized entity may alter in-transit SNMP messages
    generated on behalf of an authorized principal in such a way as to
    effect unauthorized management operations, including falsifying the
    value of an object.

  - Masquerade The masquerade threat is the danger that management
    operations not authorized for some user may be attempted by
    assuming the identity of another user that has the appropriate
    authorizations.

  Two secondary threats are also identified.  The Security Model
  defined in this memo provides limited protection against:

  - Disclosure The disclosure threat is the danger of eavesdropping on
    the exchanges between managed agents and a management station.
    Protecting against this threat may be required as a matter of local
    policy.

  - Message Stream Modification The SNMP protocol is typically based
    upon a connection-less transport service which may operate over any
    sub-network service.  The re-ordering, delay or replay of messages
    can and does occur through the natural operation of many such sub-
    network services.  The message stream modification threat is the
    danger that messages may be maliciously re-ordered, delayed or
    replayed to an extent which is greater than can occur through the
    natural operation of a sub-network service, in order to effect
    unauthorized management operations.

  There are at least two threats that an SNMP Security Model need not
  protect against.  The security protocols defined in this memo do not
  provide protection against:

  - Denial of Service This SNMP Security Model does not attempt to
    address the broad range of attacks by which service on behalf of
    authorized users is denied.  Indeed, such denial-of-service attacks
    are in many cases indistinguishable from the type of network
    failures with which any viable network management protocol must
    cope as a matter of course.

  - Traffic Analysis This SNMP Security Model does not attempt to
    address traffic analysis attacks.  Indeed, many traffic patterns
    are predictable - devices may be managed on a regular basis by a
    relatively small number of management applications - and therefore
    there is no significant advantage afforded by protecting against
    traffic analysis.





Blumenthal & Wijnen         Standards Track                     [Page 5]

RFC 3414                     USM for SNMPv3                December 2002


1.2. Goals and Constraints

  Based on the foregoing account of threats in the SNMP network
  management environment, the goals of this SNMP Security Model are as
  follows.

  1) Provide for verification that each received SNMP message has not
     been modified during its transmission through the network.

  2) Provide for verification of the identity of the user on whose
     behalf a received SNMP message claims to have been generated.

  3) Provide for detection of received SNMP messages, which request or
     contain management information, whose time of generation was not
     recent.

  4) Provide, when necessary, that the contents of each received SNMP
     message are protected from disclosure.

  In addition to the principal goal of supporting secure network
  management, the design of this SNMP Security Model is also influenced
  by the following constraints:

  1) When the requirements of effective management in times of network
     stress are inconsistent with those of security, the design of USM
     has given preference to the former.

  2) Neither the security protocol nor its underlying security
     mechanisms should depend upon the ready availability of other
     network services (e.g., Network Time Protocol (NTP) or key
     management protocols).

  3) A security mechanism should entail no changes to the basic SNMP
     network management philosophy.

1.3. Security Services

  The security services necessary to support the goals of this SNMP
  Security Model are as follows:

  - Data Integrity is the provision of the property that data has not
    been altered or destroyed in an unauthorized manner, nor have data
    sequences been altered to an extent greater than can occur non-
    maliciously.

  - Data Origin Authentication is the provision of the property that
    the claimed identity of the user on whose behalf received data was
    originated is corroborated.



Blumenthal & Wijnen         Standards Track                     [Page 6]

RFC 3414                     USM for SNMPv3                December 2002


  - Data Confidentiality is the provision of the property that
    information is not made available or disclosed to unauthorized
    individuals, entities, or processes.

  - Message timeliness and limited replay protection is the provision
    of the property that a message whose generation time is outside of
    a specified time window is not accepted.  Note that message
    reordering is not dealt with and can occur in normal conditions
    too.

  For the protocols specified in this memo, it is not possible to
  assure the specific originator of a received SNMP message; rather, it
  is the user on whose behalf the message was originated that is
  authenticated.

  For these protocols, it not possible to obtain data integrity without
  data origin authentication, nor is it possible to obtain data origin
  authentication without data integrity.  Further, there is no
  provision for data confidentiality without both data integrity and
  data origin authentication.

  The security protocols used in this memo are considered acceptably
  secure at the time of writing.  However, the procedures allow for new
  authentication and privacy methods to be specified at a future time
  if the need arises.

1.4. Module Organization

  The security protocols defined in this memo are split in three
  different modules and each has its specific responsibilities such
  that together they realize the goals and security services described
  above:

  - The authentication module MUST provide for:

    - Data Integrity,

    - Data Origin Authentication,

  - The timeliness module MUST provide for:

    - Protection against message delay or replay (to an extent greater
      than can occur through normal operation).

  - The privacy module MUST provide for

    - Protection against disclosure of the message payload.




Blumenthal & Wijnen         Standards Track                     [Page 7]

RFC 3414                     USM for SNMPv3                December 2002


  The timeliness module is fixed for the User-based Security Model
  while there is provision for multiple authentication and/or privacy
  modules, each of which implements a specific authentication or
  privacy protocol respectively.

1.4.1. Timeliness Module

  Section 3 (Elements of Procedure) uses the timeliness values in an
  SNMP message to do timeliness checking.  The timeliness check is only
  performed if authentication is applied to the message.  Since the
  complete message is checked for integrity, we can assume that the
  timeliness values in a message that passes the authentication module
  are trustworthy.

1.4.2. Authentication Protocol

  Section 6 describes the HMAC-MD5-96 authentication protocol which is
  the first authentication protocol that MUST be supported with the
  User-based Security Model.  Section 7 describes the HMAC-SHA-96
  authentication protocol which is another authentication protocol that
  SHOULD be supported with the User-based Security Model.  In the
  future additional or replacement authentication protocols may be
  defined as new needs arise.

  The User-based Security Model prescribes that, if authentication is
  used, then the complete message is checked for integrity in the
  authentication module.

  For a message to be authenticated, it needs to pass authentication
  check by the authentication module and the timeliness check which is
  a fixed part of this User-based Security model.

1.4.3. Privacy Protocol

  Section 8 describes the CBC-DES Symmetric Encryption Protocol which
  is the first privacy protocol to be used with the User-based Security
  Model.  In the future additional or replacement privacy protocols may
  be defined as new needs arise.

  The User-based Security Model prescribes that the scopedPDU is
  protected from disclosure when a message is sent with privacy.

  The User-based Security Model also prescribes that a message needs to
  be authenticated if privacy is in use.







Blumenthal & Wijnen         Standards Track                     [Page 8]

RFC 3414                     USM for SNMPv3                December 2002


1.5. Protection against Message Replay, Delay and Redirection

1.5.1. Authoritative SNMP Engine

  In order to protect against message replay, delay and redirection,
  one of the SNMP engines involved in each communication is designated
  to be the authoritative SNMP engine.  When an SNMP message contains a
  payload which expects a response (those messages that contain a
  Confirmed Class PDU [RFC3411]), then the receiver of such messages is
  authoritative.  When an SNMP message contains a payload which does
  not expect a response (those messages that contain an Unconfirmed
  Class PDU [RFC3411]), then the sender of such a message is
  authoritative.

1.5.2. Mechanisms

  The following mechanisms are used:

  1) To protect against the threat of message delay or replay (to an
     extent greater than can occur through normal operation), a set of
     timeliness indicators (for the authoritative SNMP engine) are
     included in each message generated.  An SNMP engine evaluates the
     timeliness indicators to determine if a received message is
     recent.  An SNMP engine may evaluate the timeliness indicators to
     ensure that a received message is at least as recent as the last
     message it received from the same source.  A non-authoritative
     SNMP engine uses received authentic messages to advance its notion
     of the timeliness indicators at the remote authoritative source.

     An SNMP engine MUST also use a mechanism to match incoming
     Responses to outstanding Requests and it MUST drop any Responses
     that do not match an outstanding request.  For example, a msgID
     can be inserted in every message to cater for this functionality.

     These mechanisms provide for the detection of authenticated
     messages whose time of generation was not recent.

     This protection against the threat of message delay or replay does
     not imply nor provide any protection against unauthorized deletion
     or suppression of messages.  Also, an SNMP engine may not be able
     to detect message reordering if all the messages involved are sent
     within the Time Window interval.  Other mechanisms defined
     independently of the security protocol can also be used to detect
     the re-ordering replay, deletion, or suppression of messages
     containing Set operations (e.g., the MIB variable snmpSetSerialNo
     [RFC3418]).





Blumenthal & Wijnen         Standards Track                     [Page 9]

RFC 3414                     USM for SNMPv3                December 2002


  2) Verification that a message sent to/from one authoritative SNMP
     engine cannot be replayed to/as-if-from another authoritative SNMP
     engine.

     Included in each message is an identifier unique to the
     authoritative SNMP engine associated with the sender or intended
     recipient of the message.

     A message containing an Unconfirmed Class PDU sent by an
     authoritative SNMP engine to one non-authoritative SNMP engine can
     potentially be replayed to another non-authoritative SNMP engine.
     The latter non-authoritative SNMP engine might (if it knows about
     the same userName with the same secrets at the authoritative SNMP
     engine) as a result update its notion of timeliness indicators of
     the authoritative SNMP engine, but that is not considered a
     threat.  In this case, A Report or Response message will be
     discarded by the Message Processing Model, because there should
     not be an outstanding Request message.  A Trap will possibly be
     accepted.  Again, that is not considered a threat, because the
     communication was authenticated and timely.  It is as if the
     authoritative SNMP engine was configured to start sending Traps to
     the second SNMP engine, which theoretically can happen without the
     knowledge of the second SNMP engine anyway.  Anyway, the second
     SNMP engine may not expect to receive this Trap, but is allowed to
     see the management information contained in it.

  3) Detection of messages which were not recently generated.

     A set of time indicators are included in the message, indicating
     the time of generation.  Messages without recent time indicators
     are not considered authentic.  In addition, an SNMP engine MUST
     drop any Responses that do not match an outstanding request.  This
     however is the responsibility of the Message Processing Model.

  This memo allows the same user to be defined on multiple SNMP
  engines.  Each SNMP engine maintains a value, snmpEngineID, which
  uniquely identifies the SNMP engine.  This value is included in each
  message sent to/from the SNMP engine that is authoritative (see
  section 1.5.1).  On receipt of a message, an authoritative SNMP
  engine checks the value to ensure that it is the intended recipient,
  and a non-authoritative SNMP engine uses the value to ensure that the
  message is processed using the correct state information.

  Each SNMP engine maintains two values, snmpEngineBoots and
  snmpEngineTime, which taken together provide an indication of time at
  that SNMP engine.  Both of these values are included in an
  authenticated message sent to/received from that SNMP engine.  On
  receipt, the values are checked to ensure that the indicated



Blumenthal & Wijnen         Standards Track                    [Page 10]

RFC 3414                     USM for SNMPv3                December 2002


  timeliness value is within a Time Window of the current time.  The
  Time Window represents an administrative upper bound on acceptable
  delivery delay for protocol messages.

  For an SNMP engine to generate a message which an authoritative SNMP
  engine will accept as authentic, and to verify that a message
  received from that authoritative SNMP engine is authentic, such an
  SNMP engine must first achieve timeliness synchronization with the
  authoritative SNMP engine.  See section 2.3.

1.6. Abstract Service Interfaces

  Abstract service interfaces have been defined to describe the
  conceptual interfaces between the various subsystems within an SNMP
  entity.  Similarly a set of abstract service interfaces have been
  defined within the User-based Security Model (USM) to describe the
  conceptual interfaces between the generic USM services and the
  self-contained authentication and privacy services.

  These abstract service interfaces are defined by a set of primitives
  that define the services provided and the abstract data elements that
  must be passed when the services are invoked.  This section lists the
  primitives that have been defined for the User-based Security Model.

1.6.1. User-based Security Model Primitives for Authentication

  The User-based Security Model provides the following internal
  primitives to pass data back and forth between the Security Model
  itself and the authentication service:

  statusInformation =
    authenticateOutgoingMsg(
    IN   authKey                   -- secret key for authentication
    IN   wholeMsg                  -- unauthenticated complete message
    OUT  authenticatedWholeMsg     -- complete authenticated message
         )

  statusInformation =
    authenticateIncomingMsg(
    IN   authKey                   -- secret key for authentication
    IN   authParameters            -- as received on the wire
    IN   wholeMsg                  -- as received on the wire
    OUT  authenticatedWholeMsg     -- complete authenticated message
         )







Blumenthal & Wijnen         Standards Track                    [Page 11]

RFC 3414                     USM for SNMPv3                December 2002


1.6.2. User-based Security Model Primitives for Privacy

  The User-based Security Model provides the following internal
  primitives to pass data back and forth between the Security Model
  itself and the privacy service:

  statusInformation =
    encryptData(
    IN    encryptKey               -- secret key for encryption
    IN    dataToEncrypt            -- data to encrypt (scopedPDU)
    OUT   encryptedData            -- encrypted data (encryptedPDU)
    OUT   privParameters           -- filled in by service provider
          )

  statusInformation =
    decryptData(
    IN    decryptKey               -- secret key for decrypting
    IN    privParameters           -- as received on the wire
    IN    encryptedData            -- encrypted data (encryptedPDU)
    OUT   decryptedData            -- decrypted data (scopedPDU)
          )

2. Elements of the Model

  This section contains definitions required to realize the security
  model defined by this memo.

2.1. User-based Security Model Users

  Management operations using this Security Model make use of a defined
  set of user identities.  For any user on whose behalf management
  operations are authorized at a particular SNMP engine, that SNMP
  engine must have knowledge of that user.  An SNMP engine that wishes
  to communicate with another SNMP engine must also have knowledge of a
  user known to that engine, including knowledge of the applicable
  attributes of that user.

  A user and its attributes are defined as follows:

  userName
     A string representing the name of the user.

  securityName
     A human-readable string representing the user in a format that is
     Security Model independent.  There is a one-to-one relationship
     between userName and securityName.





Blumenthal & Wijnen         Standards Track                    [Page 12]

RFC 3414                     USM for SNMPv3                December 2002


  authProtocol
     An indication of whether messages sent on behalf of this user can
     be authenticated, and if so, the type of authentication protocol
     which is used.  Two such protocols are defined in this memo:

     - the HMAC-MD5-96 authentication protocol.
     - the HMAC-SHA-96 authentication protocol.

  authKey
     If messages sent on behalf of this user can be authenticated, the
     (private) authentication key for use with the authentication
     protocol.  Note that a user's authentication key will normally be
     different at different authoritative SNMP engines.  The authKey is
     not accessible via SNMP.  The length requirements of the authKey
     are defined by the authProtocol in use.

  authKeyChange and authOwnKeyChange
     The only way to remotely update the authentication key.  Does that
     in a secure manner, so that the update can be completed without
     the need to employ privacy protection.

  privProtocol
     An indication of whether messages sent on behalf of this user can
     be protected from disclosure, and if so, the type of privacy
     protocol which is used.  One such protocol is defined in this
     memo:  the CBC-DES Symmetric Encryption Protocol.

  privKey
     If messages sent on behalf of this user can be en/decrypted, the
     (private) privacy key for use with the privacy protocol.  Note
     that a user's privacy key will normally be different at different
     authoritative SNMP engines.  The privKey is not accessible via
     SNMP.  The length requirements of the privKey are defined by the
     privProtocol in use.

  privKeyChange and privOwnKeyChange
     The only way to remotely update the encryption key.  Does that in
     a secure manner, so that the update can be completed without the
     need to employ privacy protection.

2.2. Replay Protection

  Each SNMP engine maintains three objects:

  - snmpEngineID, which (at least within an administrative domain)
    uniquely and unambiguously identifies an SNMP engine.





Blumenthal & Wijnen         Standards Track                    [Page 13]

RFC 3414                     USM for SNMPv3                December 2002


  - snmpEngineBoots, which is a count of the number of times the SNMP
    engine has re-booted/re-initialized since snmpEngineID was last
    configured; and,

  - snmpEngineTime, which is the number of seconds since the
    snmpEngineBoots counter was last incremented.

  Each SNMP engine is always authoritative with respect to these
  objects in its own SNMP entity.  It is the responsibility of a non-
  authoritative SNMP engine to synchronize with the authoritative SNMP
  engine, as appropriate.

  An authoritative SNMP engine is required to maintain the values of
  its snmpEngineID and snmpEngineBoots in non-volatile storage.

2.2.1. msgAuthoritativeEngineID

  The msgAuthoritativeEngineID value contained in an authenticated
  message is used to defeat attacks in which messages from one SNMP
  engine to another SNMP engine are replayed to a different SNMP
  engine.  It represents the snmpEngineID at the authoritative SNMP
  engine involved in the exchange of the message.

  When an authoritative SNMP engine is first installed, it sets its
  local value of snmpEngineID according to a enterprise-specific
  algorithm (see the definition of the Textual Convention for
  SnmpEngineID in the SNMP Architecture document [RFC3411]).

2.2.2. msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime

  The msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime values
  contained in an authenticated message are used to defeat attacks in
  which messages are replayed when they are no longer valid.  They
  represent the snmpEngineBoots and snmpEngineTime values at the
  authoritative SNMP engine involved in the exchange of the message.

  Through use of snmpEngineBoots and snmpEngineTime, there is no
  requirement for an SNMP engine to have a non-volatile clock which
  ticks (i.e., increases with the passage of time) even when the
  SNMP engine is powered off.  Rather, each time an SNMP engine
  re-boots, it retrieves, increments, and then stores snmpEngineBoots
  in non-volatile storage, and resets snmpEngineTime to zero.

  When an SNMP engine is first installed, it sets its local values of
  snmpEngineBoots and snmpEngineTime to zero.  If snmpEngineTime ever
  reaches its maximum value (2147483647), then snmpEngineBoots is
  incremented as if the SNMP engine has re-booted and snmpEngineTime is
  reset to zero and starts incrementing again.



