Network Working Group                                            K. Chan
Request for Comments: 3317                               Nortel Networks
Category: Informational                                        R. Sahita
                                                                S. Hahn
                                                                  Intel
                                                          K. McCloghrie
                                                          Cisco Systems
                                                             March 2003


 Differentiated Services Quality of Service Policy Information Base

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This document describes a Policy Information Base (PIB) for a device
  implementing the Differentiated Services Architecture.  The
  provisioning classes defined here provide policy control over
  resources implementing the Differentiated Services Architecture.
  These provisioning classes can be used with other none Differentiated
  Services provisioning classes (defined in other PIBs) to provide for
  a comprehensive policy controlled mapping of service requirement to
  device resource capability and usage.



















Chan, et al.                 Informational                      [Page 1]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


Table of Contents

  Conventions used in this document...................................3
  1. Glossary.........................................................3
  2. Introduction.....................................................3
  3. Relationship to the DiffServ Informal Management Model...........3
    3.1. PIB Overview.................................................4
  4. Structure of the PIB.............................................6
    4.1. General Conventions..........................................6
    4.2. DiffServ Data Paths..........................................7
      4.2.1. Data Path PRC............................................7
    4.3. Classifiers..................................................8
      4.3.1. Classifier PRC...........................................9
      4.3.2. Classifier Element PRC...................................9
    4.4. Meters.......................................................9
      4.4.1. Meter PRC...............................................10
      4.4.2. Token-Bucket Parameter PRC..............................10
    4.5. Actions.....................................................10
      4.5.1. DSCP Mark Action PRC....................................11
    4.6. Queueing Elements...........................................11
      4.6.1. Algorithmic Dropper PRC.................................11
      4.6.2. Random Dropper PRC......................................12
      4.6.3. Queues and Schedulers...................................14
    4.7. Specifying Device Capabilities..............................16
  5. PIB Usage Example...............................................17
    5.1. Data Path Example...........................................17
    5.2. Classifier and Classifier Element Example...................18
    5.3. Meter Example...............................................21
    5.4. Action Example..............................................21
    5.5. Dropper Examples............................................22
      5.5.1. Tail Dropper Example....................................22
      5.5.2. Single Queue Random Dropper Example.....................23
      5.5.3. Multiple Queue Random Dropper Example...................23
    5.6.   Queue and Scheduler Example...............................26
  6. Summary of the DiffServ PIB.....................................27
  7. PIB Operational Overview........................................28
  8. PIB Definition..................................................29
  9. Acknowledgments.................................................90
  10. Security Considerations........................................90
  11. Intellectual Property Considerations...........................91
  12. IANA Considerations............................................91
  13. Normative References...........................................92
  14. Authors' Addresses.............................................95
  15. Full Copyright Statement.......................................96







Chan, et al.                 Informational                      [Page 2]

RFC 3317          DiffServ QoS Policy Information Base        March 2003



Conventions used in this document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

1.  Glossary

  PRC    Provisioning Class.  A type of policy data.  See [POLTERM].
  PRI    Provisioning Instance.  An instance of a PRC.  See [POLTERM].
  PIB    Policy Information Base.  The database of policy information.
         See [POLTERM].
  PDP    Policy Decision Point. See [RAP-FRAMEWORK].
  PEP    Policy Enforcement Point. See [RAP-FRAMEWORK].
  PRID   Provisioning Instance Identifier. Uniquely identifies an
         instance of a PRC.

2.  Introduction

  [SPPI] describes a structure for specifying policy information that
  can then be transmitted to a network device for the purpose of
  configuring policy at that device.  The model underlying this
  structure is one of well-defined provisioning classes and instances
  of these classes residing in a virtual information store called the
  Policy Information Base (PIB).

  This document specifies a set of provisioning classes specifically
  for configuring QoS Policy for Differentiated Services [DSARCH].

  One way to provision policy is by means of the COPS protocol [COPS],
  with the extensions for provisioning [COPS-PR].  This protocol
  supports multiple clients, each of which may provision policy for a
  specific policy domain such as QoS.  The PRCs defined in this
  DiffServ QoS PIB are intended for use by the COPS-PR diffServ client
  type.  Furthermore, these PRCs are in addition to any other PIBs that
  may be defined for the diffServ client type in the future, as well as
  the PRCs defined in the Framework PIB [FR-PIB].

3.  Relationship to the DiffServ Informal Management Model

  This PIB is designed according to the Differentiated Services
  Informal Management Model documented in [MODEL].  The model describes
  the way that ingress and egress interfaces of a 'n'-port router are
  modeled.  It describes the configuration and management of a DiffServ
  interface in terms of a Traffic Conditioning Block (TCB) which
  contains, by definition, zero or more classifiers, meters, actions,
  algorithmic droppers, queues and schedulers.  These elements are



Chan, et al.                 Informational                      [Page 3]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  arranged according to the QoS policy being expressed, and are always
  in that order.  Traffic may be classified; classified traffic may be
  metered; each stream of traffic identified by a combination of
  classifiers and meters may have some set of actions performed on it;
  it may have dropping algorithms applied and it may ultimately be
  stored into a queue before being scheduled out to its next
  destination, either onto a link or to another TCB.  When the
  treatment for a given packet must have any of those elements repeated
  in a way that breaks the permitted sequence {classifier, meter,
  action, algorithmic dropper, queue, scheduler}, this must be modeled
  by cascading multiple TCBs.

  The PIB represents this cascade by following the "Next" attributes of
  the various elements.  They indicate what the next step in DiffServ
  processing will be, whether it be a classifier, meter, action,
  algorithmic dropper, queue, scheduler or a decision to now forward a
  packet.

  The PIB models the individual elements that make up the TCBs.  The
  higher level concept of a TCB is not required in the parameterization
  or in the linking together of the individual elements, hence it is
  not used in the PIB itself and is only mentioned in the text for
  relating the PIB with the [MODEL].  The actual distinguishing of
  which TCB a specific element is a part of is not needed for the
  instrumentation of a device to support the functionalities of
  DiffServ, but it is useful for conceptual reasons.  By not using the
  TCB concept, this PIB allows any grouping of elements to construct
  TCBs, using rules indicated by the [MODEL].  This will minimize
  changes to this PIB if rules in [MODEL] change.

  The notion of a Data Path is used in this PIB to indicate the
  DiffServ processing a packet may experience.  This Data Path is
  distinguished based on the Role Combination, Capability Set, and the
  Direction of the flow the packet is part of.  A Data Path Table Entry
  indicates the first of possibly multiple elements that will apply
  DiffServ treatment to the packet.

3.1.  PIB Overview

  This PIB is structured based on the need to configure the sequential
  DiffServ treatments being applied to a packet, and the
  parameterization of these treatments.  These two aspects of the
  configuration are kept separate throughout the design of the PIB, and
  are fulfilled using separate tables and data definitions.

  In addition, the PIB includes tables describing the capabilities and
  limitations of the device using a general extensible framework.




Chan, et al.                 Informational                      [Page 4]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  These tables are reported to the PDP and assist the PDP with the
  configuration of functional elements that can be realized by the
  device.

  This capabilities and limitations exchange allows a single or
  multiple devices to support many different variations of a functional
  datapath element.  Allowing diverse methods of providing a general
  functional datapath element.

  In this PIB, the ingress and egress portions of a router are
  configured independently but in the same manner.  The difference is
  distinguished by an attribute in a table describing the start of the
  data path.  Each interface performs some or all of the following
  high-level functions:

  - Classify each packet according to some set of rules.

  - Determine whether the data stream the packet is part of is within
    or outside its metering parameters.

  - Perform a set of resulting actions such as counting and marking of
    the traffic with a Differentiated Services Code Point (DSCP) as
    defined in [DSFIELD].

  - Apply the appropriate drop policy, either simple or complex
    algorithmic drop functionality.

  - Enqueue the traffic for output in the appropriate queue, whose
    scheduler may shape the traffic or simply forward it with some
    minimum rate or maximum latency.

  The PIB therefore contains the following elements:

  Data Path Table
     This describes the starting point of DiffServ data paths within a
     single DiffServ device.  This class describes interface role
     combination and interface direction specific data paths.

  Classifier Tables
     A general extensible framework for specifying a group of filters.

  Meter Tables
     A general extensible framework and one example of a
     parameterization table - TBParam table, applicable for Simple
     Token Bucket Meter, Average Rate Meter, Single Rate Three Color
     Meter, Two Rate Three Color Meter, and Sliding Window Three Color
     Meter.




Chan, et al.                 Informational                      [Page 5]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  Action Tables
     A general extensible framework and example of parameterization
     tables for Mark action.  The "multiplexer" and "null" actions
     described in [MODEL] are accomplished implicitly by means of the
     Prid structures of the other elements.

  Algorithmic Dropper Tables
     A general extensible framework for describing the dropper
     functional datapath element.  This includes the absolute dropper
     and other queue measurement dependent algorithmic droppers.

  Queue and Scheduler Tables
     A general extensible framework for parameterizing queuing and
     scheduler systems.  Notice Shaper is considered as a type of
     scheduler and is included here.

  Capabilities Tables
     A general extensible framework for defining the capabilities and
     limitations of the elements listed above.  The capability tables
     allow intelligent configuration of the elements by a PDP.

4.  Structure of the PIB

4.1.  General Conventions

  The PIB consists of PRCs that represent functional elements in the
  data path (e.g., classifiers, meters, actions), and classes that
  specify parameters that apply to a certain type of functional element
  (e.g., a Token Bucket meter or a Mark action).  Parameters are
  typically specified in a separate PRC to enable the use of parameter
  classes by multiple policies.

  Functional element PRCs use the Prid TC (defined in [SPPI]) to
  indicate indirection.  A Prid is an object identifier that is used to
  specify an instance of a PRC in another table.  A Prid is used to
  point to parameter PRC that applies to a functional element, such as
  which filter should be used for a classifier element.  A Prid is also
  used to specify an instance of a functional element PRC that
  describes what treatment should be applied next for a packet in the
  data path.

  Note that the use of Prids to specify parameter PRCs allows the same
  functional element PRC to be extended with a number of different
  types of parameter PRC's.  In addition, using Prids to indicate the
  next functional datapath element allows the elements to be ordered in
  any way.





Chan, et al.                 Informational                      [Page 6]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


4.2.  DiffServ Data Paths

  This part of the PIB provides instrumentation for connecting the
  DiffServ Functional Elements within a single DiffServ device.  Please
  refer to [MODEL] for discussions on the valid sequencing and grouping
  of DiffServ Functional Elements.  Given some basic information, e.g.,
  the interface capability, role combination and direction, the first
  DiffServ Functional Element is determined.  Subsequent DiffServ
  Functional Elements are provided by the "Next" pointer attribute of
  each entry of data path tables.  A description of how this "Next"
  pointer is used in each table is provided in their respective
  DESCRIPTION clauses.

4.2.1.  Data Path PRC

  The Data Path PRC provides the DiffServ treatment starting points for
  all packets of this DiffServ device.  Each instance of this PRC
  specifies the interface capability, role combination and direction
  for the packet flow.  There should be at most two entries for each
  instance (interface type, role combination, interface capability),
  one for ingress and one for egress.  Each instance provides the first
  DiffServ Functional Element that each packet, at a specific interface
  (identified by the roles assigned to the interface) traveling in a
  specific relative direction, should experience.  Notice this class is
  interface specific, with the use of interface type capability set and
  RoleCombination.  To indicate explicitly that there are no DiffServ
  treatments for a particular interface type capability set, role
  combination and direction, an instance of the Data Path PRC can be
  created with zeroDotZero in the dsDataPathStart attribute.  This
  situation can also be indicated implicitly by not supplying an
  instance of a Data Path PRC for that particular interface type
  capability set, role combination and direction.  The
  explicit/implicit selection is up to the implementation.  This means
  that the PEP should perform normal IP device processing when
  zeroDotZero is used in the dsDataPathStart attribute, or when the
  entry does not exist.  Normal IP device processing will depend on the
  device; for example, this can be forwarding the packet.

  Based on implementation experience of network devices where data path
  functional elements are implemented in separate physical processors
  or application specific integrated circuits, separated by switch
  fabric, it seems that more complex notions of data path are required
  within the network device to correlate the different physically
  separate data path functional elements.  For example, ingress
  processing may have determined a specific ingress flow that gets
  aggregated with other ingress flows at an egress data path functional
  element.  Some of the information determined at the ingress data path
  functional element may need to be used by the egress data path



Chan, et al.                 Informational                      [Page 7]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  functional element.  In numerous implementations, such information
  has been carried by adding it to the frame/memory block used to carry
  the flow within the network device; some implementers have called
  such information a "preamble" or a "frame descriptor".  Different
  implementations use different formats for such information.
  Initially, one may think such information has implementation details
  within the network device that does not need to be exposed outside of
  the network device.  But from Policy Control point of view, such
  information will be very useful in determining network resource usage
  feedback from the network device to the policy server.  This is
  accomplished by using the Internal Label Marker and Filter PRCs
  defined in [FR-PIB].

4.3.  Classifiers

  The classifier and classifier element tables determine how traffic is
  sorted out.  They identify separable classes of traffic, by reference
  to appropriate filters, which may select anything from an individual
  micro-flow to aggregates identified by DSCP.

  The classification is used to send these separate streams to
  appropriate Meter, Action, Algorithmic Dropper, Queue and Scheduler
  elements.  For example, to indicate a multi-stage meter, sub-classes
  of traffic may be sent to different meter stages: e.g., in an
  implementation of the Assured Forwarding (AF) PHB [AF-PHB], AF11
  traffic might be sent to the first meter, AF12 traffic might be sent
  to the second and AF13 traffic sent to the second meter stage's out-
  of-profile action.

  The concept of a classifier is the same as described in [MODEL].  The
  structure of the classifier and classifier element tables, is the
  same as the classifier described in [MODEL].  Classifier elements
  have an associated precedence order solely for the purpose of
  resolving ambiguity between overlapping filters.  A filter with
  higher values of precedence are compared first; the order of tests
  for entries of the same precedence is unimportant.

  A datapath may consist of more than one classifier.  There may be an
  overlap of filter specification between filters of different
  classifiers.  The first classifier functional datapath element
  encountered, as determined by the sequencing of diffserv functional
  datapath elements, will be used first.

  An important form of classifier is "everything else": the final stage
  of the classifier i.e., the one with the lowest precedence, must be
  "complete" since the result of an incomplete classifier is not
  necessarily deterministic - see [MODEL] section 4.1.2.




Chan, et al.                 Informational                      [Page 8]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  When a classifier PRC is instantiated at the PEP, it should always
  have at least one classifier element table entry, the "everything
  else" classifier element, with its filter matching all IP packets.
  This "everything else" classifier element should be created by the
  PDP as part of the classifier setup.  The PDP has full control of all
  classifier PRIs instantiated at the PEP.

  The definition of the actual filter to be used by the classifier is
  referenced via a Prid: this enables the use of any sort of filter
  table that one might wish to design, standard or proprietary.  No
  filters are defined in this PIB.  However, standard filters for IP
  packets are defined in the Framework PIB [FR-PIB].

4.3.1.  Classifier PRC

  Classifiers, used in various ingress and egress interfaces, are
  organized by the instances of the Classifier PRC.  A data path entry
  points to a classifier entry.  A classifier entry identifies a list
  of classifier elements.  A classifier element effectively includes
  the filter entry, and points to a "next" classifier entry or some
  other data path functional element.

4.3.2.  Classifier Element PRC

  Classifier elements point to the filters which identify various
  classes of traffic.  The separation between the "classifier element"
  and the "filter" allows us to use many different kinds of filters
  with the same essential semantics of "an identified set of traffic".
  The traffic matching the filter corresponding to a classifier element
  is given to the "next" data path functional element identified in the
  classifier element.

  An example of a filter that may be pointed to by a Classifier Element
  PRI is the frwkIpFilter PRC, defined in [FR-PIB].

4.4.  Meters

  A meter, according to [MODEL] section 5, measures the rate at which
  packets composing a stream of traffic pass it, compares this rate to
  some set of thresholds, and produces some number (two or more) of
  potential results.  A given packet is said to "conform" to the meter
  if, at the time the packet is being looked at, the stream appears to
  be within the meter's profile.  PIB syntax makes it easiest to define
  this as a sequence of one or more cascaded pass/fail tests, modeled
  here as if-then-else constructs.  It is important to understand that
  this way of modeling does not imply anything about the implementation
  being "sequential": multi-rate/multi-profile meters, e.g., those
  designed to support [SRTCM], [TRTCM], or [TSWTCM] can still be



Chan, et al.                 Informational                      [Page 9]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  modeled this way even if they, of necessity, share information
  between the stages: the stages are introduced merely as a notational
  convenience in order to simplify the PIB structure.

4.4.1.  Meter PRC

  The generic meter PRC is used as a base for all more specific forms
  of meter.  The definition of parameters specific to the type of meter
  used is referenced via a pointer to an instance of a PRC containing
  those specifics.  This enables the use of any sort of specific meter
  table that one might wish to design, standard or proprietary. One
  specific meter table is defined in this PIB module.  Other meter
  tables may be defined in other PIB modules.

4.4.2.  Token-Bucket Parameter PRC

  This is included as an example of a common type of meter.  Entries in
  this class are referenced from the dsMeterSpecific attributes of
  meter PRC instances.  The parameters are represented by a rate
  dsTBParamRate, a burst size dsTBParamBurstSize, and an interval
  dsTBparamInterval.  The type of meter being parameterized is
  indicated by the dsTBParamType attribute.  This is used to determine
  how the rate, burst, and rate interval parameters are used.
  Additional meter parameterization classes can be defined in other
  PIBs when necessary.

4.5.  Actions

  Actions include "no action", "mark the traffic with a DSCP" or
  "specific action".  Other tasks such as "shape the traffic" or "drop
  based on some algorithm" are handled in other functional datapath
  elements rather than in actions.  The "multiplexer", "replicator",
  and "null" actions described in [MODEL] are accomplished implicitly
  through various combinations of the other elements.

  This PIB uses the Action PRC dsActionTable to organize one Action's
  relationship with the element(s) before and after it.  It allows
  Actions to be cascaded to enable that multiple Actions be applied to
  a single traffic stream by using each entry's dsActionNext attribute.
  The dsActionNext attribute of the last action entry in the chain
  points to the next element in the TCB, if any, e.g., a Queueing
  element.  It may also point at a next TCB.

  The parameters needed for the Action element will depend on the type
  of Action to be taken.  Hence the PIB allows for specific Action
  Tables for the different Action types.  This flexibility allows
  additional Actions to be specified in other PIBs and also allows for
  the use of proprietary Actions without impact on those defined here.



Chan, et al.                 Informational                     [Page 10]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  One may consider packet dropping as an Action element.  Packet
  dropping is handled by the Algorithmic Dropper datapath functional
  element.

4.5.1.  DSCP Mark Action PRC

  This Action is applied to traffic in order to mark it with a DiffServ
  Codepoint (DSCP) value, specified in the dsDscpMarkActTable.

4.6.  Queueing Elements

  These include Algorithmic Droppers, Queues and Schedulers, which are
  all inter-related in their use of queueing techniques.

4.6.1.  Algorithmic Dropper PRC

  Algorithmic Droppers are represented in this PIB by instances of the
  Algorithmic Dropper PRC.  An Algorithmic Dropper is assumed to
  operate indiscriminately on all packets that are presented at its
  input; all traffic separation should be done by classifiers and
  meters preceding it.

  Algorithmic Dropper includes many types of droppers, from the simple
  always dropper to the more complex random dropper.  This is indicated
  by the dsAlgDropType attribute.

  Algorithmic Droppers have a close relationship with queuing; each
  Algorithmic Dropper Table entry contains a dsAlgDropQMeasure
  attribute, indicating which queue's state affects the calculation of
  the Algorithmic Dropper.  Each entry also contains a dsAlgDropNext
  attribute that indicates to which queue the Algorithmic Dropper sinks
  its traffic.

