Network Working Group                                      R. Droms, Ed.
Request for Comments: 3315                                         Cisco
Category: Standards Track                                       J. Bound
                                                        Hewlett Packard
                                                                B. Volz
                                                               Ericsson
                                                               T. Lemon
                                                                Nominum
                                                             C. Perkins
                                                  Nokia Research Center
                                                              M. Carney
                                                       Sun Microsystems
                                                              July 2003


        Dynamic Host Configuration Protocol for IPv6 (DHCPv6)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  The Dynamic Host Configuration Protocol for IPv6 (DHCP) enables DHCP
  servers to pass configuration parameters such as IPv6 network
  addresses to IPv6 nodes.  It offers the capability of automatic
  allocation of reusable network addresses and additional configuration
  flexibility.  This protocol is a stateful counterpart to "IPv6
  Stateless Address Autoconfiguration" (RFC 2462), and can be used
  separately or concurrently with the latter to obtain configuration
  parameters.












Droms, et al.               Standards Track                     [Page 1]

RFC 3315                     DHCP for IPv6                     July 2003


Table of Contents

  1.  Introduction and Overview . . . . . . . . . . . . . . . . . .   5
      1.1.   Protocols and Addressing . . . . . . . . . . . . . . .   6
      1.2.   Client-server Exchanges Involving Two Messages . . . .   6
      1.3.   Client-server Exchanges Involving Four Messages. . . .   7
  2.  Requirements. . . . . . . . . . . . . . . . . . . . . . . . .   7
  3.  Background. . . . . . . . . . . . . . . . . . . . . . . . . .   8
  4.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   8
      4.1.   IPv6 Terminology . . . . . . . . . . . . . . . . . . .   9
      4.2.   DHCP Terminology . . . . . . . . . . . . . . . . . . .  10
  5.  DHCP Constants. . . . . . . . . . . . . . . . . . . . . . . .  12
      5.1.   Multicast Addresses. . . . . . . . . . . . . . . . . .  13
      5.2.   UDP Ports. . . . . . . . . . . . . . . . . . . . . . .  13
      5.3.   DHCP Message Types . . . . . . . . . . . . . . . . . .  13
      5.4.   Status Codes . . . . . . . . . . . . . . . . . . . . .  15
      5.5.   Transmission and Retransmission Parameters . . . . . .  16
      5.6    Representation of time values and "Infinity" as a time
             value. . . . . . . . . . . . . . . . . . . . . . . . .  16
  6.  Client/Server Message Formats . . . . . . . . . . . . . . . .  16
  7.  Relay Agent/Server Message Formats. . . . . . . . . . . . . .  17
      7.1.   Relay-forward Message. . . . . . . . . . . . . . . . .  18
      7.2.   Relay-reply Message. . . . . . . . . . . . . . . . . .  19
  8.  Representation and Use of Domain Names. . . . . . . . . . . .  19
  9.  DHCP Unique Identifier (DUID) . . . . . . . . . . . . . . . .  19
      9.1.   DUID Contents. . . . . . . . . . . . . . . . . . . . .  20
      9.2.   DUID Based on Link-layer Address Plus Time [DUID-LLT].  20
      9.3.   DUID Assigned by Vendor Based on Enterprise Number
             [DUID-EN]. . . . . . . . . . . . . . . . . . . . . . .  22
      9.4.   DUID Based on Link-layer Address [DUID-LL] . . . . . .  22
  10. Identity Association. . . . . . . . . . . . . . . . . . . . .  23
  11. Selecting Addresses for Assignment to an IA . . . . . . . . .  24
  12. Management of Temporary Addresses . . . . . . . . . . . . . .  25
  13. Transmission of Messages by a Client. . . . . . . . . . . . .  25
  14. Reliability of Client Initiated Message Exchanges . . . . . .  26
  15. Message Validation. . . . . . . . . . . . . . . . . . . . . .  27
      15.1.  Use of Transaction IDs . . . . . . . . . . . . . . . .  28
      15.2.  Solicit Message. . . . . . . . . . . . . . . . . . . .  28
      15.3.  Advertise Message. . . . . . . . . . . . . . . . . . .  28
      15.4.  Request Message. . . . . . . . . . . . . . . . . . . .  29
      15.5.  Confirm Message. . . . . . . . . . . . . . . . . . . .  29
      15.6.  Renew Message. . . . . . . . . . . . . . . . . . . . .  29
      15.7.  Rebind Message . . . . . . . . . . . . . . . . . . . .  29
      15.8.  Decline Messages . . . . . . . . . . . . . . . . . . .  30
      15.9.  Release Message. . . . . . . . . . . . . . . . . . . .  30
      15.10. Reply Message. . . . . . . . . . . . . . . . . . . . .  30
      15.11. Reconfigure Message. . . . . . . . . . . . . . . . . .  31
      15.12. Information-request Message. . . . . . . . . . . . . .  31



Droms, et al.               Standards Track                     [Page 2]

