Network Working Group                                          A. Vemuri
Request for Comments: 3372                          Qwest Communications
BCP: 63                                                      J. Peterson
Category: Best Current Practice                                  NeuStar
                                                         September 2002


         Session Initiation Protocol for Telephones (SIP-T):
                      Context and Architectures

Status of this Memo

  This document specifies an Internet Best Current Practices for the
  Internet Community, and requests discussion and suggestions for
  improvements.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

  The popularity of gateways that interwork between the PSTN (Public
  Switched Telephone Network) and SIP networks has motivated the
  publication of a set of common practices that can assure consistent
  behavior across implementations.  This document taxonomizes the uses
  of PSTN-SIP gateways, provides uses cases, and identifies mechanisms
  necessary for interworking.  The mechanisms detail how SIP provides
  for both 'encapsulation' (bridging the PSTN signaling across a SIP
  network) and 'translation' (gatewaying).

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
  2.  SIP-T for ISUP-SIP Interconnections  . . . . . . . . . . . . .  4
  3.  SIP-T Flows  . . . . . . . . . . . . . . . . . . . . . . . . .  7
  3.1 SIP Bridging (PSTN - IP - PSTN)  . . . . . . . . . . . . . . .  8
  3.2 PSTN origination - IP termination  . . . . . . . . . . . . . .  9
  3.3 IP origination - PSTN termination  . . . . . . . . . . . . . . 11
  4.  SIP-T Roles and Behavior . . . . . . . . . . . . . . . . . . . 12
  4.1 Originator . . . . . . . . . . . . . . . . . . . . . . . . . . 12
  4.2 Terminator . . . . . . . . . . . . . . . . . . . . . . . . . . 13
  4.3 Intermediary . . . . . . . . . . . . . . . . . . . . . . . . . 14
  4.4 Behavioral Requirements Summary  . . . . . . . . . . . . . . . 15
  5.  Components of the SIP-T Protocol . . . . . . . . . . . . . . . 16
  5.1 Core SIP . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
  5.2 Encapsulation  . . . . . . . . . . . . . . . . . . . . . . . . 16
  5.3 Translation  . . . . . . . . . . . . . . . . . . . . . . . . . 16



Vemuri & Peterson        Best Current Practice                  [Page 1]

RFC 3372                         SIP-T                    September 2002


  5.4 Support for mid-call signaling . . . . . . . . . . . . . . . . 17
  6.  SIP Content Negotiation  . . . . . . . . . . . . . . . . . . . 17
  7.  Security Considerations  . . . . . . . . . . . . . . . . . . . 19
  8.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 20
  9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 20
  10  References . . . . . . . . . . . . . . . . . . . . . . . . . . 20
  A.  Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
  B.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 21
  Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 22
  Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 23

1. Introduction

  The Session Initiation Protocol (SIP [1]) is an application-layer
  control protocol that can establish, modify and terminate multimedia
  sessions or calls.  These multimedia sessions include multimedia
  conferences, Internet telephony and similar applications.  SIP is one
  of the key protocols used to implement Voice over IP (VoIP).
  Although performing telephony call signaling and transporting the
  associated audio media over IP yields significant advantages over
  traditional telephony, a VoIP network cannot exist in isolation from
  traditional telephone networks.  It is vital for a SIP telephony
  network to interwork with the PSTN.

  The popularity of gateways that interwork between the PSTN and SIP
  networks has motivated the publication of a set of common practices
  that can assure consistent behavior across implementations.  The
  scarcity of SIP expertise outside the IETF suggests that the IETF is
  the best place to stage this work, especially since SIP is in a
  relative state of flux compared to the core protocols of the PSTN.
  Moreover, the IETF working groups that focus on SIP (SIP and SIPPING)
  are best positioned to ascertain whether or not any new extensions to
  SIP are justified for PSTN interworking.  This framework addresses
  the overall context in which PSTN-SIP interworking gateways might be
  deployed, provides use cases and identifies the mechanisms necessary
  for interworking.

  An important characteristic of any SIP telephony network is feature
  transparency with respect to the PSTN.  Traditional telecom services
  such as call waiting, freephone numbers, etc., implemented in PSTN
  protocols such as Signaling System No. 7 (SS7 [6]) should be offered
  by a SIP network in a manner that precludes any debilitating
  difference in user experience while not limiting the flexibility of
  SIP.  On the one hand, it is necessary that SIP support the
  primitives for the delivery of such services where the terminating
  point is a regular SIP phone (see definition in Section 2 below)
  rather than a device that is fluent in SS7.  However, it is also
  essential that SS7 information be available at gateways, the points



Vemuri & Peterson        Best Current Practice                  [Page 2]

RFC 3372                         SIP-T                    September 2002


  of SS7-SIP interconnection, to ensure transparency of features not
  otherwise supported in SIP.  If possible, SS7 information should be
  available in its entirety and without any loss to trusted parties in
  the SIP network across the PSTN-IP interface; one compelling need to
  do so also arises from the fact that certain networks utilize
  proprietary SS7 parameters to transmit certain information through
  their networks.