  Algorithmic Droppers may also contain a pointer to a specific detail
  of the drop algorithm, dsAlgDropSpecific.  This PIB defines the
  detail for three drop algorithms:  Tail Drop, Head Drop, and Random
  Drop; other algorithms are outside the scope of this PIB module, but
  the general framework is intended to allow for their inclusion via
  other PIB modules.

  One generally-applicable parameter of a dropper is the specification
  of a queue-depth threshold at which some drop action is to start.
  This is represented in this PIB, as a base attribute,
  dsAlgDropQThreshold, of the Algorithmic Dropper entry.  The
  attribute, dsAlgDropQMeasure, specifies which queue's depth
  dsAlgDropQThreshold is to be compared against.





Chan, et al.                 Informational                     [Page 11]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  o  An Always Dropper drops every packet presented to it.  This type
     of dropper does not require any other parameter.

  o  A Tail Dropper requires the specification of a maximum queue depth
     threshold:  when the queue pointed at by dsAlgDropQMeasure reaches
     that depth threshold, dsAlgDropQThreshold, any new traffic
     arriving at the dropper is discarded.  This algorithm uses only
     parameters that are part of the dsAlgDropEntry.

  o  A Head Dropper requires the specification of a maximum queue depth
     threshold:  when the queue pointed at by dsAlgDropQMeasure reaches
     that depth threshold, dsAlgDropQThreshold, traffic currently at
     the head of the queue is discarded.  This algorithm uses only
     parameters that are part of the dsAlgDropEntry.

  o  Random Droppers are recommended as a way to control congestion, in
     [QUEUEMGMT] and called for in the [AF-PHB].  Various
     implementations exist, that agree on marking or dropping just
     enough traffic to communicate with TCP-like protocols about
     congestion avoidance, but differ markedly on their specific
     parameters.  This PIB attempts to offer a minimal set of controls
     for any random dropper, but expects that vendors will augment the
     PRC with additional controls and status in accordance with their
     implementation.  This algorithm requires additional parameters on
     top of those in dsAlgDropEntry; these are discussed below.

  A Dropper Type of other is provided for the implementation of dropper
  types not defined here.  When the Dropper Type is other, its full
  specification will need to be provided by another PRC referenced by
  dsAlgDropSpecific.  A Dropper Type of Multiple Queue Random Dropper
  is also provided; please reference section 5.5.3 of this document for
  more details.

4.6.2.  Random Dropper PRC

  One example of a random dropper is a RED-like dropper.  An example of
  the representation chosen in this PIB for this element is shown in
  Figure 1.

  Random droppers often have their drop probability function described
  as a plot of drop probability (P) against averaged queue length (Q).
  (Qmin, Pmin) then defines the start of the characteristic plot.
  Normally Pmin=0, meaning that with average queue length below Qmin,
  there will be no drops.  (Qmax, Pmax) defines a "knee" on the plot,
  after which point the drop probability become more progressive
  (greater slope).  (Qclip, 1) defines the queue length at which all





Chan, et al.                 Informational                     [Page 12]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  packets will be dropped.  Notice this is different from Tail Drop
  because this uses an averaged queue length.  Although it is possible
  for Qclip = Qmax.

  In the PIB module, dsRandomDropMinThreshBytes and
  dsRandomDropMinThreshPkts represent Qmin.  dsRandomDropMaxThreshBytes
  and dsRandomDropMaxThreshPkts represent Qmax.  dsAlgDropQThreshold
  represents Qclip.  dsRandomDropProbMax represents Pmax.  This PIB
  does not represent Pmin (assumed to be zero unless otherwise
  represented).

  In addition, since message memory is finite, queues generally have
  some upper bound above which they are incapable of storing additional
  traffic.  Normally this number is equal to Qclip, specified by
  dsAlgDropQThreshold.

  Each random dropper specification is associated with a queue.  This
  allows multiple drop processes (of same or different types) to be
  associated with the same queue, as different PHB implementations may
  require.  This also allows for sequences of multiple droppers if
  necessary.

        +-----------------+                    +-------+
        |AlgDrop          |                    |Queue  |
    --->| Next   ---------+-+----------------->| Next -+-->
        | QMeasure -------+-+                  | ...   |
        | QThreshold      |                    +-------+
        | Type=randomDrop |   +----------------+
        | Specific -------+-->|RandomDrop      |
        +-----------------+   | MinThreshBytes |
                              | MaxThreshBytes |
                              | ProbMax        |
                              | Weight         |
                              | SamplingRate   |
                              +----------------+

      Figure 1: Example Use of the RandomDropTable for Random Droppers

  The calculation of a smoothed queue length may also have an important
  bearing on the behavior of the dropper:  parameters may include the
  sampling interval or rate, and the weight of each sample.  The
  performance may be very sensitive to the values of these parameters
  and a wide range of possible values may be required due to a wide
  range of link speeds.  Most algorithms include a sample weight,
  represented here by dsRandomDropWeight.  The availability of
  dsRandomDropSamplingRate as readable is important; the information
  provided by the Sampling Rate is essential to the configuration of
  dsRandomDropWeight.  Having the Sampling Rate be configurable is also



Chan, et al.                 Informational                     [Page 13]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  helpful, because as line speed increases, the ability to have queue
  sampling be less frequent than packet arrival is needed.  Note
  however that there is ongoing research on this topic, see e.g.,
  [ACTQMGMT] and [AQMROUTER].

  Additional parameters may be added in an enterprise PIB module, e.g.,
  by using AUGMENTS on this class, to handle aspects of random drop
  algorithms that are not standardized here.

  NOTE:  Deterministic Droppers can be viewed as a special case of
  Random Droppers with the drop probability restricted to 0 and 1.
  Hence Deterministic Droppers might be described by a Random Dropper
  with Pmin = 0, Pmax = 1, Qmin = Qmax = Qclip, the averaged queue
  length at which dropping occurs.

4.6.3.  Queues and Schedulers

  The Queue PRC models simple FIFO queues, as described in [MODEL]
  section 7.1.1.  The Scheduler PRC allows flexibility in constructing
  both simple and somewhat more complex queueing hierarchies from those
  queues.  Of course, since TCBs can be cascaded multiple times on an
  interface, even more complex hierarchies can be constructed that way
  also.

  Queue PRC instances are pointed at by the "next" attributes of the
  upstream elements e.g., dsMeterSucceedNext.  Note that multiple
  upstream elements may direct their traffic to the same Queue PRI.
  For example, the Assured Forwarding PHB suggests that all traffic
  marked AF11, AF12, or AF13 be placed in the same queue after
  metering, without reordering.  This would be represented by having
  the dsMeterSucceedNext of each upstream meter point at the same Queue
  PRI.

  NOTE:  Queue and Scheduler PRIs are for data path description; they
  both use Scheduler Parameterization Table entries for diffserv
  treatment parameterization.

  A Queue Table entry specifies the scheduler it wants service from by
  use of its Next pointer.

  Each Scheduler Table entry represents the algorithm in use for
  servicing the one or more queues that feed it.  [MODEL] section 7.1.2
  describes a scheduler with multiple inputs:  this is represented in
  the PIB by having the scheduling parameters be associated with each
  input.  In this way, sets of Queues can be grouped together as inputs
  to the same Scheduler.  This class serves to represent the example
  scheduler described in the [MODEL]:  other more complex
  representations might be created outside of this PIB.



Chan, et al.                 Informational                     [Page 14]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  Both the Queue PRC and the Scheduler PRC use instances of the
  Scheduler Parameterization PRC to specify diffserv treatment
  parameterization.  Scheduler Parameter PRC instances are used to
  parameterize each input that feeds into a scheduler.  The inputs can
  be a mixture of Queue PRI's and Scheduler PRI's.  Scheduler Parameter
  PRI's can be used/reused by one or more Queue and/or Scheduler Table
  entries.

  For representing a Strict Priority scheduler, each scheduler input is
  assigned a priority with respect to all the other inputs feeding the
  same scheduler, with default values for the other parameters.  A
  higher-priority input which contains traffic that is not being
  delayed for shaping will be serviced before a lower-priority input.

  For Weighted Scheduling methods e.g., WFQ, WRR, the "weight" of a
  given scheduler input is represented with a Minimum Service Rate
  leaky-bucket profile that provides a guaranteed minimum bandwidth to
  that input, if required.  This is represented by a rate
  dsMinRateAbsolute; the classical weight is the ratio between that
  rate and the interface speed, or perhaps the ratio between that rate
  and the sum of the configured rates for classes.  Alternatively, the
  rate may be represented by a relative value, as a fraction of the
  interface's current line rate, dsMinRateRelative to assist in cases
  where line rates are variable or where a higher-level policy might be
  expressed in terms of fractions of network resources.  The two rate
  parameters are inter-related and changes in one may be reflected in
  the other.

  For weighted scheduling methods, one can say loosely, that WRR
  focuses on meeting bandwidth sharing, without concern for relative
  delay amongst the queues, where WFQ control both queue service order
  and amount of traffic serviced, providing meeting bandwidth sharing
  and relative delay ordering amongst the queues.

  A queue or scheduled set of queues (which is an input to a scheduler)
  may also be capable of acting as a non-work-conserving [MODEL]
  traffic shaper:  this is done by defining a Maximum Service Rate
  leaky-bucket profile in order to limit the scheduler bandwidth
  available to that input.  This is represented by a rate
  dsMaxRateAbsolute; the classical weight is the ratio between that
  rate and the interface speed, or perhaps the ratio between that rate
  and the sum of the configured rates for classes.  Alternatively, the
  rate may, be represented by a relative value, as a fraction of the
  interface's current line rate, dsMaxRateRelative.  There was
  discussion in the working group about alternative modeling
  approaches, such as defining a shaping action or a shaping element.
  We did not take this approach because shaping is in fact something a
  scheduler does to its inputs, (which we model as a queue with a



Chan, et al.                 Informational                     [Page 15]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  maximum rate or a scheduler whose output has a maximum rate) and we
  felt it was simpler and more elegant to simply describe it in that
  context.  Additionally, multi-rate shaper [SHAPER] can be represented
  by the use of multiple dsMaxRateTable entries.

  Other types of priority and weighted scheduling methods can be
  defined using existing parameters in dsMinRateEntry.  NOTE:
  dsSchedulerMethod uses AutonomousType syntax, with the different
  types of scheduling methods defined as OBJECT-IDENTITY.  Future
  scheduling methods may be defined in other PIBs.  This requires an
  OBJECT-IDENTITY definition, a description of how the existing objects
  are reused, if they are, and any new objects they require.

  NOTE:  Hierarchical schedulers can be parameterized using this PIB by
  having Scheduler Table entries feeds into Scheduler Table entry.

4.7.  Specifying Device Capabilities

  The DiffServ PIB uses the Base PRC classes frwkPrcSupportTable and
  frwkCompLimitsTable defined in [FR-PIB] to specify what PRC's are
  supported by a PEP and to specify any limitations on that support.
  The PIB also uses the capability PRC's frwkCapabilitySetTable and
  frwkIfRoleComboTable defined in [FR-PIB] to specify the device's
  capability sets, interface types, and role combinations.  Each
  instance of the capability PRC frwkCapabilitySetTable contains an OID
  that points to an instance of a PRC that describes some capability of
  that interface type.  The DiffServ PIB defines several of these
  capability PRCs, that assist the PDP with the configuration of
  DiffServ functional elements that can be implemented by the device.
  Each of these capability PRCs contains a direction attribute that
  specifies the direction for which the capability applies.  This
  attribute is defined in a base capability PRC, which is extended by
  each specific capability PRC.

  Classification capabilities, which specify the information elements
  the device can use to classify traffic, are reported using the
  dsIfClassificationCaps PRC.  Metering capabilities, which indicate
  what the device can do with out-of-profile packets, are specified
  using the dsIfMeteringCaps PRC.  Scheduling capabilities, such as the
  number of inputs supported, are reported using the dsIfSchedulingCaps
  PRC.  Algorithmic drop capabilities, such as the types of algorithms
  supported, are reported using the dsIfAlgDropCaps PRC.  Queue
  capabilities, such as the maximum number of queues, are reported
  using the dsIfQueueCaps PRC.  Maximum Rate capabilities, such as the
  maximum number of max rate Levels, are reported using the
  dsIfMaxRateCaps PRC.





Chan, et al.                 Informational                     [Page 16]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  Two PRC's are defined to allow specification of the element linkage
  capabilities of the PEP.  The dsIfElmDepthCaps PRC indicates the
  maximum number of functional datapath elements that can be linked
  consecutively in a datapath.  The dsIfElmLinkCaps PRC indicates what
  functional datapath elements may follow a specific type of element in
  a datapath.

  The capability reporting classes in the DiffServ and Framework PIB
  are meant to allow the PEP to indicate some general guidelines about
  what the device can do.  They are intended to be an aid to the PDP
  when it constructs policy for the PEP.  These classes do not
  necessarily allow the PEP to indicate every possible configuration
  that it can or cannot support.  If a PEP receives a policy that it
  cannot implement, it must notify the PDP with a failure report.
  Currently [COPS-PR] error handling mechanism as specified in [COPS-
  PR] sections 4.4, 4.5, and 4.6 completely handles all known error
  cases of this PIB; hence no additional methods or PRCs need to be
  specified here.

5.  PIB Usage Example

  This section provides some examples on how the different table
  entries of this PIB may be used together for a DiffServ Device.  The
  usage of each individual attribute is defined within the PIB module
  itself.  For the figures, all the PIB table entry and attribute names
  are assumed to have "ds" as their first common initial part of the
  name, with the table entry name assumed to be their second common
  initial part of the name.  "0.0" is being used to mean zeroDotZero.
  And for Scheduler Method "= X" means "using the OID of
  diffServSchedulerX".

5.1.  Data Path Example

  Notice Each entry of the DataPath table is used for a specific
  interface type handling a flow in a specific direction for a specific
  functional role-combination.  For our example, we just define one
  such entry.

     +---------------------+
     |DataPath             |
     | CapSetName ="IfCap1"|
     | Roles = "A+B"       |
     | IfDirection=Ingress |    +---------+
     | Start --------------+--->|Clfr     |
     +---------------------+    | Id=Dept |
                                +---------+

                       Figure 2: DataPath Usage Example



Chan, et al.                 Informational                     [Page 17]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  In Figure 2, we are using IfCap1 to indicate interface type with
  capability set 1 handling ingress flow for functional roles of "A+B".
  We are using classifier for departments to lead us into the
  Classifier Example below.

5.2.  Classifier and Classifier Element Example

  We want to show how a multilevel classifier can be built using the
  classifier tables provided by this PIB.  Notice we didn't go into
  details on the filters because they are not defined by this PIB.
  Continuing in the Data Path example from the previous section, lets
  say we want to perform the following classification functionality to
  do flow separation based on department and application type:

     if (Dept1) then take Dept1-action
     {
       if (Appl1) then take Dept1-Appl1-action.
       if (Appl2) then take Dept1-Appl2-action.
       if (Appl3) then take Dept1-Appl3-action.

     }
     if (Dept2) then take Dept2-action
     {
       if (Appl1) then take Dept2-Appl1-action.
       if (Appl2) then take Dept2-Appl2-action.
       if (Appl3) then take Dept2-Appl3-action.
     }
     if (Dept3) then take Dept3-action
     {
       if (Appl1) then take Dept3-Appl1-action.
       if (Appl2) then take Dept3-Appl2-action.
       if (Appl3) then take Dept3-Appl3-action.
     }

  The above classification logic is translated into the following PIB
  table entries, with two levels of classifications.















Chan, et al.                 Informational                     [Page 18]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  First for department:

  +---------+
  |Clfr     |
  | Id=Dept |
  +---------+

  +-------------+      +-----------+
  |ClfrElement  |  +-->|Clfr       |
  | Id=Dept1    |  |   | Id=D1Appl |
  | ClfrId=Dept |  |   +-----------+
  | Preced=NA   |  |
  | Next -------+--+   +------------+
  | Specific ---+----->|Filter Dept1|
  +-------------+      +------------+

  +-------------+      +-----------+
  |ClfrElement  |  +-->|Clfr       |
  | Id=Dept2    |  |   | Id=D2Appl |
  | ClfrId=Dept |  |   +-----------+
  | Preced=NA   |  |
  | Next -------+--+   +------------+
  | Specific ---+----->|Filter Dept2|
  +-------------+      +------------+

  +-------------+      +-----------+
  |ClfrElement  |  +-->|Clfr       |
  | Id=Dept3    |  |   | Id=D3Appl |
  | ClfrId=Dept |  |   +-----------+
  | Preced=NA   |  |
  | Next -------+--+   +------------+
  | Specific ---+----->|Filter Dept3|
  +-------------+      +------------+


















Chan, et al.                 Informational                     [Page 19]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  Second for application:

  +-----------+
  |Clfr       |
  | Id=D1Appl |
  +-----------+

  +---------------+                     +--------------+
  |ClfrElement    |  +----------------->|Meter         |
  | Id=D1Appl1    |  |                  | Id=D1A1Rate1 |
  | ClfrId=D1Appl |  |                  | SucceedNext -+--->...
  | Preced=NA     |  |                  | FailNext ----+--->...
  | Next ---------+--+  +------------+  | Specific ----+--->...
  | Specific -----+---->|Filter Appl1|  +--------------+
  +---------------+     +------------+

  +---------------+                     +--------------+
  |ClfrElement    |  +----------------->|Meter         |
  | Id=D1Appl2    |  |                  | Id=D1A2Rate1 |
  | ClfrId=D1Appl |  |                  | SucceedNext -+--->...
  | Preced=NA     |  |                  | FailNext ----+--->...
  | Next ---------+--+  +------------+  | Specific ----+--->...
  | Specific -----+---->|Filter Appl2|  +--------------+
  +---------------+     +------------+

  +---------------+                     +--------------+
  |ClfrElement    |  +----------------->|Meter         |
  | Id=D1Appl3    |  |                  | Id=D1A3Rate1 |
  | ClfrId=D1Appl |  |                  | SucceedNext -+--->...
  | Preced=NA     |  |                  | FailNext ----+--->...
  | Next ---------+--+  +------------+  | Specific ----+--->...
  | Specific -----+---->|Filter Appl3|  +--------------+
  +---------------+     +------------+

                   Figure 3: Classifier Usage Example

  The application classifiers for department 2 and 3 will be very much
  like the application classifier for department 1 shown above.  Notice
  in this example, Filters for Appl1, Appl2, and Appl3 are reusable
  across the application classifiers.

  This classifier and classifier element example assume the next
  differentiated services functional datapath element is Meter and
  leads us into the Meter Example section.







Chan, et al.                 Informational                     [Page 20]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


5.3.  Meter Example

  A single rate simple Meter may be easy to envision, hence we will do
  a Two Rate Three Color [TRTCM] example, using two Meter table entries
  and two TBParam table entries.

  +--------------+    +---------+     +--------------+    +----------+
  |Meter         | +->|Action   |  +->| Meter        | +->|Action    |
  | Id=D1A1Rate1 | |  | Id=Green|  |  | Id=D1A1Rate2 | |  | Id=Yellow|
  | SucceedNext -+-+  +---------+  |  | SucceedNext -+-+  +----------+
  | FailNext ----+-----------------+  | FailNext ----+--+  +-------+
  | Specific -+  |                    | Specific -+  |  +->|Action |
  +-----------+--+                    +-----------+--+     | Id=Red|
              |                                   |        +-------+
              |  +------------+                   |  +------------+
              +->|TBParam     |                   +->|TBParam     |
                 | Type=TRTCM |                      | Type=TRTCM |
                 | Rate       |                      | Rate       |
                 | BurstSize  |                      | BurstSize  |
                 | Interval   |                      | Interval   |
                 +------------+                      +------------+

                      Figure 4: Meter Usage Example

  For [TRTCM], the first level TBParam entry is used for Committed
  Information Rate and Committed Burst Size Token Bucket, and the
  second level TBParam entry is used for Peak Information Rate and Peak
  Burst Size Token Bucket.

  The other meters needed for this example will depend on the service
  class each classified flow uses.  But their construction will be
  similar to the example given here.  The TBParam table entries can be
  shared by multiple Meter table entries.

  In this example the differentiated services functional datapath
  element following Meter is Action, detailed in the following section.