Blumenthal & Wijnen         Standards Track                    [Page 14]

RFC 3414                     USM for SNMPv3                December 2002


  Each time an authoritative SNMP engine re-boots, any SNMP engines
  holding that authoritative SNMP engine's values of snmpEngineBoots
  and snmpEngineTime need to re-synchronize prior to sending correctly
  authenticated messages to that authoritative SNMP engine (see Section
  2.3 for (re-)synchronization procedures).  Note, however, that the
  procedures do provide for a notification to be accepted as authentic
  by a receiving SNMP engine, when sent by an authoritative SNMP engine
  which has re-booted since the receiving SNMP engine last (re-
  )synchronized.


  If an authoritative SNMP engine is ever unable to determine its
  latest snmpEngineBoots value, then it must set its snmpEngineBoots
  value to 2147483647.

  Whenever the local value of snmpEngineBoots has the value 2147483647
  it latches at that value and an authenticated message always causes
  an notInTimeWindow authentication failure.

  In order to reset an SNMP engine whose snmpEngineBoots value has
  reached the value 2147483647, manual intervention is required.  The
  engine must be physically visited and re-configured, either with a
  new snmpEngineID value, or with new secret values for the
  authentication and privacy protocols of all users known to that SNMP
  engine.  Note that even if an SNMP engine re-boots once a second that
  it would still take approximately 68 years before the max value of
  2147483647 would be reached.

2.2.3. Time Window

  The Time Window is a value that specifies the window of time in which
  a message generated on behalf of any user is valid.  This memo
  specifies that the same value of the Time Window, 150 seconds, is
  used for all users.

2.3. Time Synchronization

  Time synchronization, required by a non-authoritative SNMP engine
  in order to proceed with authentic communications, has occurred
  when the non-authoritative SNMP engine has obtained a local notion
  of the authoritative SNMP engine's values of snmpEngineBoots and
  snmpEngineTime from the authoritative SNMP engine.  These values
  must be (and remain) within the authoritative SNMP engine's Time
  Window.  So the local notion of the authoritative SNMP engine's
  values must be kept loosely synchronized with the values stored
  at the authoritative SNMP engine.  In addition to keeping a local
  copy of snmpEngineBoots and snmpEngineTime from the authoritative
  SNMP engine, a non-authoritative SNMP engine must also keep one



Blumenthal & Wijnen         Standards Track                    [Page 15]

RFC 3414                     USM for SNMPv3                December 2002


  local variable, latestReceivedEngineTime.  This value records the
  highest value of snmpEngineTime that was received by the
  non-authoritative SNMP engine from the authoritative SNMP engine
  and is used to eliminate the possibility of replaying messages
  that would prevent the non-authoritative SNMP engine's notion of
  the snmpEngineTime from advancing.

  A non-authoritative SNMP engine must keep local notions of these
  values (snmpEngineBoots, snmpEngineTime and latestReceivedEngineTime)
  for each authoritative SNMP engine with which it wishes to
  communicate.  Since each authoritative SNMP engine is uniquely and
  unambiguously identified by its value of snmpEngineID, the
  non-authoritative SNMP engine may use this value as a key in order to
  cache its local notions of these values.

  Time synchronization occurs as part of the procedures of receiving an
  SNMP message (Section 3.2, step 7b).  As such, no explicit time
  synchronization procedure is required by a non-authoritative SNMP
  engine.  Note, that whenever the local value of snmpEngineID is
  changed (e.g., through discovery) or when secure communications are
  first established with an authoritative SNMP engine, the local values
  of snmpEngineBoots and latestReceivedEngineTime should be set to
  zero.  This will cause the time synchronization to occur when the
  next authentic message is received.

2.4. SNMP Messages Using this Security Model

  The syntax of an SNMP message using this Security Model adheres to
  the message format defined in the version-specific Message Processing
  Model document (for example [RFC3412]).

  The field msgSecurityParameters in SNMPv3 messages has a data type of
  OCTET STRING.  Its value is the BER serialization of the following
  ASN.1 sequence:

  USMSecurityParametersSyntax DEFINITIONS IMPLICIT TAGS ::= BEGIN

     UsmSecurityParameters ::=
         SEQUENCE {
          -- global User-based security parameters
             msgAuthoritativeEngineID     OCTET STRING,
             msgAuthoritativeEngineBoots  INTEGER (0..2147483647),
             msgAuthoritativeEngineTime   INTEGER (0..2147483647),
             msgUserName                  OCTET STRING (SIZE(0..32)),
          -- authentication protocol specific parameters
             msgAuthenticationParameters  OCTET STRING,
          -- privacy protocol specific parameters
             msgPrivacyParameters         OCTET STRING



Blumenthal & Wijnen         Standards Track                    [Page 16]

RFC 3414                     USM for SNMPv3                December 2002


         }
  END

  The fields of this sequence are:

  - The msgAuthoritativeEngineID specifies the snmpEngineID of the
    authoritative SNMP engine involved in the exchange of the message.

  - The msgAuthoritativeEngineBoots specifies the snmpEngineBoots value
    at the authoritative SNMP engine involved in the exchange of the
    message.

  - The msgAuthoritativeEngineTime specifies the snmpEngineTime value
    at the authoritative SNMP engine involved in the exchange of the
    message.

  - The msgUserName specifies the user (principal) on whose behalf the
    message is being exchanged.  Note that a zero-length userName will
    not match any user, but it can be used for snmpEngineID discovery.

  - The msgAuthenticationParameters are defined by the authentication
    protocol in use for the message, as defined by the
    usmUserAuthProtocol column in the user's entry in the usmUserTable.

  - The msgPrivacyParameters are defined by the privacy protocol in use
    for the message, as defined by the usmUserPrivProtocol column in
    the user's entry in the usmUserTable).

  See appendix A.4 for an example of the BER encoding of field
  msgSecurityParameters.

2.5. Services provided by the User-based Security Model

  This section describes the services provided by the User-based
  Security Model with their inputs and outputs.

  The services are described as primitives of an abstract service
  interface and the inputs and outputs are described as abstract data
  elements as they are passed in these abstract service primitives.

2.5.1. Services for Generating an Outgoing SNMP Message

  When the Message Processing (MP) Subsystem invokes the User-based
  Security module to secure an outgoing SNMP message, it must use the
  appropriate service as provided by the Security module.  These two
  services are provided:





Blumenthal & Wijnen         Standards Track                    [Page 17]

RFC 3414                     USM for SNMPv3                December 2002


  1) A service to generate a Request message.  The abstract service
     primitive is:

     statusInformation =            -- success or errorIndication
       generateRequestMsg(
       IN   messageProcessingModel  -- typically, SNMP version
       IN   globalData              -- message header, admin data
       IN   maxMessageSize          -- of the sending SNMP entity
       IN   securityModel           -- for the outgoing message
       IN   securityEngineID        -- authoritative SNMP entity
       IN   securityName            -- on behalf of this principal
       IN   securityLevel           -- Level of Security requested
       IN   scopedPDU               -- message (plaintext) payload
       OUT  securityParameters      -- filled in by Security Module
       OUT  wholeMsg                -- complete generated message
       OUT  wholeMsgLength          -- length of generated message
            )

  2) A service to generate a Response message.  The abstract service
     primitive is:

     statusInformation =            -- success or errorIndication
       generateResponseMsg(
       IN   messageProcessingModel  -- typically, SNMP version
       IN   globalData              -- message header, admin data
       IN   maxMessageSize          -- of the sending SNMP entity
       IN   securityModel           -- for the outgoing message
       IN   securityEngineID        -- authoritative SNMP entity
       IN   securityName            -- on behalf of this principal
       IN   securityLevel           -- Level of Security requested
       IN   scopedPDU               -- message (plaintext) payload
       IN   securityStateReference  -- reference to security state
                                    -- information from original
                                    -- request
       OUT  securityParameters      -- filled in by Security Module
       OUT  wholeMsg                -- complete generated message
       OUT  wholeMsgLength          -- length of generated message
            )

  The abstract data elements passed as parameters in the abstract
  service primitives are as follows:

  statusInformation
     An indication of whether the encoding and securing of the message
     was successful.  If not it is an indication of the problem.






Blumenthal & Wijnen         Standards Track                    [Page 18]

RFC 3414                     USM for SNMPv3                December 2002


  messageProcessingModel
     The SNMP version number for the message to be generated.  This
     data is not used by the User-based Security module.

  globalData
     The message header (i.e., its administrative information).  This
     data is not used by the User-based Security module.

  maxMessageSize
     The maximum message size as included in the message.  This data is
     not used by the User-based Security module.

  securityParameters
     These are the security parameters.  They will be filled in by the
     User-based Security module.

  securityModel
     The securityModel in use.  Should be User-based Security Model.
     This data is not used by the User-based Security module.

  securityName
     Together with the snmpEngineID it identifies a row in the
     usmUserTablethat is to be used for securing the message.  The
     securityName has a format that is independent of the Security
     Model.  In case of a response this parameter is ignored and the
     value from the cache is used.

  securityLevel
     The Level of Security from which the User-based Security module
     determines if the message needs to be protected from disclosure
     and if the message needs to be authenticated.

  securityEngineID
     The snmpEngineID of the authoritative SNMP engine to which a
     dateRequest message is to be sent.  In case of a response it is
     implied to be the processing SNMP engine's snmpEngineID and so if
     it is specified, then it is ignored.

  scopedPDU
     The message payload.  The data is opaque as far as the User-based
     Security Model is concerned.

  securityStateReference
     A handle/reference to cachedSecurityData to be used when securing
     an outgoing Response message.  This is the exact same
     handle/reference as it was generated by the User-based Security
     module when processing the incoming Request message to which this
     is the Response message.



Blumenthal & Wijnen         Standards Track                    [Page 19]

RFC 3414                     USM for SNMPv3                December 2002


  wholeMsg
     The fully encoded and secured message ready for sending on the
     wire.

  wholeMsgLength
     The length of the encoded and secured message (wholeMsg).

  Upon completion of the process, the User-based Security module
  returns statusInformation.  If the process was successful, the
  completed message with privacy and authentication applied if such was
  requested by the specified securityLevel is returned.  If the process
  was not successful, then an errorIndication is returned.

2.5.2. Services for Processing an Incoming SNMP Message

  When the Message Processing (MP) Subsystem invokes the User-based
  Security module to verify proper security of an incoming message, it
  must use the service provided for an incoming message.  The abstract
  service primitive is:

  statusInformation =             -- errorIndication or success
                                  -- error counter OID/value if error
    processIncomingMsg(
    IN   messageProcessingModel   -- typically, SNMP version
    IN   maxMessageSize           -- of the sending SNMP entity
    IN   securityParameters       -- for the received message
    IN   securityModel            -- for the received message
    IN   securityLevel            -- Level of Security
    IN   wholeMsg                 -- as received on the wire
    IN   wholeMsgLength           -- length as received on the wire
    OUT  securityEngineID         -- authoritative SNMP entity
    OUT  securityName             -- identification of the principal
    OUT  scopedPDU,               -- message (plaintext) payload
    OUT  maxSizeResponseScopedPDU -- maximum size of the Response PDU
    OUT  securityStateReference   -- reference to security state
         )                        -- information, needed for response

  The abstract data elements passed as parameters in the abstract
  service primitives are as follows:

  statusInformation
     An indication of whether the process was successful or not.  If
     not, then the statusInformation includes the OID and the value of
     the error counter that was incremented.

  messageProcessingModel
     The SNMP version number as received in the message.  This data is
     not used by the User-based Security module.



Blumenthal & Wijnen         Standards Track                    [Page 20]

RFC 3414                     USM for SNMPv3                December 2002


  maxMessageSize
     The maximum message size as included in the message.  The User-bas
     User-based Security module uses this value to calculate the
     maxSizeResponseScopedPDU.

  securityParameters
     These are the security parameters as received in the message.

  securityModel
     The securityModel in use.  Should be the User-based Security
     Model.  This data is not used by the User-based Security module.

  securityLevel
     The Level of Security from which the User-based Security module
     determines if the message needs to be protected from disclosure
     and if the message needs to be authenticated.

  wholeMsg
     The whole message as it was received.

  wholeMsgLength
     The length of the message as it was received (wholeMsg).

  securityEngineID
     The snmpEngineID that was extracted from the field
     msgAuthoritativeEngineID and that was used to lookup the secrets
     in the usmUserTable.

  securityName
     The security name representing the user on whose behalf the
     message was received.  The securityName has a format that is
     independent of the Security Model.

  scopedPDU
     The message payload.  The data is opaque as far as the User-based
     Security Model is concerned.

  maxSizeResponseScopedPDU
     The maximum size of a scopedPDU to be included in a possible
     Response message.  The User-based Security module calculates this
     size based on the msgMaxSize (as received in the message) and the
     space required for the message header (including the
     securityParameters) for such a Response message.

  securityStateReference
     A handle/reference to cachedSecurityData to be used when securing
     an outgoing Response message.  When the Message Processing
     Subsystem calls the User-based Security module to generate a



Blumenthal & Wijnen         Standards Track                    [Page 21]

RFC 3414                     USM for SNMPv3                December 2002


     response to this incoming message it must pass this
     handle/reference.

  Upon completion of the process, the User-based Security module
  returns statusInformation and, if the process was successful, the
  additional data elements for further processing of the message.  If
  the process was not successful, then an errorIndication, possibly
  with a OID and value pair of an error counter that was incremented.

2.6. Key Localization Algorithm.

  A localized key is a secret key shared between a user U and one
  authoritative SNMP engine E.  Even though a user may have only one
  password and therefore one key for the whole network, the actual
  secrets shared between the user and each authoritative SNMP engine
  will be different.  This is achieved by key localization [Localized-
  key].

  First, if a user uses a password, then the user's password is
  converted into a key Ku using one of the two algorithms described in
  Appendices A.2.1 and A.2.2.

  To convert key Ku into a localized key Kul of user U at the
  authoritative SNMP engine E, one appends the snmpEngineID of the
  authoritative SNMP engine to the key Ku and then appends the key Ku
  to the result, thus enveloping the snmpEngineID within the two copies
  of user's key Ku.  Then one runs a secure hash function (which one
  depends on the authentication protocol defined for this user U at
  authoritative SNMP engine E; this document defines two authentication
  protocols with their associated algorithms based on MD5 and SHA).
  The output of the hash-function is the localized key Kul for user U
  at the authoritative SNMP engine E.

3. Elements of Procedure

  This section describes the security related procedures followed by an
  SNMP engine when processing SNMP messages according to the User-based
  Security Model.

3.1. Generating an Outgoing SNMP Message

  This section describes the procedure followed by an SNMP engine
  whenever it generates a message containing a management operation
  (like a request, a response, a notification, or a report) on behalf
  of a user, with a particular securityLevel.






Blumenthal & Wijnen         Standards Track                    [Page 22]

RFC 3414                     USM for SNMPv3                December 2002


  1) a) If any securityStateReference is passed (Response or Report
        message), then information concerning the user is extracted
        from the cachedSecurityData.  The cachedSecurityData can now be
        discarded.  The securityEngineID is set to the local
        snmpEngineID.  The securityLevel is set to the value specified
        by the calling module.

        Otherwise,

     b) based on the securityName, information concerning the user at
        the destination snmpEngineID, specified by the
        securityEngineID, is extracted from the Local Configuration
        Datastore (LCD, usmUserTable).  If information about the user
        is absent from the LCD, then an error indication
        (unknownSecurityName) is returned to the calling module.

  2) If the securityLevel specifies that the message is to be protected
     from disclosure, but the user does not support both an
     authentication and a privacy protocol then the message cannot be
     sent.  An error indication (unsupportedSecurityLevel) is returned
     to the calling module.

  3) If the securityLevel specifies that the message is to be
     authenticated, but the user does not support an authentication
     protocol, then the message cannot be sent.  An error indication
     (unsupportedSecurityLevel) is returned to the calling module.

  4) a) If the securityLevel specifies that the message is to be
        protected from disclosure, then the octet sequence representing
        the serialized scopedPDU is encrypted according to the user's
        privacy protocol.  To do so a call is made to the privacy
        module that implements the user's privacy protocol according to
        the abstract primitive:

        statusInformation =       -- success or failure
          encryptData(
          IN    encryptKey        -- user's localized privKey
          IN    dataToEncrypt     -- serialized scopedPDU
          OUT   encryptedData     -- serialized encryptedPDU
          OUT   privParameters    -- serialized privacy parameters
                )

        statusInformation
          indicates if the encryption process was successful or not.

        encryptKey
          the user's localized private privKey is the secret key that
          can be used by the encryption algorithm.



Blumenthal & Wijnen         Standards Track                    [Page 23]

RFC 3414                     USM for SNMPv3                December 2002


        dataToEncrypt
          the serialized scopedPDU is the data to be encrypted.

        encryptedData
          the encryptedPDU represents the encrypted scopedPDU, encoded
          as an OCTET STRING.

        privParameters
          the privacy parameters, encoded as an OCTET STRING.

        If the privacy module returns failure, then the message cannot
        be sent and an error indication (encryptionError) is returned
        to the calling module.

        If the privacy module returns success, then the returned
        privParameters are put into the msgPrivacyParameters field of
        the securityParameters and the encryptedPDU serves as the
        payload of the message being prepared.

        Otherwise,

     b) If the securityLevel specifies that the message is not to be be
        protected from disclosure, then a zero-length OCTET STRING is
        encoded into the msgPrivacyParameters field of the
        securityParameters and the plaintext scopedPDU serves as the
        payload of the message being prepared.

  5) The securityEngineID is encoded as an OCTET STRING into the
     msgAuthoritativeEngineID field of the securityParameters.  Note
     that an empty (zero length) securityEngineID is OK for a Request
     message, because that will cause the remote (authoritative) SNMP
     engine to return a Report PDU with the proper securityEngineID
     included in the msgAuthoritativeEngineID in the securityParameters
     of that returned Report PDU.

  6) a) If the securityLevel specifies that the message is to be
        authenticated, then the current values of snmpEngineBoots and
        snmpEngineTime corresponding to the securityEngineID from the
        LCD are used.