  Another important characteristic of a SIP telephony network is
  routability of SIP requests - a SIP request that sets up a telephone
  call should contain sufficient information in its headers to enable
  it to be appropriately routed to its destination by proxy servers in
  the SIP network.  Most commonly this entails that parameters of a
  call like the dialed number should be carried over from SS7 signaling
  to SIP requests.  Routing in a SIP network may in turn be influenced
  by mechanisms such as TRIP [8] or ENUM [7].

  The SIP-T (SIP for Telephones) effort provides a framework for the
  integration of legacy telephony signaling into SIP messages.  SIP-T
  provides the above two characteristics through techniques known as
  'encapsulation' and 'translation' respectively.  At a SIP-ISUP
  gateway, SS7 ISUP messages are encapsulated within SIP in order that
  information necessary for services is not discarded in the SIP
  request.  However, intermediaries like proxy servers that make
  routing decisions for SIP requests cannot be expected to understand
  ISUP, so simultaneously, some critical information is translated from
  an ISUP message into the corresponding SIP headers in order to
  determine how the SIP request will be routed.

  While pure SIP has all the requisite instruments for the
  establishment and termination of calls, it does not have any baseline
  mechanism to carry any mid-call information (such as the ISUP INF/INR
  query) along the SIP signaling path during the session.  This mid-
  call information does not result in any change in the state of SIP
  calls or the parameters of the sessions that SIP initiates.  A
  provision to transmit such optional application-layer information is
  also needed.














Vemuri & Peterson        Best Current Practice                  [Page 3]

RFC 3372                         SIP-T                    September 2002


  Problem definition: To provide ISUP transparency across SS7-SIP
  interworking

  SS7-SIP Interworking Requirements     SIP-T Functions
  ==================================================================
  Transparency of ISUP                  Encapsulation of ISUP in the
  Signaling                             SIP body

  Routability of SIP messages with      Translation of ISUP information
  dependencies on ISUP                  into the SIP header

  Transfer of mid-call ISUP signaling   Use of the INFO Method for mid-
  messages                              call signaling

  Table 1: SIP-T features that fulfill PSTN-IP inter-connection
           Requirements

  While this document specifies the requirements above, it provide
  mechanisms to satisfy them - however, this document does serve as an
  framework for the documents that do provide these mechanisms, all of
  which are referenced in Section 5.

  Note that many modes of signaling are used in telephony (SS7 ISUP,
  BTNUP, Q.931, MF etc.).  This document focuses on SS7 ISUP and aims
  to specify the behavior across ISUP-SIP interfaces only.  The scope
  of the SIP-T enterprise may, over time, come to encompass other
  signaling systems as well.

2. SIP-T for ISUP-SIP Interconnections

  SIP-T is not a new protocol - it is a set of mechanisms for
  interfacing traditional telephone signaling with SIP.  The purpose of
  SIP-T is to provide protocol translation and feature transparency
  across points of PSTN-SIP interconnection.  It intended for use where
  a VoIP network (a SIP network, for the purposes of this document)
  interfaces with the PSTN.

  Using SIP-T, there are three basic models for how calls interact with
  gateways.  Calls that originate in the PSTN can traverse a gateway to
  terminate at a SIP endpoint, such as an IP phone.  Conversely, an IP
  phone can make a call that traverses a gateway to terminate in the
  PSTN.  Finally, an IP network using SIP may serve as a transit
  network between gateways - a call may originate and terminate in the
  PSTN, but cross a SIP-based network somewhere in the middle.







Vemuri & Peterson        Best Current Practice                  [Page 4]

RFC 3372                         SIP-T                    September 2002


  The SS7 interfaces of a particular gateway determine the ISUP
  variants that that gateway supports.  Whether or nor a gateway
  supports a particular version of ISUP determines whether it can
  provide feature transparency while terminating a call.

  The following are the primary agents in a SIP-T-enabled network.

  o  PSTN (Public Switched Telephone Network): This refers to the
     entire interconnected collection of local, long-distance and
     international phone companies.  In the examples below, the term
     Local Exchange Carrier (LEC) is used to denote a portion (usually,
     a regional division) of the PSTN.

  o  IP endpoints: Any SIP user agent that can act as an originator or
     recipient of calls.  Thus, the following devices are classified as
     IP endpoints:

     *  Gateways: A telephony gateway provides a point of conversion
        between signaling protocols (such as ISUP and SIP) as well as
        circuit-switch and packet-switched audio media.  The term Media
        Gateway Controller (MGC) is also used in the examples and
        diagrams in this document to denote large-scale clusters of
        decomposed gateways and control logic that are frequently
        deployed today.  So for example, a SIP-ISUP gateway speaks ISUP
        to the PSTN and SIP to the Internet and is responsible for
        converting between the types of signaling, as well as
        interchanging any associated bearer audio media.