5.4.  Action Example

  Typically, Mark Action will be used; we will continue using the
  "Action, Id=Green" branch off the Meter example.

  Recall this is the D1A1Rate1 SucceedNext branch, meaning the flow
  belongs to Department 1 Application 1, within the committed rate and
  burst size limits for this flow.  We would like to Mark this flow
  with a specific DSCP and also with a device internal label.





Chan, et al.                 Informational                     [Page 21]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  +-----------+                     +-----------+  +--->AlgDropAF11
  |Action     |  +----------------->|Action     |  |
  | Next -----+--+  +------------+  | Next -----+--+ +-------------+
  | Specific -+---->|DscpMarkAct |  | Specific -+--->|ILabelMarker |
  +-----------+     | Dscp=AF11  |  +-----------+    | ILabel=D1A1 |
                    +------------+                   +-------------+

                     Figure 5: Action Usage Example

  This example uses the frwkILabelMarker PRC defined in [FR-PIB],
  showing the device internal label being used to indicate the micro
  flow that feeds into the aggregated AF flow.  This device internal
  label may be used for flow accounting purposes and/or other data path
  treatments.

5.5.  Dropper Examples

  The Dropper examples below will continue from the Action example
  above for AF11 flow.  We will provide three different dropper setups,
  from simple to complex.  The examples below may include some queuing
  structures; they are here only to show the relationship of the
  droppers to queuing and are not complete.  Queuing examples are
  provided in later sections.

5.5.1.  Tail Dropper Example

  The Tail Dropper is one of the simplest.  For this example we just
  want to drop part of the flow that exceeds the queue's buffering
  capacity, 2 Mbytes.

  +--------------------+       +------+
  |AlgDrop             |    +->|Q AF1 |
  | Id=AF11            |    |  +------+
  | Type=tailDrop      |    |
  | Next --------------+-+--+
  | QMeasure ----------+-+
  | QThreshold=2Mbytes |
  | Specific=0.0       |
  +--------------------+

                  Figure 6: Tail Dropper Usage Example










Chan, et al.                 Informational                     [Page 22]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


5.5.2.  Single Queue Random Dropper Example

  The use of Random Dropper will introduce the usage of
  dsRandomDropEntry as in the example below.

  +-----------------+       +------+
  |AlgDrop          |    +->|Q AF1 |
  | Id=AF11         |    |  +------+
  | Type=randomDrop |    |
  | Next -----------+-+--+
  | QMeasure -------+-+
  | QThreshold      |   +----------------+
  | Specific -------+-->|RandomDrop      |
  +-----------------+   | MinThreshBytes |
                        | MinThreshPkts  |
                        | MaxThreshBytes |
                        | MaxThreshPkts  |
                        | ProbMax        |
                        | Weight         |
                        | SamplingRate   |
                        +----------------+

           Figure 7: Single Queue Random Dropper Usage Example

  Notice for Random Dropper, dsAlgDropQThreshold contains the maximum
  average queue length, Qclip, for the queue being measured as
  indicated by dsAlgDropQMeasure, the rest of the Random Dropper
  parameters are specified by dsRandomDropEntry as referenced by
  dsAlgDropSpecific.  In this example, both dsAlgDropNext and
  dsAlgDropQMeasure references the same queue.  This is the simple case
  but dsAlgDropQMeasure may reference another queue for PEP
  implementation supporting this feature.

5.5.3.  Multiple Queue Random Dropper Example

  When network device implementation requires measuring multiple queues
  in determining the behavior of a drop algorithm, the existing PRCs
  defined in this PIB will be sufficient for the simple case, as
  indicated by this example.












Chan, et al.                 Informational                     [Page 23]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  +-------------+                                         +------+
  |AlgDrop      | +----------------+-------------------+->|Q_AF1 |
  | Id=AF11     | |                |                   |  +------+
  | Type=mQDrop | |                |                   |
  | Next -------+-+ +------------+ |    +------------+ |
  | QMeasure ---+-->|MQAlgDrop   | | +->|MQAlgDrop   | |
  | QThreshold  |   | Id=AF11A   | | |  | Id=AF11B   | |
  | Specific    |   | Type       | | |  | Type       | |
  +-------------+   | Next ------+-+ |  | Next ------+-+
                    | ExceedNext +---+  | ExceedNext |   +------+
                    | QMeasure --+-+    | QMeasure --+-->|Q_AF2 |
                    | QThreshold | |    | QThreshold |   +------+
                    | Specific + | |    | Specific + |
                    +----------+-+ |    +----------+-+
                               |   |           +---+
                        +------+   |  +------+ |
                        |          +->|Q_AF1 | |
                        |             +------+ |
                        |                      |
                        |  +----------------+  |  +----------------+
                        +->|RandomDrop      |  +->|RandomDrop      |
                           | MinThreshBytes |     | MinThreshBytes |
                           | MinThreshPkts  |     | MinThreshPkts  |
                           | MaxThreshBytes |     | MaxThreshBytes |
                           | MaxThreshPkts  |     | MaxThreshPkts  |
                           | ProbMax        |     | ProbMax        |
                           | Weight         |     | Weight         |
                           | SamplingRate   |     | SamplingRate   |
                           +----------------+     +----------------+

          Figure 8: Multiple Queue Random Dropper Usage Example

  For this example, we have two queues, Q_AF1 and Q_AF2, sharing the
  same buffer resources.  We want to make sure the common buffer
  resource is sufficient to service the AF11 traffic, and we want to
  measure the two queues for determining the drop algorithm for AF11
  traffic feeding into Q_AF1.  Notice mQDrop is used for dsAlgDropType
  of dsAlgDropEntry to indicate Multiple Queue Dropping Algorithm.

  The common shared buffer resource is indicated by the use of
  dsAlgDropEntry, with their attributes used as follows:

  - dsAlgDropType indicates the algorithm used, mQDrop.
  - dsAlgDropNext is used to indicate the next functional data path
    element to handle the flow when no drop occurs.
  - dsAlgDropQMeasure is used as the anchor for the list of
    dsMQAlgDropEntry, one for each queue being measured.




Chan, et al.                 Informational                     [Page 24]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  - dsAlgDropQThreshold is used to indicate the size of the shared
    buffer pool.
  - dsAlgDropSpecific can be used to reference instances of additional
    PRC (not defined in this PIB) if more parameters are required to
    describe the common shared buffer resource.

  For this example, there are two subsequent dsMQAlgDropEntrys, one for
  each queue being measured, with its attributes used as follows:

  - dsMQAlgDropType indicates the algorithm used, for this example,
    both dsMQAlgDropType uses randomDrop.
  - dsMQAlgDropQMeasure indicates the queue being measured.
  - dsMQAlgDropNext indicates the next functional data path element
    to handle the flow when no drop occurs.
  - dsMQAlgDropExceedNext is used to indicate the next queue's
    dsMQAlgDropEntry.  With the use of zeroDotZero to indicate the
    last queue.
  - dsMQAlgDropQMeasure is used to indicate the queue being measured.
    For this example, Q_AF1 and Q_AF2 are the two queues used.
  - dsAlgDropQThreshold is used as in single queue Random Dropper.
  - dsAlgDropSpecific is used to reference the PRID that describes
    the dropper parameters as in its normal usage.  For this example
    both dsAlgDropSpecifics reference dsRandomDropEntrys.

  Notice the anchoring dsAlgDropEntry and the two dsMQAlgDropEntrys
  all have their Next attribute pointing to Q_AF1.  This indicates:

  - If the packet does not need to be checked with the individual
    queue's drop processing because of abundance of common shared
    buffer resources, then the packet is sent to Q_AF1.
  - If the packet is not dropped due to current Q_AF1 conditions, then
    it is sent to Q_AF1.
  - If the packet is not dropped due to current Q_AF2 conditions, then
    it is sent to Q_AF1.

  This example also uses two dsRandomDropEntrys for the two queues it
  measures.  Their attribute usage is the same as if for single queue
  random dropper.

  Other more complex result combinations can be achieved by specifying
  a new PRC and referencing this new PRC with the dsAlgDropSpecific of
  the anchoring dsAlgDropEntry.  A more simple usage can also be
  achieved when a single set of drop parameters are used for all queues
  being measured.  This, again, can be referenced by the anchoring of
  dsAlgDropSpecific.  These are not defined in this PIB.






Chan, et al.                 Informational                     [Page 25]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


5.6.  Queue and Scheduler Example

  The queue and scheduler example will continue from the dropper
  example in the previous section, concentrating in the queue and
  scheduler DiffServ datapath functional elements.  Notice a shaper is
  constructed using queue and scheduler with MaxRate parameters.

       +------------+                           +-----------------+
  ---->|Q           |                        +->|Scheduler        |
       | Id=EF      |                        |  | Id=DiffServ     |
       | Next ------+------------------------+  | Next=0.0        |
       | MinRate ---+--+                     |  | Method=Priority |
       | MaxRate -+ |  |   +----------+      |  | MinRate=0.0     |
       +----------+-+  +-->|MinRate   |      |  | MaxRate=0.0     |
                  |        | Priority |      |  +-----------------+
       +----------+        | Absolute |      |
       |                   | Relative |      |
       |  +-----------+    +----------+      |
       +->|MaxRate    |                      |
          | Level     |                      |
          | Absolute  |                      |
          | Relative  |                      |
          | Threshold |                      |
          +-----------+                      +-------------+
                                                           |
       +----------+                        +------------+  |
  ---->|Q         |                    +-->|Scheduler   |  |
       | Id=AF1   |                    |   | Id=AF      |  |
       | Next ----+--------------------+   | Next ------+--+
       | MinRate -+-+                  |   | Method=WRR |
       | MaxRate  | |  +----------+    |   | MinRate -+ |
       +----------+ +->|MinRate   |    |   | MaxRate  | |
                       | Priority |    |   +----------+-+
                       | Absolute |    |              |
                       | Relative |    |   +----------+
                       +----------+    |   |
       +----------+                    |   |  +------------+
  ---->|Q         |                    |   +->|MinRate     |
       | Id=AF2   |                    |      | Priority   |
       | Next ----+--------------------+      | Absolute   |
       | MinRate -+-+                  |      | Relative   |
       | MaxRate  | |  +----------+    |      +------------+
       +----------+ +->|MinRate   |    |
                       | Priority |    |
                       | Absolute |    |
                       | Relative |    |
                       +----------+    |




Chan, et al.                 Informational                     [Page 26]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


       +----------+                    |
  ---->|Q         |                    |
       | Id=AF3   |                    |
       | Next ----+--------------------+
       | MinRate -+-+
       | MaxRate  | |  +----------+
       +----------+ +->|MinRate   |
                       | Priority |
                       | Absolute |
                       | Relative |
                       +----------+

               Figure 9: Queue and Scheduler Usage Example

  This example shows the queuing system for handling EF, AF1, AF2, and
  AF3 traffic.  It is assumed that AF11, AF12, and AF13 traffic feeds
  into Queue AF1.  And likewise for AF2x and AF3x traffic.

  The AF1, AF2, and AF3 Queues are serviced by the AF Scheduler using a
  Weighed Round Robin method.  The AF Scheduler will service each of
  the queues feeding into it based on the minimum rate parameters of
  each queue.

  The AF and EF traffic are serviced by the DiffServ Scheduler using a
  Strict Priority method.  The DiffServ Scheduler will service each of
  its inputs based on their priority parameter.

  Notice there is an upper bound to the servicing of EF traffic by the
  DiffServ Scheduler.  This is accomplished with the use of maximum
  rate parameters.  The DiffServ Scheduler uses both the maximum rate
  and priority parameters when servicing the EF Queue.

  The DiffServ Scheduler is the last DiffServ datapath functional
  element in this datapath.  It uses zeroDotZero in its Next attribute.

6.  Summary of the DiffServ PIB

  The DiffServ PIB consists of one module containing the base PRCs for
  setting DiffServ policy, queues, classifiers, meters, etc., and also
  contains capability PRC's that allow a PEP to specify its device
  characteristics to the PDP.  This module contains two groups that are
  summarized in this section.

  DiffServ Capabilities Group
     This group consists of PRCs to indicate to the PDP the types of
     interface supported on the PEP in terms of their DiffServ
     capabilities and PRCs that the PDP can install in order to
     configure these interfaces (queues, scheduling parameters, buffer



Chan, et al.                 Informational                     [Page 27]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


     sizes, etc.) to affect the desired policy.  This group describes
     capabilities in terms of the types of interfaces and takes
     configuration in terms of interface types and role combinations
     [FR-PIB]; it does not deal with individual interfaces on the
     device.

  DiffServ Policy Group
     This group contains configurations of the functional elements that
     comprise the DiffServ policy that applies to an interface and the
     specific parameters that describe those elements.  This group
     contains classifiers, meters, actions, droppers, queues and
     schedulers.  This group also contains the PRC that associates the
     datapath elements with role combinations.

7.  PIB Operational Overview

  This section provides an operational overview of configuring DiffServ
  QoS policy.

  After the initial PEP to PDP communication setup, using [COPS-PR] for
  example, the PEP will provide to the PDP the PIB Provisioning classes
  (PRCs), interface types, and interface type capabilities it supports.

  The PRCs supported by the PEP are reported to the PDP in the PRC
  Support Table, frwkPrcSupportTable, defined in the framework PIB
  [FR-PIB].  Each instance of the frwkPrcSupportTable indicates a PRC
  that the PEP understands and for which the PDP can send class
  instances as part of the policy information.

  The capabilities of interface types the PEP supports are described by
  rows in the capability set table, frwkCapabilitySetTable.  Each row,
  or instance of this class contains a pointer to an instance of a PRC
  that describes the capabilities of the interface type.  The
  capability objects may reside in the dsIfClassifierCapsTable, the
  dsIfMeteringCapsTable, the dsIfSchedulerCapsTable, the
  dsIfElmDepthCapsTable, the dsIfElmLinkCapsTable, or in a table
  defined in another PIB.

  The PDP, with knowledge of the PEP's capabilities, then provides the
  PEP with administrative domain and interface-type-specific policy
  information.

  Instances of the dsDataPathTable are used to specify the first
  element in the set of functional elements applied to an interface
  type.  Each instance of the dsDataPathTable applies to an interface
  type defined by its roles and direction (ingress or egress).





Chan, et al.                 Informational                     [Page 28]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


8.  PIB Definition

DIFFSERV-PIB PIB-DEFINITIONS ::= BEGIN

IMPORTS
   Unsigned32, MODULE-IDENTITY, MODULE-COMPLIANCE,
   OBJECT-TYPE, OBJECT-GROUP, pib
           FROM COPS-PR-SPPI
   InstanceId, Prid, TagId, TagReferenceId
           FROM COPS-PR-SPPI-TC
   zeroDotZero
        FROM SNMPv2-SMI
   AutonomousType
           FROM SNMPv2-TC
   SnmpAdminString
           FROM SNMP-FRAMEWORK-MIB
   RoleCombination, PrcIdentifierOid, PrcIdentifierOidOrZero,
   AttrIdentifier
           FROM FRAMEWORK-TC-PIB
   Dscp
           FROM DIFFSERV-DSCP-TC
   IfDirection
           FROM DIFFSERV-MIB
   BurstSize
           FROM INTEGRATED-SERVICES-MIB;


dsPolicyPib  MODULE-IDENTITY
   SUBJECT-CATEGORIES { diffServ (2) } -- DiffServ QoS COPS Client Type
   LAST-UPDATED "200302180000Z"        -- 18 Feb 2003
   ORGANIZATION "IETF DIFFSERV WG"
   CONTACT-INFO "
                 Keith McCloghrie
                 Cisco Systems, Inc.
                 170 West Tasman Drive,
                 San Jose, CA 95134-1706 USA
                 Phone: +1 408 526 5260
                 Email: [email protected]

                 John Seligson
                 Nortel Networks, Inc.
                 4401 Great America Parkway
                 Santa Clara, CA 95054 USA
                 Phone: +1 408 495 2992
                 Email: [email protected]

                 Kwok Ho Chan
                 Nortel Networks, Inc.



Chan, et al.                 Informational                     [Page 29]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


                 600 Technology Park Drive
                 Billerica, MA 01821 USA
                 Phone: +1 978 288 8175
                 Email: [email protected]

                 Differentiated Services Working Group:
                 [email protected]"
   DESCRIPTION
        "The PIB module containing a set of provisioning classes
        that describe quality of service (QoS) policies for
        DiffServ. It includes general classes that may be extended
        by other PIB specifications as well as a set of PIB
        classes related to IP processing.

        Copyright (C) The Internet Society (2003). This version of
        this PIB module is part of RFC 3317; see the RFC itself for
        full legal notices."

   REVISION "200302180000Z"        -- 18 Feb 2003
   DESCRIPTION
        "Initial version, published as RFC 3317."
   ::= { pib 4 }

dsCapabilityClasses    OBJECT IDENTIFIER ::= { dsPolicyPib 1 }
dsPolicyClasses        OBJECT IDENTIFIER ::= { dsPolicyPib 2 }
dsPolicyPibConformance OBJECT IDENTIFIER ::= { dsPolicyPib 3 }

--
-- Interface Type Capabilities Group
--

--
-- Interface Type Capability Tables
--
-- The Interface type capability tables define capabilities that may
-- be associated with interfaces of a specific type.
-- This PIB defines capability tables for DiffServ Functionalities.
--

--
-- The Base Capability Table
--

dsBaseIfCapsTable OBJECT-TYPE
   SYNTAX         SEQUENCE OF DsBaseIfCapsEntry
   PIB-ACCESS     notify
   STATUS         current
   DESCRIPTION



Chan, et al.                 Informational                     [Page 30]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


     "The Base Interface Type Capability class.  This class
      represents a generic capability supported by a device in the
      ingress, egress, or both directions."
   ::= { dsCapabilityClasses 1 }

dsBaseIfCapsEntry OBJECT-TYPE
   SYNTAX         DsBaseIfCapsEntry
   STATUS         current
   DESCRIPTION
     "An instance of this class describes the dsBaseIfCaps class."

   PIB-INDEX { dsBaseIfCapsPrid }
::= { dsBaseIfCapsTable 1 }

DsBaseIfCapsEntry ::= SEQUENCE {
       dsBaseIfCapsPrid           InstanceId,
       dsBaseIfCapsDirection      INTEGER
}

dsBaseIfCapsPrid OBJECT-TYPE
   SYNTAX         InstanceId
   STATUS         current
   DESCRIPTION
       "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsBaseIfCapsEntry 1 }


dsBaseIfCapsDirection OBJECT-TYPE
   SYNTAX         INTEGER {
                       inbound(1),
                       outbound(2),
                       inAndOut(3)
                  }
   STATUS         current
   DESCRIPTION
     "This object specifies the direction(s) for which the
     capability applies. A value of 'inbound(1)' means the
     capability applies only to the ingress direction.  A value of
     'outbound(2)' means the capability applies only to the egress
     direction.  A value of 'inAndOut(3)' means the capability
     applies to both directions."
   ::= { dsBaseIfCapsEntry 2 }

--
-- The Classification Capability Table
--




Chan, et al.                 Informational                     [Page 31]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


dsIfClassificationCapsTable OBJECT-TYPE
   SYNTAX         SEQUENCE OF DsIfClassificationCapsEntry
   PIB-ACCESS     notify
   STATUS         current
   DESCRIPTION
       "This class specifies the classification capabilities of
       a Capability Set."
   ::= { dsCapabilityClasses 2 }


dsIfClassificationCapsEntry OBJECT-TYPE
   SYNTAX         DsIfClassificationCapsEntry
   STATUS         current
   DESCRIPTION
       "An instance of this class describes the classification
       capabilities of a Capability Set."