RFC 3315                     DHCP for IPv6                     July 2003


      15.13. Relay-forward Message. . . . . . . . . . . . . . . . .  31
      15.14. Relay-reply Message. . . . . . . . . . . . . . . . . .  31
  16. Client Source Address and Interface Selection . . . . . . . .  32
  17. DHCP Server Solicitation. . . . . . . . . . . . . . . . . . .  32
      17.1.  Client Behavior. . . . . . . . . . . . . . . . . . . .  32
             17.1.1. Creation of Solicit Messages . . . . . . . . .  32
             17.1.2. Transmission of Solicit Messages . . . . . . .  33
             17.1.3. Receipt of Advertise Messages. . . . . . . . .  35
             17.1.4. Receipt of Reply Message . . . . . . . . . . .  35
      17.2.  Server Behavior. . . . . . . . . . . . . . . . . . . .  36
             17.2.1. Receipt of Solicit Messages  . . . . . . . . .  36
             17.2.2. Creation and Transmission of Advertise Messages 36
             17.2.3. Creation and Transmission of Reply Messages. .  38
  18. DHCP Client-Initiated Configuration Exchange. . . . . . . . .  38
      18.1.  Client Behavior. . . . . . . . . . . . . . . . . . . .  39
             18.1.1. Creation and Transmission of Request Messages.  39
             18.1.2. Creation and Transmission of Confirm Messages.  40
             18.1.3. Creation and Transmission of Renew Messages. .  41
             18.1.4. Creation and Transmission of Rebind Messages .  43
             18.1.5. Creation and Transmission of Information-
                     request Messages  . . .. . . . . . . . . . . .  44
             18.1.6. Creation and Transmission of Release Messages.  44
             18.1.7. Creation and Transmission of Decline Messages.  46
             18.1.8. Receipt of Reply Messages. . . . . . . . . . .  46
      18.2.  Server Behavior. . . . . . . . . . . . . . . . . . . .  48
             18.2.1. Receipt of Request Messages. . . . . . . . . .  49
             18.2.2. Receipt of Confirm Messages. . . . . . . . . .  50
             18.2.3. Receipt of Renew Messages. . . . . . . . . . .  51
             18.2.4. Receipt of Rebind Messages . . . . . . . . . .  51
             18.2.5. Receipt of Information-request Messages. . . .  52
             18.2.6. Receipt of Release Messages. . . . . . . . . .  53
             18.2.7. Receipt of Decline Messages. . . . . . . . . .  53
             18.2.8. Transmission of Reply Messages . . . . . . . .  54
  19. DHCP Server-Initiated Configuration Exchange. . . . . . . . .  54
      19.1.  Server Behavior. . . . . . . . . . . . . . . . . . . .  55
             19.1.1. Creation and Transmission of Reconfigure
                     Messages . . . . . . . . . . . . . . . . . . .  55
             19.1.2. Time Out and Retransmission of Reconfigure
                     Messages . . . . . . . . . . . . . . . . . . .  56
      19.2.  Receipt of Renew Messages. . . . . . . . . . . . . . .  56
      19.3.  Receipt of Information-request Messages. . . . . . . .  56
      19.4.  Client Behavior. . . . . . . . . . . . . . . . . . . .  57
             19.4.1. Receipt of Reconfigure Messages. . . . . . . .  57
             19.4.2. Creation and Transmission of Renew Messages. .  58
             19.4.3. Creation and Transmission of Information-
                     request Messages . . . . . . . . . . . . . . .  58
             19.4.4. Time Out and Retransmission of Renew or
                     Information-request Messages . . . . . . . . .  58



Droms, et al.               Standards Track                     [Page 3]

RFC 3315                     DHCP for IPv6                     July 2003


             19.4.5. Receipt of Reply Messages. . . . . . . . . . .  58
  20. Relay Agent Behavior. . . . . . . . . . . . . . . . . . . . .  58
      20.1.  Relaying a Client Message or a Relay-forward Message .  59
             20.1.1. Relaying a Message from a Client . . . . . . .  59
             20.1.2. Relaying a Message from a Relay Agent. . . . .  59
      20.2.  Relaying a Relay-reply Message . . . . . . . . . . . .  60
      20.3.  Construction of Relay-reply Messages . . . . . . . . .  60
  21. Authentication of DHCP Messages . . . . . . . . . . . . . . .  61
      21.1.  Security of Messages Sent Between Servers and Relay
             Agents  . . . . . .  . . . . . . . . . . . . . . . . .  61
      21.2.  Summary of DHCP Authentication . . . . . . . . . . . .  63
      21.3.  Replay Detection . . . . . . . . . . . . . . . . . . .  63
      21.4.  Delayed Authentication Protocol. . . . . . . . . . . .  63
             21.4.1. Use of the Authentication Option in the Delayed
                     Authentication Protocol. . . . . . . . . . . .  64
             21.4.2. Message Validation . . . . . . . . . . . . . .  65
             21.4.3. Key Utilization  . . . . . . . . . . . . . . .  65
             21.4.4. Client Considerations for Delayed Authentication
                     Protocol . . . . . . . . . . . . . . . . . . .  66
             21.4.5. Server Considerations for Delayed Authentication
                     Protocol . . . . . . . . . . . . . . . . . . .  67
      21.5.  Reconfigure Key Authentication Protocol. . . . . . . .  68
             21.5.1. Use of the Authentication Option in the
                     Reconfigure Key Authentication Protocol. . . .  69
             21.5.2. Server considerations for Reconfigure Key
                     protocol . . . . . . . . . . . . . . . . . . .  69
             21.5.3. Client considerations for Reconfigure Key
                     protocol . . . . . . . . . . . . . . . . . . .  70
  22. DHCP Options. . . . . . . . . . . . . . . . . . . . . . . . .  70
      22.1.  Format of DHCP Options . . . . . . . . . . . . . . . .  71
      22.2.  Client Identifier Option . . . . . . . . . . . . . . .  71
      22.3.  Server Identifier Option . . . . . . . . . . . . . . .  72
      22.4.  Identity Association for Non-temporary Addresses Option 72
      22.5.  Identity Association for Temporary Addresses Option. .  75
      22.6.  IA Address Option. . . . . . . . . . . . . . . . . . .  76
      22.7.  Option Request Option. . . . . . . . . . . . . . . . .  78
      22.8.  Preference Option. . . . . . . . . . . . . . . . . . .  79
      22.9.  Elapsed Time Option. . . . . . . . . . . . . . . . . .  79
      22.10. Relay Message Option . . . . . . . . . . . . . . . . .  80
      22.11. Authentication Option. . . . . . . . . . . . . . . . .  81
      22.12. Server Unicast Option. . . . . . . . . . . . . . . . .  82
      22.13. Status Code Option . . . . . . . . . . . . . . . . . .  82
      22.14. Rapid Commit Option. . . . . . . . . . . . . . . . . .  83
      22.15. User Class Option. . . . . . . . . . . . . . . . . . .  84
      22.16. Vendor Class Option. . . . . . . . . . . . . . . . . .  85
      22.17. Vendor-specific Information Option . . . . . . . . . .  86
      22.18. Interface-Id Option. . . . . . . . . . . . . . . . . .  87
      22.19. Reconfigure Message Option . . . . . . . . . . . . . .  88



Droms, et al.               Standards Track                     [Page 4]

RFC 3315                     DHCP for IPv6                     July 2003


      22.20. Reconfigure Accept Option. . . . . . . . . . . . . . .  89
  23. Security Considerations . . . . . . . . . . . . . . . . . . .  89
  24. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  91
      24.1.  Multicast Addresses. . . . . . . . . . . . . . . . . .  92
      24.2.  DHCP Message Types . . . . . . . . . . . . . . . . . .  93
      24.3.  DHCP Options . . . . . . . . . . . . . . . . . . . . .  94
      24.4.  Status Codes . . . . . . . . . . . . . . . . . . . . .  95
      24.5.  DUID . . . . . . . . . . . . . . . . . . . . . . . . .  95
  25. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  95
  26. References. . . . . . . . . . . . . . . . . . . . . . . . . .  96
      26.1.  Normative References . . . . . . . . . . . . . . . . .  96
      26.2.  Informative References . . . . . . . . . . . . . . . .  97
  A. Appearance of Options in Message Types . . . . . . . . . . . .  98
  B. Appearance of Options in the Options Field of DHCP Options . .  99
  Chair's Address . . . . . . . . . . . . . . . . . . . . . . . . .  99
  Authors' Addresses. . . . . . . . . . . . . . . . . . . . . . . . 100
  Full Copyright Statement. . . . . . . . . . . . . . . . . . . . . 101

1. Introduction and Overview

  This document describes DHCP for IPv6 (DHCP), a client/server
  protocol that provides managed configuration of devices.