     *  SIP phones: The term used to represent all end-user devices
        that originate or terminate SIP VoIP calls.

     *  Interface points between networks where administrative policies
        are enforced (potentially middleboxes, proxy servers, or
        gateways).

  o  Proxy Servers: A proxy server is a SIP intermediary that routes
     SIP requests to their destinations.  For example, a proxy server
     might direct a SIP request to another proxy, a gateway or a SIP
     phone.












Vemuri & Peterson        Best Current Practice                  [Page 5]

RFC 3372                         SIP-T                    September 2002


                          ********************
                       ***                    ***
                      *                         *
                     *    -------                *
                    *     |proxy|                 *
                   *      -------                  *
               |----|                            |----|
              /|MGC1|       VoIP Network         |MGC2|\
             /  ----                              ----  \
     SS7    /       *                               *    \ SS7
           /         *           -------           *      \
          /           *          |proxy|          *        \
      --------         *         -------         *     ---------
      | LEC1 |          **                     **      | LEC2  |
      --------            *********************        ---------

  Figure 1: Motivation for SIP-T in ISUP-SIP interconnection

  In Figure 2 a VoIP cloud serves as a transit network for telephone
  calls originating in a pair of LECs, where SIP is employed as the
  VoIP protocol used to set up and tear down these VoIP calls.  At the
  edge of the depicted network, an MGC converts the ISUP signals to SIP
  requests,  and sends them to a proxy server which in turn routes
  calls on other MGCs.  Although this figure depicts only two MGCs,
  VoIP deployments would commonly have many such points of
  interconnection with the PSTN (usually to diversify among PSTN rate
  centers).  For a call originating from LEC1 and be terminating in
  LEC2, the originator in SIP-T is the gateway that generates the SIP
  request for a VoIP call, and the terminator is the gateway that is
  the consumer of the SIP request; MGC1 would thus be the originator
  and MGC2, the terminator.  Note that one or more proxies may be used
  to route the call from the originator to the terminator.

  In this flow, in order to seamlessly integrate the IP network with
  the PSTN, it is important to preserve the received SS7 information
  within SIP requests at the originating gateway and reuse this SS7
  information when signaling to the PSTN at the terminating gateway.
  By encapsulating ISUP information in the SIP signaling, a SIP network
  can ensure that no SS7 information that is critical to the
  instantiation of features is lost when SIP bridges calls between two
  segments of the PSTN.

  That much said, if only the exchange of ISUP between gateways were
  relevant here, any protocol for the transport of signaling
  information may be used to achieve this, obviating the need for SIP
  and consequently that of SIP-T.  SIP-T is employed in order to
  leverage the intrinsic benefits of utilizing SIP: request routing and
  call control leveraging proxy servers (including the use of forking),



Vemuri & Peterson        Best Current Practice                  [Page 6]

RFC 3372                         SIP-T                    September 2002


  ease of SIP service creation, SIP's capability negotiation systems,
  and so on.  Translation of information from the received ISUP message
  parameters to SIP header fields enables SIP intermediaries to
  consider this information as they handle requests.  SIP-T thus
  facilitates call establishment and the enabling of new telephony
  services over the IP network while simultaneously providing a method
  of feature-rich interconnection with the PSTN.

  Finally, the scenario in Figure 2 is just one of several flows in
  which SIP-T can be used - voice calls do not always both originate
  and terminate in the PSTN (via gateways); SIP phones can also be
  endpoints in a SIP-T session.  In subsequent sections, the following
  possible flows will be further detailed:

  1.  PSTN origination - PSTN termination: The originating gateway
      receives ISUP from the PSTN and it preserves this information
      (via encapsulation and translation) in the SIP messages that it
      transmits towards the terminating gateway.  The terminator
      extracts the ISUP content from the SIP message that it receives
      and it reuses this information in signaling sent to the PSTN.

  2.  PSTN origination - IP termination: The originating gateway
      receives ISUP from the PSTN and it preserves this ISUP
      information in the SIP messages (via encapsulation and
      translation) that it directs towards the terminating SIP user
      agent.  The terminator has no use for the encapsulated ISUP and
      ignores it.

  3.  IP origination - PSTN termination: A SIP phone originates a VoIP
      call that is routed by one or more proxy servers to the
      appropriate terminating gateway.  The terminating gateway
      converts to ISUP signaling and directs the call to an appropriate
      PSTN interface, based on information that is present in the
      received SIP header.

  4.  IP origination - IP termination: This is a case for pure SIP.
      SIP-T (either encapsulation or translation of ISUP) does not come
      into play as there is no PSTN interworking.

3. SIP-T Flows

  The follow sections explore the essential SIP-T flows in detail.
  Note that because proxy servers are usually responsible for routing
  SIP requests (based on the Request-URI) the eventual endpoints at
  which a SIP request will terminate is generally not known to the
  originator.  So the originator does not select from the flows





Vemuri & Peterson        Best Current Practice                  [Page 7]

RFC 3372                         SIP-T                    September 2002


  described in this section, as a matter of static configuration or on
  a per-call basis - rather, each call is routed by the SIP network
  independently, and it may instantiate any of the flows below as the
  routing logic of the network dictates.