        Otherwise,

     b) If this is a Response or Report message, then the current value
        of snmpEngineBoots and snmpEngineTime corresponding to the
        local snmpEngineID from the LCD are used.






Blumenthal & Wijnen         Standards Track                    [Page 24]

RFC 3414                     USM for SNMPv3                December 2002


        Otherwise,

     c) If this is a Request message, then a zero value is used for
        both snmpEngineBoots and snmpEngineTime.  This zero value gets
        used if snmpEngineID is empty.

        The values are encoded as INTEGER respectively into the
        msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime
        fields of the securityParameters.

  7) The userName is encoded as an OCTET STRING into the msgUserName
     field of the securityParameters.

  8) a) If the securityLevel specifies that the message is to be
        authenticated, the message is authenticated according to the
        user's authentication protocol.  To do so a call is made to the
        authentication module that implements the user's authentication
        protocol according to the abstract service primitive:

        statusInformation =
          authenticateOutgoingMsg(
          IN  authKey               -- the user's localized authKey
          IN  wholeMsg              -- unauthenticated message
          OUT authenticatedWholeMsg -- authenticated complete message
              )

        statusInformation
          indicates if authentication was successful or not.

        authKey
          the user's localized private authKey is the secret key that
          can be used by the authentication algorithm.

        wholeMsg
          the complete serialized message to be authenticated.

        authenticatedWholeMsg
          the same as the input given to the authenticateOutgoingMsg
          service, but with msgAuthenticationParameters properly
          filled in.

        If the authentication module returns failure, then the message
        cannot be sent and an error indication (authenticationFailure)
        is returned to the calling module.







Blumenthal & Wijnen         Standards Track                    [Page 25]

RFC 3414                     USM for SNMPv3                December 2002


        If the authentication module returns success, then the
        msgAuthenticationParameters field is put into the
        securityParameters and the authenticatedWholeMsg represents the
        serialization of the authenticated message being prepared.

        Otherwise,

     b) If the securityLevel specifies that the message is not to be
        authenticated then a zero-length OCTET STRING is encoded into
        the msgAuthenticationParameters field of the
        securityParameters.  The wholeMsg is now serialized and then
        represents the unauthenticated message being prepared.

  9) The completed message with its length is returned to the calling
     module with the statusInformation set to success.

3.2. Processing an Incoming SNMP Message

  This section describes the procedure followed by an SNMP engine
  whenever it receives a message containing a management operation on
  behalf of a user, with a particular securityLevel.

  To simplify the elements of procedure, the release of state
  information is not always explicitly specified.  As a general rule,
  if state information is available when a message gets discarded, the
  state information should also be released.  Also, an error indication
  can return an OID and value for an incremented counter and optionally
  a value for securityLevel, and values for contextEngineID or
  contextName for the counter.  In addition, the securityStateReference
  data is returned if any such information is available at the point
  where the error is detected.

  1)  If the received securityParameters is not the serialization
      (according to the conventions of [RFC3417]) of an OCTET STRING
      formatted according to the UsmSecurityParameters defined in
      section 2.4, then the snmpInASNParseErrs counter [RFC3418] is
      incremented, and an error indication (parseError) is returned to
      the calling module.  Note that we return without the OID and
      value of the incremented counter, because in this case there is
      not enough information to generate a Report PDU.

  2)  The values of the security parameter fields are extracted from
      the securityParameters.  The securityEngineID to be returned to
      the caller is the value of the msgAuthoritativeEngineID field.
      The cachedSecurityData is prepared and a securityStateReference
      is prepared to reference this data.  Values to be cached are:

         msgUserName



Blumenthal & Wijnen         Standards Track                    [Page 26]

RFC 3414                     USM for SNMPv3                December 2002


  3)  If the value of the msgAuthoritativeEngineID field in the
      securityParameters is unknown then:

      a) a non-authoritative SNMP engine that performs discovery may
         optionally create a new entry in its Local Configuration
         Datastore (LCD) and continue processing;

         or

      b) the usmStatsUnknownEngineIDs counter is incremented, and an
         error indication (unknownEngineID) together with the OID and
         value of the incremented counter is returned to the calling
         module.

      Note in the event that a zero-length, or other illegally sized
      msgAuthoritativeEngineID is received, b) should be chosen to
      facilitate engineID discovery.  Otherwise the choice between a)
      and b) is an implementation issue.

  4)  Information about the value of the msgUserName and
      msgAuthoritativeEngineID fields is extracted from the Local
      Configuration Datastore (LCD, usmUserTable).  If no information
      is available for the user, then the usmStatsUnknownUserNames
      counter is incremented and an error indication
      (unknownSecurityName) together with the OID and value of the
      incremented counter is returned to the calling module.

  5)  If the information about the user indicates that it does not
      support the securityLevel requested by the caller, then the
      usmStatsUnsupportedSecLevels counter is incremented and an error
      indication (unsupportedSecurityLevel) together with the OID and
      value of the incremented counter is returned to the calling
      module.

  6)  If the securityLevel specifies that the message is to be
      authenticated, then the message is authenticated according to the
      user's authentication protocol.  To do so a call is made to the
      authentication module that implements the user's authentication
      protocol according to the abstract service primitive:

      statusInformation =          -- success or failure
        authenticateIncomingMsg(
        IN   authKey               -- the user's localized authKey
        IN   authParameters        -- as received on the wire
        IN   wholeMsg              -- as received on the wire
        OUT  authenticatedWholeMsg -- checked for authentication
             )




Blumenthal & Wijnen         Standards Track                    [Page 27]

RFC 3414                     USM for SNMPv3                December 2002


      statusInformation
        indicates if authentication was successful or not.

      authKey
        the user's localized private authKey is the secret key that
        can be used by the authentication algorithm.

      wholeMsg
        the complete serialized message to be authenticated.

      authenticatedWholeMsg
        the same as the input given to the authenticateIncomingMsg
        service, but after authentication has been checked.

      If the authentication module returns failure, then the message
      cannot be trusted, so the usmStatsWrongDigests counter is
      incremented and an error indication (authenticationFailure)
      together with the OID and value of the incremented counter is
      returned to the calling module.

      If the authentication module returns success, then the message is
      authentic and can be trusted so processing continues.

  7)  If the securityLevel indicates an authenticated message, then the
      local values of snmpEngineBoots, snmpEngineTime and
      latestReceivedEngineTime corresponding to the value of the
      msgAuthoritativeEngineID field are extracted from the Local
      Configuration Datastore.

      a) If the extracted value of msgAuthoritativeEngineID is the same
         as the value of snmpEngineID of the processing SNMP engine
         (meaning this is the authoritative SNMP engine), then if any
         of the following conditions is true, then the message is
         considered to be outside of the Time Window:

         - the local value of snmpEngineBoots is 2147483647;

         - the value of the msgAuthoritativeEngineBoots field differs
           from the local value of snmpEngineBoots; or,

         - the value of the msgAuthoritativeEngineTime field differs
           from the local notion of snmpEngineTime by more than +/- 150
           seconds.

         If the message is considered to be outside of the Time Window
         then the usmStatsNotInTimeWindows counter is incremented and
         an error indication (notInTimeWindow) together with the OID,
         the value of the incremented counter, and an indication that



Blumenthal & Wijnen         Standards Track                    [Page 28]

RFC 3414                     USM for SNMPv3                December 2002


         the error must be reported with a securityLevel of authNoPriv,
         is returned to the calling module

      b) If the extracted value of msgAuthoritativeEngineID is not the
         same as the value snmpEngineID of the processing SNMP engine
         (meaning this is not the authoritative SNMP engine), then:

         1) if at least one of the following conditions is true:

            - the extracted value of the msgAuthoritativeEngineBoots
              field is greater than the local notion of the value of
              snmpEngineBoots; or,

            - the extracted value of the msgAuthoritativeEngineBoots
              field is equal to the local notion of the value of
              snmpEngineBoots, and the extracted value of
              msgAuthoritativeEngineTime field is greater than the
              value of latestReceivedEngineTime,

            then the LCD entry corresponding to the extracted value of
            the msgAuthoritativeEngineID field is updated, by setting:

            - the local notion of the value of snmpEngineBoots to the
              value of the msgAuthoritativeEngineBoots field,

            - the local notion of the value of snmpEngineTime to the
              value of the msgAuthoritativeEngineTime field, and

            - the latestReceivedEngineTime to the value of the value of
              the msgAuthoritativeEngineTime field.

         2) if any of the following conditions is true, then the
            message is considered to be outside of the Time Window:

            - the local notion of the value of snmpEngineBoots is
              2147483647;

            - the value of the msgAuthoritativeEngineBoots field is
              less than the local notion of the value of
              snmpEngineBoots; or,

            - the value of the msgAuthoritativeEngineBoots field is
              equal to the local notion of the value of snmpEngineBoots
              and the value of the msgAuthoritativeEngineTime field is
              more than 150 seconds less than the local notion of the
              value of snmpEngineTime.





Blumenthal & Wijnen         Standards Track                    [Page 29]

RFC 3414                     USM for SNMPv3                December 2002


            If the message is considered to be outside of the Time
            Window then an error indication (notInTimeWindow) is
            returned to the calling module.

            Note that this means that a too old (possibly replayed)
            message has been detected and is deemed unauthentic.

            Note that this procedure allows for the value of
            msgAuthoritativeEngineBoots in the message to be greater
            than the local notion of the value of snmpEngineBoots to
            allow for received messages to be accepted as authentic
            when received from an authoritative SNMP engine that has
            re-booted since the receiving SNMP engine last
            (re-)synchronized.

  8)  a) If the securityLevel indicates that the message was protected
         from disclosure, then the OCTET STRING representing the
         encryptedPDU is decrypted according to the user's privacy
         protocol to obtain an unencrypted serialized scopedPDU value.
         To do so a call is made to the privacy module that implements
         the user's privacy protocol according to the abstract
         primitive:

         statusInformation =       -- success or failure
           decryptData(
           IN    decryptKey        -- the user's localized privKey
           IN    privParameters    -- as received on the wire
           IN    encryptedData     -- encryptedPDU as received
           OUT   decryptedData     -- serialized decrypted scopedPDU
                 )

         statusInformation
            indicates if the decryption process was successful or not.

         decryptKey
            the user's localized private privKey is the secret key that
            can be used by the decryption algorithm.

         privParameters
            the msgPrivacyParameters, encoded as an OCTET STRING.

         encryptedData
            the encryptedPDU represents the encrypted scopedPDU,
            encoded as an OCTET STRING.

         decryptedData
            the serialized scopedPDU if decryption is successful.




Blumenthal & Wijnen         Standards Track                    [Page 30]

RFC 3414                     USM for SNMPv3                December 2002


         If the privacy module returns failure, then the message can
         not be processed, so the usmStatsDecryptionErrors counter is
         incremented and an error indication (decryptionError) together
         with the OID and value of the incremented counter is returned
         to the calling module.

         If the privacy module returns success, then the decrypted
         scopedPDU is the message payload to be returned to the calling
         module.

         Otherwise,

      b) The scopedPDU component is assumed to be in plain text and is
         the message payload to be returned to the calling module.

  9)  The maxSizeResponseScopedPDU is calculated.  This is the maximum
      size allowed for a scopedPDU for a possible Response message.
      Provision is made for a message header that allows the same
      securityLevel as the received Request.

  10) The securityName for the user is retrieved from the usmUserTable.

  11) The security data is cached as cachedSecurityData, so that a
      possible response to this message can and will use the same
      authentication and privacy secrets.  Information to be
      saved/cached is as follows:

         msgUserName,
         usmUserAuthProtocol, usmUserAuthKey
         usmUserPrivProtocol, usmUserPrivKey

  12) The statusInformation is set to success and a return is made to
      the calling module passing back the OUT parameters as specified
      in the processIncomingMsg primitive.

4. Discovery

  The User-based Security Model requires that a discovery process
  obtains sufficient information about other SNMP engines in order to
  communicate with them.  Discovery requires an non-authoritative SNMP
  engine to learn the authoritative SNMP engine's snmpEngineID value
  before communication may proceed.  This may be accomplished by
  generating a Request message with a securityLevel of noAuthNoPriv, a
  msgUserName of zero-length, a msgAuthoritativeEngineID value of zero
  length, and the varBindList left empty.  The response to this message
  will be a Report message containing the snmpEngineID of the
  authoritative SNMP engine as the value of the
  msgAuthoritativeEngineID field within the msgSecurityParameters



Blumenthal & Wijnen         Standards Track                    [Page 31]

RFC 3414                     USM for SNMPv3                December 2002


  field.  It contains a Report PDU with the usmStatsUnknownEngineIDs
  counter in the varBindList.

  If authenticated communication is required, then the discovery
  process should also establish time synchronization with the
  authoritative SNMP engine.  This may be accomplished by sending an
  authenticated Request message with the value of
  msgAuthoritativeEngineID set to the newly learned snmpEngineID and
  with the values of msgAuthoritativeEngineBoots and
  msgAuthoritativeEngineTime set to zero.  For an authenticated Request
  message, a valid userName must be used in the msgUserName field.  The
  response to this authenticated message will be a Report message
  containing the up to date values of the authoritative SNMP engine's
  snmpEngineBoots and snmpEngineTime as the value of the
  msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime fields
  respectively.  It also contains the usmStatsNotInTimeWindows counter
  in the varBindList of the Report PDU.  The time synchronization then
  happens automatically as part of the procedures in section 3.2 step
  7b.  See also section 2.3.

5. Definitions

SNMP-USER-BASED-SM-MIB DEFINITIONS ::= BEGIN

IMPORTS
   MODULE-IDENTITY, OBJECT-TYPE,
   OBJECT-IDENTITY,
   snmpModules, Counter32                FROM SNMPv2-SMI
   TEXTUAL-CONVENTION, TestAndIncr,
   RowStatus, RowPointer,
   StorageType, AutonomousType           FROM SNMPv2-TC
   MODULE-COMPLIANCE, OBJECT-GROUP       FROM SNMPv2-CONF
   SnmpAdminString, SnmpEngineID,
   snmpAuthProtocols, snmpPrivProtocols  FROM SNMP-FRAMEWORK-MIB;

snmpUsmMIB MODULE-IDENTITY
   LAST-UPDATED "200210160000Z"            -- 16 Oct 2002, midnight
   ORGANIZATION "SNMPv3 Working Group"
   CONTACT-INFO "WG-email:   [email protected]
                 Subscribe:  [email protected]
                             In msg body:  subscribe snmpv3

                 Chair:      Russ Mundy
                             Network Associates Laboratories
                 postal:     15204 Omega Drive, Suite 300
                             Rockville, MD 20850-4601
                             USA
                 email:      [email protected]



Blumenthal & Wijnen         Standards Track                    [Page 32]

RFC 3414                     USM for SNMPv3                December 2002


                 phone:      +1 301-947-7107

                 Co-Chair:   David Harrington
                             Enterasys Networks
                 Postal:     35 Industrial Way
                             P. O. Box 5004
                             Rochester, New Hampshire 03866-5005
                             USA
                 EMail:      [email protected]
                 Phone:      +1 603-337-2614

                 Co-editor   Uri Blumenthal
                             Lucent Technologies
                 postal:     67 Whippany Rd.
                             Whippany, NJ 07981
                             USA
                 email:      [email protected]
                 phone:      +1-973-386-2163

                 Co-editor:  Bert Wijnen
                             Lucent Technologies
                 postal:     Schagen 33
                             3461 GL Linschoten
                             Netherlands
                 email:      [email protected]
                 phone:      +31-348-480-685
                "
   DESCRIPTION  "The management information definitions for the
                 SNMP User-based Security Model.

                 Copyright (C) The Internet Society (2002). This
                 version of this MIB module is part of RFC 3414;
                 see the RFC itself for full legal notices.
                "
--  Revision history

   REVISION     "200210160000Z"          -- 16 Oct 2002, midnight
   DESCRIPTION  "Changes in this revision:
                 - Updated references and contact info.
                 - Clarification to usmUserCloneFrom DESCRIPTION
                   clause
                 - Fixed 'command responder' into 'command generator'
                   in last para of DESCRIPTION clause of
                   usmUserTable.
                 This revision published as RFC3414.
                "
   REVISION     "199901200000Z"          -- 20 Jan 1999, midnight
   DESCRIPTION  "Clarifications, published as RFC2574"



Blumenthal & Wijnen         Standards Track                    [Page 33]

RFC 3414                     USM for SNMPv3                December 2002


   REVISION     "199711200000Z"          -- 20 Nov 1997, midnight
   DESCRIPTION  "Initial version, published as RFC2274"

   ::= { snmpModules 15 }

-- Administrative assignments ****************************************

usmMIBObjects     OBJECT IDENTIFIER ::= { snmpUsmMIB 1 }
usmMIBConformance OBJECT IDENTIFIER ::= { snmpUsmMIB 2 }

-- Identification of Authentication and Privacy Protocols ************

usmNoAuthProtocol OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "No Authentication Protocol."
   ::= { snmpAuthProtocols 1 }

usmHMACMD5AuthProtocol OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "The HMAC-MD5-96 Digest Authentication Protocol."
   REFERENCE    "- H. Krawczyk, M. Bellare, R. Canetti HMAC:
                   Keyed-Hashing for Message Authentication,
                   RFC2104, Feb 1997.
                 - Rivest, R., Message Digest Algorithm MD5, RFC1321.
                "
   ::= { snmpAuthProtocols 2 }

usmHMACSHAAuthProtocol OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "The HMAC-SHA-96 Digest Authentication Protocol."
   REFERENCE    "- H. Krawczyk, M. Bellare, R. Canetti, HMAC:
                   Keyed-Hashing for Message Authentication,
                   RFC2104, Feb 1997.
                 - Secure Hash Algorithm. NIST FIPS 180-1.
                "
   ::= { snmpAuthProtocols 3 }

usmNoPrivProtocol OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "No Privacy Protocol."
   ::= { snmpPrivProtocols 1 }

usmDESPrivProtocol OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "The CBC-DES Symmetric Encryption Protocol."
   REFERENCE    "- Data Encryption Standard, National Institute of
                   Standards and Technology.  Federal Information
                   Processing Standard (FIPS) Publication 46-1.