   EXTENDS { dsBaseIfCapsEntry }
   UNIQUENESS { dsBaseIfCapsDirection,
                dsIfClassificationCapsSpec }
   ::= { dsIfClassificationCapsTable 1 }

DsIfClassificationCapsEntry ::= SEQUENCE {
       dsIfClassificationCapsSpec BITS
}

dsIfClassificationCapsSpec OBJECT-TYPE
   SYNTAX       BITS {
                      ipSrcAddrClassification(0),
                      -- indicates the ability to classify based on
                      -- IP source addresses
                      ipDstAddrClassification(1),
                      -- indicates the ability to classify based on
                      -- IP destination addresses
                      ipProtoClassification(2),
                      -- indicates the ability to classify based on
                      -- IP protocol numbers
                      ipDscpClassification(3),
                      -- indicates the ability to classify based on
                      -- IP DSCP
                      ipL4Classification(4),
                      -- indicates the ability to classify based on
                      -- IP layer 4 port numbers for UDP and TCP
                      ipV6FlowID(5)
                      -- indicates the ability to classify based on
                      -- IPv6 FlowIDs.
                     }



Chan, et al.                 Informational                     [Page 32]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   STATUS         current
   DESCRIPTION
     "Bit set of supported classification capabilities.  In
     addition to these capabilities, other PIBs may define other
     capabilities that can then be specified in addition to the
     ones specified here (or instead of the ones specified here if
     none of these are specified)."
   ::= { dsIfClassificationCapsEntry 1 }

--
-- Metering Capabilities
--

dsIfMeteringCapsTable OBJECT-TYPE
   SYNTAX         SEQUENCE OF DsIfMeteringCapsEntry
   PIB-ACCESS     notify
   STATUS         current
   DESCRIPTION
       "This class specifies the metering capabilities of a
       Capability Set."
   ::= { dsCapabilityClasses 3 }

dsIfMeteringCapsEntry OBJECT-TYPE
   SYNTAX         DsIfMeteringCapsEntry
   STATUS         current
   DESCRIPTION
     "An instance of this class describes the metering
     capabilities of a Capability Set."

   EXTENDS { dsBaseIfCapsEntry }
   UNIQUENESS { dsBaseIfCapsDirection,
                dsIfMeteringCapsSpec }
   ::= { dsIfMeteringCapsTable 1 }

DsIfMeteringCapsEntry ::= SEQUENCE {
       dsIfMeteringCapsSpec       BITS
}

dsIfMeteringCapsSpec OBJECT-TYPE
   SYNTAX  BITS {
                 zeroNotUsed(0),
                 simpleTokenBucket(1),
                 avgRate(2),
                 srTCMBlind(3),
                 srTCMAware(4),
                 trTCMBlind(5),
                 trTCMAware(6),
                 tswTCM(7)



Chan, et al.                 Informational                     [Page 33]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


                }
   STATUS       current
   DESCRIPTION
     "Bit set of supported metering capabilities.  As with
     classification capabilities, these metering capabilities may
     be augmented by capabilities specified in other PRCs (in other
     PIBs)."
   ::= { dsIfMeteringCapsEntry 1 }

--
-- Algorithmic Dropper Capabilities
--

dsIfAlgDropCapsTable OBJECT-TYPE
   SYNTAX         SEQUENCE OF DsIfAlgDropCapsEntry
   PIB-ACCESS     notify
   STATUS         current
   DESCRIPTION
       "This class specifies the algorithmic dropper
       capabilities of a Capability Set.

       This capability table indicates the types of algorithmic
       drop supported by a Capability Set for a specific flow
       direction.
       Additional capabilities affecting the drop functionalities
       are determined based on queue capabilities associated with
       specific instance of a dropper, hence not specified by
       this class."
   ::= { dsCapabilityClasses 4 }

dsIfAlgDropCapsEntry OBJECT-TYPE
   SYNTAX         DsIfAlgDropCapsEntry
   STATUS         current
   DESCRIPTION
       "An instance of this class describes the algorithmic dropper
       capabilities of a Capability Set."
   EXTENDS { dsBaseIfCapsEntry }
   UNIQUENESS { dsBaseIfCapsDirection,
                dsIfAlgDropCapsType,
                dsIfAlgDropCapsMQCount }
   ::= { dsIfAlgDropCapsTable 1 }

DsIfAlgDropCapsEntry ::= SEQUENCE {
       dsIfAlgDropCapsType                BITS,
       dsIfAlgDropCapsMQCount             Unsigned32
}

dsIfAlgDropCapsType OBJECT-TYPE



Chan, et al.                 Informational                     [Page 34]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   SYNTAX      BITS {
                    zeroNotUsed(0),
                    oneNotUsed(1),
                    tailDrop(2),
                    headDrop(3),
                    randomDrop(4),
                    alwaysDrop(5),
                    mQDrop(6) }
   STATUS      current
   DESCRIPTION
     "The type of algorithm that droppers associated with queues
     may use.

     The tailDrop(2) algorithm means that packets are dropped from
     the tail of the queue when the associated queue's MaxQueueSize
     is exceeded.  The headDrop(3) algorithm means that packets are
     dropped from the head of the queue when the associated queue's
     MaxQueueSize is exceeded. The randomDrop(4) algorithm means
     that an algorithm is executed which may randomly
     drop the packet, or  drop  other  packet(s) from  the  queue
     in  its place.  The specifics of the algorithm may be
     proprietary.  However, parameters would be specified in the
     dsRandomDropTable.  The alwaysDrop(5) will drop every packet
     presented to it.  The mQDrop(6) algorithm will drop packets
     based on measurement from multiple queues."
   ::= { dsIfAlgDropCapsEntry 1 }

dsIfAlgDropCapsMQCount OBJECT-TYPE
   SYNTAX      Unsigned32  (1..4294967295)
   STATUS      current
   DESCRIPTION
     "Indicates the number of queues measured for the drop
     algorithm.
     This attribute is ignored when alwaysDrop(5) algorithm is
     used.  This attribute contains the value of 1 for all drop
     algorithm types except for mQDrop(6), where this attribute
     is used to indicate the maximum number of dsMQAlgDropEntry
     that can be chained together."
   ::= { dsIfAlgDropCapsEntry 2 }

--
-- Queue Capabilities
--

dsIfQueueCapsTable OBJECT-TYPE
   SYNTAX         SEQUENCE OF DsIfQueueCapsEntry
   PIB-ACCESS     notify
   STATUS         current



Chan, et al.                 Informational                     [Page 35]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   DESCRIPTION
       "This class specifies the queueing capabilities of a
       Capability Set."
   ::= { dsCapabilityClasses 5 }

dsIfQueueCapsEntry OBJECT-TYPE
   SYNTAX         DsIfQueueCapsEntry
   STATUS         current
   DESCRIPTION
       "An instance of this class describes the queue
       capabilities of a Capability Set."
   EXTENDS { dsBaseIfCapsEntry }
   UNIQUENESS { dsBaseIfCapsDirection,
                dsIfQueueCapsMinQueueSize,
                dsIfQueueCapsMaxQueueSize,
                dsIfQueueCapsTotalQueueSize }
   ::= { dsIfQueueCapsTable 1 }

DsIfQueueCapsEntry ::= SEQUENCE {
       dsIfQueueCapsMinQueueSize          Unsigned32,
       dsIfQueueCapsMaxQueueSize          Unsigned32,
       dsIfQueueCapsTotalQueueSize        Unsigned32
}

dsIfQueueCapsMinQueueSize OBJECT-TYPE
   SYNTAX      Unsigned32  (0..4294967295)
   UNITS       "Bytes"
   STATUS      current
   DESCRIPTION
       "Some interfaces may allow the size of a queue to be
       configured.  This attribute specifies the minimum size that
       can be configured for a queue, specified in bytes.
       dsIfQueueCapsMinQueueSize must be less than or equals to
       dsIfQueueCapsMaxQueueSize when both are specified.
       A zero value indicates not specified."
   ::= { dsIfQueueCapsEntry 1 }

dsIfQueueCapsMaxQueueSize OBJECT-TYPE
   SYNTAX      Unsigned32  (0..4294967295)
   UNITS       "Bytes"
   STATUS      current
   DESCRIPTION
       "Some interfaces may allow the size of a queue to be
       configured.  This attribute specifies the maximum size that
       can be configured for a queue, specified in bytes.
       dsIfQueueCapsMinQueueSize must be less than or equals to
       dsIfQueueCapsMaxQueueSize when both are specified.
       A zero value indicates not specified."



Chan, et al.                 Informational                     [Page 36]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   ::= { dsIfQueueCapsEntry 2 }

dsIfQueueCapsTotalQueueSize OBJECT-TYPE
   SYNTAX      Unsigned32  (0..4294967295)
   UNITS       "Bytes"
   STATUS      current
   DESCRIPTION
       "Some interfaces may have a limited buffer space to be
       shared amongst all queues of that interface while also
       allowing the size of each queue to be configurable.  To
       prevent the situation where the PDP configures the sizes of
       the queues in excess of the total buffer available to the
       interface, the PEP can report the total buffer space in
       bytes available with this capability.
       A zero value indicates not specified."
   ::= { dsIfQueueCapsEntry 3 }

--
-- Scheduler Capabilities
--

dsIfSchedulerCapsTable OBJECT-TYPE
   SYNTAX         SEQUENCE OF DsIfSchedulerCapsEntry
   PIB-ACCESS     notify
   STATUS         current
   DESCRIPTION
     "This class specifies the scheduler capabilities of a
     Capability Set."
   ::= { dsCapabilityClasses 6 }

dsIfSchedulerCapsEntry OBJECT-TYPE
   SYNTAX         DsIfSchedulerCapsEntry
   STATUS         current
   DESCRIPTION
     "An instance of this class describes the scheduler
     capabilities of a Capability Set."
   EXTENDS { dsBaseIfCapsEntry }
   UNIQUENESS { dsBaseIfCapsDirection,
                dsIfSchedulerCapsServiceDisc,
                dsIfSchedulerCapsMaxInputs }
   ::= { dsIfSchedulerCapsTable 1 }

DsIfSchedulerCapsEntry ::= SEQUENCE {
       dsIfSchedulerCapsServiceDisc      AutonomousType,
       dsIfSchedulerCapsMaxInputs        Unsigned32,
       dsIfSchedulerCapsMinMaxRate       INTEGER
}




Chan, et al.                 Informational                     [Page 37]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


dsIfSchedulerCapsServiceDisc OBJECT-TYPE
   SYNTAX      AutonomousType
   STATUS      current
   DESCRIPTION
     "The scheduling discipline for which the set of capabilities
     specified in this object apply. Object identifiers for several
     general purpose and well-known scheduling disciplines are
     shared with and defined in the DiffServ MIB.

     These include diffServSchedulerPriority,
     diffServSchedulerWRR, diffServSchedulerWFQ."
   ::= { dsIfSchedulerCapsEntry 1 }

dsIfSchedulerCapsMaxInputs OBJECT-TYPE
   SYNTAX      Unsigned32  (0..4294967295)
   STATUS      current
   DESCRIPTION
     "The maximum number of queues and/or schedulers that can
     feed into a scheduler indicated by this capability entry.
     A value of zero means there is no maximum."
   ::= { dsIfSchedulerCapsEntry 2 }

dsIfSchedulerCapsMinMaxRate OBJECT-TYPE
   SYNTAX      INTEGER {
                     minRate(1),
                     maxRate(2),
                     minAndMaxRates(3)
               }
   STATUS      current
   DESCRIPTION
     "Scheduler capability indicating ability to handle inputs
     with minimum rate, maximum rate, or both."
   ::= { dsIfSchedulerCapsEntry 3 }

--
-- Maximum Rate Capabilities
--

dsIfMaxRateCapsTable OBJECT-TYPE
   SYNTAX         SEQUENCE OF DsIfMaxRateCapsEntry
   PIB-ACCESS     notify
   STATUS         current
   DESCRIPTION
       "This class specifies the maximum rate capabilities of a
       Capability Set."
   ::= { dsCapabilityClasses 7 }

dsIfMaxRateCapsEntry OBJECT-TYPE



Chan, et al.                 Informational                     [Page 38]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   SYNTAX         DsIfMaxRateCapsEntry
   STATUS         current
   DESCRIPTION
       "An instance of this class describes the maximum rate
       capabilities of a Capability Set."
   EXTENDS { dsBaseIfCapsEntry }
   UNIQUENESS { dsBaseIfCapsDirection,
                dsIfMaxRateCapsMaxLevels }
   ::= { dsIfMaxRateCapsTable 1 }

DsIfMaxRateCapsEntry ::= SEQUENCE {
       dsIfMaxRateCapsMaxLevels           Unsigned32
}

dsIfMaxRateCapsMaxLevels OBJECT-TYPE
   SYNTAX      Unsigned32  (1..4294967295)
   STATUS      current
   DESCRIPTION
       "The maximum number of levels a maximum rate specification
       may have for this Capability Set and flow direction."
   ::= { dsIfMaxRateCapsEntry 1 }

--
-- DataPath Element Linkage Capabilities
--

--
-- DataPath Element Cascade Depth
--

dsIfElmDepthCapsTable OBJECT-TYPE
   SYNTAX         SEQUENCE OF DsIfElmDepthCapsEntry
   PIB-ACCESS     notify
   STATUS         current
   DESCRIPTION
       "This class specifies the number of elements of the same
       type that can be cascaded together in a datapath."
   ::= { dsCapabilityClasses 8 }

dsIfElmDepthCapsEntry OBJECT-TYPE
   SYNTAX         DsIfElmDepthCapsEntry
   STATUS         current
   DESCRIPTION
       "An instance of this class describes the cascade depth
       for a particular functional datapath element PRC.  A
       functional datapath element not represented in this
       class can be assumed to have no specific maximum
       depth."



Chan, et al.                 Informational                     [Page 39]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   EXTENDS { dsBaseIfCapsEntry }
   UNIQUENESS { dsBaseIfCapsDirection,
                dsIfElmDepthCapsPrc }
   ::= { dsIfElmDepthCapsTable 1 }

DsIfElmDepthCapsEntry ::= SEQUENCE {
       dsIfElmDepthCapsPrc                PrcIdentifierOid,
       dsIfElmDepthCapsCascadeMax         Unsigned32
}

dsIfElmDepthCapsPrc OBJECT-TYPE
   SYNTAX         PrcIdentifierOid
   STATUS         current
   DESCRIPTION
     "The object identifier of a PRC that represents a functional
     datapath element.  This may be one of:  dsClfrElementEntry,
     dsMeterEntry, dsActionEntry, dsAlgDropEntry, dsQEntry, or
     dsSchedulerEntry.
     There may not be more than one instance of this class with
     the same value of dsIfElmDepthCapsPrc and same value of
     dsBaseIfCapsDirection.  Must not contain the value of
     zeroDotZero."
   ::= { dsIfElmDepthCapsEntry 1 }

dsIfElmDepthCapsCascadeMax OBJECT-TYPE
   SYNTAX         Unsigned32  (0..4294967295)
   STATUS         current
   DESCRIPTION
     "The maximum number of elements of type dsIfElmDepthCapsPrc
     that can be linked consecutively in a data path.  A value of
     zero indicates there is no specific maximum."
   ::= { dsIfElmDepthCapsEntry 2 }

--
-- DataPath Element Linkage Types
--

dsIfElmLinkCapsTable OBJECT-TYPE
   SYNTAX         SEQUENCE OF DsIfElmLinkCapsEntry
   PIB-ACCESS     notify
   STATUS         current
   DESCRIPTION
       "This class specifies what types of datapath functional
       elements may be used as the next downstream element for
       a specific type of functional element."
   ::= { dsCapabilityClasses 9 }

dsIfElmLinkCapsEntry OBJECT-TYPE



Chan, et al.                 Informational                     [Page 40]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   SYNTAX         DsIfElmLinkCapsEntry
   STATUS         current
   DESCRIPTION
       "An instance of this class specifies a PRC that may
        be used as the next functional element after a specific
        type of element in a data path."
   EXTENDS { dsBaseIfCapsEntry }
   UNIQUENESS { dsBaseIfCapsDirection,
                dsIfElmLinkCapsPrc,
                dsIfElmLinkCapsAttr,
                dsIfElmLinkCapsNextPrc }
   ::= { dsIfElmLinkCapsTable 1 }

DsIfElmLinkCapsEntry ::= SEQUENCE {
       dsIfElmLinkCapsPrc               PrcIdentifierOid,
       dsIfElmLinkCapsAttr              AttrIdentifier,
       dsIfElmLinkCapsNextPrc           PrcIdentifierOidOrZero
}

dsIfElmLinkCapsPrc OBJECT-TYPE
   SYNTAX         PrcIdentifierOid
   STATUS         current
   DESCRIPTION
     " The object identifier of a PRC that represents a functional
     datapath element.  This may be one of:  dsClfrElementEntry,
     dsMeterEntry, dsActionEntry, dsAlgDropEntry, dsQEntry, or
     dsSchedulerEntry.
     This must not have the value zeroDotZero."
   ::= { dsIfElmLinkCapsEntry 1 }

dsIfElmLinkCapsAttr OBJECT-TYPE
   SYNTAX         AttrIdentifier
   STATUS         current
   DESCRIPTION
     "The value represents the attribute in the PRC
     indicated by dsIfElmLinkCapsPrc that is used to
     specify the next functional element in the datapath."
   ::= { dsIfElmLinkCapsEntry 2 }

dsIfElmLinkCapsNextPrc OBJECT-TYPE
   SYNTAX         PrcIdentifierOidOrZero
   STATUS         current
   DESCRIPTION
     "The value is the OID of a PRC table entry from which
     instances can be referenced by the attribute indicated
     by dsIfElmLinkCapsPrc and dsIfElmLinkAttr.

     For example, suppose a meter's success output can be an



Chan, et al.                 Informational                     [Page 41]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


     action or another meter, and the fail output can only be
     an action.  This can be expressed as follows:

     Prid Prc             Attr                  NextPrc
     1    dsMeterEntry   dsMeterSucceedNext   dsActionEntry
     2    dsMeterEntry   dsMeterSucceedNext   dsMeterEntry
     3    dsMeterEntry   dsMeterFailNext      dsActionEntry.

     zeroDotZero is a valid value for this attribute to
     specify that the PRC specified in dsIfElmLinkCapsPrc
     is the last functional data path element."
   ::= { dsIfElmLinkCapsEntry 3 }

--
-- Policy Classes
--

--
-- Data Path Table
--

dsDataPathTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DsDataPathEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
      "The data path table indicates the start of
      functional data paths in this device.