3.1 SIP Bridging (PSTN - IP - PSTN)

                        ********************
                     ***                    ***
                    *                         *
                   *    -------                *
                  *     |proxy|                 *
                 *      -------                  *
              |---|                             |---|
             /|MGC|       VoIP Network          |MGC|\
            /  ---                               ---  \
           /     *                               *     \
          /       *            -------           *      \
         /          *          |proxy|          *        \
     --------         *         -------         *     ---------
     | PSTN |          ***                    ***      | PSTN  |
     --------            *********************        ---------

  Figure 2: PSTN origination - PSTN termination (SIP Bridging)

  A scenario in which a SIP network connects two segments of the PSTN
  is referred to as 'SIP bridging'.  When a call destined for the SIP
  network originates in the PSTN, an SS7 ISUP message will eventually
  be received by the gateway that is the point of interconnection with
  the PSTN network.  This gateway is from the perspective of the SIP
  protocol the user agent client for this call setup request.
  Traditional SIP routing is used in the IP network to determine the
  appropriate point of termination (in this instance a gateway) and to
  establish a SIP dialog and begin negotiation of a media session
  between the origination and termination endpoints.  The egress
  gateway then signals ISUP to the PSTN, reusing any encapsulated ISUP
  present in the SIP request it receives as appropriate.














Vemuri & Peterson        Best Current Practice                  [Page 8]

RFC 3372                         SIP-T                    September 2002


  A very elementary call-flow for SIP bridging is shown below.

      PSTN            MGC#1   Proxy    MGC#2          PSTN
      |-------IAM------>|       |        |              |
      |                 |-----INVITE---->|              |
      |                 |       |        |-----IAM----->|
      |                 |<--100 TRYING---|              |
      |                 |       |        |<----ACM------|
      |                 |<-----18x-------|              |
      |<------ACM-------|       |        |              |
      |                 |       |        |<----ANM------|
      |                 |<----200 OK-----|              |
      |<------ANM-------|       |        |              |
      |                 |------ACK------>|              |
      |====================Conversation=================|
      |-------REL------>|       |        |              |
      |<------RLC-------|------BYE------>|              |
      |                 |       |        |-----REL----->|
      |                 |<----200 OK-----|              |
      |                 |       |        |<----RLC------|
      |                 |       |        |              |

3.2 PSTN origination - IP termination

                          ********************
                       ***                    ***
                      *                         *
                     *                           *
                    *                             *
                   *                               *
               |----|                            |-----|
              /|MGC |       VoIP Network         |proxy|\
             /  ----                              -----  \
            /       *                               *     \
           /         *                             *       \
          /           *                           *         \
     --------         *                         *     -------------
     | PSTN |          **                     **      | SIP phone |
     --------            *********************        -------------

  Figure 3: PSTN origination - IP termination










Vemuri & Peterson        Best Current Practice                  [Page 9]

RFC 3372                         SIP-T                    September 2002


  A call originates from the PSTN and terminates at a SIP phone.  Note
  that in Figure 5, the proxy server acts as the registrar for the SIP
  phone in question.

  A simple call-flow depicting the ISUP and SIP signaling for a PSTN-
  originated call terminating at a SIP endpoint follows:

  PSTN           MGC                  Proxy              SIP phone
    |----IAM----->|                     |                     |
    |             |--------INVITE------>|                     |
    |             |                     |-------INVITE------->|
    |             |<------100 TRYING----|                     |
    |             |                     |<-------18x----------|
    |             |<---------18x--------|                     |
    |<----ACM-----|                     |                     |
    |             |                     |<-------200 OK-------|
    |             |<-------200 OK-------|                     |
    |<----ANM-----|                     |                     |
    |             |---------ACK-------->|                     |
    |             |                     |---------ACK-------->|
    |=====================Conversation========================|
    |-----REL---->|                     |                     |
    |             |----------BYE------->|                     |
    |<----RLC-----|                     |---------BYE-------->|
    |             |                     |<-------200 OK-------|
    |             |<-------200 OK-------|                     |
    |             |                     |                     |
























Vemuri & Peterson        Best Current Practice                 [Page 10]

RFC 3372                         SIP-T                    September 2002


3.3 IP origination - PSTN termination

                         ********************
                       ***                    ***
                      *                         *
                     *                           *
                    *                             *
                   *                               *
              |-----|                            |----|
             /|proxy|       VoIP Network         |MGC |\
            /  -----                              ----  \
           /       *                               *     \
          /         *                             *       \
         /           *                           *         \
     ------------     *                         *     ---------
     |SIP phone |      **                     **      | PSTN  |
     ------------        *********************        ---------

  Figure 4: IP origination - PSTN termination

  A call originates from a SIP phone and terminates in the PSTN.
  Unlike the previous two flows, there is therefore no ISUP
  encapsulation in the request - the terminating gateway therefore only
  performs translation on the SIP headers to derive values for ISUP
  parameters.