Blumenthal & Wijnen         Standards Track                    [Page 34]

RFC 3414                     USM for SNMPv3                December 2002


                   Supersedes FIPS Publication 46,
                   (January, 1977; reaffirmed January, 1988).

                 - Data Encryption Algorithm, American National
                   Standards Institute.  ANSI X3.92-1981,
                   (December, 1980).

                 - DES Modes of Operation, National Institute of
                   Standards and Technology.  Federal Information
                   Processing Standard (FIPS) Publication 81,
                   (December, 1980).

                 - Data Encryption Algorithm - Modes of Operation,
                   American National Standards Institute.
                   ANSI X3.106-1983, (May 1983).
                "
   ::= { snmpPrivProtocols 2 }

-- Textual Conventions ***********************************************

KeyChange ::=     TEXTUAL-CONVENTION
  STATUS         current
  DESCRIPTION
        "Every definition of an object with this syntax must identify
         a protocol P, a secret key K, and a hash algorithm H
         that produces output of L octets.

         The object's value is a manager-generated, partially-random
         value which, when modified, causes the value of the secret
         key K, to be modified via a one-way function.

         The value of an instance of this object is the concatenation
         of two components: first a 'random' component and then a
         'delta' component.

         The lengths of the random and delta components
         are given by the corresponding value of the protocol P;
         if P requires K to be a fixed length, the length of both the
         random and delta components is that fixed length; if P
         allows the length of K to be variable up to a particular
         maximum length, the length of the random component is that
         maximum length and the length of the delta component is any
         length less than or equal to that maximum length.
         For example, usmHMACMD5AuthProtocol requires K to be a fixed
         length of 16 octets and L - of 16 octets.
         usmHMACSHAAuthProtocol requires K to be a fixed length of
         20 octets and L - of 20 octets. Other protocols may define
         other sizes, as deemed appropriate.



Blumenthal & Wijnen         Standards Track                    [Page 35]

RFC 3414                     USM for SNMPv3                December 2002


         When a requester wants to change the old key K to a new
         key keyNew on a remote entity, the 'random' component is
         obtained from either a true random generator, or from a
         pseudorandom generator, and the 'delta' component is
         computed as follows:

          - a temporary variable is initialized to the existing value
            of K;
          - if the length of the keyNew is greater than L octets,
            then:
             - the random component is appended to the value of the
               temporary variable, and the result is input to the
               the hash algorithm H to produce a digest value, and
               the temporary variable is set to this digest value;
             - the value of the temporary variable is XOR-ed with
               the first (next) L-octets (16 octets in case of MD5)
               of the keyNew to produce the first (next) L-octets
               (16 octets in case of MD5) of the 'delta' component.
             - the above two steps are repeated until the unused
               portion of the keyNew component is L octets or less,
          - the random component is appended to the value of the
            temporary variable, and the result is input to the
            hash algorithm H to produce a digest value;
          - this digest value, truncated if necessary to be the same
            length as the unused portion of the keyNew, is XOR-ed
            with the unused portion of the keyNew to produce the
            (final portion of the) 'delta' component.

          For example, using MD5 as the hash algorithm H:

             iterations = (lenOfDelta - 1)/16; /* integer division */
             temp = keyOld;
             for (i = 0; i < iterations; i++) {
                 temp = MD5 (temp || random);
                 delta[i*16 .. (i*16)+15] =
                        temp XOR keyNew[i*16 .. (i*16)+15];
             }
             temp = MD5 (temp || random);
             delta[i*16 .. lenOfDelta-1] =
                    temp XOR keyNew[i*16 .. lenOfDelta-1];

         The 'random' and 'delta' components are then concatenated as
         described above, and the resulting octet string is sent to
         the recipient as the new value of an instance of this object.

         At the receiver side, when an instance of this object is set
         to a new value, then a new value of K is computed as follows:




Blumenthal & Wijnen         Standards Track                    [Page 36]

RFC 3414                     USM for SNMPv3                December 2002


          - a temporary variable is initialized to the existing value
            of K;
          - if the length of the delta component is greater than L
            octets, then:
             - the random component is appended to the value of the
               temporary variable, and the result is input to the
               hash algorithm H to produce a digest value, and the
               temporary variable is set to this digest value;
             - the value of the temporary variable is XOR-ed with
               the first (next) L-octets (16 octets in case of MD5)
               of the delta component to produce the first (next)
               L-octets (16 octets in case of MD5) of the new value
               of K.
             - the above two steps are repeated until the unused
               portion of the delta component is L octets or less,
          - the random component is appended to the value of the
            temporary variable, and the result is input to the
            hash algorithm H to produce a digest value;
          - this digest value, truncated if necessary to be the same
            length as the unused portion of the delta component, is
            XOR-ed with the unused portion of the delta component to
            produce the (final portion of the) new value of K.

          For example, using MD5 as the hash algorithm H:

             iterations = (lenOfDelta - 1)/16; /* integer division */
             temp = keyOld;
             for (i = 0; i < iterations; i++) {
                 temp = MD5 (temp || random);
                 keyNew[i*16 .. (i*16)+15] =
                        temp XOR delta[i*16 .. (i*16)+15];
             }
             temp = MD5 (temp || random);
             keyNew[i*16 .. lenOfDelta-1] =
                    temp XOR delta[i*16 .. lenOfDelta-1];

         The value of an object with this syntax, whenever it is
         retrieved by the management protocol, is always the zero
         length string.

         Note that the keyOld and keyNew are the localized keys.

         Note that it is probably wise that when an SNMP entity sends
         a SetRequest to change a key, that it keeps a copy of the old
         key until it has confirmed that the key change actually
         succeeded.
        "
   SYNTAX       OCTET STRING



Blumenthal & Wijnen         Standards Track                    [Page 37]

RFC 3414                     USM for SNMPv3                December 2002


-- Statistics for the User-based Security Model **********************


usmStats         OBJECT IDENTIFIER ::= { usmMIBObjects 1 }


usmStatsUnsupportedSecLevels OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The total number of packets received by the SNMP
                engine which were dropped because they requested a
                securityLevel that was unknown to the SNMP engine
                or otherwise unavailable.
               "
   ::= { usmStats 1 }

usmStatsNotInTimeWindows OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The total number of packets received by the SNMP
                engine which were dropped because they appeared
                outside of the authoritative SNMP engine's window.
               "
   ::= { usmStats 2 }

usmStatsUnknownUserNames OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The total number of packets received by the SNMP
                engine which were dropped because they referenced a
                user that was not known to the SNMP engine.
               "
   ::= { usmStats 3 }

usmStatsUnknownEngineIDs OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The total number of packets received by the SNMP
                engine which were dropped because they referenced an
                snmpEngineID that was not known to the SNMP engine.
               "
   ::= { usmStats 4 }

usmStatsWrongDigests OBJECT-TYPE



Blumenthal & Wijnen         Standards Track                    [Page 38]

RFC 3414                     USM for SNMPv3                December 2002


   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The total number of packets received by the SNMP
                engine which were dropped because they didn't
                contain the expected digest value.
               "
   ::= { usmStats 5 }

usmStatsDecryptionErrors OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The total number of packets received by the SNMP
                engine which were dropped because they could not be
                decrypted.
               "
   ::= { usmStats 6 }

-- The usmUser Group ************************************************

usmUser          OBJECT IDENTIFIER ::= { usmMIBObjects 2 }

usmUserSpinLock  OBJECT-TYPE
   SYNTAX       TestAndIncr
   MAX-ACCESS   read-write
   STATUS       current
   DESCRIPTION "An advisory lock used to allow several cooperating
                Command Generator Applications to coordinate their
                use of facilities to alter secrets in the
                usmUserTable.
               "
   ::= { usmUser 1 }

-- The table of valid users for the User-based Security Model ********

usmUserTable     OBJECT-TYPE
   SYNTAX       SEQUENCE OF UsmUserEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION "The table of users configured in the SNMP engine's
                Local Configuration Datastore (LCD).

                To create a new user (i.e., to instantiate a new
                conceptual row in this table), it is recommended to
                follow this procedure:

                  1)  GET(usmUserSpinLock.0) and save in sValue.



Blumenthal & Wijnen         Standards Track                    [Page 39]

RFC 3414                     USM for SNMPv3                December 2002


                  2)  SET(usmUserSpinLock.0=sValue,
                          usmUserCloneFrom=templateUser,
                          usmUserStatus=createAndWait)
                      You should use a template user to clone from
                      which has the proper auth/priv protocol defined.

                If the new user is to use privacy:

                  3)  generate the keyChange value based on the secret
                      privKey of the clone-from user and the secret key
                      to be used for the new user. Let us call this
                      pkcValue.
                  4)  GET(usmUserSpinLock.0) and save in sValue.
                  5)  SET(usmUserSpinLock.0=sValue,
                          usmUserPrivKeyChange=pkcValue
                          usmUserPublic=randomValue1)
                  6)  GET(usmUserPulic) and check it has randomValue1.
                      If not, repeat steps 4-6.

                If the new user will never use privacy:

                  7)  SET(usmUserPrivProtocol=usmNoPrivProtocol)

                If the new user is to use authentication:

                  8)  generate the keyChange value based on the secret
                      authKey of the clone-from user and the secret key
                      to be used for the new user. Let us call this
                      akcValue.
                  9)  GET(usmUserSpinLock.0) and save in sValue.
                  10) SET(usmUserSpinLock.0=sValue,
                          usmUserAuthKeyChange=akcValue
                          usmUserPublic=randomValue2)
                  11) GET(usmUserPulic) and check it has randomValue2.
                      If not, repeat steps 9-11.

                If the new user will never use authentication:

                  12) SET(usmUserAuthProtocol=usmNoAuthProtocol)

                Finally, activate the new user:

                  13) SET(usmUserStatus=active)

                The new user should now be available and ready to be
                used for SNMPv3 communication. Note however that access
                to MIB data must be provided via configuration of the
                SNMP-VIEW-BASED-ACM-MIB.



Blumenthal & Wijnen         Standards Track                    [Page 40]

RFC 3414                     USM for SNMPv3                December 2002


                The use of usmUserSpinlock is to avoid conflicts with
                another SNMP command generator application which may
                also be acting on the usmUserTable.
               "
   ::= { usmUser 2 }

usmUserEntry     OBJECT-TYPE
   SYNTAX       UsmUserEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION "A user configured in the SNMP engine's Local
                Configuration Datastore (LCD) for the User-based
                Security Model.
               "
   INDEX       { usmUserEngineID,
                 usmUserName
               }
   ::= { usmUserTable 1 }

UsmUserEntry ::= SEQUENCE
   {
       usmUserEngineID         SnmpEngineID,
       usmUserName             SnmpAdminString,
       usmUserSecurityName     SnmpAdminString,
       usmUserCloneFrom        RowPointer,
       usmUserAuthProtocol     AutonomousType,
       usmUserAuthKeyChange    KeyChange,
       usmUserOwnAuthKeyChange KeyChange,
       usmUserPrivProtocol     AutonomousType,
       usmUserPrivKeyChange    KeyChange,
       usmUserOwnPrivKeyChange KeyChange,
       usmUserPublic           OCTET STRING,
       usmUserStorageType      StorageType,
       usmUserStatus           RowStatus
   }

usmUserEngineID  OBJECT-TYPE
   SYNTAX       SnmpEngineID
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION "An SNMP engine's administratively-unique identifier.

                In a simple agent, this value is always that agent's
                own snmpEngineID value.

                The value can also take the value of the snmpEngineID
                of a remote SNMP engine with which this user can
                communicate.



Blumenthal & Wijnen         Standards Track                    [Page 41]

RFC 3414                     USM for SNMPv3                December 2002


               "
   ::= { usmUserEntry 1 }

usmUserName      OBJECT-TYPE
   SYNTAX       SnmpAdminString (SIZE(1..32))
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION "A human readable string representing the name of
                the user.

                This is the (User-based Security) Model dependent
                security ID.
               "
   ::= { usmUserEntry 2 }

usmUserSecurityName OBJECT-TYPE
   SYNTAX       SnmpAdminString
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "A human readable string representing the user in
                Security Model independent format.

                The default transformation of the User-based Security
                Model dependent security ID to the securityName and
                vice versa is the identity function so that the
                securityName is the same as the userName.
               "
   ::= { usmUserEntry 3 }

usmUserCloneFrom OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "A pointer to another conceptual row in this
                usmUserTable.  The user in this other conceptual
                row is called the clone-from user.

                When a new user is created (i.e., a new conceptual
                row is instantiated in this table), the privacy and
                authentication parameters of the new user must be
                cloned from its clone-from user. These parameters are:
                  - authentication protocol (usmUserAuthProtocol)
                  - privacy protocol (usmUserPrivProtocol)
                They will be copied regardless of what the current
                value is.

                Cloning also causes the initial values of the secret
                authentication key (authKey) and the secret encryption



Blumenthal & Wijnen         Standards Track                    [Page 42]

RFC 3414                     USM for SNMPv3                December 2002


                key (privKey) of the new user to be set to the same
                values as the corresponding secrets of the clone-from
                user to allow the KeyChange process to occur as
                required during user creation.

                The first time an instance of this object is set by
                a management operation (either at or after its
                instantiation), the cloning process is invoked.
                Subsequent writes are successful but invoke no
                action to be taken by the receiver.
                The cloning process fails with an 'inconsistentName'
                error if the conceptual row representing the
                clone-from user does not exist or is not in an active
                state when the cloning process is invoked.

                When this object is read, the ZeroDotZero OID
                is returned.
               "
   ::= { usmUserEntry 4 }

usmUserAuthProtocol OBJECT-TYPE
   SYNTAX       AutonomousType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "An indication of whether messages sent on behalf of
                this user to/from the SNMP engine identified by
                usmUserEngineID, can be authenticated, and if so,
                the type of authentication protocol which is used.

                An instance of this object is created concurrently
                with the creation of any other object instance for
                the same user (i.e., as part of the processing of
                the set operation which creates the first object
                instance in the same conceptual row).

                If an initial set operation (i.e. at row creation time)
                tries to set a value for an unknown or unsupported
                protocol, then a 'wrongValue' error must be returned.

                The value will be overwritten/set when a set operation
                is performed on the corresponding instance of
                usmUserCloneFrom.

                Once instantiated, the value of such an instance of
                this object can only be changed via a set operation to
                the value of the usmNoAuthProtocol.

                If a set operation tries to change the value of an



Blumenthal & Wijnen         Standards Track                    [Page 43]

RFC 3414                     USM for SNMPv3                December 2002


                existing instance of this object to any value other
                than usmNoAuthProtocol, then an 'inconsistentValue'
                error must be returned.

                If a set operation tries to set the value to the
                usmNoAuthProtocol while the usmUserPrivProtocol value
                in the same row is not equal to usmNoPrivProtocol,
                then an 'inconsistentValue' error must be returned.
                That means that an SNMP command generator application
                must first ensure that the usmUserPrivProtocol is set
                to the usmNoPrivProtocol value before it can set
                the usmUserAuthProtocol value to usmNoAuthProtocol.
               "
   DEFVAL      { usmNoAuthProtocol }
   ::= { usmUserEntry 5 }

usmUserAuthKeyChange OBJECT-TYPE
   SYNTAX       KeyChange   -- typically (SIZE (0 | 32)) for HMACMD5
                            -- typically (SIZE (0 | 40)) for HMACSHA
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "An object, which when modified, causes the secret
                authentication key used for messages sent on behalf
                of this user to/from the SNMP engine identified by
                usmUserEngineID, to be modified via a one-way
                function.

                The associated protocol is the usmUserAuthProtocol.
                The associated secret key is the user's secret
                authentication key (authKey). The associated hash
                algorithm is the algorithm used by the user's
                usmUserAuthProtocol.

                When creating a new user, it is an 'inconsistentName'
                error for a set operation to refer to this object
                unless it is previously or concurrently initialized
                through a set operation on the corresponding instance
                of usmUserCloneFrom.

                When the value of the corresponding usmUserAuthProtocol
                is usmNoAuthProtocol, then a set is successful, but
                effectively is a no-op.

                When this object is read, the zero-length (empty)
                string is returned.

                The recommended way to do a key change is as follows:




Blumenthal & Wijnen         Standards Track                    [Page 44]

RFC 3414                     USM for SNMPv3                December 2002


                  1) GET(usmUserSpinLock.0) and save in sValue.
                  2) generate the keyChange value based on the old
                     (existing) secret key and the new secret key,
                     let us call this kcValue.

                If you do the key change on behalf of another user:

                  3) SET(usmUserSpinLock.0=sValue,
                         usmUserAuthKeyChange=kcValue
                         usmUserPublic=randomValue)

                If you do the key change for yourself:

                  4) SET(usmUserSpinLock.0=sValue,
                         usmUserOwnAuthKeyChange=kcValue
                         usmUserPublic=randomValue)

                If you get a response with error-status of noError,
                then the SET succeeded and the new key is active.
                If you do not get a response, then you can issue a
                GET(usmUserPublic) and check if the value is equal
                to the randomValue you did send in the SET. If so, then
                the key change succeeded and the new key is active
                (probably the response got lost). If not, then the SET
                request probably never reached the target and so you
                can start over with the procedure above.
               "
   DEFVAL      { ''H }    -- the empty string
   ::= { usmUserEntry 6 }

usmUserOwnAuthKeyChange OBJECT-TYPE
   SYNTAX       KeyChange   -- typically (SIZE (0 | 32)) for HMACMD5
                            -- typically (SIZE (0 | 40)) for HMACSHA
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "Behaves exactly as usmUserAuthKeyChange, with one
                notable difference: in order for the set operation
                to succeed, the usmUserName of the operation
                requester must match the usmUserName that
                indexes the row which is targeted by this
                operation.
                In addition, the USM security model must be
                used for this operation.