  DHCP can provide a device with addresses assigned by a DHCP server
  and other configuration information, which are carried in options.
  DHCP can be extended through the definition of new options to carry
  configuration information not specified in this document.

  DHCP is the "stateful address autoconfiguration protocol" and the
  "stateful autoconfiguration protocol" referred to in "IPv6 Stateless
  Address Autoconfiguration" [17].

  The operational models and relevant configuration information for
  DHCPv4 [18][19] and DHCPv6 are sufficiently different that
  integration between the two services is not included in this
  document.  If there is sufficient interest and demand, integration
  can be specified in a document that extends DHCPv6 to carry IPv4
  addresses and configuration information.

  The remainder of this introduction summarizes DHCP, explaining the
  message exchange mechanisms and example message flows.  The message
  flows in sections 1.2 and 1.3 are intended as illustrations of DHCP
  operation rather than an exhaustive list of all possible
  client-server interactions.  Sections 17, 18, and 19 explain client
  and server operation in detail.






Droms, et al.               Standards Track                     [Page 5]

RFC 3315                     DHCP for IPv6                     July 2003


1.1. Protocols and Addressing

  Clients and servers exchange DHCP messages using UDP [15].  The
  client uses a link-local address or addresses determined through
  other mechanisms for transmitting and receiving DHCP messages.

  DHCP servers receive messages from clients using a reserved,
  link-scoped multicast address.  A DHCP client transmits most messages
  to this reserved multicast address, so that the client need not be
  configured with the address or addresses of DHCP servers.

  To allow a DHCP client to send a message to a DHCP server that is not
  attached to the same link, a DHCP relay agent on the client's link
  will relay messages between the client and server.  The operation of
  the relay agent is transparent to the client and the discussion of
  message exchanges in the remainder of this section will omit the
  description of message relaying by relay agents.

  Once the client has determined the address of a server, it may under
  some circumstances send messages directly to the server using
  unicast.

1.2. Client-server Exchanges Involving Two Messages

  When a DHCP client does not need to have a DHCP server assign it IP
  addresses, the client can obtain configuration information such as a
  list of available DNS servers [20] or NTP servers [21] through a
  single message and reply exchanged with a DHCP server.  To obtain
  configuration information the client first sends an
  Information-Request message to the All_DHCP_Relay_Agents_and_Servers
  multicast address.  Servers respond with a Reply message containing
  the configuration information for the client.

  This message exchange assumes that the client requires only
  configuration information and does not require the assignment of any
  IPv6 addresses.

  When a server has IPv6 addresses and other configuration information
  committed to a client, the client and server may be able to complete
  the exchange using only two messages, instead of four messages as
  described in the next section.  In this case, the client sends a
  Solicit message to the All_DHCP_Relay_Agents_and_Servers requesting
  the assignment of addresses and other configuration information.
  This message includes an indication that the client is willing to
  accept an immediate Reply message from the server.  The server that
  is willing to commit the assignment of addresses to the client





Droms, et al.               Standards Track                     [Page 6]

RFC 3315                     DHCP for IPv6                     July 2003


  immediately responds with a Reply message.  The configuration
  information and the addresses in the Reply message are then
  immediately available for use by the client.

  Each address assigned to the client has associated preferred and
  valid lifetimes specified by the server.  To request an extension of
  the lifetimes assigned to an address, the client sends a Renew
  message to the server.  The server sends a Reply message to the
  client with the new lifetimes, allowing the client to continue to use
  the address without interruption.

1.3. Client-server Exchanges Involving Four Messages

  To request the assignment of one or more IPv6 addresses, a client
  first locates a DHCP server and then requests the assignment of
  addresses and other configuration information from the server.  The
  client sends a Solicit message to the
  All_DHCP_Relay_Agents_and_Servers address to find available DHCP
  servers.  Any server that can meet the client's requirements responds
  with an Advertise message.  The client then chooses one of the
  servers and sends a Request message to the server asking for
  confirmed assignment of addresses and other configuration
  information.  The server responds with a Reply message that contains
  the confirmed addresses and configuration.

  As described in the previous section, the client sends a Renew
  message to the server to extend the lifetimes associated with its
  addresses, allowing the client to continue to use those addresses
  without interruption.

2. Requirements

  The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
  SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
  document, are to be interpreted as described in [1].

  This document also makes use of internal conceptual variables to
  describe protocol behavior and external variables that an
  implementation must allow system administrators to change.  The
  specific variable names, how their values change, and how their
  settings influence protocol behavior are provided to demonstrate
  protocol behavior.  An implementation is not required to have them in
  the exact form described here, so long as its external behavior is
  consistent with that described in this document.







Droms, et al.               Standards Track                     [Page 7]

RFC 3315                     DHCP for IPv6                     July 2003


3. Background

  The IPv6 Specification provides the base architecture and design of
  IPv6.  Related work in IPv6 that would best serve an implementor to
  study includes the IPv6 Specification [3], the IPv6 Addressing
  Architecture [5], IPv6 Stateless Address Autoconfiguration [17], IPv6
  Neighbor Discovery Processing [13], and Dynamic Updates to DNS [22].
  These specifications enable DHCP to build upon the IPv6 work to
  provide both robust stateful autoconfiguration and autoregistration
  of DNS Host Names.

  The IPv6 Addressing Architecture specification [5] defines the
  address scope that can be used in an IPv6 implementation, and the
  various configuration architecture guidelines for network designers
  of the IPv6 address space.  Two advantages of IPv6 are that support
  for multicast is required and nodes can create link-local addresses
  during initialization.  The availability of these features means that
  a client can use its link-local address and a well-known multicast
  address to discover and communicate with DHCP servers or relay agents
  on its link.