      The Data Path Table enumerates the Differentiated
      Services Functional Data Paths within this device.
      Each entry specifies the first functional datapath
      element to process data flow for each specific datapath.
      Each datapath is defined by the interface set's capability
      set name, role combination, and direction. This class can
      therefore have up to two entries for each interface set,
      ingress and egress."
   ::= { dsPolicyClasses 1 }

dsDataPathEntry OBJECT-TYPE
   SYNTAX       DsDataPathEntry
   STATUS       current
   DESCRIPTION
      "Each entry in this class indicates the start of a single
      functional data path, defined by its capability set name,
      role combination and traffic direction.  The first
      functional datapath element to handle traffic for each
      data path is defined by the dsDataPathStart attribute



Chan, et al.                 Informational                     [Page 42]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


      of each table entry.
      Notice for each entry:
      1. dsDataPathCapSetName must reference an existing capability
         set name in frwkCapabilitySetTable [FR-PIB].
      2. dsDataPathRoles must reference existing Role Combination
         in frwkIfRoleComboTable [FR-PIB].
      3. dsDataPathStart must reference an existing entry in a
         functional data path element table.
      If any one or more of these three requirements is not
      satisfied, the dsDataPathEntry will not be installed."
   PIB-INDEX { dsDataPathPrid }
   UNIQUENESS { dsDataPathCapSetName,
                dsDataPathRoles,
                dsDataPathIfDirection }
   ::= { dsDataPathTable 1 }

DsDataPathEntry ::= SEQUENCE  {
   dsDataPathPrid           InstanceId,
   dsDataPathCapSetName     SnmpAdminString,
   dsDataPathRoles          RoleCombination,
   dsDataPathIfDirection    IfDirection,
   dsDataPathStart          Prid
}

dsDataPathPrid OBJECT-TYPE
   SYNTAX       InstanceId
   STATUS       current
   DESCRIPTION
      "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsDataPathEntry 1 }

dsDataPathCapSetName OBJECT-TYPE
   SYNTAX       SnmpAdminString
   STATUS       current
   DESCRIPTION
      "The capability set associated with this data path entry.
       The capability set name specified by this attribute
       must exist in the frwkCapabilitySetTable [FR-PIB]
       prior to association with an instance of this class."
   ::= { dsDataPathEntry 2 }

dsDataPathRoles OBJECT-TYPE
   SYNTAX       RoleCombination
   STATUS       current
   DESCRIPTION
      "The interfaces to which this data path entry applies,
       specified in terms of roles.  There must exist an entry



Chan, et al.                 Informational                     [Page 43]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


       in the frwkIfRoleComboTable [FR-PIB] specifying
       this role combination, together with the capability
       set specified by dsDataPathCapSetName, prior to
       association with an instance of this class."
   ::= { dsDataPathEntry 3 }

dsDataPathIfDirection OBJECT-TYPE
   SYNTAX       IfDirection
   STATUS       current
   DESCRIPTION
      "Specifies the direction for which this data path
      entry applies."
   ::= { dsDataPathEntry 4 }

dsDataPathStart OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
      "This selects the first functional datapath element
      to  handle traffic for this data path.   This
      Prid should point to an instance of one of:
        dsClfrEntry
        dsMeterEntry
        dsActionEntry
        dsAlgDropEntry
        dsQEntry

      The PRI pointed to must exist prior to the installation of
      this datapath start element."
   ::= { dsDataPathEntry 5 }

--
-- Classifiers
--
-- Classifier allows multiple classifier elements, of same or
-- different types, to be used together.
-- A classifier must completely classify all packets presented to
-- it. This means all traffic handled by a classifier must match
-- at least one classifier element within the classifier,
-- with the classifier element parameters specified by a filter.
-- It is the PDP's responsibility to create a _catch all_ classifier
-- element and filter that matches all packet.  This _catch all_
-- classifier element should have the lowest Precedence value.
--
-- If there is ambiguity between classifier elements of different
-- classifier, classifier linkage order indicates their precedence;
-- the first classifier in the link is applied to the traffic first.
--



Chan, et al.                 Informational                     [Page 44]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


-- Each entry in the classifier table represents a classifier, with
-- classifier element table handling the fan-out functionality of a
-- classifier, and filter table defining the classification
-- patterns.
--

--
-- Classifier Table
--

dsClfrTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DsClfrEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
      "This table enumerates all the DiffServ classifier functional
      data path elements of this device.  The actual classification
      definitions are detailed in dsClfrElementTable entries
      belonging to each classifier.  Each classifier is referenced
      by its classifier elements using its classifier ID.

      An entry in this table, referenced by an upstream functional
      data path element or a datapath table entry, is the entry
      point to the classifier functional data path element.

      The dsClfrId of each entry is used to organize all
      classifier elements belonging to the same classifier."
   REFERENCE
       "An Informal Management Model for Diffserv Routers,
       RFC 3290, section 4.1"
   ::= { dsPolicyClasses 2 }

dsClfrEntry OBJECT-TYPE
   SYNTAX       DsClfrEntry
   STATUS       current
   DESCRIPTION
      "An entry in the classifier table describes a single
      classifier. Each classifier element belonging to this
      classifier must have its dsClfrElementClfrId attribute equal
      to dsClfrId."
   PIB-INDEX { dsClfrPrid }
   UNIQUENESS { dsClfrId }
   ::= { dsClfrTable 1 }

DsClfrEntry ::= SEQUENCE  {
   dsClfrPrid            InstanceId,
   dsClfrId              TagReferenceId
}



Chan, et al.                 Informational                     [Page 45]

RFC 3317          DiffServ QoS Policy Information Base        March 2003



dsClfrPrid OBJECT-TYPE
   SYNTAX       InstanceId
   STATUS       current
   DESCRIPTION
      "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsClfrEntry 1 }

dsClfrId OBJECT-TYPE
   SYNTAX       TagReferenceId
   PIB-TAG      { dsClfrElementClfrId }
   STATUS       current
   DESCRIPTION
      "Identifies a Classifier.  A  Classifier must be
      complete, this means all traffic handled by a
      Classifier must match at least  one  Classifier
      Element within  the  Classifier."
   ::= { dsClfrEntry 2 }

--
-- Classifier Element Table
--

dsClfrElementTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DsClfrElementEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
      "Entries in the classifier element table serves as
      the anchor for each classification pattern, defined
      in filter table entries.  Each classifier element
      table entry also specifies the subsequent downstream
      diffserv functional datapath element when the
      classification pattern is satisfied.  Hence
      the classifier element table enumerates the relationship
      between classification patterns and subsequent downstream
      diffserv functional data path elements, describing one
      branch of the fan-out characteristic of a classifier
      indicated in [Model].

      Classification parameters are defined by entries of filter
      tables pointed to by dsClfrElementSpecific.  There can be
      filter tables of different types, and they can be inter-mixed
      and used within a classifier. An example of a filter table is
      the frwkIpFilterTable [FR-PIB], for IP Multi-Field
      Classifiers (MFCs).




Chan, et al.                 Informational                     [Page 46]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


      If there is ambiguity between classifier elements of the same
      classifier, then dsClfrElementPrecedence needs to be used."
   ::= { dsPolicyClasses 3 }

dsClfrElementEntry OBJECT-TYPE
   SYNTAX       DsClfrElementEntry
   STATUS       current
   DESCRIPTION
      "An entry in the classifier element table describes a
      single element of the classifier."
   PIB-INDEX { dsClfrElementPrid }
   UNIQUENESS { dsClfrElementClfrId,
                dsClfrElementPrecedence,
                dsClfrElementSpecific }
   ::= { dsClfrElementTable 1 }

DsClfrElementEntry ::= SEQUENCE  {
   dsClfrElementPrid        InstanceId,
   dsClfrElementClfrId      TagId,
   dsClfrElementPrecedence  Unsigned32,
   dsClfrElementNext        Prid,
   dsClfrElementSpecific    Prid
}

dsClfrElementPrid OBJECT-TYPE
   SYNTAX       InstanceId
   STATUS       current
   DESCRIPTION
      "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsClfrElementEntry 1 }

dsClfrElementClfrId OBJECT-TYPE
   SYNTAX       TagId
   STATUS       current
   DESCRIPTION
      "A classifier is composed of one or more classifier
       elements. Each classifier element belonging to
       the same classifier uses the same classifier ID.

       Hence, A classifier Id identifies which classifier
       this classifier element is a part of. This must be
       the value of dsClfrId attribute for an existing
       instance of dsClfrEntry."
   ::= { dsClfrElementEntry 2 }

dsClfrElementPrecedence OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)



Chan, et al.                 Informational                     [Page 47]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   STATUS       current
   DESCRIPTION
      "The relative order in which classifier elements are
      applied: higher numbers represent classifier elements
      with higher precedence.  Classifier elements with the
      same precedence must be unambiguous i.e., they must
      define non-overlapping patterns, and are considered to
      be applied  simultaneously  to the traffic stream.
      Classifier elements with different precedence may
      overlap in their filters: the classifier element with
      the highest precedence that matches is taken.

      On a given interface, there must be a complete
      classifier in place at all times in the ingress
      direction.  This means that there will always be one
      or more filters that match every possible pattern
      that could be presented in an incoming packet.
      There is no such requirement in the egress direction."
   ::= { dsClfrElementEntry 3 }

dsClfrElementNext OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
      "This attribute provides one branch  of  the  fan-out
      functionality  of  a  classifier described in Diffserv
      Model section 4.1.

      This selects the next diffserv functional datapath
      element  to  handle traffic for this data path.

      A value of zeroDotZero marks the end of DiffServ processing
      for this data path.  Any other value must point to a
      valid (pre-existing) instance of one of:
        dsClfrEntry
        dsMeterEntry
        dsActionEntry
        dsAlgDropEntry
        dsQEntry."
   DEFVAL      { zeroDotZero }
   ::= { dsClfrElementEntry 4 }

dsClfrElementSpecific OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
      "A pointer to a valid entry  in  another  table  that
      describes  the applicable classification filter, e.g.,



Chan, et al.                 Informational                     [Page 48]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


      an entry in frwkIpFilterTable (Framework PIB).

      The PRI pointed to must exist prior to the installation of
      this classifier element.

      The value zeroDotZero is interpreted  to  match  any-
      thing  not  matched  by another classifier element - only one
      such entry  may exist for each classifier."
   ::= { dsClfrElementEntry 5 }

--
-- Meters
--
-- This PIB supports a variety of Meters.  It includes a
-- specific definition for Meters whose parameter set can
-- be modeled using Token Bucket parameters.
-- Other metering parameter sets can be defined by other PIBs.
--
-- Multiple meter elements may be logically cascaded
-- using their dsMeterSucceedNext and dsMeterFailNext pointers if
-- required.
-- One example of this might be for an AF PHB implementation
-- that uses multiple level conformance meters.
--
-- Cascading of individual meter elements in the PIB is intended
-- to be functionally equivalent to multiple level conformance
-- determination of a packet.  The sequential nature of the
-- representation is merely a notational convenience for this PIB.
--
-- srTCM meters (RFC 2697) can be specified using two sets of
-- dsMeterEntry and dsTBParamEntry. First set specifies the
-- Committed Information Rate and Committed Burst Size
-- token-bucket.  Second set specifies the Excess Burst
-- Size token-bucket.
--
-- trTCM meters (RFC 2698) can be specified using two sets of
-- dsMeterEntry and dsTBParamEntry. First set specifies the
-- Committed Information Rate and Committed Burst Size
-- token-bucket.  Second set specifies the Peak Information
-- Rate and Peak Burst Size token-bucket.
--
-- tswTCM meters (RFC 2859) can be specified using two sets of
-- dsMeterEntry and dsTBParamEntry. First set specifies the
-- Committed Target Rate token-bucket. Second set specifies the
-- Peak Target Rate token-bucket. dsTBParamInterval in each
-- token bucket reflects the Average Interval.

dsMeterTable OBJECT-TYPE



Chan, et al.                 Informational                     [Page 49]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   SYNTAX       SEQUENCE OF DsMeterEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
      "This class enumerates specific meters that a system
      may use to police a stream of traffic. The traffic
      stream to be metered is determined by the element(s)
      upstream of the meter i.e., by the object(s) that
      point to each entry in this class. This may include
      all traffic on an interface.

      Specific meter details are to be found in table entry
      referenced by dsMeterSpecific."
  REFERENCE
      "An Informal Management Model for Diffserv Routers,
      RFC 3290, section 5"
   ::= { dsPolicyClasses 4 }

dsMeterEntry OBJECT-TYPE
   SYNTAX       DsMeterEntry
   STATUS       current
   DESCRIPTION
      "An entry in the meter table describes a single
      conformance level of a meter."
   PIB-INDEX { dsMeterPrid }
   UNIQUENESS { dsMeterSucceedNext,
                dsMeterFailNext,
                dsMeterSpecific }
   ::= { dsMeterTable 1 }

DsMeterEntry ::= SEQUENCE  {
   dsMeterPrid              InstanceId,
   dsMeterSucceedNext       Prid,
   dsMeterFailNext          Prid,
   dsMeterSpecific          Prid
}

dsMeterPrid OBJECT-TYPE
   SYNTAX       InstanceId
   STATUS       current
   DESCRIPTION
      "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsMeterEntry 1 }

dsMeterSucceedNext OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current



Chan, et al.                 Informational                     [Page 50]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   DESCRIPTION
      "If the traffic does conform, this selects  the  next
      diffserv functional datapath element to handle
      traffic for this data path.

      The value zeroDotZero in this variable indicates no
      further DiffServ treatment is performed on traffic of
      this datapath.  Any other value must point to a valid
      (pre-existing) instance of one of:
        dsClfrEntry
        dsMeterEntry
        dsActionEntry
        dsAlgDropEntry
        dsQEntry."
   DEFVAL      { zeroDotZero }
   ::= { dsMeterEntry 2 }

dsMeterFailNext OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
      "If the traffic does not conform, this selects the
      next diffserv functional datapath element to handle
      traffic for this data path.

      The value zeroDotZero in this variable indicates no
      further DiffServ treatment is performed on traffic of
      this datapath.  Any other value must point to a valid
      (pre-existing) instance of one of:
        dsClfrEntry
        dsMeterEntry
        dsActionEntry
        dsAlgDropEntry
        dsQEntry."
   DEFVAL      { zeroDotZero }
   ::= { dsMeterEntry 3 }

dsMeterSpecific OBJECT-TYPE
   SYNTAX       Prid
    STATUS       current
   DESCRIPTION
      "This indicates the behaviour of the meter by point-
      ing to an entry containing detailed parameters. Note
      that entries in that specific table must be managed
      explicitly.

      For example, dsMeterSpecific may point to an
      entry in dsTBMeterTable, which contains an



Chan, et al.                 Informational                     [Page 51]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


      instance of a single set of Token Bucket parameters.

      The PRI pointed to must exist prior to installing this
      Meter datapath element."
   ::= { dsMeterEntry 4 }

--
-- Token-Bucket Parameter Table
--
-- Each entry in the Token Bucket Parameter Table parameterizes
-- a single token bucket.  Multiple token buckets can be
-- used together to parameterize multiple levels of
-- conformance.
--
-- Note that an entry in the Token Bucket Parameter Table can
-- be shared, pointed to, by multiple dsMeterTable entries.
--

dsTBParamTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DsTBParamEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
      "This table enumerates token-bucket meter parameter sets
      that a system may use to police a stream of traffic.
      Such parameter sets are modelled here as each having a single
      rate and a single burst size.  Multiple entries are used
      when multiple rates/burst sizes are needed."
   REFERENCE
       "An Informal Management Model for Diffserv Routers,
       RFC 3290, section 5.1"
   ::= { dsPolicyClasses 5 }

dsTBParamEntry OBJECT-TYPE
   SYNTAX       DsTBParamEntry
   STATUS       current
   DESCRIPTION
      "An entry that describes a single token-bucket
      parameter set."
   PIB-INDEX { dsTBParamPrid }
   UNIQUENESS { dsTBParamType,
                dsTBParamRate,
                dsTBParamBurstSize,
                dsTBParamInterval }
   ::= { dsTBParamTable 1 }

DsTBParamEntry ::= SEQUENCE  {
   dsTBParamPrid            InstanceId,



Chan, et al.                 Informational                     [Page 52]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   dsTBParamType            AutonomousType,
   dsTBParamRate            Unsigned32,
   dsTBParamBurstSize       BurstSize,
   dsTBParamInterval        Unsigned32
}

dsTBParamPrid OBJECT-TYPE
   SYNTAX       InstanceId
   STATUS       current
   DESCRIPTION
      "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsTBParamEntry 1 }

dsTBParamType OBJECT-TYPE
   SYNTAX       AutonomousType
   STATUS       current
   DESCRIPTION
     "The Metering algorithm associated with the
     Token-Bucket parameters.  zeroDotZero indicates this
     is unknown.

     Standard values for generic algorithms are as follows:

     diffServTBParamSimpleTokenBucket, diffServTBParamAvgRate,
     diffServTBParamSrTCMBlind, diffServTBParamSrTCMAware,
     diffServTBParamTrTCMBlind, diffServTBParamTrTCMAware,
     diffServTBParamTswTCM

     These are specified in the DiffServ MIB."
   REFERENCE
       "An Informal Management Model for Diffserv Routers,
       RFC 3290, section 5.1"
   ::= { dsTBParamEntry 2 }

dsTBParamRate OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "kilobits per second"
   STATUS       current
   DESCRIPTION
      "The token-bucket rate, in kilobits per second
      (kbps).  This attribute is used for:
      1. CIR in RFC 2697 for srTCM
      2. CIR and PIR in RFC 2698 for trTCM
      3. CTR and PTR in RFC 2859 for TSWTCM
      4. AverageRate in RFC 3290, section 5.1.1"
   ::= { dsTBParamEntry 3 }




Chan, et al.                 Informational                     [Page 53]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


dsTBParamBurstSize OBJECT-TYPE
   SYNTAX       BurstSize
   UNITS        "Bytes"
   STATUS       current
   DESCRIPTION
      "The maximum number of bytes in a single transmission
      burst.  This attribute is used for:
      1. CBS and EBS in RFC 2697 for srTCM
      2. CBS and PBS in RFC 2698 for trTCM
      3. Burst Size in RFC 3290, section 5."
   ::= { dsTBParamEntry 4 }

dsTBParamInterval OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "microseconds"
   STATUS       current
   DESCRIPTION
      "The time interval used with the token bucket.  For:
      1. Average Rate Meter, RFC 3290, section 5.1.1,
        -Delta.
      2. Simple Token Bucket Meter, RFC 3290, section
         5.1.3, - time interval t.
      3. RFC 2859  TSWTCM, -  AVG_INTERVAL.
      4. RFC 2697 srTCM, RFC 2698 trTCM, - token
         bucket update time interval."
   ::= { dsTBParamEntry 5 }

--
-- Actions
--

--
-- The Action Table allows enumeration of the different
-- types of actions to be applied to a traffic flow.
--

dsActionTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DsActionEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
      "The Action Table enumerates actions that can be per-
      formed to a stream of traffic.  Multiple actions can
      be concatenated.

      Specific actions are indicated by dsAction-
      Specific which points to an entry of a specific
      action type parameterizing the action in detail."



Chan, et al.                 Informational                     [Page 54]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   REFERENCE
       "An Informal Management Model for Diffserv Routers,
       RFC 3290, section 6."
   ::= { dsPolicyClasses 6 }

dsActionEntry OBJECT-TYPE
   SYNTAX       DsActionEntry
   STATUS       current
   DESCRIPTION
      "Each entry in the action table allows description of
      one specific action to be applied to traffic."
   PIB-INDEX { dsActionPrid }
   UNIQUENESS { dsActionNext,
                dsActionSpecific }
   ::= { dsActionTable 1 }

DsActionEntry ::= SEQUENCE  {
   dsActionPrid              InstanceId,
   dsActionNext              Prid,
   dsActionSpecific          Prid
}

dsActionPrid OBJECT-TYPE
   SYNTAX       InstanceId
   STATUS       current
   DESCRIPTION
      "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsActionEntry 1 }

dsActionNext OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
      "This selects the next diffserv functional datapath
      element to handle traffic for this data path.

      The value zeroDotZero in this variable indicates no
      further DiffServ treatment is performed on traffic of
      this datapath.  Any other value must point to a valid
      (pre-existing) instance of one of:
        dsClfrEntry
        dsMeterEntry
        dsActionEntry
        dsAlgDropEntry
        dsQEntry."
   DEFVAL      { zeroDotZero }
   ::= { dsActionEntry 2 }



Chan, et al.                 Informational                     [Page 55]

RFC 3317          DiffServ QoS Policy Information Base        March 2003



dsActionSpecific OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
      "A pointer to an object instance providing additional
      information for the type of action indicated by this
      action table entry.

      For the standard actions defined by this PIB module,
      this should point to an instance of dsDscpMarkActEntry.
      For other actions, it may point to an instance of a
      PRC defined in some other PIB.