                The idea here is that access to this column can be
                public, since it will only allow a user to change
                his own secret authentication key (authKey).
                Note that this can only be done once the row is active.



Blumenthal & Wijnen         Standards Track                    [Page 45]

RFC 3414                     USM for SNMPv3                December 2002


                When a set is received and the usmUserName of the
                requester is not the same as the umsUserName that
                indexes the row which is targeted by this operation,
                then a 'noAccess' error must be returned.

                When a set is received and the security model in use
                is not USM, then a 'noAccess' error must be returned.
               "
   DEFVAL      { ''H }    -- the empty string
   ::= { usmUserEntry 7 }

usmUserPrivProtocol OBJECT-TYPE
   SYNTAX       AutonomousType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "An indication of whether messages sent on behalf of
                this user to/from the SNMP engine identified by
                usmUserEngineID, can be protected from disclosure,
                and if so, the type of privacy protocol which is used.

                An instance of this object is created concurrently
                with the creation of any other object instance for
                the same user (i.e., as part of the processing of
                the set operation which creates the first object
                instance in the same conceptual row).

                If an initial set operation (i.e. at row creation time)
                tries to set a value for an unknown or unsupported
                protocol, then a 'wrongValue' error must be returned.

                The value will be overwritten/set when a set operation
                is performed on the corresponding instance of
                usmUserCloneFrom.

                Once instantiated, the value of such an instance of
                this object can only be changed via a set operation to
                the value of the usmNoPrivProtocol.

                If a set operation tries to change the value of an
                existing instance of this object to any value other
                than usmNoPrivProtocol, then an 'inconsistentValue'
                error must be returned.

                Note that if any privacy protocol is used, then you
                must also use an authentication protocol. In other
                words, if usmUserPrivProtocol is set to anything else
                than usmNoPrivProtocol, then the corresponding instance
                of usmUserAuthProtocol cannot have a value of



Blumenthal & Wijnen         Standards Track                    [Page 46]

RFC 3414                     USM for SNMPv3                December 2002


                usmNoAuthProtocol. If it does, then an
                'inconsistentValue' error must be returned.
               "
   DEFVAL      { usmNoPrivProtocol }
   ::= { usmUserEntry 8 }

usmUserPrivKeyChange OBJECT-TYPE
   SYNTAX       KeyChange  -- typically (SIZE (0 | 32)) for DES
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "An object, which when modified, causes the secret
                encryption key used for messages sent on behalf
                of this user to/from the SNMP engine identified by
                usmUserEngineID, to be modified via a one-way
                function.

                The associated protocol is the usmUserPrivProtocol.
                The associated secret key is the user's secret
                privacy key (privKey). The associated hash
                algorithm is the algorithm used by the user's
                usmUserAuthProtocol.

                When creating a new user, it is an 'inconsistentName'
                error for a set operation to refer to this object
                unless it is previously or concurrently initialized
                through a set operation on the corresponding instance
                of usmUserCloneFrom.

                When the value of the corresponding usmUserPrivProtocol
                is usmNoPrivProtocol, then a set is successful, but
                effectively is a no-op.

                When this object is read, the zero-length (empty)
                string is returned.
                See the description clause of usmUserAuthKeyChange for
                a recommended procedure to do a key change.
               "
   DEFVAL      { ''H }    -- the empty string
   ::= { usmUserEntry 9 }

usmUserOwnPrivKeyChange OBJECT-TYPE
   SYNTAX       KeyChange  -- typically (SIZE (0 | 32)) for DES
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "Behaves exactly as usmUserPrivKeyChange, with one
                notable difference: in order for the Set operation
                to succeed, the usmUserName of the operation
                requester must match the usmUserName that indexes



Blumenthal & Wijnen         Standards Track                    [Page 47]

RFC 3414                     USM for SNMPv3                December 2002


                the row which is targeted by this operation.
                In addition, the USM security model must be
                used for this operation.

                The idea here is that access to this column can be
                public, since it will only allow a user to change
                his own secret privacy key (privKey).
                Note that this can only be done once the row is active.

                When a set is received and the usmUserName of the
                requester is not the same as the umsUserName that
                indexes the row which is targeted by this operation,
                then a 'noAccess' error must be returned.

                When a set is received and the security model in use
                is not USM, then a 'noAccess' error must be returned.
               "
   DEFVAL      { ''H }    -- the empty string
   ::= { usmUserEntry 10 }

usmUserPublic    OBJECT-TYPE
   SYNTAX       OCTET STRING (SIZE(0..32))
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "A publicly-readable value which can be written as part
                of the procedure for changing a user's secret
                authentication and/or privacy key, and later read to
                determine whether the change of the secret was
                effected.
               "
   DEFVAL      { ''H }  -- the empty string
   ::= { usmUserEntry 11 }

usmUserStorageType OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "The storage type for this conceptual row.

                Conceptual rows having the value 'permanent' must
                allow write-access at a minimum to:

                - usmUserAuthKeyChange, usmUserOwnAuthKeyChange
                  and usmUserPublic for a user who employs
                  authentication, and
                - usmUserPrivKeyChange, usmUserOwnPrivKeyChange
                  and usmUserPublic for a user who employs
                  privacy.



Blumenthal & Wijnen         Standards Track                    [Page 48]

RFC 3414                     USM for SNMPv3                December 2002


                Note that any user who employs authentication or
                privacy must allow its secret(s) to be updated and
                thus cannot be 'readOnly'.

                If an initial set operation tries to set the value to
                'readOnly' for a user who employs authentication or
                privacy, then an 'inconsistentValue' error must be
                returned.  Note that if the value has been previously
                set (implicit or explicit) to any value, then the rules
                as defined in the StorageType Textual Convention apply.

                It is an implementation issue to decide if a SET for
                a readOnly or permanent row is accepted at all. In some
                contexts this may make sense, in others it may not. If
                a SET for a readOnly or permanent row is not accepted
                at all, then a 'wrongValue' error must be returned.
               "
   DEFVAL      { nonVolatile }
   ::= { usmUserEntry 12 }

usmUserStatus    OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "The status of this conceptual row.

                Until instances of all corresponding columns are
                appropriately configured, the value of the
                corresponding instance of the usmUserStatus column
                is 'notReady'.

                In particular, a newly created row for a user who
                employs authentication, cannot be made active until the
                corresponding usmUserCloneFrom and usmUserAuthKeyChange
                have been set.

                Further, a newly created row for a user who also
                employs privacy, cannot be made active until the
                usmUserPrivKeyChange has been set.

                The RowStatus TC [RFC2579] requires that this
                DESCRIPTION clause states under which circumstances
                other objects in this row can be modified:

                The value of this object has no effect on whether
                other objects in this conceptual row can be modified,
                except for usmUserOwnAuthKeyChange and
                usmUserOwnPrivKeyChange. For these 2 objects, the



Blumenthal & Wijnen         Standards Track                    [Page 49]

RFC 3414                     USM for SNMPv3                December 2002


                value of usmUserStatus MUST be active.
               "
   ::= { usmUserEntry 13 }

-- Conformance Information *******************************************

usmMIBCompliances OBJECT IDENTIFIER ::= { usmMIBConformance 1 }
usmMIBGroups      OBJECT IDENTIFIER ::= { usmMIBConformance 2 }

-- Compliance statements

usmMIBCompliance MODULE-COMPLIANCE
   STATUS       current
   DESCRIPTION "The compliance statement for SNMP engines which
                implement the SNMP-USER-BASED-SM-MIB.
               "

   MODULE       -- this module
       MANDATORY-GROUPS { usmMIBBasicGroup }

       OBJECT           usmUserAuthProtocol
       MIN-ACCESS       read-only
       DESCRIPTION     "Write access is not required."

       OBJECT           usmUserPrivProtocol
       MIN-ACCESS       read-only
       DESCRIPTION     "Write access is not required."

   ::= { usmMIBCompliances 1 }

-- Units of compliance
usmMIBBasicGroup OBJECT-GROUP
   OBJECTS     {
                 usmStatsUnsupportedSecLevels,
                 usmStatsNotInTimeWindows,
                 usmStatsUnknownUserNames,
                 usmStatsUnknownEngineIDs,
                 usmStatsWrongDigests,
                 usmStatsDecryptionErrors,
                 usmUserSpinLock,
                 usmUserSecurityName,
                 usmUserCloneFrom,
                 usmUserAuthProtocol,
                 usmUserAuthKeyChange,
                 usmUserOwnAuthKeyChange,
                 usmUserPrivProtocol,
                 usmUserPrivKeyChange,
                 usmUserOwnPrivKeyChange,



Blumenthal & Wijnen         Standards Track                    [Page 50]

RFC 3414                     USM for SNMPv3                December 2002


                 usmUserPublic,
                 usmUserStorageType,
                 usmUserStatus
               }
   STATUS       current
   DESCRIPTION "A collection of objects providing for configuration
                of an SNMP engine which implements the SNMP
                User-based Security Model.
               "
   ::= { usmMIBGroups 1 }

END

6. HMAC-MD5-96 Authentication Protocol

  This section describes the HMAC-MD5-96 authentication protocol.  This
  authentication protocol is the first defined for the User-based
  Security Model.  It uses MD5 hash-function which is described in
  [RFC1321], in HMAC mode described in [RFC2104], truncating the output
  to 96 bits.

  This protocol is identified by usmHMACMD5AuthProtocol.

  Over time, other authentication protocols may be defined either as a
  replacement of this protocol or in addition to this protocol.

6.1. Mechanisms

  - In support of data integrity, a message digest algorithm is
    required.  A digest is calculated over an appropriate portion of an
    SNMP message and included as part of the message sent to the
    recipient.

  - In support of data origin authentication and data integrity, a
    secret value is prepended to SNMP message prior to computing the
    digest; the calculated digest is partially inserted into the SNMP
    message prior to transmission, and the prepended value is not
    transmitted.  The secret value is shared by all SNMP engines
    authorized to originate messages on behalf of the appropriate user.

6.1.1. Digest Authentication Mechanism

  The Digest Authentication Mechanism defined in this memo provides
  for:

  - verification of the integrity of a received message, i.e., the
    message received is the message sent.




Blumenthal & Wijnen         Standards Track                    [Page 51]

RFC 3414                     USM for SNMPv3                December 2002


    The integrity of the message is protected by computing a digest
    over an appropriate portion of the message.  The digest is computed
    by the originator of the message, transmitted with the message, and
    verified by the recipient of the message.

  - verification of the user on whose behalf the message was generated.

    A secret value known only to SNMP engines authorized to generate
    messages on behalf of a user is used in HMAC mode (see [RFC2104]).
    It also recommends the hash-function output used as Message
    Authentication Code, to be truncated.

  This protocol uses the MD5 [RFC1321] message digest algorithm.  A
  128-bit MD5 digest is calculated in a special (HMAC) way over the
  designated portion of an SNMP message and the first 96 bits of this
  digest is included as part of the message sent to the recipient.  The
  size of the digest carried in a message is 12 octets.  The size of
  the private authentication key (the secret) is 16 octets.  For the
  details see section 6.3.

6.2. Elements of the Digest Authentication Protocol

  This section contains definitions required to realize the
  authentication module defined in this section of this memo.

6.2.1. Users

  Authentication using this authentication protocol makes use of a
  defined set of userNames.  For any user on whose behalf a message
  must be authenticated at a particular SNMP engine, that SNMP engine
  must have knowledge of that user.  An SNMP engine that wishes to
  communicate with another SNMP engine must also have knowledge of a
  user known to that engine, including knowledge of the applicable
  attributes of that user.

  A user and its attributes are defined as follows:

  <userName>
    A string representing the name of the user.
  <authKey>
    A user's secret key to be used when calculating a digest.
    It MUST be 16 octets long for MD5.









Blumenthal & Wijnen         Standards Track                    [Page 52]

RFC 3414                     USM for SNMPv3                December 2002


6.2.2. msgAuthoritativeEngineID

  The msgAuthoritativeEngineID value contained in an authenticated
  message specifies the authoritative SNMP engine for that particular
  message (see the definition of SnmpEngineID in the SNMP Architecture
  document [RFC3411]).

  The user's (private) authentication key is normally different at each
  authoritative SNMP engine and so the snmpEngineID is used to select
  the proper key for the authentication process.

6.2.3. SNMP Messages Using this Authentication Protocol

  Messages using this authentication protocol carry a
  msgAuthenticationParameters field as part of the
  msgSecurityParameters.  For this protocol, the
  msgAuthenticationParameters field is the serialized OCTET STRING
  representing the first 12 octets of the HMAC-MD5-96 output done over
  the wholeMsg.

  The digest is calculated over the wholeMsg so if a message is
  authenticated, that also means that all the fields in the message are
  intact and have not been tampered with.

6.2.4. Services provided by the HMAC-MD5-96 Authentication Module

  This section describes the inputs and outputs that the HMAC-MD5-96
  Authentication module expects and produces when the User-based
  Security module calls the HMAC-MD5-96 Authentication module for
  services.

6.2.4.1. Services for Generating an Outgoing SNMP Message

  The HMAC-MD5-96 authentication protocol assumes that the selection of
  the authKey is done by the caller and that the caller passes the
  secret key to be used.

  Upon completion the authentication module returns statusInformation
  and, if the message digest was correctly calculated, the wholeMsg
  with the digest inserted at the proper place.  The abstract service
  primitive is:

  statusInformation =              -- success or failure
    authenticateOutgoingMsg(
    IN   authKey                   -- secret key for authentication
    IN   wholeMsg                  -- unauthenticated complete message
    OUT  authenticatedWholeMsg     -- complete authenticated message
         )



Blumenthal & Wijnen         Standards Track                    [Page 53]

RFC 3414                     USM for SNMPv3                December 2002


  The abstract data elements are:

  statusInformation
    An indication of whether the authentication process was successful.
    If not it is an indication of the problem.

  authKey
    The secret key to be used by the authentication algorithm.  The
    length of this key MUST be 16 octets.

  wholeMsg
    The message to be authenticated.

  authenticatedWholeMsg
    The authenticated message (including inserted digest) on output.

  Note, that authParameters field is filled by the authentication
  module and this module and this field should be already present in
  the wholeMsg before the Message Authentication Code (MAC) is
  generated.

6.2.4.2. Services for Processing an Incoming SNMP Message

  The HMAC-MD5-96 authentication protocol assumes that the selection of
  the authKey is done by the caller and that the caller passes the
  secret key to be used.

  Upon completion the authentication module returns statusInformation
  and, if the message digest was correctly calculated, the wholeMsg as
  it was processed.  The abstract service primitive is:

  statusInformation =              -- success or failure
    authenticateIncomingMsg(
    IN   authKey                   -- secret key for authentication
    IN   authParameters            -- as received on the wire
    IN   wholeMsg                  -- as received on the wire
    OUT  authenticatedWholeMsg     -- complete authenticated message
         )

  The abstract data elements are:

  statusInformation
    An indication of whether the authentication process was successful.
    If not it is an indication of the problem.

  authKey
    The secret key to be used by the authentication algorithm.  The
    length of this key MUST be 16 octets.



Blumenthal & Wijnen         Standards Track                    [Page 54]

RFC 3414                     USM for SNMPv3                December 2002


  authParameters
    The authParameters from the incoming message.

  wholeMsg
    The message to be authenticated on input and the authenticated
    message on output.

  authenticatedWholeMsg
    The whole message after the authentication check is complete.

6.3. Elements of Procedure

  This section describes the procedures for the HMAC-MD5-96
  authentication protocol.

6.3.1. Processing an Outgoing Message

  This section describes the procedure followed by an SNMP engine
  whenever it must authenticate an outgoing message using the
  usmHMACMD5AuthProtocol.

  1) The msgAuthenticationParameters field is set to the serialization,
     according to the rules in [RFC3417], of an OCTET STRING containing
     12 zero octets.

  2) From the secret authKey, two keys K1 and K2 are derived:

     a) extend the authKey to 64 octets by appending 48 zero octets;
        save it as extendedAuthKey

     b) obtain IPAD by replicating the octet 0x36 64 times;

     c) obtain K1 by XORing extendedAuthKey with IPAD;

     d) obtain OPAD by replicating the octet 0x5C 64 times;

     e) obtain K2 by XORing extendedAuthKey with OPAD.

  3) Prepend K1 to the wholeMsg and calculate MD5 digest over it
     according to [RFC1321].

  4) Prepend K2 to the result of the step 4 and calculate MD5 digest
     over it according to [RFC1321].  Take the first 12 octets of the
     final digest - this is Message Authentication Code (MAC).

  5) Replace the msgAuthenticationParameters field with MAC obtained in
     the step 4.




Blumenthal & Wijnen         Standards Track                    [Page 55]

RFC 3414                     USM for SNMPv3                December 2002


  6) The authenticatedWholeMsg is then returned to the caller together
     with statusInformation indicating success.

6.3.2. Processing an Incoming Message

  This section describes the procedure followed by an SNMP engine
  whenever it must authenticate an incoming message using the
  usmHMACMD5AuthProtocol.

  1) If the digest received in the msgAuthenticationParameters field is
     not 12 octets long, then an failure and an errorIndication
     (authenticationError) is returned to the calling module.

  2) The MAC received in the msgAuthenticationParameters field is
     saved.

  3) The digest in the msgAuthenticationParameters field is replaced by
     the 12 zero octets.

  4) From the secret authKey, two keys K1 and K2 are derived:

     a) extend the authKey to 64 octets by appending 48 zero octets;
        save it as extendedAuthKey

     b) obtain IPAD by replicating the octet 0x36 64 times;

     c) obtain K1 by XORing extendedAuthKey with IPAD;

     d) obtain OPAD by replicating the octet 0x5C 64 times;

     e) obtain K2 by XORing extendedAuthKey with OPAD.

  5) The MAC is calculated over the wholeMsg:

     a) prepend K1 to the wholeMsg and calculate the MD5 digest over
     it;

     b) prepend K2 to the result of step 5.a and calculate the MD5
     digest over it;

     c) first 12 octets of the result of step 5.b is the MAC.