  A simple call-flow illustrating the different legs in the call is as
  shown below.























Vemuri & Peterson        Best Current Practice                 [Page 11]

RFC 3372                         SIP-T                    September 2002


       SIP phone         Proxy                    MGC          PSTN
    |-----INVITE----->|                       |             |
    |                 |--------INVITE-------->|             |
    |<---100 TRYING---|                       |-----IAM---->|
    |                 |<------100 TRYING------|             |
    |                 |                       |<----ACM-----|
    |                 |<---------18x----------|             |
    |<------18x-------|                       |             |
    |                 |                       |<----ANM-----|
    |                 |<--------200 OK--------|             |
    |<-----200 OK-----|                       |             |
    |-------ACK------>|                       |             |
    |                 |----------ACK--------->|             |
    |========================Conversation===================|
    |-------BYE------>|                       |             |
    |                 |----------BYE--------->|             |
    |                 |                       |-----REL---->|
    |                 |<--------200 OK--------|             |
    |<-----200 OK-----|                       |<----RLC-----|

4. SIP-T Roles and Behavior

  There are three distinct sorts of elements (from a functional point
  of view) in a SIP VoIP network that interconnects with the PSTN:

  1.  The originators of SIP signaling

  2.  The terminators of SIP signaling

  3.  The intermediaries that route SIP requests from the originator to
      the terminator

  Behavior for the Section 4.1, Section 4.2 and Section 4.3
  intermediary roles in a SIP-T call are described in the following
  sections.

4.1 Originator

  The function of the originating user agent client is to generate the
  SIP Call setup requests (i.e., INVITEs).  When a call originates in
  the PSTN, a gateway is the UAC; otherwise some native SIP endpoint is
  the UAC.  In either case, note that the originator generally cannot
  anticipate what sort of entity the terminator will be, i.e., whether
  final destination of the request is in a SIP network or the PSTN.







Vemuri & Peterson        Best Current Practice                 [Page 12]

RFC 3372                         SIP-T                    September 2002


  In the case of calls originating in the PSTN (see Figure 3 and Figure
  5), the originating gateway takes the necessary steps to preserve the
  ISUP information by encapsulating it in the SIP request it creates.
  The originating gateway is entrusted with the responsibility of
  identifying the version of the ISUP (ETSI, ANSI, etc.) that it has
  received and providing this information in the encapsulated ISUP
  (usually by adding a multipart MIME body with appropriate MIME
  headers).  It then formulates the headers of the SIP INVITE request
  from the parameters of the ISUP that it has received from the PSTN as
  appropriate (see Section 5).  This might, for instance, entail
  setting the 'To:' header field in the INVITE to the reflect dialed
  number (Called Party Number) of the received ISUP IAM.

  In other cases (like Figure 7), a SIP phone is the originator of a
  VoIP call.  Usually, the SIP phone sends requests to a SIP proxy that
  is responsible for routing the request to an appropriate destination.
  There is no ISUP to encapsulate at the user agent client, as there is
  no PSTN interface.  Although the call may terminate in the telephone
  network and need to signal ISUP in order for that to take place, the
  originator has no way to anticipate this and it would be foolhardy to
  require that all SIP VoIP user agents have the capability to generate
  ISUP.  It is therefore not the responsibility of an IP endpoints like
  a SIP phone to generate encapsulated ISUP.  Thus, an originator must
  generate the SIP signaling while performing ISUP encapsulation and
  translation when possible (meaning when the call has originated in
  the PSTN).

  Originator requirements: encapsulate ISUP, translate information from
  ISUP to SIP, multipart MIME support (for gateways only)

4.2 Terminator

  The SIP-T terminator is a consumer of the SIP calls.  The terminator
  is a standard SIP UA that can be either a gateway that interworks
  with the PSTN or a SIP phone.
















Vemuri & Peterson        Best Current Practice                 [Page 13]

RFC 3372                         SIP-T                    September 2002


  In case of PSTN terminations (see Figure 3 and Figure 7) the egress
  gateway terminates the call to its PSTN interface.  The terminator
  generates the ISUP appropriate for signaling to the PSTN from the
  incoming SIP message.  Values for certain ISUP parameters may be
  gleaned from the SIP headers or extracted directly from an
  encapsulated ISUP body.  Generally speaking, a gateway uses any
  encapsulated ISUP as a template for the message it will send, but it
  overwrites parameter values in the template as it translates SIP
  headers or adds any parameter values that reflect its local policies
  (see Appendix A item 1).

  In case of an IP termination (Figure 5), the SIP UAS that receives
  SIP messages with encapsulated ISUP typically disregards the ISUP
  message.  This does introduce a general requirement, however, that
  devices like SIP phones handle multipart MIME messages and unknown
  MIME types gracefully (this is a baseline SIP requirement, but also a
  place where vendors have been known to make shortcuts).