      The PRI pointed to must exist prior to installing this
      action datapath entry."
   ::= { dsActionEntry 3 }

-- DSCP Mark Action Table
--
-- Rows of this class are pointed to by dsActionSpecific
-- to provide detailed parameters specific to the DSCP
-- Mark action.
-- This class should at most contain one entry for each supported
-- DSCP value.  These entries should be reused by different
-- dsActionEntry in same or different data paths.
--

dsDscpMarkActTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DsDscpMarkActEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
      "This class enumerates specific DSCPs used for marking or
      remarking the DSCP field of IP packets. The entries of this
      table may be referenced by a dsActionSpecific attribute."
   REFERENCE
       "An Informal Management Model for Diffserv Routers,
       RFC 3290, section 6.1"
   ::= { dsPolicyClasses 7 }

dsDscpMarkActEntry OBJECT-TYPE
   SYNTAX       DsDscpMarkActEntry
   STATUS       current
   DESCRIPTION
     "An entry in the DSCP mark action table that describes a
     single DSCP used for marking."
   PIB-INDEX { dsDscpMarkActPrid }



Chan, et al.                 Informational                     [Page 56]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   UNIQUENESS { dsDscpMarkActDscp }
   ::= { dsDscpMarkActTable 1 }

DsDscpMarkActEntry ::= SEQUENCE  {
   dsDscpMarkActPrid          InstanceId,
   dsDscpMarkActDscp          Dscp
}

dsDscpMarkActPrid OBJECT-TYPE
   SYNTAX       InstanceId
   STATUS       current
   DESCRIPTION
      "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsDscpMarkActEntry 1 }

dsDscpMarkActDscp OBJECT-TYPE
   SYNTAX       Dscp
   STATUS       current
   DESCRIPTION
      "The DSCP that this Action uses for marking/remarking
      traffic.  Note that a DSCP value of -1 is not permit-
      ted in this class.  It is quite possible that the
      only packets subject to this Action are already
      marked with this DSCP.  Note also that DiffServ may
      result in packet remarking both on ingress to a net-
      work and on egress from it and it is quite possible
      that ingress and egress would occur in the same
      router."
   ::= { dsDscpMarkActEntry 2 }

--
-- Algorithmic Drop Table
--

-- Algorithmic Drop Table is the entry point for the Algorithmic
-- Dropper functional data path element.

-- For a simple algorithmic dropper, a single algorithmic drop entry
-- will be sufficient to parameterize the dropper.

-- For more complex algorithmic dropper, the dsAlgDropSpecific
-- attribute can be used to reference an entry in a parameter table,
-- e.g., dsRandomDropTable for random dropper.

-- For yet more complex dropper, for example, dropper that measures
-- multiple queues, each queue with its own algorithm, can use a
-- dsAlgDropTable entry as the entry point for Algorithmic Dropper



Chan, et al.                 Informational                     [Page 57]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


-- functional data path element, leaving the dropper parameters
-- for each queue be specified by entries of dsMQAlgDropTable.
-- In such usage, the anchoring dsAlgDropEntry's dsAlgDropType
-- should be mQDrop, and its dsAlgDropQMeasure should reference
-- the subsequent dsMQAlgDropEntry's, its dsAlgDropSpecific
-- should be used to reference parameters applicable to all the
-- queues being measured.
-- The subsequent dsMQAlgDropEntry's will provide the parameters,
-- one for each queue being measured.  The dsMQAlgDropEntry's are
-- chained using their dsMQAlgDropNext attributes.
--

dsAlgDropTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DsAlgDropEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
      "The algorithmic drop table contains entries describ-
      ing a functional data path element that drops
      packets according to some algorithm."
   REFERENCE
       "An Informal Management Model for Diffserv Routers,
       RFC 3290, section 7.1.3"
   ::= { dsPolicyClasses 8 }

dsAlgDropEntry OBJECT-TYPE
   SYNTAX       DsAlgDropEntry
   STATUS       current
   DESCRIPTION
      "An entry describes a process that drops packets
      according to some algorithm.  Further details of the
      algorithm type are to be found in dsAlgDropType
      and with more detail parameter entry pointed to by
      dsAlgDropSpecific when necessary."
   PIB-INDEX { dsAlgDropPrid }
   UNIQUENESS { dsAlgDropType,
                dsAlgDropNext,
                dsAlgDropQMeasure,
                dsAlgDropQThreshold,
                dsAlgDropSpecific }
   ::= { dsAlgDropTable 1 }

DsAlgDropEntry ::= SEQUENCE  {
   dsAlgDropPrid             InstanceId,
   dsAlgDropType             INTEGER,
   dsAlgDropNext             Prid,
   dsAlgDropQMeasure         Prid,
   dsAlgDropQThreshold       Unsigned32,



Chan, et al.                 Informational                     [Page 58]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   dsAlgDropSpecific         Prid
}

dsAlgDropPrid OBJECT-TYPE
   SYNTAX       InstanceId
   STATUS       current
   DESCRIPTION
      "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsAlgDropEntry 1 }

dsAlgDropType OBJECT-TYPE
   SYNTAX       INTEGER {
                    other(1),
                    tailDrop(2),
                    headDrop(3),
                    randomDrop(4),
                    alwaysDrop(5),
                    mQDrop(6)
                }
   STATUS       current
   DESCRIPTION
      "The type of algorithm used by this dropper. A value
      of tailDrop(2), headDrop(3), or alwaysDrop(5) represents
      an algorithm that is completely specified by this PIB.

      A value of other(1) indicates that the specifics of
      the drop algorithm are specified in some other PIB
      module, and that the dsAlgDropSpecific attribute
      points to an instance of a PRC in that PIB that
      specifies the information necessary to implement the
      algorithm.

      The tailDrop(2) algorithm is described as follows:
      dsAlgDropQThreshold represents the depth of the
      queue, pointed to by dsAlgDropQMeasure, at
      which all newly arriving packets will be dropped.

      The headDrop(3) algorithm is described as follows: if
      a packet arrives when the current depth of the queue,
      pointed to by dsAlgDropQMeasure, is at
      dsAlgDropQThreshold, packets currently at the head of
      the queue are dropped to make room for the new packet
      to be enqueued at the tail of the queue.

      The randomDrop(4) algorithm is described as follows:
      on packet arrival, an algorithm is executed which may
      randomly drop the packet, or drop other packet(s)



Chan, et al.                 Informational                     [Page 59]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


      from the queue in its place.  The specifics of the
      algorithm may be proprietary.  For this algorithm,
      dsAlgDropSpecific points to a dsRandomDropEntry
      that describes the algorithm.  For this
      algorithm, dsAlgQThreshold is understood to be
      the absolute maximum size of the queue and additional
      parameters are described in dsRandomDropTable.

      The alwaysDrop(5) algorithm always drops packets. In
      this case, the other configuration values in this Entry
      are not meaningful; The queue is not used, therefore,
      dsAlgDropNext, dsAlgDropQMeasure, and
      dsAlgDropSpecific should be all set to zeroDotZero.

      The mQDrop(6) algorithm measures multiple queues for
      the drop algorithm.  The queues measured are represented
      by having dsAlgDropQMeasure referencing a dsMQAlgDropEntry.
      Each of the chained dsMQAlgDropEntry is used to describe
      the drop algorithm for one of the measured queues."

   ::= { dsAlgDropEntry 2 }

dsAlgDropNext OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
      "This selects the next diffserv functional datapath
      element to handle traffic for this data path.

      The value zeroDotZero in this attribute indicates no
      further DiffServ treatment is performed on traffic of
      this datapath.  Any other value must point to a valid
      (pre-existing) instance of one of:
        dsClfrEntry
        dsMeterEntry
        dsActionEntry
        dsAlgDropEntry
        dsQEntry.

      When dsAlgDropType is alwaysDrop(5), this attribute is
      Ignored."
   DEFVAL      { zeroDotZero }
   ::= { dsAlgDropEntry 3 }

dsAlgDropQMeasure OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION



Chan, et al.                 Informational                     [Page 60]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


      "Points to a PRI to indicate the queues that a drop algorithm
      is to monitor when deciding whether to drop a packet.

      For alwaysDrop(5), this attribute should be zeroDotZero.
      For tailDrop(2), headDrop(3), randomDrop(4), this should
      point to an entry in the dsQTable.
      For mQDrop(6), this should point to a dsMQAlgDropEntry that
      Describe one of the queues being measured for multiple
      queue dropper.

      The PRI pointed to must exist prior to installing
      this dropper element."
   ::= { dsAlgDropEntry 4 }

dsAlgDropQThreshold OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "Bytes"
   STATUS       current
   DESCRIPTION
      "A threshold on the depth in bytes of the queue being
      measured at which a trigger is generated to the drop-
      ping algorithm, unless dsAlgDropType is alwaysDrop(5)
      where this attribute is ignored.

      For the tailDrop(2) or headDrop(3) algorithms, this
      represents the depth of the queue, pointed to by
      dsAlgDropQMeasure, at which the drop action
      will take place. Other algorithms will need to define
      their own semantics for this threshold."
   ::= { dsAlgDropEntry 5 }

dsAlgDropSpecific OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
      "Points to a table entry that provides further detail
      regarding a drop algorithm.  The PRI pointed to
      must exist prior to installing this dropper element.

      Entries with dsAlgDropType equal to other(1) must
      have this point to an instance of a PRC defined
      in another PIB module.

      Entries with dsAlgDropType equal to random-
      Drop(4) must have this point to an entry in
      dsRandomDropTable.

      Entries with dsAlgDropType equal to mQDrop(6) can use this



Chan, et al.                 Informational                     [Page 61]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


      attribute to reference parameters that is used by all the
      queues of the multiple queues being measured.

      For all other algorithms, this should take the value
      zeroDotZero."
   ::= { dsAlgDropEntry 6 }

--
-- Multiple Queue Algorithmic Drop Table
--
-- Entries of this table should be referenced by dsAlgDropQMeasure
-- when dsAlgDropType is mQDrop(6) for droppers measuring multiple
-- queues for its drop algorithm.
-- Each entry of the table is used to describe the drop algorithm
-- for a single queue within the multiple queues being measured.
--
-- Entries of this table, dsMQAlgDropEntry, is extended from
-- dsAlgDropEntry, with usage of corresponding parameters the same
-- except:
--   dsAlgDropNext is used to point to the next diffserv
--     functional data path element when the packet is not dropped.
--   dsMQAlgDropExceedNext is used to point to the next
--     dsMQAlgDropEntry for chaining together the multiple
--     dsMQAlgDropEntry's for the multiple queues being measured.
--

dsMQAlgDropTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DsMQAlgDropEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
      "The multiple queue algorithmic drop table contains entries
      describing each queue being measured for the multiple queue
      algorithmic dropper."
   ::= { dsPolicyClasses 9 }

dsMQAlgDropEntry OBJECT-TYPE
   SYNTAX       DsMQAlgDropEntry
   STATUS       current
   DESCRIPTION
      "An entry describes a process that drops packets
      according to some algorithm.  Each entry is used for
      each of the multiple queues being measured.  Each entry
      extends the basic dsAlgDropEntry with adding of a
      dsMQAlgDropExceedNext attribute.

      Further details of the algorithm type are to be found in
      dsAlgDropType and with more detail parameter entry pointed



Chan, et al.                 Informational                     [Page 62]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


      to by dsMQAlgDropSpecific when necessary."
   EXTENDS { dsAlgDropEntry }
   UNIQUENESS { dsMQAlgDropExceedNext }
   ::= { dsMQAlgDropTable 1 }

DsMQAlgDropEntry ::= SEQUENCE  {
   dsMQAlgDropExceedNext     Prid
}

dsMQAlgDropExceedNext OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
      "Used for linking of multiple dsMQAlgDropEntry for mQDrop.
      A value of zeroDotZero indicates this is the last of a
      chain of dsMQAlgDropEntry."
   DEFVAL      { zeroDotZero }
   ::= { dsMQAlgDropEntry 1 }

--
-- Random Drop Table
--

dsRandomDropTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DsRandomDropEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
      "The random drop table contains entries describing a
      process that drops packets randomly. Entries in this
      table is intended to be pointed to by dsAlgDropSpecific
      when dsAlgDropType is randomDrop(4)."
   REFERENCE
       "An Informal Management Model for Diffserv Routers,
       RFC 3290, section 7.1.3"
   ::= { dsPolicyClasses 10 }

dsRandomDropEntry OBJECT-TYPE
   SYNTAX       DsRandomDropEntry
   STATUS       current
   DESCRIPTION
      "An entry describes a process that drops packets
      according to a random algorithm."
   PIB-INDEX { dsRandomDropPrid }
   UNIQUENESS { dsRandomDropMinThreshBytes,
                dsRandomDropMinThreshPkts,
                dsRandomDropMaxThreshBytes,
                dsRandomDropMaxThreshPkts,



Chan, et al.                 Informational                     [Page 63]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


                dsRandomDropProbMax,
                dsRandomDropWeight,
                dsRandomDropSamplingRate
              }
   ::= { dsRandomDropTable 1 }

DsRandomDropEntry ::= SEQUENCE  {
   dsRandomDropPrid             InstanceId,
   dsRandomDropMinThreshBytes   Unsigned32,
   dsRandomDropMinThreshPkts    Unsigned32,
   dsRandomDropMaxThreshBytes   Unsigned32,
   dsRandomDropMaxThreshPkts    Unsigned32,
   dsRandomDropProbMax          Unsigned32,
   dsRandomDropWeight           Unsigned32,
   dsRandomDropSamplingRate     Unsigned32
}

dsRandomDropPrid OBJECT-TYPE
   SYNTAX       InstanceId
   STATUS       current
   DESCRIPTION
      "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsRandomDropEntry 1 }

dsRandomDropMinThreshBytes OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "bytes"
   STATUS       current
   DESCRIPTION
      "The average queue depth in bytes, beyond which traffic has a
      non-zero probability of being dropped."
    ::= { dsRandomDropEntry 2 }

dsRandomDropMinThreshPkts OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "packets"
   STATUS       current
   DESCRIPTION
     "The average queue depth in packets, beyond which traffic has
     a non-zero probability of being dropped."
   ::= { dsRandomDropEntry 3 }

dsRandomDropMaxThreshBytes OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "bytes"
   STATUS       current
   DESCRIPTION



Chan, et al.                 Informational                     [Page 64]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


     "The average queue depth beyond which traffic has a
     probability indicated by dsRandomDropProbMax of being dropped
     or marked.  Note that this differs from the physical queue
     limit, which is stored in dsAlgDropQThreshold."
   ::= { dsRandomDropEntry 4 }

dsRandomDropMaxThreshPkts OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "packets"
   STATUS       current
   DESCRIPTION
     "The average queue depth beyond which traffic has a
     probability indicated by dsRandomDropProbMax of being dropped
     or marked.  Note that this differs from the physical queue
     limit, which is stored in dsAlgDropQThreshold."
   ::= { dsRandomDropEntry 5 }

dsRandomDropProbMax OBJECT-TYPE
   SYNTAX       Unsigned32  (0..1000)
   STATUS       current
   DESCRIPTION
     "The worst case random drop probability, expressed in drops
     per thousand packets.

     For example, if every packet may be dropped in the worst case
     (100%), this has the value 1000. Alternatively, if in the
     worst case one percent (1%) of traffic may be dropped, it has
     the value 10."
   ::= { dsRandomDropEntry 6 }

dsRandomDropWeight OBJECT-TYPE
   SYNTAX       Unsigned32  (0..4294967295)
   STATUS       current
   DESCRIPTION
     "The weighting of past history in affecting the Exponentially
     Weighted Moving Average function which calculates the current
     average queue depth.  The equation uses
     dsRandomDropWeight/MaxValue as the coefficient for the new
     sample in the equation, and
     (MaxValue - dsRandomDropWeight)/MaxValue as the coefficient
     of the old value, where, MaxValue is determined via capability
     reported by the PEP.

     Implementations may further limit the values of
     dsRandomDropWeight via the capability tables."
   ::= { dsRandomDropEntry 7 }

dsRandomDropSamplingRate OBJECT-TYPE



Chan, et al.                 Informational                     [Page 65]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   SYNTAX       Unsigned32  (0..1000000)
   STATUS       current
   DESCRIPTION
     "The number of times per second the queue is sampled for queue
     average calculation. A value of zero means the queue is
     sampled approximately each time a packet is enqueued (or
     dequeued)."
   ::= { dsRandomDropEntry 8 }

--
-- Queue Table
--

--
-- An entry of dsQTable represents a FIFO queue diffserv
-- functional data path element as described in [MODEL] section
-- 7.1.1.
-- Notice the specification of scheduling parameters for a queue
-- as part of the input to a scheduler functional data path
-- element as described in [MODEL] section 7.1.2.  This allows
-- building of hierarchical queuing/scheduling.
-- A queue therefore is parameterized by:
-- 1. Which scheduler will service this queue, dsQNext.
-- 2. How the scheduler will service this queue, with respect
--    to all the other queues the same scheduler needs to service,
--    dsQMinRate and dsQMaxRate.
--
-- Notice one or more upstream diffserv functional data path element
-- may share, point to, a dsQTable entry as described in [MODEL]
-- section 7.1.1.
--

dsQTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DsQEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
   "The Queue Table enumerates the queues."
   ::= { dsPolicyClasses 11 }

dsQEntry OBJECT-TYPE
   SYNTAX       DsQEntry
   STATUS       current
   DESCRIPTION
      "An entry in the Queue Table describes a single queue
      as a functional data path element."
   PIB-INDEX { dsQPrid }
   UNIQUENESS { dsQNext,



Chan, et al.                 Informational                     [Page 66]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


                dsQMinRate,
                dsQMaxRate }
   ::= { dsQTable 1 }

DsQEntry ::= SEQUENCE  {
   dsQPrid                    InstanceId,
   dsQNext                    Prid,
   dsQMinRate                 Prid,
   dsQMaxRate                 Prid
}

dsQPrid OBJECT-TYPE
   SYNTAX       InstanceId
   STATUS       current
   DESCRIPTION
       "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsQEntry 1 }

dsQNext OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
      "This selects the next diffserv scheduler.  This must point
      to a dsSchedulerEntry.

      A value of zeroDotZero in this attribute indicates an
      incomplete dsQEntry instance.  In such a case, the entry
      has no operational effect, since it has no parameters to
      give it meaning."
   ::= { dsQEntry 2 }

dsQMinRate OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
      "This Prid indicates the entry in dsMinRateTable
      the scheduler, pointed to by dsQNext, should use to service
      this queue.
      If this value is zeroDotZero
      then minimum rate and priority is unspecified.
      If this value is not zeroDotZero then the instance pointed to
      must exist prior to installing this entry."
   ::= { dsQEntry 3 }

dsQMaxRate OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current



Chan, et al.                 Informational                     [Page 67]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   DESCRIPTION
      "This Prid indicates the entry in dsMaxRateTable
      the scheduler, pointed to by dsQNext, should use to service
      this queue.
      If this value is zeroDotZero, then the maximum rate is the
      line speed of the interface.
      If this value is not zeroDotZero, then the instance pointed
      to must exist prior to installing this entry."
   ::= { dsQEntry 4 }

--
-- Scheduler Table
--
--
-- The Scheduler Table is used for representing packet schedulers:
-- it provides flexibility for multiple scheduling algorithms, each
-- servicing multiple queues, to be used on the same
-- logical/physical interface of a data path.
--
-- Notice the servicing parameters the scheduler uses is
-- specified by each of its upstream functional data path elements,
-- queues or schedulers of this PIB.
-- The coordination and coherency between the servicing parameters
-- of the scheduler's upstream functional data path elements must
-- be maintained for the scheduler to function correctly.
--
-- The dsSchedulerMinRate and dsSchedulerMaxRate attributes are
-- used for specifying the servicing parameters for output of a
-- scheduler when its downstream functional data path element
-- is another scheduler.
-- This is used for building hierarchical queue/scheduler.
--
-- More discussion of the scheduler functional data path element
-- is in [MODEL] section 7.1.2.
--

dsSchedulerTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DsSchedulerEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
      "The Scheduler Table enumerates packet schedulers.
      Multiple scheduling algorithms can be used on a given
      datapath, with each algorithm described by one
      dsSchedulerEntry."
   REFERENCE
       "An Informal Management Model for Diffserv Routers,
       RFC 3290, section 7.1.2"



Chan, et al.                 Informational                     [Page 68]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   ::= { dsPolicyClasses 12 }

dsSchedulerEntry OBJECT-TYPE
   SYNTAX       DsSchedulerEntry
   STATUS       current
   DESCRIPTION
      "An entry in the Scheduler Table describing a single
      instance of a scheduling algorithm."
   PIB-INDEX { dsSchedulerPrid }
   UNIQUENESS { dsSchedulerNext,
                dsSchedulerMethod,
                dsSchedulerMinRate,
                dsSchedulerMaxRate }
   ::= { dsSchedulerTable 1 }

DsSchedulerEntry ::= SEQUENCE  {
   dsSchedulerPrid                 InstanceId,
   dsSchedulerNext                 Prid,
   dsSchedulerMethod               AutonomousType,
   dsSchedulerMinRate              Prid,
   dsSchedulerMaxRate              Prid
}

dsSchedulerPrid OBJECT-TYPE
   SYNTAX       InstanceId
   STATUS       current
   DESCRIPTION
       "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsSchedulerEntry 1 }

dsSchedulerNext OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
      "This selects the next diffserv functional datapath
      element to handle traffic for this data path.