  IPv6 Stateless Address Autoconfiguration [17] specifies procedures by
  which a node may autoconfigure addresses based on router
  advertisements [13], and the use of a valid lifetime to support
  renumbering of addresses on the Internet.  In addition, the protocol
  interaction by which a node begins stateless or stateful
  autoconfiguration is specified.  DHCP is one vehicle to perform
  stateful autoconfiguration.  Compatibility with stateless address
  autoconfiguration is a design requirement of DHCP.

  IPv6 Neighbor Discovery [13] is the node discovery protocol in IPv6
  which replaces and enhances functions of ARP [14].  To understand
  IPv6 and stateless address autoconfiguration, it is strongly
  recommended that implementors understand IPv6 Neighbor Discovery.

  Dynamic Updates to DNS [22] is a specification that supports the
  dynamic update of DNS records for both IPv4 and IPv6.  DHCP can use
  the dynamic updates to DNS to integrate addresses and name space to
  not only support autoconfiguration, but also autoregistration in
  IPv6.

4. Terminology

  This sections defines terminology specific to IPv6 and DHCP used in
  this document.






Droms, et al.               Standards Track                     [Page 8]

RFC 3315                     DHCP for IPv6                     July 2003


4.1. IPv6 Terminology

  IPv6 terminology relevant to this specification from the IPv6
  Protocol [3], IPv6 Addressing Architecture [5], and IPv6 Stateless
  Address Autoconfiguration [17] is included below.

     address                   An IP layer identifier for an interface
                               or a set of interfaces.

     host                      Any node that is not a router.

     IP                        Internet Protocol Version 6 (IPv6).  The
                               terms IPv4 and IPv6 are used only in
                               contexts where it is necessary to avoid
                               ambiguity.

     interface                 A node's attachment to a link.

     link                      A communication facility or medium over
                               which nodes can communicate at the link
                               layer, i.e., the layer immediately
                               below IP.  Examples are Ethernet (simple
                               or bridged); Token Ring; PPP links,
                               X.25, Frame Relay, or ATM networks; and
                               Internet (or higher) layer "tunnels",
                               such as tunnels over IPv4 or IPv6
                               itself.

     link-layer identifier     A link-layer identifier for an
                               interface.  Examples include IEEE 802
                               addresses for Ethernet or Token Ring
                               network interfaces, and E.164 addresses
                               for ISDN links.

     link-local address        An IPv6 address having a link-only
                               scope, indicated by having the prefix
                               (FE80::/10), that can be used to reach
                               neighboring nodes attached to the same
                               link.  Every interface has a link-local
                               address.

     multicast address         An identifier for a set of interfaces
                               (typically belonging to different
                               nodes).  A packet sent to a multicast
                               address is delivered to all interfaces
                               identified by that address.

     neighbor                  A node attached to the same link.



Droms, et al.               Standards Track                     [Page 9]

RFC 3315                     DHCP for IPv6                     July 2003


     node                      A device that implements IP.

     packet                    An IP header plus payload.

     prefix                    The initial bits of an address, or a
                               set of IP addresses that share the same
                               initial bits.

     prefix length             The number of bits in a prefix.

     router                    A node that forwards IP packets not
                               explicitly addressed to itself.

     unicast address           An identifier for a single interface.
                               A packet sent to a unicast address is
                               delivered to the interface identified by
                               that address.

4.2. DHCP Terminology

  Terminology specific to DHCP can be found below.

     appropriate to the link   An address is "appropriate to the link"
                               when the address is consistent with the
                               DHCP server's knowledge of the network
                               topology, prefix assignment and address
                               assignment policies.

     binding                   A binding (or, client binding) is a
                               group of server data records containing
                               the information the server has about
                               the addresses in an IA or configuration
                               information explicitly assigned to the
                               client.  Configuration information that
                               has been returned to a client through a
                               policy - for example, the information
                               returned to all clients on the same
                               link - does not require a binding.  A
                               binding containing information about
                               an IA is indexed by the tuple <DUID,
                               IA-type, IAID> (where IA-type is the
                               type of address in the IA; for example,
                               temporary).  A binding containing
                               configuration information for a client
                               is indexed by <DUID>.






Droms, et al.               Standards Track                    [Page 10]

RFC 3315                     DHCP for IPv6                     July 2003


     configuration parameter   An element of the configuration
                               information set on the server and
                               delivered to the client using DHCP.
                               Such parameters may be used to carry
                               information to be used by a node to
                               configure its network subsystem and
                               enable communication on a link or
                               internetwork, for example.

     DHCP                      Dynamic Host Configuration Protocol
                               for IPv6.  The terms DHCPv4 and DHCPv6
                               are used only in contexts where it is
                               necessary to avoid ambiguity.

     DHCP client (or client)   A node that initiates requests on a link
                               to obtain configuration parameters from
                               one or more DHCP servers.

     DHCP domain               A set of links managed by DHCP and
                               operated by a single administrative
                               entity.

     DHCP realm                A name used to identify the DHCP
                               administrative domain from which a DHCP
                               authentication key was selected.

     DHCP relay agent (or relay agent) A node that acts as an
                               intermediary to deliver DHCP messages
                               between clients and servers, and is on
                               the same link as the client.

     DHCP server (or server)   A node that responds to requests from
                               clients, and may or may not be on the
                               same link as the client(s).

     DUID                      A DHCP Unique IDentifier for a DHCP
                               participant; each DHCP client and server
                               has exactly one DUID.  See section 9 for
                               details of the ways in which a DUID may
                               be constructed.

     Identity association (IA) A collection of addresses assigned to
                               a client.  Each IA has an associated
                               IAID.  A client may have more than one
                               IA assigned to it; for example, one for
                               each of its interfaces.





Droms, et al.               Standards Track                    [Page 11]

RFC 3315                     DHCP for IPv6                     July 2003


                               Each IA holds one type of address;
                               for example, an identity association
                               for temporary addresses (IA_TA) holds
                               temporary addresses (see "identity
                               association for temporary addresses").
                               Throughout this document, "IA" is used
                               to refer to an identity association
                               without identifying the type of
                               addresses in the IA.

     Identity association identifier (IAID) An identifier for an IA,
                               chosen by the client.  Each IA has an
                               IAID, which is chosen to be unique among
                               all IAIDs for IAs belonging to that
                               client.