  Terminator requirements: standard SIP processing, interpretation of
  encapsulated ISUP (for gateways only), support for multipart MIME,
  graceful handling of unknown MIME content (for non-gateways only)

4.3 Intermediary

  Intermediaries like proxy servers are entrusted with the task of
  routing messages to one another, as well as gateways and SIP phones.
  Each proxy server makes a forwarding decision for a SIP request based
  on values of various headers, or 'routable elements' (including the
  Request-URI, route headers, and potentially many other elements of a
  SIP request).

  SIP-T does introduce some additional considerations for forwarding a
  request that could lead to new features and requirements for
  intermediaries.  Feature transparency of ISUP is central to the
  notion of SIP-T.  Compatibility between the ISUP variants of the
  originating and terminating PSTN interfaces automatically leads to
  feature transparency.  Thus, proxy servers might take an interest in
  the variants of ISUP that are encapsulated with requests - the
  variant itself could become a routable element.  The termination of a
  call at a point that results in greater proximity to the final
  destination (rate considerations) is also an important consideration.
  The preference of one over the other results in a trade-off between
  simplicity of operation and cost.  The requirement of procuring a
  reasonable rate may dictate that a SIP-T call spans dissimilar PSTN
  interfaces (SIP bridging across different gateways that don't support
  any ISUP variants in common).  In order to optimize for maximum
  feature transparency and rate, some operators of intermediaries might
  want to consider practices along the following lines:



Vemuri & Peterson        Best Current Practice                 [Page 14]

RFC 3372                         SIP-T                    September 2002


  a) The need for ISUP feature transparency may necessitate ISUP
     variant translation (conversion), i.e., conversion from one
     variant of ISUP to another in order to facilitate the termination
     of that call over a gateway interface that does not support the
     ISUP variant of the originating PSTN interface.  (See Appendix A
     item 2.) Although in theory conversion may be performed at any
     point in the path of the request, it is optimal to perform it at a
     point that is at the greatest proximity to the terminating
     gateway.  This could be accomplished by delivering the call to an
     application that might perform the conversion between variants.
     Feature transparency in this case is contingent on the
     availability of resources to perform ISUP conversion, and it
     incurs an increase in the call-set up time.

  b) An alternative would be to sacrifice ISUP transparency by handing
     the call off to a gateway that does not support the version of the
     originating ISUP.  The terminating MGC would then just ignore the
     encapsulated ISUP and use the information in the SIP header to
     terminate the call.

  So, it may be desirable for proxy servers to have the intelligence to
  make a judicious choice given the options available to it.

  Proxy requirements: ability to route based on choice of routable
  elements

4.4 Behavioral Requirements Summary

  If the SIP-T originator is a gateway that received an ISUP request,
  it must always perform both encapsulation and translation ISUP,
  regardless of where the originator might guess that the request will
  terminate.

  If the terminator does not understand ISUP, it ignores it while
  performing standard SIP processing.  If the terminator does
  understand ISUP, and needs to signal to the PSTN, it should reuse the
  encapsulated ISUP if it understands the variant.  The terminator
  should perform the following steps:

  o  Extract the ISUP from the message body, and use this ISUP as a
     message template.  Note that if there is no encapsulated ISUP in
     the message, the gateway should use a canonical template for the
     message type in question (a pre-populated ISUP message configured
     in the gateway) instead.







Vemuri & Peterson        Best Current Practice                 [Page 15]

RFC 3372                         SIP-T                    September 2002


  o  Translate the headers of the SIP request into ISUP parameters,
     overwriting any values in the message template.

  o  Apply any local policies in populating parameters.

  An intermediary must be able to route a call based on the choice of
  routable elements in the SIP headers.

5. Components of the SIP-T Protocol

  The mechanisms described in the following sections are the components
  of SIP-T that provide the protocol functions entailed by the
  requirements.

5.1 Core SIP

  SIP-T uses the methods and procedures of SIP as defined by RFC 3261.

5.2 Encapsulation

  Encapsulation of the PSTN signaling is one of the major requirements
  of SIP-T.  SIP-T uses multipart MIME bodies to enable SIP messages to
  contain multiple payloads (Session Description Protocol or SDP [5],
  ISUP, etc.).  Numerous ISUP variants are in existence today; the ISUP
  MIME type enable recipients too recognize the ISUP type (and thus
  determine whether or not they support the variant) in the most
  expeditious possible manner.  One scheme for performing ISUP
  encapsulation using multi-part MIME has been described in [2].