      This attribute normally have a value of zeroDotZero to
      indicate no further DiffServ treatment is performed on
      traffic of this datapath.  The use of zeroDotZero is the
      normal usage for the last functional datapath element.
      Any value other than zeroDotZero must point to a valid
      (pre-existing) instance of one of:
        dsSchedulerEntry
        dsQEntry,

      or:



Chan, et al.                 Informational                     [Page 69]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


        dsClfrEntry
        dsMeterEntry
        dsActionEntry
        dsAlgDropEntry

      This points to another dsSchedulerEntry
      for implementation of multiple scheduler methods for
      the same data path, and for implementation of
      hierarchical schedulers."
   DEFVAL       { zeroDotZero }
   ::= { dsSchedulerEntry 2 }

dsSchedulerMethod OBJECT-TYPE
   SYNTAX       AutonomousType
   STATUS       current
   DESCRIPTION
     "The scheduling algorithm used by this Scheduler.
     Standard values for generic algorithms:
       diffServSchedulerPriority,
       diffServSchedulerWRR,
       diffServSchedulerWFQ
     are specified in the DiffServ MIB.
     Additional values may be further specified in other PIBs.
     A value of zeroDotZero indicates this is unknown."
   REFERENCE
       "An Informal Management Model for Diffserv Routers,
       RFC 3290, section 7.1.2"
   ::= { dsSchedulerEntry 3 }

dsSchedulerMinRate OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
     "This Prid indicates the entry in dsMinRateTable
      which indicates the priority or minimum output rate from this
      scheduler.  This attribute is used only when there is more
      than one level of scheduler.

      When it has the value zeroDotZero, it indicates that no
      Minimum rate or priority is imposed."
   DEFVAL      { zeroDotZero }
   ::= { dsSchedulerEntry 4 }

dsSchedulerMaxRate OBJECT-TYPE
   SYNTAX       Prid
   STATUS       current
   DESCRIPTION
     "This Prid indicates the entry in dsMaxRateTable



Chan, et al.                 Informational                     [Page 70]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


      which indicates the maximum output rate from this scheduler.
      When more than one maximum rate applies (e.g., a multi-rate
      shaper is used), it points to the first of the rate entries.
      This attribute is only used when there is more than one level
      of scheduler.

      When it has the value zeroDotZero, it indicates that no
      Maximum rate is imposed."
    DEFVAL      { zeroDotZero }
   ::= { dsSchedulerEntry 5 }

--
-- Minimum Rate Parameters Table
--
-- The parameters used by a scheduler for its inputs or outputs are
-- maintained separately from the Queue or Scheduler table entries
-- for reusability reasons and so that they may be used by both
-- queues and schedulers.  This follows the approach for separation
-- of data path elements from parameterization that is used
-- throughout this PIB.
-- Use of these Minimum Rate Parameter Table entries by Queues and
-- Schedulers allows the modeling of hierarchical scheduling
-- systems.
--
-- Specifically, a Scheduler has one or more inputs and one output.
-- Any queue feeding a scheduler, or any scheduler which feeds a
-- second scheduler, might specify a minimum transfer rate by
-- pointing to a Minimum Rate Parameter Table entry.
--
-- The dsMinRatePriority/Absolute/Relative attributes are used as
-- parameters to the work-conserving portion of a scheduler:
-- "work-conserving" implies that the scheduler can continue to emit
-- data as long as there is data available at its input(s).  This
-- has the effect of guaranteeing a certain priority relative to
-- other scheduler inputs and/or a certain minimum proportion of the
-- available output bandwidth.  Properly configured, this means a
-- certain minimum rate, which may be exceeded should traffic be
-- available should there be spare bandwidth after all other classes
-- have had opportunities to consume their own minimum rates.
--

dsMinRateTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DsMinRateEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
      "The Minimum Rate Table enumerates individual
      sets of scheduling parameter that can be used/reused



Chan, et al.                 Informational                     [Page 71]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


      by Queues and Schedulers."
   ::= { dsPolicyClasses 13 }

dsMinRateEntry OBJECT-TYPE
   SYNTAX       DsMinRateEntry
   STATUS       current
   DESCRIPTION
      "An entry in the Minimum Rate Table describes
      a single set of scheduling parameter for use by
      queues and schedulers."
   PIB-INDEX { dsMinRatePrid }
   UNIQUENESS { dsMinRatePriority,
                dsMinRateAbsolute,
                dsMinRateRelative }
   ::= { dsMinRateTable 1 }

DsMinRateEntry ::= SEQUENCE  {
   dsMinRatePrid            InstanceId,
   dsMinRatePriority        Unsigned32,
   dsMinRateAbsolute        Unsigned32,
   dsMinRateRelative        Unsigned32
}

dsMinRatePrid OBJECT-TYPE
   SYNTAX       InstanceId
   STATUS       current
   DESCRIPTION
       "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsMinRateEntry 1 }

dsMinRatePriority OBJECT-TYPE
   SYNTAX       Unsigned32 (1..4294967295)
   STATUS       current
   DESCRIPTION
     "The priority of this input to the associated scheduler,
     relative to the scheduler's other inputs. Higher Priority
     value indicates the associated queue/scheduler will get
     service first before others with lower Priority values."
   ::= { dsMinRateEntry 2 }

dsMinRateAbsolute OBJECT-TYPE
   SYNTAX       Unsigned32 (1..4294967295)
   UNITS        "kilobits per second"
   STATUS       current
   DESCRIPTION
     "The minimum absolute rate, in kilobits/sec, that a downstream
     scheduler element should allocate to this queue. If the value



Chan, et al.                 Informational                     [Page 72]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


     is zero, then there is effectively no minimum rate guarantee.
     If the value is non-zero, the scheduler will assure the
     servicing of this queue to at least this rate.

     Note that this attribute's value is coupled to that
     of dsMinRateRelative:  changes to one will affect the value
     of the other.

     [IFMIB] defines ifSpeed as Gauge32 in units of bits per
     second, and ifHighSpeed as Gauge32 in units of 1,000,000 bits
     per second.
     This yields the following equations:

     RateRelative  = [ (RateAbsolute * 1000) / ifSpeed ] * 1,000

     Where, 1000 is for converting kbps used by RateAbsolute to bps
     used by ifSpeed, 1,000 is for 'in units of 1/1,000 of 1' for
     RateRelative.

     or, if appropriate:

     RateRelative  =
        { [ (RateAbsolute * 1000) / 1,000,000 ] / ifHIghSpeed } *
        1,000

     Where, 1000 and 1,000,000 is for converting kbps used by
     RateAbsolute to 1 million bps used by ifHighSpeed, 1,000 is
     for 'in units of 1/1,000 of 1' for RateRelative."
   REFERENCE
       "ifSpeed, ifHighSpeed from the IF-MIB, RFC 2863."
   ::= { dsMinRateEntry 3 }

dsMinRateRelative OBJECT-TYPE
   SYNTAX       Unsigned32 (1..4294967295)
   STATUS       current
   DESCRIPTION
     "The minimum rate that a downstream scheduler element
     should allocate to this queue, relative to the max-
     imum rate of the interface as reported by ifSpeed or
     ifHighSpeed, in units of 1/1,000 of 1.  If the value
     is zero, then there is effectively no minimum rate
     guarantee.   If the value is non-zero, the scheduler
     will assure the servicing of this queue to at least
     this rate.

     Note that this attribute's value is coupled to that
     of dsMinRateAbsolute:  changes to one will
     affect the value of the other.



Chan, et al.                 Informational                     [Page 73]

RFC 3317          DiffServ QoS Policy Information Base        March 2003



     [IFMIB] defines ifSpeed as Gauge32 in units of bits per
     second, and ifHighSpeed as Gauge32 in units of 1,000,000 bits
     per second.
     This yields the following equations:

     RateRelative  = [ (RateAbsolute * 1000) / ifSpeed ] * 1,000

     Where, 1000 is for converting kbps used by RateAbsolute to bps
     used by ifSpeed, 1,000 is for 'in units of 1/1,000 of 1' for
     RateRelative.

     or, if appropriate:

     RateRelative  =
        { [ (RateAbsolute * 1000) / 1,000,000 ] / ifHIghSpeed } *
        1,000

     Where, 1000 and 1,000,000 is for converting kbps used by
     RateAbsolute to 1 million bps used by ifHighSpeed, 1,000 is
     for 'in units of 1/1,000 of 1' for RateRelative."
   REFERENCE
       "ifSpeed, ifHighSpeed from the IF-MIB, RFC 2863."
   ::= { dsMinRateEntry 4 }

--
-- Maximum Rate Parameters Table
--
-- The parameters used by a scheduler for its inputs or outputs are
-- maintained separately from the Queue or Scheduler table entries
-- for reusability reasons and so that they may be used by both
-- queues and schedulers.  This follows the approach for separation
-- of data path elements from parameterization that is used
-- throughout this PIB.
--
-- Use of these Maximum Rate Parameter Table entries by Queues and
-- Schedulers allows the modeling of hierarchical scheduling
-- systems.
--
-- Specifically, a Scheduler has one or more inputs and one output.
-- Any queue feeding a scheduler, or any scheduler which feeds a
-- second scheduler, might specify a maximum transfer rate by
-- pointing to a Maximum Rate Parameter Table entry.  Multi-rate
-- shapers, such as a Dual Leaky Bucket algorithm, specify their
-- rates using multiple Maximum Rate Parameter Entries with the same
-- dsMaxRateId but different dsMaxRateLevels.
--
-- The dsMaxRateLevel/Absolute/Relative attributes are used as



Chan, et al.                 Informational                     [Page 74]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


-- parameters to the non-work-conserving portion of a scheduler:
-- non-work-conserving implies that the scheduler may sometimes not
-- emit a packet, even if there is data available at its input(s).
-- This has the effect of limiting the servicing of the
-- queue/scheduler input or output, in effect performing shaping of
-- the packet stream passing through the queue/scheduler, as
-- described in the Informal Differentiated Services Model
-- section 7.2.
--

dsMaxRateTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DsMaxRateEntry
   PIB-ACCESS   install
   STATUS       current
   DESCRIPTION
      "The Maximum Rate Table enumerates individual
      sets of scheduling parameter that can be used/reused
      by Queues and Schedulers."
   ::= { dsPolicyClasses 14 }

dsMaxRateEntry OBJECT-TYPE
   SYNTAX       DsMaxRateEntry
   STATUS       current
   DESCRIPTION
      "An entry in the Maximum Rate Table describes
      a single set of scheduling parameter for use by
      queues and schedulers."
   PIB-INDEX { dsMaxRatePrid }
   UNIQUENESS { dsMaxRateId,
                dsMaxRateLevel,
                dsMaxRateAbsolute,
                dsMaxRateRelative,
                dsMaxRateThreshold }
   ::= { dsMaxRateTable 1 }

DsMaxRateEntry ::= SEQUENCE  {
   dsMaxRatePrid            InstanceId,
   dsMaxRateId              Unsigned32,
   dsMaxRateLevel           Unsigned32,
   dsMaxRateAbsolute        Unsigned32,
   dsMaxRateRelative        Unsigned32,
   dsMaxRateThreshold       BurstSize
}

dsMaxRatePrid OBJECT-TYPE
   SYNTAX       InstanceId
   STATUS       current
   DESCRIPTION



Chan, et al.                 Informational                     [Page 75]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


       "An arbitrary integer index that uniquely identifies an
       instance of the class."
   ::= { dsMaxRateEntry 1 }

dsMaxRateId OBJECT-TYPE
   SYNTAX       Unsigned32  (0..4294967295)
   STATUS       current
   DESCRIPTION
     "An identifier used together with dsMaxRateLevel for
     representing a multi-rate shaper.  This attribute is used for
     associating all the rate attributes of a multi-rate shaper.
     Each dsMaxRateEntry of a multi-rate shaper must have the same
     value in this attribute.  The different rates of a multi-rate
     shaper is identified using dsMaxRateLevel.
     This attribute uses the value of zero to indicate this
     attribute is not used, for single rate shaper."
   DEFVAL { 0 }
   ::= { dsMaxRateEntry 2 }

dsMaxRateLevel OBJECT-TYPE
   SYNTAX       Unsigned32 (1..32)
   STATUS       current
   DESCRIPTION
     "An index that indicates which level of a multi-rate shaper is
     being given its parameters. A multi-rate shaper has some
     number of rate levels. Frame Relay's dual rate specification
     refers to a 'committed' and an 'excess' rate; ATM's dual rate
     specification refers to a 'mean' and a 'peak' rate. This table
     is generalized to support an arbitrary number of rates. The
     committed or mean rate is level 1, the peak rate (if any) is
     the highest level rate configured, and if there are other
     rates they are distributed in monotonically increasing order
     between them.
     When the entry is used for a single rate shaper, this
     attribute contains a value of one."
   DEFVAL { 1 }
   ::= { dsMaxRateEntry 3 }

dsMaxRateAbsolute OBJECT-TYPE
   SYNTAX       Unsigned32 (1..4294967295)
   UNITS        "kilobits per second"
   STATUS       current
   DESCRIPTION
     "The maximum rate in kilobits/sec that a downstream
     scheduler element should allocate to this queue. If
     the value is zero, then there is effectively no max-
     imum rate limit and that the scheduler should attempt
     to be work-conserving for this queue.  If the value



Chan, et al.                 Informational                     [Page 76]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


     is  non-zero, the scheduler will limit the servicing
     of this queue to, at most, this rate in a non-work-
     conserving manner.

     Note that this attribute's value is coupled to that
     of dsMaxRateRelative:  changes to one will
     affect the value of the other.

     [IFMIB] defines ifSpeed as Gauge32 in units of bits per
     second, and ifHighSpeed as Gauge32 in units of 1,000,000 bits
     per second.
     This yields the following equations:

     RateRelative  = [ (RateAbsolute * 1000) / ifSpeed ] * 1,000

     Where, 1000 is for converting kbps used by RateAbsolute to bps
     used by ifSpeed, 1,000 is for 'in units of 1/1,000 of 1'
     for RateRelative.

     or, if appropriate:

     RateRelative  =
        { [ (RateAbsolute * 1000) / 1,000,000 ] / ifHIghSpeed } *
        1,000

     Where, 1000 and 1,000,000 is for converting kbps used by
     RateAbsolute to 1 million bps used by ifHighSpeed, 1,000 is
     for 'in units of 1/1,000 of 1' for RateRelative."
   ::= { dsMaxRateEntry 4 }

dsMaxRateRelative OBJECT-TYPE
   SYNTAX       Unsigned32 (1..4294967295)
   STATUS       current
   DESCRIPTION
     "The maximum rate that a downstream scheduler element
     should allocate to this queue, relative to the max-
     imum rate of the interface as reported by ifSpeed or
     ifHighSpeed, in units of 1/1,000 of 1.  If the value
     is zero, then there is effectively no maximum rate
     limit and the scheduler should attempt to be work-
     conserving for this queue.  If the value is non-zero,
     the scheduler will limit the servicing of this queue
     to, at most, this rate in a non-work-conserving
     manner.

     Note that this attribute's value is coupled to that
     of dsMaxRateAbsolute:  changes to one will
     affect the value of the other.



Chan, et al.                 Informational                     [Page 77]

RFC 3317          DiffServ QoS Policy Information Base        March 2003



     [IFMIB] defines ifSpeed as Gauge32 in units of bits per
     second, and ifHighSpeed as Gauge32 in units of 1,000,000 bits
     per second.
     This yields the following equations:

     RateRelative  = [ (RateAbsolute * 1000) / ifSpeed ] * 1,000

     Where, 1000 is for converting kbps used by RateAbsolute to bps
     used by ifSpeed, 1,000 is for 'in units of 1/1,000 of 1' for
     RateRelative.

     or, if appropriate:

     RateRelative  =
        { [ (RateAbsolute * 1000) / 1,000,000 ] / ifHIghSpeed } *
        1,000

     Where, 1000 and 1,000,000 is for converting kbps used by
     RateAbsolute to 1 million bps used by ifHighSpeed, 1,000 is
     for 'in units of 1/1,000 of 1' for RateRelative."
   REFERENCE
       "ifSpeed, ifHighSpeed from the IF-MIB, RFC 2863."
   ::= { dsMaxRateEntry 5 }

dsMaxRateThreshold OBJECT-TYPE
   SYNTAX       BurstSize
   UNITS        "Bytes"
   STATUS       current
   DESCRIPTION
     "The number of bytes of queue depth at which the rate of a
     multi-rate scheduler will increase to the next output rate. In
     the last PRI for such a shaper, this threshold is
     ignored and by convention is zero."
   REFERENCE
       "Adaptive Rate Shaper, RFC 2963"
::= { dsMaxRateEntry 6 }

--
-- Conformance Section
--

dsPolicyPibCompliances
               OBJECT IDENTIFIER ::= { dsPolicyPibConformance 1 }
dsPolicyPibGroups
               OBJECT IDENTIFIER ::= { dsPolicyPibConformance 2 }

dsPolicyPibCompliance MODULE-COMPLIANCE



Chan, et al.                 Informational                     [Page 78]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   STATUS  current
   DESCRIPTION
           "Describes the requirements for conformance to the
           QoS Policy PIB."

   MODULE FRAMEWORK-PIB
       MANDATORY-GROUPS {
           frwkPrcSupportGroup,
           frwkPibIncarnationGroup,
           frwkDeviceIdGroup,
           frwkCompLimitsGroup,
           frwkCapabilitySetGroup,
           frwkRoleComboGroup,
           frwkIfRoleComboGroup,
           frwkBaseFilterGroup,
           frwkIpFilterGroup }

   OBJECT frwkPibIncarnationLongevity
   PIB-MIN-ACCESS  notify
   DESCRIPTION
      "Install support is required if policy expiration is to
      be supported."

   OBJECT frwkPibIncarnationTtl
   PIB-MIN-ACCESS  notify
   DESCRIPTION
      "Install support is required if policy expiration is to
      be supported."

   MODULE DIFFSERV-PIB -- this module
       MANDATORY-GROUPS {
           dsPibBaseIfCapsGroup,
           dsPibIfClassificationCapsGroup,
           dsPibIfAlgDropCapsGroup,
           dsPibIfQueueCapsGroup,
           dsPibIfSchedulerCapsGroup,
           dsPibIfMaxRateCapsGroup,
           dsPibIfElmDepthCapsGroup,
           dsPibIfElmLinkCapsGroup,
           dsPibDataPathGroup,
           dsPibClfrGroup,
           dsPibClfrElementGroup,
           dsPibActionGroup,
           dsPibAlgDropGroup,
           dsPibQGroup,
           dsPibSchedulerGroup,
           dsPibMinRateGroup,
           dsPibMaxRateGroup }



Chan, et al.                 Informational                     [Page 79]

RFC 3317          DiffServ QoS Policy Information Base        March 2003



   GROUP dsPibIfMeteringCapsGroup
   DESCRIPTION
      "This group is mandatory for devices that implement
      metering functions."

   GROUP dsPibMeterGroup
   DESCRIPTION
      "This group is mandatory for devices that implement
      metering functions."

   GROUP dsPibTBParamGroup
   DESCRIPTION
      "This group is mandatory for devices that implement
      token-bucket metering functions."

   GROUP dsPibDscpMarkActGroup
   DESCRIPTION
      "This group is mandatory for devices that implement
      DSCP-Marking functions."

   GROUP dsPibMQAlgDropGroup
   DESCRIPTION
      "This group is mandatory for devices that implement
      Multiple Queue Measured Algorithmic Drop functions."

   GROUP dsPibRandomDropGroup
   DESCRIPTION
      "This group is mandatory for devices that implement
      Random Drop functions."

   OBJECT dsClfrId
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsClfrElementClfrId
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsClfrElementPrecedence
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsClfrElementNext
   PIB-MIN-ACCESS not-accessible



Chan, et al.                 Informational                     [Page 80]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   DESCRIPTION
      "Install support is not required."