     Identity association for non-temporary addresses (IA_NA) An IA
                               that carries assigned addresses that are
                               not temporary addresses (see "identity
                               association for temporary addresses")

     Identity association for temporary addresses (IA_TA) An IA that
                               carries temporary addresses (see RFC
                               3041 [12]).

     message                   A unit of data carried as the payload
                               of a UDP datagram, exchanged among DHCP
                               servers, relay agents and clients.

     Reconfigure key           A key supplied to a client by a server
                               used to provide security for Reconfigure
                               messages.

     relaying                  A DHCP relay agent relays DHCP messages
                               between DHCP participants.

     transaction ID            An opaque value used to match responses
                               with replies initiated either by a
                               client or server.

5. DHCP Constants

  This section describes various program and networking constants used
  by DHCP.







Droms, et al.               Standards Track                    [Page 12]

RFC 3315                     DHCP for IPv6                     July 2003


5.1. Multicast Addresses

  DHCP makes use of the following multicast addresses:

     All_DHCP_Relay_Agents_and_Servers (FF02::1:2) A link-scoped
                 multicast address used by a client to communicate with
                 neighboring (i.e., on-link) relay agents and servers.
                 All servers and relay agents are members of this
                 multicast group.

     All_DHCP_Servers (FF05::1:3) A site-scoped multicast address used
                 by a relay agent to communicate with servers, either
                 because the relay agent wants to send messages to
                 all servers or because it does not know the unicast
                 addresses of the servers.  Note that in order for
                 a relay agent to use this address, it must have an
                 address of sufficient scope to be reachable by the
                 servers.  All servers within the site are members of
                 this multicast group.

5.2. UDP Ports

  Clients listen for DHCP messages on UDP port 546.  Servers and relay
  agents listen for DHCP messages on UDP port 547.

5.3. DHCP Message Types

  DHCP defines the following message types.  More detail on these
  message types can be found in sections 6 and 7.  Message types not
  listed here are reserved for future use.  The numeric encoding for
  each message type is shown in parentheses.

     SOLICIT (1)        A client sends a Solicit message to locate
                        servers.

     ADVERTISE (2)      A server sends an Advertise message to indicate
                        that it is available for DHCP service, in
                        response to a Solicit message received from a
                        client.

     REQUEST (3)        A client sends a Request message to request
                        configuration parameters, including IP
                        addresses, from a specific server.

     CONFIRM (4)        A client sends a Confirm message to any
                        available server to determine whether the
                        addresses it was assigned are still appropriate
                        to the link to which the client is connected.



Droms, et al.               Standards Track                    [Page 13]

RFC 3315                     DHCP for IPv6                     July 2003


     RENEW (5)          A client sends a Renew message to the server
                        that originally provided the client's addresses
                        and configuration parameters to extend the
                        lifetimes on the addresses assigned to the
                        client and to update other configuration
                        parameters.

     REBIND (6)         A client sends a Rebind message to any
                        available server to extend the lifetimes on the
                        addresses assigned to the client and to update
                        other configuration parameters; this message is
                        sent after a client receives no response to a
                        Renew message.

     REPLY (7)          A server sends a Reply message containing
                        assigned addresses and configuration parameters
                        in response to a Solicit, Request, Renew,
                        Rebind message received from a client.  A
                        server sends a Reply message containing
                        configuration parameters in response to an
                        Information-request message.  A server sends a
                        Reply message in response to a Confirm message
                        confirming or denying that the addresses
                        assigned to the client are appropriate to the
                        link to which the client is connected.  A
                        server sends a Reply message to acknowledge
                        receipt of a Release or Decline message.

     RELEASE (8)        A client sends a Release message to the server
                        that assigned addresses to the client to
                        indicate that the client will no longer use one
                        or more of the assigned addresses.

     DECLINE (9)        A client sends a Decline message to a server to
                        indicate that the client has determined that
                        one or more addresses assigned by the server
                        are already in use on the link to which the
                        client is connected.

     RECONFIGURE (10)   A server sends a Reconfigure message to a
                        client to inform the client that the server has
                        new or updated configuration parameters, and
                        that the client is to initiate a Renew/Reply
                        or Information-request/Reply transaction with
                        the server in order to receive the updated
                        information.





Droms, et al.               Standards Track                    [Page 14]

RFC 3315                     DHCP for IPv6                     July 2003


     INFORMATION-REQUEST (11) A client sends an Information-request
                        message to a server to request configuration
                        parameters without the assignment of any IP
                        addresses to the client.

     RELAY-FORW (12)    A relay agent sends a Relay-forward message
                        to relay messages to servers, either directly
                        or through another relay agent.  The received
                        message, either a client message or a
                        Relay-forward message from another relay
                        agent, is encapsulated in an option in the
                        Relay-forward message.

     RELAY-REPL (13)    A server sends a Relay-reply message to a relay
                        agent containing a message that the relay
                        agent delivers to a client.  The Relay-reply
                        message may be relayed by other relay agents
                        for delivery to the destination relay agent.

                        The server encapsulates the client message as
                        an option in the Relay-reply message, which the
                        relay agent extracts and relays to the client.

5.4. Status Codes

  DHCPv6 uses status codes to communicate the success or failure of
  operations requested in messages from clients and servers, and to
  provide additional information about the specific cause of the
  failure of a message.  The specific status codes are defined in
  section 24.4.





















Droms, et al.               Standards Track                    [Page 15]

RFC 3315                     DHCP for IPv6                     July 2003


5.5. Transmission and Retransmission Parameters

  This section presents a table of values used to describe the message
  transmission behavior of clients and servers.

  Parameter     Default  Description
  -------------------------------------
  SOL_MAX_DELAY     1 sec   Max delay of first Solicit
  SOL_TIMEOUT       1 sec   Initial Solicit timeout
  SOL_MAX_RT      120 secs  Max Solicit timeout value
  REQ_TIMEOUT       1 sec   Initial Request timeout
  REQ_MAX_RT       30 secs  Max Request timeout value
  REQ_MAX_RC       10       Max Request retry attempts
  CNF_MAX_DELAY     1 sec   Max delay of first Confirm
  CNF_TIMEOUT       1 sec   Initial Confirm timeout
  CNF_MAX_RT        4 secs  Max Confirm timeout
  CNF_MAX_RD       10 secs  Max Confirm duration
  REN_TIMEOUT      10 secs  Initial Renew timeout
  REN_MAX_RT      600 secs  Max Renew timeout value
  REB_TIMEOUT      10 secs  Initial Rebind timeout
  REB_MAX_RT      600 secs  Max Rebind timeout value
  INF_MAX_DELAY     1 sec   Max delay of first Information-request
  INF_TIMEOUT       1 sec   Initial Information-request timeout
  INF_MAX_RT      120 secs  Max Information-request timeout value
  REL_TIMEOUT       1 sec   Initial Release timeout
  REL_MAX_RC        5       MAX Release attempts
  DEC_TIMEOUT       1 sec   Initial Decline timeout
  DEC_MAX_RC        5       Max Decline attempts
  REC_TIMEOUT       2 secs  Initial Reconfigure timeout
  REC_MAX_RC        8       Max Reconfigure attempts
  HOP_COUNT_LIMIT  32       Max hop count in a Relay-forward message

5.6  Representation of time values and "Infinity" as a time value

  All time values for lifetimes, T1 and T2 are unsigned integers.  The
  value 0xffffffff is taken to mean "infinity" when used as a lifetime
  (as in RFC2461 [17]) or a value for T1 or T2.