     The msgAuthenticationParameters field is replaced with the MAC
     value that was saved in step 2.







Blumenthal & Wijnen         Standards Track                    [Page 56]

RFC 3414                     USM for SNMPv3                December 2002


  6) Then the newly calculated MAC is compared with the MAC saved in
     step 2.  If they do not match, then an failure and an
     errorIndication (authenticationFailure) is returned to the calling
     module.

  7) The authenticatedWholeMsg and statusInformation indicating success
     are then returned to the caller.

7. HMAC-SHA-96 Authentication Protocol

  This section describes the HMAC-SHA-96 authentication protocol.  This
  protocol uses the SHA hash-function which is described in [SHA-NIST],
  in HMAC mode described in [RFC2104], truncating the output to 96
  bits.

  This protocol is identified by usmHMACSHAAuthProtocol.

  Over time, other authentication protocols may be defined either as a
  replacement of this protocol or in addition to this protocol.

7.1. Mechanisms

  - In support of data integrity, a message digest algorithm is
    required.  A digest is calculated over an appropriate portion of an
    SNMP message and included as part of the message sent to the
    recipient.

  - In support of data origin authentication and data integrity, a
    secret value is prepended to the SNMP message prior to computing
    the digest; the calculated digest is then partially inserted into
    the message prior to transmission.  The prepended secret is not
    transmitted.  The secret value is shared by all SNMP engines
    authorized to originate messages on behalf of the appropriate user.

7.1.1. Digest Authentication Mechanism

  The Digest Authentication Mechanism defined in this memo provides
  for:

  - verification of the integrity of a received message, i.e., the
    message received is the message sent.

    The integrity of the message is protected by computing a digest
    over an appropriate portion of the message.  The digest is computed
    by the originator of the message, transmitted with the message, and
    verified by the recipient of the message.





Blumenthal & Wijnen         Standards Track                    [Page 57]

RFC 3414                     USM for SNMPv3                December 2002


  - verification of the user on whose behalf the message was generated.

    A secret value known only to SNMP engines authorized to generate
    messages on behalf of a user is used in HMAC mode (see [RFC2104]).
    It also recommends the hash-function output used as Message
    Authentication Code, to be truncated.

  This mechanism uses the SHA [SHA-NIST] message digest algorithm.  A
  160-bit SHA digest is calculated in a special (HMAC) way over the
  designated portion of an SNMP message and the first 96 bits of this
  digest is included as part of the message sent to the recipient.  The
  size of the digest carried in a message is 12 octets.  The size of
  the private authentication key (the secret) is 20 octets.  For the
  details see section 7.3.

7.2. Elements of the HMAC-SHA-96 Authentication Protocol

  This section contains definitions required to realize the
  authentication module defined in this section of this memo.

7.2.1. Users

  Authentication using this authentication protocol makes use of a
  defined set of userNames.  For any user on whose behalf a message
  must be authenticated at a particular SNMP engine, that SNMP engine
  must have knowledge of that user.  An SNMP engine that wishes to
  communicate with another SNMP engine must also have knowledge of a
  user known to that engine, including knowledge of the applicable
  attributes of that user.

  A user and its attributes are defined as follows:

  <userName>
    A string representing the name of the user.
  <authKey>
    A user's secret key to be used when calculating a digest.
    It MUST be 20 octets long for SHA.

7.2.2. msgAuthoritativeEngineID

  The msgAuthoritativeEngineID value contained in an authenticated
  message specifies the authoritative SNMP engine for that particular
  message (see the definition of SnmpEngineID in the SNMP Architecture
  document [RFC3411]).

  The user's (private) authentication key is normally different at each
  authoritative SNMP engine and so the snmpEngineID is used to select
  the proper key for the authentication process.



Blumenthal & Wijnen         Standards Track                    [Page 58]

RFC 3414                     USM for SNMPv3                December 2002


7.2.3. SNMP Messages Using this Authentication Protocol

  Messages using this authentication protocol carry a
  msgAuthenticationParameters field as part of the
  msgSecurityParameters.  For this protocol, the
  msgAuthenticationParameters field is the serialized OCTET STRING
  representing the first 12 octets of HMAC-SHA-96 output done over the
  wholeMsg.

  The digest is calculated over the wholeMsg so if a message is
  authenticated, that also means that all the fields in the message are
  intact and have not been tampered with.

7.2.4. Services Provided by the HMAC-SHA-96 Authentication Module

  This section describes the inputs and outputs that the HMAC-SHA-96
  Authentication module expects and produces when the User-based
  Security module calls the HMAC-SHA-96 Authentication module for
  services.

7.2.4.1. Services for Generating an Outgoing SNMP Message

  HMAC-SHA-96 authentication protocol assumes that the selection of the
  authKey is done by the caller and that the caller passes the secret
  key to be used.

  Upon completion the authentication module returns statusInformation
  and, if the message digest was correctly calculated, the wholeMsg
  with the digest inserted at the proper place.  The abstract service
  primitive is:

  statusInformation =              -- success or failure
    authenticateOutgoingMsg(
    IN   authKey                   -- secret key for authentication
    IN   wholeMsg                  -- unauthenticated complete message
    OUT  authenticatedWholeMsg     -- complete authenticated message
         )

  The abstract data elements are:

  statusInformation
    An indication of whether the authentication process was successful.
    If not it is an indication of the problem.

  authKey
    The secret key to be used by the authentication algorithm.  The
    length of this key MUST be 20 octets.




Blumenthal & Wijnen         Standards Track                    [Page 59]

RFC 3414                     USM for SNMPv3                December 2002


  wholeMsg
    The message to be authenticated.

  authenticatedWholeMsg
    The authenticated message (including inserted digest) on output.

  Note, that authParameters field is filled by the authentication
  module and this field should be already present in the wholeMsg
  before the Message Authentication Code (MAC) is generated.

7.2.4.2. Services for Processing an Incoming SNMP Message

  HMAC-SHA-96 authentication protocol assumes that the selection of the
  authKey is done by the caller and that the caller passes the secret
  key to be used.

  Upon completion the authentication module returns statusInformation
  and, if the message digest was correctly calculated, the wholeMsg as
  it was processed.  The abstract service primitive is:

  statusInformation =              -- success or failure
    authenticateIncomingMsg(
    IN   authKey                   -- secret key for authentication
    IN   authParameters            -- as received on the wire
    IN   wholeMsg                  -- as received on the wire
    OUT  authenticatedWholeMsg     -- complete authenticated message
         )

  The abstract data elements are:

  statusInformation
    An indication of whether the authentication process was successful.
    If not it is an indication of the problem.

  authKey
    The secret key to be used by the authentication algorithm.  The
    length of this key MUST be 20 octets.

  authParameters
    The authParameters from the incoming message.

  wholeMsg
    The message to be authenticated on input and the authenticated
    message on output.

  authenticatedWholeMsg
    The whole message after the authentication check is complete.




Blumenthal & Wijnen         Standards Track                    [Page 60]

RFC 3414                     USM for SNMPv3                December 2002


7.3. Elements of Procedure

  This section describes the procedures for the HMAC-SHA-96
  authentication protocol.

7.3.1. Processing an Outgoing Message

  This section describes the procedure followed by an SNMP engine
  whenever it must authenticate an outgoing message using the
  usmHMACSHAAuthProtocol.

  1) The msgAuthenticationParameters field is set to the serialization,
     according to the rules in [RFC3417], of an OCTET STRING containing
     12 zero octets.

  2) From the secret authKey, two keys K1 and K2 are derived:

     a) extend the authKey to 64 octets by appending 44 zero octets;
        save it as extendedAuthKey

     b) obtain IPAD by replicating the octet 0x36 64 times;

     c) obtain K1 by XORing extendedAuthKey with IPAD;

     d) obtain OPAD by replicating the octet 0x5C 64 times;

     e) obtain K2 by XORing extendedAuthKey with OPAD.

  3) Prepend K1 to the wholeMsg and calculate the SHA digest over it
     according to [SHA-NIST].

  4) Prepend K2 to the result of the step 4 and calculate SHA digest
     over it according to [SHA-NIST].  Take the first 12 octets of the
     final digest - this is Message Authentication Code (MAC).

  5) Replace the msgAuthenticationParameters field with MAC obtained in
     the step 5.

  6) The authenticatedWholeMsg is then returned to the caller together
     with statusInformation indicating success.

7.3.2. Processing an Incoming Message

  This section describes the procedure followed by an SNMP engine
  whenever it must authenticate an incoming message using the
  usmHMACSHAAuthProtocol.





Blumenthal & Wijnen         Standards Track                    [Page 61]

RFC 3414                     USM for SNMPv3                December 2002


  1) If the digest received in the msgAuthenticationParameters field is
     not 12 octets long, then an failure and an errorIndication
     (authenticationError) is returned to the calling module.

  2) The MAC received in the msgAuthenticationParameters field is
     saved.

  3) The digest in the msgAuthenticationParameters field is replaced by
     the 12 zero octets.

  4) From the secret authKey, two keys K1 and K2 are derived:

     a) extend the authKey to 64 octets by appending 44 zero octets;
        save it as extendedAuthKey

     b) obtain IPAD by replicating the octet 0x36 64 times;

     c) obtain K1 by XORing extendedAuthKey with IPAD;

     d) obtain OPAD by replicating the octet 0x5C 64 times;

     e) obtain K2 by XORing extendedAuthKey with OPAD.

  5)  The MAC is calculated over the wholeMsg:

     a) prepend K1 to the wholeMsg and calculate the SHA digest over
        it;

     b) prepend K2 to the result of step 5.a and calculate the SHA
        digest over it;

     c) first 12 octets of the result of step 5.b is the MAC.

     The msgAuthenticationParameters field is replaced with the MAC
     value that was saved in step 2.

  6) The the newly calculated MAC is compared with the MAC saved in
     step 2.  If they do not match, then a failure and an
     errorIndication (authenticationFailure) are returned to the
     calling module.

  7) The authenticatedWholeMsg and statusInformation indicating success
     are then returned to the caller.








Blumenthal & Wijnen         Standards Track                    [Page 62]

RFC 3414                     USM for SNMPv3                December 2002


8. CBC-DES Symmetric Encryption Protocol

  This section describes the CBC-DES Symmetric Encryption Protocol.
  This protocol is the first privacy protocol defined for the
  User-based Security Model.

  This protocol is identified by usmDESPrivProtocol.

  Over time, other privacy protocols may be defined either as a
  replacement of this protocol or in addition to this protocol.

8.1. Mechanisms

  - In support of data confidentiality, an encryption algorithm is
    required.  An appropriate portion of the message is encrypted prior
    to being transmitted.  The User-based Security Model specifies that
    the scopedPDU is the portion of the message that needs to be
    encrypted.

  - A secret value in combination with a timeliness value is used to
    create the en/decryption key and the initialization vector.  The
    secret value is shared by all SNMP engines authorized to originate
    messages on behalf of the appropriate user.

8.1.1. Symmetric Encryption Protocol

  The Symmetric Encryption Protocol defined in this memo provides
  support for data confidentiality.  The designated portion of an SNMP
  message is encrypted and included as part of the message sent to the
  recipient.

  Two organizations have published specifications defining the DES:
  the National Institute of Standards and Technology (NIST) [DES-NIST]
  and the American National Standards Institute [DES-ANSI].  There is a
  companion Modes of Operation specification for each definition
  ([DESO-NIST] and [DESO-ANSI], respectively).

  The NIST has published three additional documents that implementors
  may find useful.

  - There is a document with guidelines for implementing and using the
    DES, including functional specifications for the DES and its modes
    of operation [DESG-NIST].

  - There is a specification of a validation test suite for the DES
    [DEST-NIST].  The suite is designed to test all aspects of the DES
    and is useful for pinpointing specific problems.




Blumenthal & Wijnen         Standards Track                    [Page 63]

RFC 3414                     USM for SNMPv3                December 2002


  - There is a specification of a maintenance test for the DES [DESM-
    NIST].  The test utilizes a minimal amount of data and processing
    to test all components of the DES.  It provides a simple yes-or-no
    indication of correct operation and is useful to run as part of an
    initialization step, e.g., when a computer re-boots.

8.1.1.1. DES key and Initialization Vector

  The first 8 octets of the 16-octet secret (private privacy key) are
  used as a DES key.  Since DES uses only 56 bits, the Least
  Significant Bit in each octet is disregarded.

  The Initialization Vector for encryption is obtained using the
  following procedure.

  The last 8 octets of the 16-octet secret (private privacy key) are
  used as pre-IV.

  In order to ensure that the IV for two different packets encrypted by
  the same key, are not the same (i.e., the IV does not repeat) we need
  to "salt" the pre-IV with something unique per packet.  An 8-octet
  string is used as the "salt".  The concatenation of the generating
  SNMP engine's 32-bit snmpEngineBoots and a local 32-bit integer, that
  the encryption engine maintains, is input to the "salt".  The 32-bit
  integer is initialized to an arbitrary value at boot time.

  The 32-bit snmpEngineBoots is converted to the first 4 octets (Most
  Significant Byte first) of our "salt".  The 32-bit integer is then
  converted to the last 4 octet (Most Significant Byte first) of our
  "salt".  The resulting "salt" is then XOR-ed with the pre-IV to
  obtain the IV.  The 8-octet "salt" is then put into the
  privParameters field encoded as an OCTET STRING.  The "salt" integer
  is then modified.  We recommend that it be incremented by one and
  wrap when it reaches the maximum value.

  How exactly the value of the "salt" (and thus of the IV) varies, is
  an implementation issue, as long as the measures are taken to avoid
  producing a duplicate IV.

  The "salt" must be placed in the privParameters field to enable the
  receiving entity to compute the correct IV and to decrypt the
  message.









Blumenthal & Wijnen         Standards Track                    [Page 64]

RFC 3414                     USM for SNMPv3                December 2002


8.1.1.2. Data Encryption

  The data to be encrypted is treated as sequence of octets.  Its
  length should be an integral multiple of 8 - and if it is not, the
  data is padded at the end as necessary.  The actual pad value is
  irrelevant.

  The data is encrypted in Cipher Block Chaining mode.

  The plaintext is divided into 64-bit blocks.

  The plaintext for each block is XOR-ed with the ciphertext of the
  previous block, the result is encrypted and the output of the
  encryption is the ciphertext for the block.  This procedure is
  repeated until there are no more plaintext blocks.

  For the very first block, the Initialization Vector is used instead
  of the ciphertext of the previous block.

8.1.1.3. Data Decryption

  Before decryption, the encrypted data length is verified.  If the
  length of the OCTET STRING to be decrypted is not an integral
  multiple of 8 octets, the decryption process is halted and an
  appropriate exception noted.  When decrypting, the padding is
  ignored.

  The first ciphertext block is decrypted, the decryption output is
  XOR-ed with the Initialization Vector, and the result is the first
  plaintext block.

  For each subsequent block, the ciphertext block is decrypted, the
  decryption output is XOR-ed with the previous ciphertext block and
  the result is the plaintext block.

8.2. Elements of the DES Privacy Protocol

  This section contains definitions required to realize the privacy
  module defined by this memo.

8.2.1. Users

  Data en/decryption using this Symmetric Encryption Protocol makes use
  of a defined set of userNames.  For any user on whose behalf a
  message must be en/decrypted at a particular SNMP engine, that SNMP
  engine must have knowledge of that user.  An SNMP engine that wishes





Blumenthal & Wijnen         Standards Track                    [Page 65]

RFC 3414                     USM for SNMPv3                December 2002


  to communicate with another SNMP engine must also have knowledge of a
  user known to that SNMP engine, including knowledge of the applicable
  attributes of that user.

  A user and its attributes are defined as follows:

  <userName>
    An octet string representing the name of the user.

  <privKey>
    A user's secret key to be used as input for the DES key and IV.
    The length of this key MUST be 16 octets.

8.2.2. msgAuthoritativeEngineID

  The msgAuthoritativeEngineID value contained in an authenticated
  message specifies the authoritative SNMP engine for that particular
  message (see the definition of SnmpEngineID in the SNMP Architecture
  document [RFC3411]).

  The user's (private) privacy key is normally different at each
  authoritative SNMP engine and so the snmpEngineID is used to select
  the proper key for the en/decryption process.

8.2.3. SNMP Messages Using this Privacy Protocol

  Messages using this privacy protocol carry a msgPrivacyParameters
  field as part of the msgSecurityParameters.  For this protocol, the
  msgPrivacyParameters field is the serialized OCTET STRING
  representing the "salt" that was used to create the IV.

8.2.4. Services Provided by the DES Privacy Module

  This section describes the inputs and outputs that the DES Privacy
  module expects and produces when the User-based Security module
  invokes the DES Privacy module for services.

8.2.4.1. Services for Encrypting Outgoing Data

  This DES privacy protocol assumes that the selection of the privKey
  is done by the caller and that the caller passes the secret key to be
  used.

  Upon completion the privacy module returns statusInformation and, if
  the encryption process was successful, the encryptedPDU and the
  msgPrivacyParameters encoded as an OCTET STRING.  The abstract
  service primitive is:




Blumenthal & Wijnen         Standards Track                    [Page 66]

RFC 3414                     USM for SNMPv3                December 2002


  statusInformation =              -- success of failure
    encryptData(
    IN    encryptKey               -- secret key for encryption
    IN    dataToEncrypt            -- data to encrypt (scopedPDU)
    OUT   encryptedData            -- encrypted data (encryptedPDU)
    OUT   privParameters           -- filled in by service provider
          )

  The abstract data elements are:

  statusInformation
    An indication of the success or failure of the encryption process.
    In case of failure, it is an indication of the error.

  encryptKey
    The secret key to be used by the encryption algorithm.  The length
    of this key MUST be 16 octets.

  dataToEncrypt
    The data that must be encrypted.

  encryptedData
    The encrypted data upon successful completion.

  privParameters
    The privParameters encoded as an OCTET STRING.