5.3 Translation

  Translation encompasses all aspects of signaling protocol conversion
  between SIP and ISUP.  There are essentially two components to the
  problem of translation:

  1.  ISUP SIP message mapping:  This describes a mapping between ISUP
      and SIP at the message level.  In SIP-T deployments gateways are
      entrusted with the task of generating a specific ISUP message for
      each SIP message received and vice versa.  It is necessary to
      specify the rules that govern the mapping between ISUP and SIP
      messages (i.e., what ISUP messages is sent when a particular SIP
      message is received: an IAM must be sent on receipt of an INVITE,
      a REL for BYE, and so on).  A potential mapping between ISUP and
      SIP messages has been described in [10].







Vemuri & Peterson        Best Current Practice                 [Page 16]

RFC 3372                         SIP-T                    September 2002


  2.  ISUP parameter-SIP header mapping:  A SIP request that is used to
      set up a telephone call should contain information that enables
      it to be appropriately routed to its destination by proxy servers
      in the SIP network - for example, the telephone number dialed by
      the originating user.  It is important to standardize a set of
      practices that defines the procedure for translation of
      information from ISUP to SIP (for example, the Called Party
      Number in an ISUP IAM must be mapped onto the SIP 'To' header
      field and Request-URI, etc.).  This issue becomes inherently more
      complicated by virtue of the fact that the headers of a SIP
      request (especially an INVITE) may be transformed by
      intermediaries, and that consequently, the SIP headers and
      encapsulated ISUP bodies come to express conflicting values -
      effectively, a part of the encapsulated ISUP may be rendered
      irrelevant and obsolete.

5.4 Support for mid-call signaling

  Pure SIP does not have any provision for carrying any mid-call
  control information that is generated during a session.  The INFO [3]
  method should be used for this purpose.  Note however that INFO is
  not suitable for managing overlap dialing (for one way of
  implementing overlap dialing see [11]).  Also note that the use of
  INFO for signaling mid-call DTMF signals is not recommended (see
  RFC2833 [9] for a recommended mechanism).

6. SIP Content Negotiation

  The originator of a SIP-T request might package both SDP and ISUP
  elements into the same SIP message by using the MIME multipart
  format.  Traditionally in SIP, if the terminating device does not
  support a multipart payload (multipart/mixed) and/or the ISUP MIME
  type, it would then reject the SIP request with a 415 Unsupported
  Media Type specifying the media types it supports (by default,
  'application/SDP').  The originator would subsequently have to re-
  send the SIP request after stripping out the ISUP payload (i.e.  with
  only the SDP payload) and this would then be accepted.

  This is a rather cumbersome flow, and it is thus highly desirable to
  have a mechanism by which the originator could signify which bodies
  are required and which are optional so that the terminator can
  silently discard optional bodies that it does not understand
  (allowing a SIP phone to ignore an ISUP payload when processing ISUP
  is not critical).  This is contingent upon the terminator having
  support for a Content-type of multipart/mixed and access to the
  Content-Disposition header to express criticality.





Vemuri & Peterson        Best Current Practice                 [Page 17]

RFC 3372                         SIP-T                    September 2002


  1.  Support for ISUP is optional.  Therefore, UA2 accepts the INVITE
      irrespective of whether it can process the ISUP.

  UA1                    UA2
  INVITE-->
     (Content-type:multipart/mixed;
     Content-type: application/sdp;
     Content-disposition: session; handling=required;
     Content-type: application/isup;
     Content-disposition: signal; handling=optional;)

                        <--18x

  2.  Support for ISUP is preferred.  UA2 does not support the ISUP and
      rejects the INVITE with a 415 Unsupported Media Type.  UA1 strips
      off the ISUP and re-sends the INVITE with SDP only and this is
      the accepted.

  UA1                    UA2
  INVITE--> (Content-type:multipart/mixed;
     Content-type: application/sdp;
     Content-disposition: session; handling=required;
     Content-type: application/isup;
     Content-disposition: signal; handling=required;)


                          <--415
                    (Accept: application/sdp)

  ACK-->

  INVITE-->
  (Content-type: application/sdp)

                          <--18x

  3.  Support for ISUP is mandatory for call establishment.  UA2 does
      not support the ISUP and rejects the INVITE with a 415
      Unsupported Media type.  UA1 then directs its request to UA3.












Vemuri & Peterson        Best Current Practice                 [Page 18]

RFC 3372                         SIP-T                    September 2002


  UA1                    UA2
  INVITE--> (Content-type:multipart/mixed;
     Content-type: application/sdp;
     Content-disposition: session; handling=required;
     Content-type: application/isup;
     Content-disposition: signal; handling=required;)

                       <--415
                 (Accept: application/sdp)

  ACK-->

  UA1                   UA3
  INVITE--> (Content-type:multipart/mixed;
      Content-type: application/sdp;
      Content-disposition: session; handling=required;
      Content-type: application/isup;
      Content-disposition: signal; handling=required;)

  Note that the exchanges of messages above are not complete; only the
  messages relevant to this discussion are shown.  Specifics of the
  ISUP MIME type can be obtained from [2].  The 'version' and 'base'
  parameters are not shown here, but must be used in accordance with
  the rules of [2].