6. Client/Server Message Formats

  All DHCP messages sent between clients and servers share an identical
  fixed format header and a variable format area for options.

  All values in the message header and in options are in network byte
  order.






Droms, et al.               Standards Track                    [Page 16]

RFC 3315                     DHCP for IPv6                     July 2003


  Options are stored serially in the options field, with no padding
  between the options.  Options are byte-aligned but are not aligned in
  any other way such as on 2 or 4 byte boundaries.

  The following diagram illustrates the format of DHCP messages sent
  between clients and servers:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    msg-type   |               transaction-id                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     .                            options                            .
     .                           (variable)                          .
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     msg-type             Identifies the DHCP message type; the
                          available message types are listed in
                          section 5.3.

     transaction-id       The transaction ID for this message exchange.

     options              Options carried in this message; options are
                          described in section 22.

7. Relay Agent/Server Message Formats

  Relay agents exchange messages with servers to relay messages between
  clients and servers that are not connected to the same link.

  All values in the message header and in options are in network byte
  order.

  Options are stored serially in the options field, with no padding
  between the options.  Options are byte-aligned but are not aligned in
  any other way such as on 2 or 4 byte boundaries.













Droms, et al.               Standards Track                    [Page 17]

RFC 3315                     DHCP for IPv6                     July 2003


  There are two relay agent messages, which share the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    msg-type   |   hop-count   |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
     |                                                               |
     |                         link-address                          |
     |                                                               |
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
     |                               |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
     |                                                               |
     |                         peer-address                          |
     |                                                               |
     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
     |                               |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
     .                                                               .
     .            options (variable number and length)   ....        .
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The following sections describe the use of the Relay Agent message
  header.

7.1. Relay-forward Message

  The following table defines the use of message fields in a Relay-
  forward message.

     msg-type       RELAY-FORW

     hop-count      Number of relay agents that have relayed this
                    message.

     link-address   A global or site-local address that will be used by
                    the server to identify the link on which the client
                    is located.

     peer-address   The address of the client or relay agent from which
                    the message to be relayed was received.

     options        MUST include a "Relay Message option" (see
                    section 22.10); MAY include other options added by
                    the relay agent.




Droms, et al.               Standards Track                    [Page 18]

RFC 3315                     DHCP for IPv6                     July 2003


7.2. Relay-reply Message

  The following table defines the use of message fields in a
  Relay-reply message.

     msg-type       RELAY-REPL

     hop-count      Copied from the Relay-forward message

     link-address   Copied from the Relay-forward message

     peer-address   Copied from the Relay-forward message

     options        MUST include a "Relay Message option"; see
                    section 22.10; MAY include other options

8. Representation and Use of Domain Names

  So that domain names may be encoded uniformly, a domain name or a
  list of domain names is encoded using the technique described in
  section 3.1 of RFC 1035 [10].  A domain name, or list of domain
  names, in DHCP MUST NOT be stored in compressed form, as described in
  section 4.1.4 of RFC 1035.

9. DHCP Unique Identifier (DUID)

  Each DHCP client and server has a DUID.  DHCP servers use DUIDs to
  identify clients for the selection of configuration parameters and in
  the association of IAs with clients.  DHCP clients use DUIDs to
  identify a server in messages where a server needs to be identified.
  See sections 22.2 and 22.3 for the representation of a DUID in a DHCP
  message.

  Clients and servers MUST treat DUIDs as opaque values and MUST only
  compare DUIDs for equality.  Clients and servers MUST NOT in any
  other way interpret DUIDs.  Clients and servers MUST NOT restrict
  DUIDs to the types defined in this document, as additional DUID types
  may be defined in the future.

  The DUID is carried in an option because it may be variable length
  and because it is not required in all DHCP messages.  The DUID is
  designed to be unique across all DHCP clients and servers, and stable
  for any specific client or server - that is, the DUID used by a
  client or server SHOULD NOT change over time if at all possible; for
  example, a device's DUID should not change as a result of a change in
  the device's network hardware.





Droms, et al.               Standards Track                    [Page 19]

RFC 3315                     DHCP for IPv6                     July 2003


  The motivation for having more than one type of DUID is that the DUID
  must be globally unique, and must also be easy to generate.  The sort
  of globally-unique identifier that is easy to generate for any given
  device can differ quite widely.  Also, some devices may not contain
  any persistent storage.  Retaining a generated DUID in such a device
  is not possible, so the DUID scheme must accommodate such devices.

9.1. DUID Contents

  A DUID consists of a two-octet type code represented in network byte
  order, followed by a variable number of octets that make up the
  actual identifier.  A DUID can be no more than 128 octets long (not
  including the type code).  The following types are currently defined:

     1        Link-layer address plus time
     2        Vendor-assigned unique ID based on Enterprise Number
     3        Link-layer address

  Formats for the variable field of the DUID for each of the above
  types are shown below.

9.2. DUID Based on Link-layer Address Plus Time [DUID-LLT]

  This type of DUID consists of a two octet type field containing the
  value 1, a two octet hardware type code, four octets containing a
  time value, followed by link-layer address of any one network
  interface that is connected to the DHCP device at the time that the
  DUID is generated.  The time value is the time that the DUID is
  generated represented in seconds since midnight (UTC), January 1,
  2000, modulo 2^32.  The hardware type MUST be a valid hardware type
  assigned by the IANA as described in RFC 826 [14].  Both the time and
  the hardware type are stored in network byte order.  The link-layer
  address is stored in canonical form, as described in RFC 2464 [2].