8.2.4.2. Services for Decrypting Incoming Data

  This DES privacy protocol assumes that the selection of the privKey
  is done by the caller and that the caller passes the secret key to be
  used.

  Upon completion the privacy module returns statusInformation and, if
  the decryption process was successful, the scopedPDU in plain text.
  The abstract service primitive is:

  statusInformation =
    decryptData(
    IN    decryptKey               -- secret key for decryption
    IN    privParameters           -- as received on the wire
    IN    encryptedData            -- encrypted data (encryptedPDU)
    OUT   decryptedData            -- decrypted data (scopedPDU)
          )







Blumenthal & Wijnen         Standards Track                    [Page 67]

RFC 3414                     USM for SNMPv3                December 2002


  The abstract data elements are:

  statusInformation
    An indication whether the data was successfully decrypted and if
    not an indication of the error.

  decryptKey
    The secret key to be used by the decryption algorithm.  The length
    of this key MUST be 16 octets.

  privParameters
    The "salt" to be used to calculate the IV.

  encryptedData
    The data to be decrypted.

  decryptedData
    The decrypted data.

8.3. Elements of Procedure.

  This section describes the procedures for the DES privacy protocol.

8.3.1. Processing an Outgoing Message

  This section describes the procedure followed by an SNMP engine
  whenever it must encrypt part of an outgoing message using the
  usmDESPrivProtocol.

  1) The secret cryptKey is used to construct the DES encryption key,
     the "salt" and the DES pre-IV (from which the IV is computed as
     described in section 8.1.1.1).

  2) The privParameters field is set to the serialization according to
     the rules in [RFC3417] of an OCTET STRING representing the "salt"
     string.

  3) The scopedPDU is encrypted (as described in section 8.1.1.2)
     and the encrypted data is serialized according to the rules in
     [RFC3417] as an OCTET STRING.

  4) The serialized OCTET STRING representing the encrypted scopedPDU
     together with the privParameters and statusInformation indicating
     success is returned to the calling module.







Blumenthal & Wijnen         Standards Track                    [Page 68]

RFC 3414                     USM for SNMPv3                December 2002


8.3.2. Processing an Incoming Message

  This section describes the procedure followed by an SNMP engine
  whenever it must decrypt part of an incoming message using the
  usmDESPrivProtocol.

  1) If the privParameters field is not an 8-octet OCTET STRING, then
     an error indication (decryptionError) is returned to the calling
     module.

  2) The "salt" is extracted from the privParameters field.

  3) The secret cryptKey and the "salt" are then used to construct the
     DES decryption key and pre-IV (from which the IV is computed as
     described in section 8.1.1.1).

  4) The encryptedPDU is then decrypted (as described in section
     8.1.1.3).

  5) If the encryptedPDU cannot be decrypted, then an error indication
     (decryptionError) is returned to the calling module.

  6) The decrypted scopedPDU and statusInformation indicating success
     are returned to the calling module.

9. Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.





Blumenthal & Wijnen         Standards Track                    [Page 69]

RFC 3414                     USM for SNMPv3                December 2002


10. Acknowledgements

  This document is the result of the efforts of the SNMPv3 Working
  Group.  Some special thanks are in order to the following SNMPv3 WG
  members:

     Harald Tveit Alvestrand (Maxware)
     Dave Battle (SNMP Research, Inc.)
     Alan Beard (Disney Worldwide Services)
     Paul Berrevoets (SWI Systemware/Halcyon Inc.)
     Martin Bjorklund (Ericsson)
     Uri Blumenthal (IBM T.J. Watson Research Center)
     Jeff Case (SNMP Research, Inc.)
     John Curran (BBN)
     Mike Daniele (Compaq Computer Corporation))
     T. Max Devlin (Eltrax Systems)
     John Flick (Hewlett Packard)
     Rob Frye (MCI)
     Wes Hardaker (U.C.Davis, Information Technology - D.C.A.S.)
     David Harrington (Cabletron Systems Inc.)
     Lauren Heintz (BMC Software, Inc.)
     N.C. Hien (IBM T.J. Watson Research Center)
     Michael Kirkham (InterWorking Labs, Inc.)
     Dave Levi (SNMP Research, Inc.)
     Louis A Mamakos (UUNET Technologies Inc.)
     Joe Marzot (Nortel Networks)
     Paul Meyer (Secure Computing Corporation)
     Keith McCloghrie (Cisco Systems)
     Bob Moore (IBM)
     Russ Mundy (TIS Labs at Network Associates)
     Bob Natale (ACE*COMM Corporation)
     Mike O'Dell (UUNET Technologies Inc.)
     Dave Perkins (DeskTalk)
     Peter Polkinghorne (Brunel University)
     Randy Presuhn (BMC Software, Inc.)
     David Reeder (TIS Labs at Network Associates)
     David Reid (SNMP Research, Inc.)
     Aleksey Romanov (Quality Quorum)
     Shawn Routhier (Epilogue)
     Juergen Schoenwaelder (TU Braunschweig)
     Bob Stewart (Cisco Systems)
     Mike Thatcher (Independent Consultant)
     Bert Wijnen (IBM T.J. Watson Research Center)








Blumenthal & Wijnen         Standards Track                    [Page 70]

RFC 3414                     USM for SNMPv3                December 2002


  The document is based on recommendations of the IETF Security and
  Administrative Framework Evolution for SNMP Advisory Team.  Members
  of that Advisory Team were:

     David Harrington (Cabletron Systems Inc.)
     Jeff Johnson (Cisco Systems)
     David Levi (SNMP Research Inc.)
     John Linn (Openvision)
     Russ Mundy (Trusted Information Systems) chair
     Shawn Routhier (Epilogue)
     Glenn Waters (Nortel)
     Bert Wijnen (IBM T. J. Watson Research Center)

  As recommended by the Advisory Team and the SNMPv3 Working Group
  Charter, the design incorporates as much as practical from previous
  RFCs and drafts.  As a result, special thanks are due to the authors
  of previous designs known as SNMPv2u and SNMPv2*:

     Jeff Case (SNMP Research, Inc.)
     David Harrington (Cabletron Systems Inc.)
     David Levi (SNMP Research, Inc.)
     Keith McCloghrie (Cisco Systems)
     Brian O'Keefe (Hewlett Packard)
     Marshall T. Rose (Dover Beach Consulting)
     Jon Saperia (BGS Systems Inc.)
     Steve Waldbusser (International Network Services)
     Glenn W. Waters (Bell-Northern Research Ltd.)

11. Security Considerations

11.1. Recommended Practices

  This section describes practices that contribute to the secure,
  effective operation of the mechanisms defined in this memo.

  - An SNMP engine must discard SNMP Response messages that do not
    correspond to any currently outstanding Request message.  It is the
    responsibility of the Message Processing module to take care of
    this.  For example it can use a msgID for that.

    An SNMP Command Generator Application must discard any Response
    Class PDU for which there is no currently outstanding Confirmed
    Class PDU; for example for SNMPv2 [RFC3416] PDUs, the request-id
    component in the PDU can be used to correlate Responses to
    outstanding Requests.






Blumenthal & Wijnen         Standards Track                    [Page 71]

RFC 3414                     USM for SNMPv3                December 2002


    Although it would be typical for an SNMP engine and an SNMP Command
    Generator Application to do this as a matter of course, when using
    these security protocols it is significant due to the possibility
    of message duplication (malicious or otherwise).

  - If an SNMP engine uses a msgID for correlating Response messages to
    outstanding Request messages, then it MUST use different msgIDs in
    all such Request messages that it sends out during a Time Window
    (150 seconds) period.

    A Command Generator or Notification Originator Application MUST use
    different request-ids in all Request PDUs that it sends out during
    a TimeWindow (150 seconds) period.

    This must be done to protect against the possibility of message
    duplication (malicious or otherwise).

    For example, starting operations with a msgID and/or request-id
    value of zero is not a good idea.  Initializing them with an
    unpredictable number (so they do not start out the same after each
    reboot) and then incrementing by one would be acceptable.

  - An SNMP engine should perform time synchronization using
    authenticated messages in order to protect against the possibility
    of message duplication (malicious or otherwise).

  - When sending state altering messages to a managed authoritative
    SNMP engine, a Command Generator Application should delay sending
    successive messages to that managed SNMP engine until a positive
    acknowledgement is received for the previous message or until the
    previous message expires.

    No message ordering is imposed by the SNMP.  Messages may be
    received in any order relative to their time of generation and each
    will be processed in the ordered received.  Note that when an
    authenticated message is sent to a managed SNMP engine, it will be
    valid for a period of time of approximately 150 seconds under
    normal circumstances, and is subject to replay during this period.
    Indeed, an SNMP engine and SNMP Command Generator Applications must
    cope with the loss and re-ordering of messages resulting from
    anomalies in the network as a matter of course.

    However, a managed object, snmpSetSerialNo [RFC3418], is
    specifically defined for use with SNMP Set operations in order to
    provide a mechanism to ensure that the processing of SNMP messages
    occurs in a specific order.





Blumenthal & Wijnen         Standards Track                    [Page 72]

RFC 3414                     USM for SNMPv3                December 2002


  - The frequency with which the secrets of a User-based Security Model
    user should be changed is indirectly related to the frequency of
    their use.

    Protecting the secrets from disclosure is critical to the overall
    security of the protocols.  Frequent use of a secret provides a
    continued source of data that may be useful to a cryptanalyst in
    exploiting known or perceived weaknesses in an algorithm.  Frequent
    changes to the secret avoid this vulnerability.

    Changing a secret after each use is generally regarded as the most
    secure practice, but a significant amount of overhead may be
    associated with that approach.

    Note, too, in a local environment the threat of disclosure may be
    less significant, and as such the changing of secrets may be less
    frequent.  However, when public data networks are used as the
    communication paths, more caution is prudent.

11.2  Defining Users

  The mechanisms defined in this document employ the notion of users on
  whose behalf messages are sent.  How "users" are defined is subject
  to the security policy of the network administration.  For example,
  users could be individuals (e.g., "joe" or "jane"), or a particular
  role (e.g., "operator" or "administrator"), or a combination (e.g.,
  "joe-operator", "jane-operator" or "joe-admin").  Furthermore, a user
  may be a logical entity, such as an SNMP Application or a set of SNMP
  Applications, acting on behalf of an individual or role, or set of
  individuals, or set of roles, including combinations.

  Appendix A describes an algorithm for mapping a user "password" to a
  16/20 octet value for use as either a user's authentication key or
  privacy key (or both).  Note however, that using the same password
  (and therefore the same key) for both authentication and privacy is
  very poor security practice and should be strongly discouraged.
  Passwords are often generated, remembered, and input by a human.
  Human-generated passwords may be less than the 16/20 octets required
  by the authentication and privacy protocols, and brute force attacks
  can be quite easy on a relatively short ASCII character set.
  Therefore, the algorithm is Appendix A performs a transformation on
  the password.  If the Appendix A algorithm is used, SNMP
  implementations (and SNMP configuration applications) must ensure
  that passwords are at least 8 characters in length.  Please note that
  longer passwords with repetitive strings may result in exactly the
  same key.  For example, a password 'bertbert' will result in exactly
  the same key as password 'bertbertbert'.




Blumenthal & Wijnen         Standards Track                    [Page 73]

RFC 3414                     USM for SNMPv3                December 2002


  Because the Appendix A algorithm uses such passwords (nearly)
  directly, it is very important that they not be easily guessed.  It
  is suggested that they be composed of mixed-case alphanumeric and
  punctuation characters that don't form words or phrases that might be
  found in a dictionary.   Longer passwords improve the security of the
  system.  Users may wish to input multiword phrases to make their
  password string longer while ensuring that it is memorable.

  Since it is infeasible for human users to maintain different
  passwords for every SNMP engine, but security requirements strongly
  discourage having the same key for more than one SNMP engine, the
  User-based Security Model employs a compromise proposed in
  [Localized-key].  It derives the user keys for the SNMP engines from
  user's password in such a way that it is practically impossible to
  either determine the user's password, or user's key for another SNMP
  engine from any combination of user's keys on SNMP engines.

  Note however, that if user's password is disclosed, then key
  localization will not help and network security may be compromised in
  this case.  Therefore a user's password or non-localized key MUST NOT
  be stored on a managed device/node.  Instead the localized key SHALL
  be stored (if at all), so that, in case a device does get
  compromised, no other managed or managing devices get compromised.

11.3. Conformance

  To be termed a "Secure SNMP implementation" based on the User-based
  Security Model, an SNMP implementation MUST:

  - implement one or more Authentication Protocol(s).  The HMAC-MD5-96
    and HMAC-SHA-96 Authentication Protocols defined in this memo are
    examples of such protocols.

  - to the maximum extent possible, prohibit access to the secret(s) of
    each user about which it maintains information in a Local
    Configuration Datastore (LCD) under all circumstances except as
    required to generate and/or validate SNMP messages with respect to
    that user.

  - implement the key-localization mechanism.

  - implement the SNMP-USER-BASED-SM-MIB.

  In addition, an authoritative SNMP engine SHOULD provide initial
  configuration in accordance with Appendix A.1.

  Implementation of a Privacy Protocol (the DES Symmetric Encryption
  Protocol defined in this memo is one such protocol) is optional.



Blumenthal & Wijnen         Standards Track                    [Page 74]

RFC 3414                     USM for SNMPv3                December 2002


11.4. Use of Reports

  The use of unsecure reports (i.e., sending them with a securityLevel
  of noAuthNoPriv) potentially exposes a non-authoritative SNMP engine
  to some form of attacks.  Some people consider these denial of
  service attacks, others don't.  An installation should evaluate the
  risk involved before deploying unsecure Report PDUs.

11.5  Access to the SNMP-USER-BASED-SM-MIB

  The objects in this MIB may be considered sensitive in many
  environments.  Specifically the objects in the usmUserTable contain
  information about users and their authentication and privacy
  protocols.  It is important to closely control (both read and write)
  access to these MIB objects by using appropriately configured Access
  Control models (for example the View-based Access Control Model as
  specified in [RFC3415]).

12. References

12.1 Normative References

  [RFC1321]       Rivest, R., "Message Digest Algorithm MD5", RFC 1321,
                  April 1992.

  [RFC2104]       Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
                  Keyed-Hashing  for Message Authentication", RFC 2104,
                  February 1997.

  [RFC2119]       Bradner, S., "Key words for use in RFCs to Indicate
                  Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2578]       McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
                  J., Rose, M. and S. Waldbusser, "Structure of
                  Management Information Version 2 (SMIv2)", STD 58,
                  RFC 2578, April 1999.

  [RFC2579]       McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
                  J., Rose, M. and S. Waldbusser, "Textual Conventions
                  for SMIv2", STD 58, RFC 2579, April 1999.

  [RFC2580]       McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
                  J., Rose, M. and S. Waldbusser, "Conformance
                  Statements for SMIv2", STD 58, RFC 2580, April 1999.







Blumenthal & Wijnen         Standards Track                    [Page 75]

RFC 3414                     USM for SNMPv3                December 2002


  [RFC3411]       Harrington, D., Presuhn, R. and B. Wijnen, "An
                  Architecture for Describing Simple Network Management
                  Protocol (SNMP) Management Frameworks", STD 62, RFC
                  3411, December 2002.

  [RFC3412]       Case, J., Harrington, D., Presuhn, R. and B. Wijnen,
                  "Message Processing and Dispatching for the Simple
                  Network Management Protocol (SNMP)", STD 62, RFC
                  3412, December 2002.

  [RFC3415]       Wijnen, B., Presuhn, R. and K. McCloghrie, "View-
                  based Access Control Model (VACM) for the Simple
                  Network Management Protocol (SNMP)", STD 62, RFC
                  3415, December 2002.

  [RFC3416]       Presuhn, R., Case, J., McCloghrie, K., Rose, M. and
                  S. Waldbusser, "Version 2 of the Protocol Operations
                  for the Simple Network Management Protocol (SNMP)",
                  STD 62, RFC 3416, December 2002.

  [RFC3417]       Presuhn, R., Case, J., McCloghrie, K., Rose, M. and
                  S.  Waldbusser, "Transport Mappings for the Simple
                  Network Management Protocol (SNMP)", STD 62, RFC
                  3417, December 2002.

  [RFC3418]       Presuhn, R., Case, J., McCloghrie, K., Rose, M. and
                  S. Waldbusser, "Management Information Base (MIB) for
                  the Simple Network Management Protocol (SNMP)", STD
                  62, RFC 3418, December 2002.

  [DES-NIST]      Data Encryption Standard, National Institute of
                  Standards and Technology.  Federal Information
                  Processing Standard (FIPS) Publication 46-1.
                  Supersedes FIPS Publication 46, (January, 1977;
                  reaffirmed January, 1988).

  [DESO-NIST]     DES Modes of Operation, National Institute of
                  Standards and Technology.  Federal Information
                  Processing Standard (FIPS) Publication 81, (December,
                  1980).

  [SHA-NIST]      Secure Hash Algorithm. NIST FIPS 180-1, (April, 1995)
                  http://csrc.nist.gov/fips/fip180-1.txt (ASCII)
                  http://csrc.nist.gov/fips/fip180-1.ps  (Postscript)







Blumenthal & Wijnen         Standards Track                    [Page 76]

RFC 3414                     USM for SNMPv3                December 2002


12.1 Informative References

  [Localized-Key] U. Blumenthal, N. C. Hien, B. Wijnen "Key Derivation
                  for Network Management Applications" IEEE Network
                  Magazine, April/May issue, 1997.

  [DES-ANSI]      Data Encryption Algorithm, American National
                  Standards Institute.  ANSI X3.92-1981, (December,
                  1980).

  [DESO-ANSI]     Data Encryption Algorithm - Modes of Operation,
                  American National Standards Institute.  ANSI X3.106-
                  1983, (May 1983).

  [DESG-NIST]     Guidelines for Implementing and Using the NBS Data
                  Encryption Standard, National Institute of Standards
                  and Technology.  Federal Information Processing
                  Standard (FIPS) Publication 74, (April, 1981).