7. Security Considerations

  SIP-T can be employed as an interdomain signaling mechanism that may
  be subject to pre-existing trust relationships between administrative
  domains.  In many legal environments, distribution of ISUP is
  restricted to licensed carriers; SIP-T introduces some challenges in
  so far as it bridges carrier signaling with end-user signaling.  Any
  administrative domain implementing SIP-T should have an adequate
  security apparatus (including elements that manage any appropriate
  policies to manage fraud and billing in an interdomain environment)
  in place to ensure that the transmission of ISUP information does not
  result in any security violations.

  Transporting ISUP in SIP bodies may provide opportunities for abuse,
  fraud, and privacy concerns, especially when SIP-T requests can be
  generated, inspected or modified by arbitrary SIP endpoints.  ISUP
  MIME bodies should be secured (preferably with S/MIME [4]) to
  alleviate this concern, as is described in the Security
  Considerations of the core SIP specification [1].  Authentication
  properties provided by S/MIME would allow the recipient of a SIP-T
  message to ensure that the ISUP MIME body was generated by an





Vemuri & Peterson        Best Current Practice                 [Page 19]

RFC 3372                         SIP-T                    September 2002


  authorized entity.  Encryption would ensure that only carriers
  possessing a particular decryption key are capable of inspecting
  encapsulated ISUP MIME bodies in a SIP request.

  SIP-T endpoints MUST support S/MIME signatures (CMS SignedData), and
  SHOULD support encryption (CMS EnvelopedData).

8. IANA Considerations

  This document introduces no new considerations for IANA.

Normative References

  [1]   Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
        Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
        Session Initiation Protocol", RFC 3261, May 2002.

  [2]   Zimmerer, E., Peterson, J., Vemuri, A., Ong, L., Audet, F.,
        Watson, M. and M. Zonoun, "MIME media types for ISUP and QSIG
        objects", RFC 3204, December 2001.

  [3]   Donovan, S., "The SIP INFO Method", RFC 2976, October 2000.

  [4]   Ramsdell, B., "S/MIME Version 3 Message Specification", RFC
        2633, June 1999.

  [5]   Handley, M. and V. Jacobson, "SDP: Session Description
        Protocol", RFC 2327, April 1998.

Non-Normative References

  [6]   International Telecommunications Union, "Signaling System No.
        7; ISDN User Part Signaling procedures", ITU-T Q.764, September
        1997, <http://www.itu.int>.

  [7]   Faltstrom, P., "E.164 number and DNS", RFC 2916, September
        2000.

  [8]   Rosenberg, J., Salama, H. and M. Squire, "Telephony Routing
        over IP (TRIP)", RFC 3219, January 2002.

  [9]   Schulzrinne, H. and S. Petrack, "RTP Payload for DTMF Digits,
        Telephony Tones and Telephony Signals", RFC 2833, May 2000.

  [10]  Camarillo, G., Roach, A., Peterson, J. and L. Ong, "ISUP to SIP
        Mapping",  Work in Progress.





Vemuri & Peterson        Best Current Practice                 [Page 20]

RFC 3372                         SIP-T                    September 2002


  [11]  Camarillo, G., Roach, A., Peterson, J. and L. Ong, "Mapping of
        ISUP Overlap Signaling to SIP", Work in Progress.

















































Vemuri & Peterson        Best Current Practice                 [Page 21]

RFC 3372                         SIP-T                    September 2002


Appendix A. Notes

  1.  Some terminating MGCs may alter the encapsulated ISUP in order to
      remove any conditions specific to the originating circuit; for
      example, continuity test flags in the Nature of Connection
      Indicators, etc.

  2.  Even so, the relevance of ANSI-specific information in an ETSI
      network (or vice versa) is questionable.  Clearly, the strength
      of SIP-T is realized when the encapsulated ISUP involves the
      usage of proprietary parameters.

Appendix B. Acknowledgments

  We thank Andrew Dugan, Rob Maidhof, Dave Martin, Adam Roach, Jonathan
  Rosenberg, Dean Willis, Robert F.  Penfield, Steve Donovan, Allison
  Mankin, Scott Bradner and Steve Bellovin for their valuable comments.

  The original 'SIP+' proposal for interconnecting portions of the PSTN
  with SIP bridging was developed by Eric Zimmerer.

Authors' Addresses

  Aparna Vemuri-Pattisam
  Qwest Communications
  6000 Parkwood Pl
  Dublin, OH  43016 US
  EMail: [email protected]
         [email protected]

  Jon Peterson
  NeuStar, Inc.
  1800 Sutter St
  Suite 570
  Concord, CA  94520 US
  Phone: +1 925/363-8720
  EMail: [email protected]
  URI:   http://www.neustar.biz/













Vemuri & Peterson        Best Current Practice                 [Page 22]

RFC 3372                         SIP-T                    September 2002


Full Copyright Statement

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Vemuri & Peterson        Best Current Practice                 [Page 23]