  The following diagram illustrates the format of a DUID-LLT:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               1               |    hardware type (16 bits)    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        time (32 bits)                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   .                                                               .
   .             link-layer address (variable length)              .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Droms, et al.               Standards Track                    [Page 20]

RFC 3315                     DHCP for IPv6                     July 2003


  The choice of network interface can be completely arbitrary, as long
  as that interface provides a globally unique link-layer address for
  the link type, and the same DUID-LLT SHOULD be used in configuring
  all network interfaces connected to the device, regardless of which
  interface's link-layer address was used to generate the DUID-LLT.

  Clients and servers using this type of DUID MUST store the DUID-LLT
  in stable storage, and MUST continue to use this DUID-LLT even if the
  network interface used to generate the DUID-LLT is removed.  Clients
  and servers that do not have any stable storage MUST NOT use this
  type of DUID.

  Clients and servers that use this DUID SHOULD attempt to configure
  the time prior to generating the DUID, if that is possible, and MUST
  use some sort of time source (for example, a real-time clock) in
  generating the DUID, even if that time source could not be configured
  prior to generating the DUID.  The use of a time source makes it
  unlikely that two identical DUID-LLTs will be generated if the
  network interface is removed from the client and another client then
  uses the same network interface to generate a DUID-LLT.  A collision
  between two DUID-LLTs is very unlikely even if the clocks have not
  been configured prior to generating the DUID.

  This method of DUID generation is recommended for all general purpose
  computing devices such as desktop computers and laptop computers, and
  also for devices such as printers, routers, and so on, that contain
  some form of writable non-volatile storage.

  Despite our best efforts, it is possible that this algorithm for
  generating a DUID could result in a client identifier collision.  A
  DHCP client that generates a DUID-LLT using this mechanism MUST
  provide an administrative interface that replaces the existing DUID
  with a newly-generated DUID-LLT.


















Droms, et al.               Standards Track                    [Page 21]

RFC 3315                     DHCP for IPv6                     July 2003


9.3. DUID Assigned by Vendor Based on Enterprise Number [DUID-EN]

  This form of DUID is assigned by the vendor to the device.  It
  consists of the vendor's registered Private Enterprise Number as
  maintained by IANA [6] followed by a unique identifier assigned by
  the vendor.  The following diagram summarizes the structure of a
  DUID-EN:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               2               |       enterprise-number       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   enterprise-number (contd)   |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
   .                           identifier                          .
   .                       (variable length)                       .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The source of the identifier is left up to the vendor defining it,
  but each identifier part of each DUID-EN MUST be unique to the device
  that is using it, and MUST be assigned to the device at the time it
  is manufactured and stored in some form of non-volatile storage.  The
  generated DUID SHOULD be recorded in non-erasable storage.  The
  enterprise-number is the vendor's registered Private Enterprise
  Number as maintained by IANA [6].  The enterprise-number is stored as
  an unsigned 32 bit number.

  An example DUID of this type might look like this:

   +---+---+---+---+---+---+---+---+
   | 0 | 2 | 0 | 0 | 0 |  9| 12|192|
   +---+---+---+---+---+---+---+---+
   |132|221| 3 | 0 | 9 | 18|
   +---+---+---+---+---+---+

  This example includes the two-octet type of 2, the Enterprise Number
  (9), followed by eight octets of identifier data
  (0x0CC084D303000912).

9.4. DUID Based on Link-layer Address [DUID-LL]

  This type of DUID consists of two octets containing the DUID type 3,
  a two octet network hardware type code, followed by the link-layer
  address of any one network interface that is permanently connected to
  the client or server device.  For example, a host that has a network
  interface implemented in a chip that is unlikely to be removed and



Droms, et al.               Standards Track                    [Page 22]

RFC 3315                     DHCP for IPv6                     July 2003


  used elsewhere could use a DUID-LL.  The hardware type MUST be a
  valid hardware type assigned by the IANA, as described in RFC 826
  [14].  The hardware type is stored in network byte order.  The
  link-layer address is stored in canonical form, as described in RFC
  2464 [2].  The following diagram illustrates the format of a DUID-LL:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               3               |    hardware type (16 bits)    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   .                                                               .
   .             link-layer address (variable length)              .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The choice of network interface can be completely arbitrary, as long
  as that interface provides a unique link-layer address and is
  permanently attached to the device on which the DUID-LL is being
  generated.  The same DUID-LL SHOULD be used in configuring all
  network interfaces connected to the device, regardless of which
  interface's link-layer address was used to generate the DUID.

  DUID-LL is recommended for devices that have a permanently-connected
  network interface with a link-layer address, and do not have
  nonvolatile, writable stable storage.  DUID-LL MUST NOT be used by
  DHCP clients or servers that cannot tell whether or not a network
  interface is permanently attached to the device on which the DHCP
  client is running.

10. Identity Association

  An "identity-association" (IA) is a construct through which a server
  and a client can identify, group, and manage a set of related IPv6
  addresses.  Each IA consists of an IAID and associated configuration
  information.

  A client must associate at least one distinct IA with each of its
  network interfaces for which it is to request the assignment of IPv6
  addresses from a DHCP server.  The client uses the IAs assigned to an
  interface to obtain configuration information from a server for that
  interface.  Each IA must be associated with exactly one interface.

  The IAID uniquely identifies the IA and must be chosen to be unique
  among the IAIDs on the client.  The IAID is chosen by the client.
  For any given use of an IA by the client, the IAID for that IA MUST
  be consistent across restarts of the DHCP client.  The client may
  maintain consistency either by storing the IAID in non-volatile



Droms, et al.               Standards Track                    [Page 23]

RFC 3315                     DHCP for IPv6                     July 2003


  storage or by using an algorithm that will consistently produce the
  same IAID as long as the configuration of the client has not changed.
  There may be no way for a client to maintain consistency of the IAIDs
  if it does not have non-volatile storage and the client's hardware
  configuration changes.

  The configuration information in an IA consists of one or more IPv6
  addresses along with the times T1 and T2 for the IA.  See section
  22.4 for the representation of an IA in a DHCP message.

  Each address in an IA has a preferred lifetime and a valid lifetime,
  as defined in RFC 2462 [17].  The lifetimes are transmitted from the
  DHCP server to the client in the IA option.  The lifetimes apply to
  the use of IPv6 addresses, as described in section 5.5.4 of RFC 2462.