  [DEST-NIST]     Validating the Correctness of Hardware
                  Implementations of the NBS Data Encryption Standard,
                  National Institute of Standards and Technology.
                  Special Publication 500-20.

  [DESM-NIST]     Maintenance Testing for the Data Encryption Standard,
                  National Institute of Standards and Technology.
                  Special Publication 500-61, (August, 1980).

  [RFC3174]       Eastlake, D. 3rd and P. Jones, "US Secure Hash
                  Algorithm 1 (SHA1)", RFC 3174, September 2001.





















Blumenthal & Wijnen         Standards Track                    [Page 77]

RFC 3414                     USM for SNMPv3                December 2002


APPENDIX A - Installation

A.1. SNMP engine Installation Parameters

  During installation, an authoritative SNMP engine SHOULD (in the
  meaning as defined in [RFC2119]) be configured with several initial
  parameters.  These include:

  1) A Security Posture

     The choice of security posture determines if initial configuration
     is implemented and if so how.  One of three possible choices is
     selected:

        minimum-secure,
        semi-secure,
        very-secure (i.e., no-initial-configuration)

     In the case of a very-secure posture, there is no initial
     configuration, and so the following steps are irrelevant.

  2) One or More Secrets

     These are the authentication/privacy secrets for the first user to
     be configured.

     One way to accomplish this is to have the installer enter a
     "password" for each required secret.  The password is then
     algorithmically converted into the required secret by:

     - forming a string of length 1,048,576 octets by repeating the
       value of the password as often as necessary, truncating
       accordingly, and using the resulting string as the input to the
       MD5 algorithm [RFC1321].  The resulting digest, termed
       "digest1", is used in the next step.

     - a second string is formed by concatenating digest1, the SNMP
       engine's snmpEngineID value, and digest1.  This string is used
       as input to the MD5 algorithm [RFC1321].

       The resulting digest is the required secret (see Appendix A.2).










Blumenthal & Wijnen         Standards Track                    [Page 78]

RFC 3414                     USM for SNMPv3                December 2002


     With these configured parameters, the SNMP engine instantiates the
     following usmUserEntry in the usmUserTable:

                          no privacy support     privacy support
                          ------------------     ---------------
  usmUserEngineID         localEngineID          localEngineID
  usmUserName             "initial"              "initial"
  usmUserSecurityName     "initial"              "initial"
  usmUserCloneFrom        ZeroDotZero            ZeroDotZero
  usmUserAuthProtocol     usmHMACMD5AuthProtocol usmHMACMD5AuthProtocol
  usmUserAuthKeyChange    ""                     ""
  usmUserOwnAuthKeyChange ""                     ""
  usmUserPrivProtocol     none                   usmDESPrivProtocol
  usmUserPrivKeyChange    ""                     ""
  usmUserOwnPrivKeyChange ""                     ""
  usmUserPublic           ""                     ""
  usmUserStorageType      anyValidStorageType    anyValidStorageType
  usmUserStatus           active                 active

     It is recommended to also instantiate a set of template
     usmUserEntries which can be used as clone-from users for newly
     created usmUserEntries.  These are the two suggested entries:

                          no privacy support     privacy support
                          ------------------     ---------------
  usmUserEngineID         localEngineID          localEngineID
  usmUserName             "templateMD5"          "templateMD5"
  usmUserSecurityName     "templateMD5"          "templateMD5"
  usmUserCloneFrom        ZeroDotZero            ZeroDotZero
  usmUserAuthProtocol     usmHMACMD5AuthProtocol usmHMACMD5AuthProtocol
  usmUserAuthKeyChange    ""                     ""
  usmUserOwnAuthKeyChange ""                     ""
  usmUserPrivProtocol     none                   usmDESPrivProtocol
  usmUserPrivKeyChange    ""                     ""
  usmUserOwnPrivKeyChange ""                     ""
  usmUserPublic           ""                     ""
  usmUserStorageType      permanent              permanent
  usmUserStatus           active                 active













Blumenthal & Wijnen         Standards Track                    [Page 79]

RFC 3414                     USM for SNMPv3                December 2002


                          no privacy support     privacy support
                          ------------------     ---------------
  usmUserEngineID         localEngineID          localEngineID
  usmUserName             "templateSHA"          "templateSHA"
  usmUserSecurityName     "templateSHA"          "templateSHA"
  usmUserCloneFrom        ZeroDotZero            ZeroDotZero
  usmUserAuthProtocol     usmHMACSHAAuthProtocol usmHMACSHAAuthProtocol
  usmUserAuthKeyChange    ""                     ""
  usmUserOwnAuthKeyChange ""                     ""
  usmUserPrivProtocol     none                   usmDESPrivProtocol
  usmUserPrivKeyChange    ""                     ""
  usmUserOwnPrivKeyChange ""                     ""
  usmUserPublic           ""                     ""
  usmUserStorageType      permanent              permanent
  usmUserStatus           active                 active

A.2. Password to Key Algorithm

  A sample code fragment (section A.2.1) demonstrates the password to
  key algorithm which can be used when mapping a password to an
  authentication or privacy key using MD5.  The reference source code
  of MD5 is available in [RFC1321].

  Another sample code fragment (section A.2.2) demonstrates the
  password to key algorithm which can be used when mapping a password
  to an authentication or privacy key using SHA (documented in SHA-
  NIST).

  An example of the results of a correct implementation is provided
  (section A.3) which an implementor can use to check if his
  implementation produces the same result.




















Blumenthal & Wijnen         Standards Track                    [Page 80]

RFC 3414                     USM for SNMPv3                December 2002


A.2.1. Password to Key Sample Code for MD5

  void password_to_key_md5(
     u_char *password,    /* IN */
     u_int   passwordlen, /* IN */
     u_char *engineID,    /* IN  - pointer to snmpEngineID  */
     u_int   engineLength,/* IN  - length of snmpEngineID */
     u_char *key)         /* OUT - pointer to caller 16-octet buffer */
  {
     MD5_CTX     MD;
     u_char     *cp, password_buf[64];
     u_long      password_index = 0;
     u_long      count = 0, i;

     MD5Init (&MD);   /* initialize MD5 */

     /**********************************************/
     /* Use while loop until we've done 1 Megabyte */
     /**********************************************/
     while (count < 1048576) {
        cp = password_buf;
        for (i = 0; i < 64; i++) {
            /*************************************************/
            /* Take the next octet of the password, wrapping */
            /* to the beginning of the password as necessary.*/
            /*************************************************/
            *cp++ = password[password_index++ % passwordlen];
        }
        MD5Update (&MD, password_buf, 64);
        count += 64;
     }
     MD5Final (key, &MD);          /* tell MD5 we're done */

     /*****************************************************/
     /* Now localize the key with the engineID and pass   */
     /* through MD5 to produce final key                  */
     /* May want to ensure that engineLength <= 32,       */
     /* otherwise need to use a buffer larger than 64     */
     /*****************************************************/
     memcpy(password_buf, key, 16);
     memcpy(password_buf+16, engineID, engineLength);
     memcpy(password_buf+16+engineLength, key, 16);

     MD5Init(&MD);
     MD5Update(&MD, password_buf, 32+engineLength);
     MD5Final(key, &MD);
     return;
  }



Blumenthal & Wijnen         Standards Track                    [Page 81]

RFC 3414                     USM for SNMPv3                December 2002


A.2.2. Password to Key Sample Code for SHA

  void password_to_key_sha(
     u_char *password,    /* IN */
     u_int   passwordlen, /* IN */
     u_char *engineID,    /* IN  - pointer to snmpEngineID  */
     u_int   engineLength,/* IN  - length of snmpEngineID */
     u_char *key)         /* OUT - pointer to caller 20-octet buffer */
  {
     SHA_CTX     SH;
     u_char     *cp, password_buf[72];
     u_long      password_index = 0;
     u_long      count = 0, i;

     SHAInit (&SH);   /* initialize SHA */

     /**********************************************/
     /* Use while loop until we've done 1 Megabyte */
     /**********************************************/
     while (count < 1048576) {
        cp = password_buf;
        for (i = 0; i < 64; i++) {
            /*************************************************/
            /* Take the next octet of the password, wrapping */
            /* to the beginning of the password as necessary.*/
            /*************************************************/
            *cp++ = password[password_index++ % passwordlen];
        }
        SHAUpdate (&SH, password_buf, 64);
        count += 64;
     }
     SHAFinal (key, &SH);          /* tell SHA we're done */

     /*****************************************************/
     /* Now localize the key with the engineID and pass   */
     /* through SHA to produce final key                  */
     /* May want to ensure that engineLength <= 32,       */
     /* otherwise need to use a buffer larger than 72     */
     /*****************************************************/
     memcpy(password_buf, key, 20);
     memcpy(password_buf+20, engineID, engineLength);
     memcpy(password_buf+20+engineLength, key, 20);

     SHAInit(&SH);
     SHAUpdate(&SH, password_buf, 40+engineLength);
     SHAFinal(key, &SH);
     return;
  }



Blumenthal & Wijnen         Standards Track                    [Page 82]

RFC 3414                     USM for SNMPv3                December 2002


A.3. Password to Key Sample Results

A.3.1. Password to Key Sample Results using MD5

  The following shows a sample output of the password to key algorithm
  for a 16-octet key using MD5.

  With a password of "maplesyrup" the output of the password to key
  algorithm before the key is localized with the SNMP engine's
  snmpEngineID is:

     '9f af 32 83 88 4e 92 83 4e bc 98 47 d8 ed d9 63'H

  After the intermediate key (shown above) is localized with the
  snmpEngineID value of:

     '00 00 00 00 00 00 00 00 00 00 00 02'H

  the final output of the password to key algorithm is:

     '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b'H

A.3.2. Password to Key Sample Results using SHA

  The following shows a sample output of the password to key algorithm
  for a 20-octet key using SHA.

  With a password of "maplesyrup" the output of the password to key
  algorithm before the key is localized with the SNMP engine's
  snmpEngineID is:

     '9f b5 cc 03 81 49 7b 37 93 52 89 39 ff 78 8d 5d 79 14 52 11'H

  After the intermediate key (shown above) is localized with the
  snmpEngineID value of:

     '00 00 00 00 00 00 00 00 00 00 00 02'H

  the final output of the password to key algorithm is:

     '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84 97 b3 8f 3f'H

A.4. Sample Encoding of msgSecurityParameters

  The msgSecurityParameters in an SNMP message are represented as an
  OCTET STRING.  This OCTET STRING should be considered opaque outside
  a specific Security Model.




Blumenthal & Wijnen         Standards Track                    [Page 83]

RFC 3414                     USM for SNMPv3                December 2002


  The User-based Security Model defines the contents of the OCTET
  STRING as a SEQUENCE (see section 2.4).

  Given these two properties, the following is an example of they
  msgSecurityParameters for the User-based Security Model, encoded as
  an OCTET STRING:

     04 <length>
     30 <length>
     04 <length> <msgAuthoritativeEngineID>
     02 <length> <msgAuthoritativeEngineBoots>
     02 <length> <msgAuthoritativeEngineTime>
     04 <length> <msgUserName>
     04 0c       <HMAC-MD5-96-digest>
     04 08       <salt>

  Here is the example once more, but now with real values (except for
  the digest in msgAuthenticationParameters and the salt in
  msgPrivacyParameters, which depend on variable data that we have not
  defined here):

     Hex Data                         Description
     --------------  -----------------------------------------------
     04 39           OCTET STRING,                  length 57
     30 37           SEQUENCE,                      length 55
     04 0c 80000002  msgAuthoritativeEngineID:      IBM
           01                                       IPv4 address
           09840301                                 9.132.3.1
     02 01 01        msgAuthoritativeEngineBoots:   1
     02 02 0101      msgAuthoritativeEngineTime:    257
     04 04 62657274  msgUserName:                   bert
     04 0c 01234567  msgAuthenticationParameters:   sample value
           89abcdef
           fedcba98
     04 08 01234567  msgPrivacyParameters:          sample value
           89abcdef

A.5. Sample keyChange Results

A.5.1. Sample keyChange Results using MD5

  Let us assume that a user has a current password of "maplesyrup" as
  in section A.3.1. and let us also assume the snmpEngineID of 12
  octets:

     '00 00 00 00 00 00 00 00 00 00 00 02'H





Blumenthal & Wijnen         Standards Track                    [Page 84]

RFC 3414                     USM for SNMPv3                December 2002


  If we now want to change the password to "newsyrup", then we first
  calculate the key for the new password.  It is as follows:

     '01 ad d2 73 10 7c 4e 59 6b 4b 00 f8 2b 1d 42 a7'H

  If we localize it for the above snmpEngineID, then the localized new
  key becomes:

     '87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a'H

  If we then use a (not so good, but easy to test) random value of:

     '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

  Then the value we must send for keyChange is:

     '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
      88 05 61 51 41 67 6c c9 19 61 74 e7 42 a3 25 51'H

  If this were for the privacy key, then it would be exactly the same.

A.5.2. Sample keyChange Results using SHA

  Let us assume that a user has a current password of "maplesyrup" as
  in section A.3.2. and let us also assume the snmpEngineID of 12
  octets:

     '00 00 00 00 00 00 00 00 00 00 00 02'H

  If we now want to change the password to "newsyrup", then we first
  calculate the key for the new password.  It is as follows:

     '3a 51 a6 d7 36 aa 34 7b 83 dc 4a 87 e3 e5 5e e4 d6 98 ac 71'H

  If we localize it for the above snmpEngineID, then the localized new
  key becomes:

     '78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63 91 f1 cd 25'H

  If we then use a (not so good, but easy to test) random value of:

     '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

  Then the value we must send for keyChange is:

     '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
      9c 10 17 f4 fd 48 3d 2d e8 d5 fa db f8 43 92 cb 06 45 70 51'




Blumenthal & Wijnen         Standards Track                    [Page 85]

RFC 3414                     USM for SNMPv3                December 2002


  For the key used for privacy, the new nonlocalized key would be:

     '3a 51 a6 d7 36 aa 34 7b 83 dc 4a 87 e3 e5 5e e4 d6 98 ac 71'H

  For the key used for privacy, the new localized key would be (note
  that they localized key gets truncated to 16 octets for DES):

     '78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63'H

  If we then use a (not so good, but easy to test) random value of:

     '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

  Then the value we must send for keyChange for the privacy key is:

     '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
     '7e f8 d8 a4 c9 cd b2 6b 47 59 1c d8 52 ff 88 b5'H

B. Change Log

  Changes made since RFC2574:

  - Updated references
  - Updated contact info
  - Clarifications
    - to first constraint item 1) on page 6.
    - to usmUserCloneFrom DESCRIPTION clause
    - to securityName in section 2.1
  - Fixed "command responder" into "command generator" in last para of
    DESCRIPTION clause of usmUserTable.

  Changes made since RFC2274:

  - Fixed msgUserName to allow size of zero and explain that this can
    be used for snmpEngineID discovery.
  - Clarified section 3.1 steps 4.b, 5, 6 and 8.b.
  - Clarified section 3.2 paragraph 2.
  - Clarified section 3.2 step 7.a last paragraph, step 7.b.1 second
    bullet and step 7.b.2 third bullet.
  - Clarified section 4 to indicate that discovery can use a userName
    of zero length in unAuthenticated messages, whereas a valid
    userName must be used in authenticated messages.
  - Added REVISION clauses to MODULE-IDENTITY
  - Clarified KeyChange TC by adding a note that localized keys must be
    used when calculating a KeyChange value.
  - Added clarifying text to the DESCRIPTION clause of usmUserTable.
    Added text describes a recommended procedure for adding a new user.
  - Clarified the use of usmUserCloneFrom object.



Blumenthal & Wijnen         Standards Track                    [Page 86]

RFC 3414                     USM for SNMPv3                December 2002


  - Clarified how and under which conditions the usmUserAuthProtocol
    and usmUserPrivProtocol can be initialized and/or changed.
  - Added comment on typical sizes for usmUserAuthKeyChange and
    usmUserPrivKeyChange.  Also for usmUserOwnAuthKeyChange and
    usmUserOwnPrivKeyChange.
  - Added clarifications to the DESCRIPTION clauses of
    usmUserAuthKeyChange, usmUserOwnAuthKeychange, usmUserPrivKeyChange
    and usmUserOwnPrivKeychange.
  - Added clarification to DESCRIPTION clause of usmUserStorageType.
  - Added clarification to DESCRIPTION clause of usmUserStatus.
  - Clarified IV generation procedure in section 8.1.1.1 and in
    addition clarified section 8.3.1 step 1 and section 8.3.2. step 3.
  - Clarified section 11.2 and added a warning that different size
    passwords with repetitive strings may result in same key.
  - Added template users to appendix A for cloning process.
  - Fixed C-code examples in Appendix A.
  - Fixed examples of generated keys in Appendix A.
  - Added examples of KeyChange values to Appendix A.
  - Used PDU Classes instead of RFC1905 PDU types.
  - Added text in the security section about Reports and Access Control
    to the MIB.
  - Removed a incorrect note at the end of section 3.2 step 7.
  - Added a note in section 3.2 step 3.
  - Corrected various spelling errors and typos.
  - Corrected procedure for 3.2 step 2.a)
  - various clarifications.
  - Fixed references to new/revised documents
  - Change to no longer cache data that is not used

Editors' Addresses

  Uri Blumenthal
  Lucent Technologies
  67 Whippany Rd.
  Whippany, NJ 07981
  USA

  Phone: +1-973-386-2163
  EMail: [email protected]

  Bert Wijnen
  Lucent Technologies
  Schagen 33
  3461 GL Linschoten
  Netherlands

  Phone: +31-348-480-685
  EMail: [email protected]



Blumenthal & Wijnen         Standards Track                    [Page 87]

RFC 3414                     USM for SNMPv3                December 2002


Full Copyright Statement

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Blumenthal & Wijnen         Standards Track                    [Page 88]