   OBJECT dsClfrElementSpecific
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsMeterSucceedNext
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsMeterFailNext
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsMeterSpecific
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsTBParamType
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsTBParamRate
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsTBParamBurstSize
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsTBParamInterval
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsActionNext
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."




Chan, et al.                 Informational                     [Page 81]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   OBJECT dsActionSpecific
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsAlgDropType
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsAlgDropNext
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsAlgDropQMeasure
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsAlgDropQThreshold
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsAlgDropSpecific
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsRandomDropMinThreshBytes
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsRandomDropMinThreshPkts
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsRandomDropMaxThreshBytes
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsRandomDropMaxThreshPkts
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION



Chan, et al.                 Informational                     [Page 82]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


      "Install support is not required."

   OBJECT dsRandomDropProbMax
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsRandomDropWeight
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsRandomDropSamplingRate
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsQNext
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsQMinRate
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsQMaxRate
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsSchedulerNext
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsSchedulerMethod
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsSchedulerMinRate
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsSchedulerMaxRate



Chan, et al.                 Informational                     [Page 83]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsMinRatePriority
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsMinRateAbsolute
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsMinRateRelative
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsMaxRateId
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsMaxRateLevel
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsMaxRateAbsolute
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsMaxRateRelative
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   OBJECT dsMaxRateThreshold
   PIB-MIN-ACCESS not-accessible
   DESCRIPTION
      "Install support is not required."

   ::= { dsPolicyPibCompliances 1 }

dsPibBaseIfCapsGroup OBJECT-GROUP
   OBJECTS {



Chan, et al.                 Informational                     [Page 84]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


       dsBaseIfCapsPrid, dsBaseIfCapsDirection
   }
   STATUS current
   DESCRIPTION
      "The Base Interface Capability Group defines the PIB
      Objects that describe the base for interface capabilities."
   ::= { dsPolicyPibGroups 1 }

dsPibIfClassificationCapsGroup OBJECT-GROUP
   OBJECTS {
       dsIfClassificationCapsSpec
   }
   STATUS current
   DESCRIPTION
      "The Classification Capability Group defines the PIB
      Objects that describe the classification capabilities."
   ::= { dsPolicyPibGroups 2 }

dsPibIfMeteringCapsGroup OBJECT-GROUP
   OBJECTS {
       dsIfMeteringCapsSpec
   }
   STATUS current
   DESCRIPTION
      "The Metering Capability Group defines the PIB
      Objects that describe the metering capabilities."
   ::= { dsPolicyPibGroups 3 }

dsPibIfAlgDropCapsGroup OBJECT-GROUP
   OBJECTS {
       dsIfAlgDropCapsType, dsIfAlgDropCapsMQCount
   }
   STATUS current
   DESCRIPTION
      "The Algorithmic Dropper Capability Group defines the
      PIB Objects that describe the algorithmic dropper
      capabilities."
   ::= { dsPolicyPibGroups 4 }

dsPibIfQueueCapsGroup OBJECT-GROUP
   OBJECTS {
       dsIfQueueCapsMinQueueSize, dsIfQueueCapsMaxQueueSize,
       dsIfQueueCapsTotalQueueSize
   }
   STATUS current
   DESCRIPTION
      "The Queueing Capability Group defines the PIB
      Objects that describe the queueing capabilities."



Chan, et al.                 Informational                     [Page 85]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   ::= { dsPolicyPibGroups 5 }

dsPibIfSchedulerCapsGroup OBJECT-GROUP
   OBJECTS {
       dsIfSchedulerCapsServiceDisc, dsIfSchedulerCapsMaxInputs,
       dsIfSchedulerCapsMinMaxRate
   }
   STATUS current
   DESCRIPTION
      "The Scheduler Capability Group defines the PIB
      Objects that describe the scheduler capabilities."
   ::= { dsPolicyPibGroups 6 }

dsPibIfMaxRateCapsGroup OBJECT-GROUP
   OBJECTS {
       dsIfMaxRateCapsMaxLevels
   }
   STATUS current
   DESCRIPTION
      "The Max Rate Capability Group defines the PIB
      Objects that describe the max rate capabilities."
   ::= { dsPolicyPibGroups 7 }

dsPibIfElmDepthCapsGroup OBJECT-GROUP
   OBJECTS {
       dsIfElmDepthCapsPrc, dsIfElmDepthCapsCascadeMax
   }
   STATUS current
   DESCRIPTION
      "The DataPath Element Depth Capability Group defines the PIB
      Objects that describe the datapath element depth
      capabilities."
   ::= { dsPolicyPibGroups 8 }

dsPibIfElmLinkCapsGroup OBJECT-GROUP
   OBJECTS {
       dsIfElmLinkCapsPrc, dsIfElmLinkCapsAttr,
       dsIfElmLinkCapsNextPrc
   }
   STATUS current
   DESCRIPTION
      "The DataPath Element Linkage Capability Group defines the
      PIB Objects that describe the datapath element linkage
      capabilities."
   ::= { dsPolicyPibGroups 9 }

dsPibDataPathGroup OBJECT-GROUP
   OBJECTS {



Chan, et al.                 Informational                     [Page 86]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


       dsDataPathPrid, dsDataPathCapSetName,
       dsDataPathRoles, dsDataPathIfDirection,
       dsDataPathStart
   }
   STATUS current
   DESCRIPTION
      "The Data Path Group defines the PIB Objects that
      describe a data path."
   ::= { dsPolicyPibGroups 10 }

dsPibClfrGroup OBJECT-GROUP
   OBJECTS {
       dsClfrPrid, dsClfrId
   }
   STATUS current
   DESCRIPTION
      "The Classifier Group defines the PIB Objects that
      describe a generic classifier."
   ::= { dsPolicyPibGroups 11 }

dsPibClfrElementGroup OBJECT-GROUP
   OBJECTS {
       dsClfrElementPrid, dsClfrElementClfrId,
       dsClfrElementPrecedence, dsClfrElementNext,
       dsClfrElementSpecific
   }
   STATUS current
   DESCRIPTION
      "The Classifier Group defines the PIB Objects that
      describe a generic classifier."
   ::= { dsPolicyPibGroups 12 }

dsPibMeterGroup OBJECT-GROUP
   OBJECTS {
       dsMeterPrid, dsMeterSucceedNext,
       dsMeterFailNext, dsMeterSpecific
   }
   STATUS current
   DESCRIPTION
      "The Meter Group defines the objects used in describ-
      ing a generic meter element."
   ::= { dsPolicyPibGroups 13 }

dsPibTBParamGroup OBJECT-GROUP
   OBJECTS {
       dsTBParamPrid, dsTBParamType, dsTBParamRate,
       dsTBParamBurstSize, dsTBParamInterval
   }



Chan, et al.                 Informational                     [Page 87]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


   STATUS current
   DESCRIPTION
      "The Token-Bucket Parameter Group defines the objects
      used in describing a single-rate token bucket meter
      element."
   ::= { dsPolicyPibGroups 14 }

dsPibActionGroup OBJECT-GROUP
   OBJECTS {
       dsActionPrid, dsActionNext, dsActionSpecific
   }
   STATUS current
   DESCRIPTION
      "The  Action Group defines the objects used in
      describing a generic action element."
   ::= { dsPolicyPibGroups 15 }

dsPibDscpMarkActGroup OBJECT-GROUP
   OBJECTS {
       dsDscpMarkActPrid, dsDscpMarkActDscp
   }
   STATUS current
   DESCRIPTION
      "The DSCP Mark Action Group defines the objects used
      in describing a DSCP Marking Action element."
   ::= { dsPolicyPibGroups 16 }

dsPibAlgDropGroup OBJECT-GROUP
   OBJECTS {
       dsAlgDropPrid, dsAlgDropType, dsAlgDropNext,
       dsAlgDropQMeasure, dsAlgDropQThreshold,
       dsAlgDropSpecific
   }
   STATUS current
   DESCRIPTION
      "The Algorithmic Drop Group contains the objects that
      describe algorithmic dropper operation and configura-
      tion."
   ::= { dsPolicyPibGroups 17 }

dsPibMQAlgDropGroup OBJECT-GROUP
   OBJECTS {
       dsMQAlgDropExceedNext
   }
   STATUS current
   DESCRIPTION
      "The Multiple Queue Measured Algorithmic Drop Group
      contains the objects that describe multiple queue



Chan, et al.                 Informational                     [Page 88]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


      measured algorithmic dropper operation and configuration."
   ::= { dsPolicyPibGroups 18 }

dsPibRandomDropGroup OBJECT-GROUP
   OBJECTS {
       dsRandomDropPrid,
       dsRandomDropMinThreshBytes,
       dsRandomDropMinThreshPkts,
       dsRandomDropMaxThreshBytes,
       dsRandomDropMaxThreshPkts,
       dsRandomDropProbMax,
       dsRandomDropWeight,
       dsRandomDropSamplingRate
   }
   STATUS current
   DESCRIPTION
      "The Random Drop Group augments the Algorithmic Drop Group
      for random dropper operation and configuration."
   ::= { dsPolicyPibGroups 19 }

dsPibQGroup OBJECT-GROUP
   OBJECTS {
       dsQPrid, dsQNext, dsQMinRate, dsQMaxRate
   }
   STATUS current
   DESCRIPTION
      "The Queue Group contains the objects that describe
      an interface type's queues."
   ::= { dsPolicyPibGroups 20 }

dsPibSchedulerGroup OBJECT-GROUP
   OBJECTS {
       dsSchedulerPrid, dsSchedulerNext, dsSchedulerMethod,
       dsSchedulerMinRate, dsSchedulerMaxRate
   }
   STATUS current
   DESCRIPTION
      "The Scheduler Group contains the objects that
      describe packet schedulers on interface types."
   ::= { dsPolicyPibGroups 21 }

dsPibMinRateGroup OBJECT-GROUP
   OBJECTS {
       dsMinRatePrid, dsMinRatePriority,
       dsMinRateAbsolute, dsMinRateRelative
   }
   STATUS current
   DESCRIPTION



Chan, et al.                 Informational                     [Page 89]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


      "The Minimum Rate Group contains the objects
      that describe packet schedulers' parameters on interface
      types."
   ::= { dsPolicyPibGroups 22 }

dsPibMaxRateGroup OBJECT-GROUP
   OBJECTS {
       dsMaxRatePrid, dsMaxRateId, dsMaxRateLevel,
       dsMaxRateAbsolute, dsMaxRateRelative,
       dsMaxRateThreshold
   }
   STATUS current
   DESCRIPTION
      "The Maximum Rate Group contains the objects
      that describe packet schedulers' parameters on interface
      types."
   ::= { dsPolicyPibGroups 23 }

END

9.   Acknowledgments

  Early versions of this specification were also co-authored by Michael
  Fine, John Seligson, Carol Bell, Andrew Smith, and Francis
  Reichmeyer.

  This PIB builds on all the work that has gone into the Informal
  Management Model for DiffServ Routers and Management Information Base
  for the Differentiated Services Architecture.

  It has been developed with the active involvement of many people, but
  most notably Diana Rawlins, Martin Bokaemper, Walter Weiss, and Bert
  Wijnen.

10.  Security Considerations

  The information contained in a PIB when transported by the COPS
  protocol [COPS-PR] may be sensitive, and its function of provisioning
  a PEP requires that only authorized communication take place.

  In this PIB, there are no PRCs which are sensitive in their own
  right, such as passwords or monetary amounts.  But there are a number
  of PRCs in this PIB that may contain information that may be
  sensitive from a business perspective, in that they may represent a
  customer's service contract or the filters that the service provider
  chooses to apply to a customer's traffic.  These PRCs have a PIB-
  ACCESS clause of install:




Chan, et al.                 Informational                     [Page 90]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  dsDataPathTable, dsClfrTable, dsClfrElementTable, dsMeterTable,
  dsTBParamTable, dsActionTable, dsDscpMarkActTable, dsAlgDropTable,
  dsMQAlgDropTable, dsRandomDropTable, dsQTable, dsSchedulerTable,
  dsMinRateTable, dsMaxRateTable

  Malicious altering of the above PRCs may affect the DiffServ behavior
  of the device being provisioned.

  Malicious access of the above PRCs exposes policy information
  concerning how the device is provisioned.

  This PIB also contain PRCs with PIB-ACCESS clause of notify:

  dsBaseIfCapsTAble, dsIfClassificationCapsTable,
  dsIfMeteringCapsTable, dsIfAlgDropCapsTable, dsIfQueueCapsTable,
  dsIfSchedulerCapsTable, dsIfMaxRateCapsTable, dsIfElmDepthCapsTable,
  dsIfElmLinkCapsTable

  Malicious access of the above PRCs exposes information concerning the
  device being provisioned.

  The use of IPSEC between PDP and PEP, as described in [COPS],
  provides the necessary protection.

11.  Intellectual Property Considerations

  The IETF has been notified of intellectual property rights claimed in
  regard to some or all of the specification contained in this
  document.  For more information consult the online list of claimed
  rights.

12.  IANA Considerations

  This document describes the dsPolicyPib Policy Information Base (PIB)
  modules for standardization under the "pib" branch registered with
  IANA.  The IANA has assigned a PIB number (4) under the "pib" branch.

  [SPPI] PIB SUBJECT-CATEGORIES are mapped to COPS Client Types.  IANA
  Considerations for SUBJECT-CATEGORIES follow the same requirements as
  specified in [COPS] IANA Considerations for COPS Client Types.  The
  DiffServ QoS PIB defines a new COPS Client Type in the Standards
  space.  The IANA has assigned a COPS client type diffServ (2) as
  described in [COPS] IANA Considerations.  IANA has updated the
  registry (http://www.iana.org/assignments/cops-parameters) for COPS
  Client Types as a result.






Chan, et al.                 Informational                     [Page 91]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


13.  Normative References

  [COPS]          Boyle, J., Cohen, R., Durham, D., Herzog, S., Rajan,
                  R. and A. Sastry, "The COPS (Common Open Policy
                  Service) Protocol", RFC 2748, January 2000.

  [COPS-PR]       Chan, K., Durham, D., Gai, S., Herzog, S.,
                  McCloghrie, K., Reichmeyer, F., Seligson, J.,
                  Smith, A. and R. Yavatkar, "COPS Usage for
                  Policy Provisioning", RFC 3084, March 2001.

  [SPPI]          McCloghrie, K., Fine,  M., Seligson, J., Chan, K.,
                  Hahn, S., Sahita, R., Smith, A. and F. Reichmeyer,
                  "Structure of Policy Provisioning Information",
                  RFC 3159, August 2001.

  [DSARCH]        Carlson, M., Weiss, W., Blake, S., Wang, Z., Black,
                  D. and E. Davies, "An Architecture for Differentiated
                  Services", RFC 2475, December 1998.

  [DSFIELD]       Nichols, K., Blake, S., Baker, F. and D. Black,
                  "Definition of the Differentiated Services Field
                  (DS Field) in the IPv4 and IPv6 Headers", RFC 2474,
                  December 1998.

  [FR-PIB]        Fine, M., McCloghrie, K., Seligson, J., Chan,  K.,
                  Hahn, S., Sahita, R., Smith, A. and  F. Reichmeyer,
                  "Framework Policy Information Base", RFC 3318,
                  March 2003.

  [RAP-FRAMEWORK] Yavatkar, R. and D. Pendarakis, "A Framework for
                  Policy-based Admission Control", RFC 2753, January
                  2000.

  [SNMP-SMI]      McCloghrie, K., Perkins, D., Schoenwaelder, J.,
                  Case, J., Rose, M. and S. Waldbusser, "Structure
                  of Management Information Version 2 (SMIv2)",
                  STD 58, RFC 2578, April 1999.

  [MODEL]         Bernet, Y., Blake, S., Grossman, D. and A. Smith
                  "An Informal Management Model for Diffserv Routers",
                  RFC 3290, May 2002.

  [IFMIB]         McCloghrie, K. and F. Kastenholz, "The Interfaces
                  Group MIB", RFC 2863, June 2000.






Chan, et al.                 Informational                     [Page 92]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  [DS-MIB]        Baker, F., Chan, K. and A. Smith, "Management
                  Information Base for the Differentiated Services
                  Architecture", RFC 3289, May 2002.

  [ACTQMGMT]      Firoiu, V. and M. Borden, "A Study of Active Queue
                  Management for Congestion Control", March 2000, In
                  IEEE Infocom 2000, http://www.ieee-infocom.org/
                  2000/papers/405.pdf

  [AQMROUTER]     Misra, V., Gong, W. and D. Towsley, "Fluid-based
                  analysis of a network of AQM routers supporting TCP
                  flows with an application to RED", In SIGCOMM 2000,
                  http://www.acm.org/sigcomm/sigcomm2000/conf/paper/
                  sigcomm2000-4-3.ps.gz

  [AF-PHB]        Heinanen, J., Baker, F., Weiss, W. and J. Wroclawski,
                  "Assured Forwarding PHB Group", RFC 2597, June 1999.

  [EF-PHB]        Jacobson, V., Nichols, K. and K. Poduri, "An
                  Expedited Forwarding PHB", RFC 2598, June 1999.

  [INTSERVMIB]    Baker, F., Krawczyk, J. and A. Sastry, "Integrated
                  Services Management Information Base using SMIv2",
                  RFC 2213, September 1997.

  [QUEUEMGMT]     Braden, B., Clark, D., Crowcroft, J., Davie, B.,
                  Deering, S., Estrin, D., Floyd, S., Jacobson, V.,
                  Minshall, G., Partridge, C., Peterson, L.,
                  Ramakrishnan, K., Shenker, S., Wroclawski, J.
                  and L. Zhang, "Recommendations on Queue Management
                  and Congestion Avoidance in the Internet", RFC 2309,
                  April 1998.

  [SRTCM]         Heinanen, J. and R. Guerin, "A Single Rate Three
                  Color Marker", RFC 2697, September 1999.

  [TRTCM]         Heinanen, J. and R. Guerin, "A Two Rate Three Color
                  Marker", RFC 2698, September 1999.

  [TSWTCM]        Fang, W., Seddigh, N. and B. Nandy, "A Time Sliding
                  Window Three Colour Marker", RFC 2859, June 2000.

  [RFC2026]       Bradner, S., "The Internet Standards Process --
                  Revision 3", BCP 9, RFC 2026, October 1996.

  [RFC2119]       Bradner, S., "Key words for use in RFCs to Indicate
                  Requirement Levels", BCP 14, RFC 2119, March 1997.




Chan, et al.                 Informational                     [Page 93]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


  [RFC2579]       McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
                  J., Rose, M. and S. Waldbusser, "Textual Conventions
                  for SMIv2", STD 58, RFC 2579, April 1999.

  [SHAPER]        Bonaventure, O. and S. De Cnodder, "A Rate Adaptive
                  Shaper for Differentiated Services", RFC 2963,
                  October 2000.

  [POLTERM]       Westerinen, A., Schnizlein, J., Strassner, J.,
                  Scherling, M., Quinn, B., Herzog, S., Huynh, A.,
                  Carlson, M., Perry, J. and S. Waldbusser,
                  "Terminology for Policy-Based Management",
                  RFC 3198, November 2001.






































Chan, et al.                 Informational                     [Page 94]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


14.  Authors' Addresses

  Kwok Ho Chan
  Nortel Networks, Inc.
  600 Technology Park Drive
  Billerica, MA 01821 USA

  Phone: +1 978 288 8175
  EMail: [email protected]


  Ravi Sahita
  Intel Labs.
  2111 NE 25th Avenue
  Hillsboro, OR 97124 USA

  Phone: +1 503 712 1554
  EMail: [email protected]


  Scott Hahn
  Intel
  2111 NE 25th Avenue
  Hillsboro, OR 97124 USA

  Phone: +1 503 264 8231
  EMail: [email protected]


  Keith McCloghrie
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA  95134-1706 USA

  Phone: +1 408 526 5260
  EMail: [email protected]















Chan, et al.                 Informational                     [Page 95]

RFC 3317          DiffServ QoS Policy Information Base        March 2003


15.  Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Chan, et al.                 Informational                     [Page 96]