11. Selecting Addresses for Assignment to an IA

  A server selects addresses to be assigned to an IA according to the
  address assignment policies determined by the server administrator
  and the specific information the server determines about the client
  from some combination of the following sources:

  -  The link to which the client is attached.  The server determines
     the link as follows:

     *  If the server receives the message directly from the client and
        the source address in the IP datagram in which the message was
        received is a link-local address, then the client is on the
        same link to which the interface over which the message was
        received is attached.

     *  If the server receives the message from a forwarding relay
        agent, then the client is on the same link as the one to which
        the interface, identified by the link-address field in the
        message from the relay agent, is attached.

     *  If the server receives the message directly from the client and
        the source address in the IP datagram in which the message was
        received is not a link-local address, then the client is on the
        link identified by the source address in the IP datagram (note
        that this situation can occur only if the server has enabled
        the use of unicast message delivery by the client and the
        client has sent a message for which unicast delivery is
        allowed).

  -  The DUID supplied by the client.

  -  Other information in options supplied by the client.



Droms, et al.               Standards Track                    [Page 24]

RFC 3315                     DHCP for IPv6                     July 2003


  -  Other information in options supplied by the relay agent.

  Any address assigned by a server that is based on an EUI-64
  identifier MUST include an interface identifier with the "u"
  (universal/local) and "g" (individual/group) bits of the interface
  identifier set appropriately, as indicated in section 2.5.1 of RFC
  2373 [5].

  A server MUST NOT assign an address that is otherwise reserved for
  some other purpose.  For example, a server MUST NOT assign reserved
  anycast addresses, as defined in RFC 2526, from any subnet.

12. Management of Temporary Addresses

  A client may request the assignment of temporary addresses (see RFC
  3041 [12] for the definition of temporary addresses).  DHCPv6
  handling of address assignment is no different for temporary
  addresses.  DHCPv6 says nothing about details of temporary addresses
  like lifetimes, how clients use temporary addresses, rules for
  generating successive temporary addresses, etc.

  Clients ask for temporary addresses and servers assign them.
  Temporary addresses are carried in the Identity Association for
  Temporary Addresses (IA_TA) option (see section 22.5).  Each IA_TA
  option contains at most one temporary address for each of the
  prefixes on the link to which the client is attached.

  The IAID number space for the IA_TA option IAID number space is
  separate from the IA_NA option IAID number space.

  The server MAY update the DNS for a temporary address, as described
  in section 4 of RFC 3041.

13. Transmission of Messages by a Client

  Unless otherwise specified in this document, or in a document that
  describes how IPv6 is carried over a specific type of link (for link
  types that do not support multicast), a client sends DHCP messages to
  the All_DHCP_Relay_Agents_and_Servers.

  A client uses multicast to reach all servers or an individual server.
  An individual server is indicated by specifying that server's DUID in
  a Server Identifier option (see section 22.3) in the client's message
  (all servers will receive this message but only the indicated server
  will respond).  All servers are indicated by not supplying this
  option.





Droms, et al.               Standards Track                    [Page 25]

RFC 3315                     DHCP for IPv6                     July 2003


  A client may send some messages directly to a server using unicast,
  as described in section 22.12.

14. Reliability of Client Initiated Message Exchanges

  DHCP clients are responsible for reliable delivery of messages in the
  client-initiated message exchanges described in sections 17 and 18.
  If a DHCP client fails to receive an expected response from a server,
  the client must retransmit its message.  This section describes the
  retransmission strategy to be used by clients in client-initiated
  message exchanges.

  Note that the procedure described in this section is slightly
  modified when used with the Solicit message.  The modified procedure
  is described in section 17.1.2.

  The client begins the message exchange by transmitting a message to
  the server.  The message exchange terminates when either the client
  successfully receives the appropriate response or responses from a
  server or servers, or when the message exchange is considered to have
  failed according to the retransmission mechanism described below.

  The client retransmission behavior is controlled and described by the
  following variables:

     RT     Retransmission timeout

     IRT    Initial retransmission time

     MRC    Maximum retransmission count

     MRT    Maximum retransmission time

     MRD    Maximum retransmission duration

     RAND   Randomization factor

  With each message transmission or retransmission, the client sets RT
  according to the rules given below.  If RT expires before the message
  exchange terminates, the client recomputes RT and retransmits the
  message.

  Each of the computations of a new RT include a randomization factor
  (RAND), which is a random number chosen with a uniform distribution
  between -0.1 and +0.1.  The randomization factor is included to
  minimize synchronization of messages transmitted by DHCP clients.





Droms, et al.               Standards Track                    [Page 26]

RFC 3315                     DHCP for IPv6                     July 2003


  The algorithm for choosing a random number does not need to be
  cryptographically sound.  The algorithm SHOULD produce a different
  sequence of random numbers from each invocation of the DHCP client.

  RT for the first message transmission is based on IRT:

     RT = IRT + RAND*IRT

  RT for each subsequent message transmission is based on the previous
  value of RT:

     RT = 2*RTprev + RAND*RTprev

  MRT specifies an upper bound on the value of RT (disregarding the
  randomization added by the use of RAND).  If MRT has a value of 0,
  there is no upper limit on the value of RT.  Otherwise:

     if (RT > MRT)
        RT = MRT + RAND*MRT

  MRC specifies an upper bound on the number of times a client may
  retransmit a message.  Unless MRC is zero, the message exchange fails
  once the client has transmitted the message MRC times.

  MRD specifies an upper bound on the length of time a client may
  retransmit a message.  Unless MRD is zero, the message exchange fails
  once MRD seconds have elapsed since the client first transmitted the
  message.

  If both MRC and MRD are non-zero, the message exchange fails whenever
  either of the conditions specified in the previous two paragraphs are
  met.

  If both MRC and MRD are zero, the client continues to transmit the
  message until it receives a response.

15. Message Validation

  Clients and servers SHOULD discard any messages that contain options
  that are not allowed to appear in the received message.  For example,
  an IA option is not allowed to appear in an Information-request
  message.  Clients and servers MAY choose to extract information from
  such a message if the information is of use to the recipient.

  A server MUST discard any Solicit, Confirm, Rebind or
  Information-request messages it receives with a unicast destination
  address.




Droms, et al.               Standards Track                    [Page 27]

RFC 3315                     DHCP for IPv6                     July 2003


  Message validation based on DHCP authentication is discussed in
  section 21.4.2.

  If a server receives a message that contains options it should not
  contain (such as an Information-request message with an IA option),
  is missing options that it should contain, or is otherwise not valid,
  it MAY send a Reply (or Advertise as appropriate) with a Server
  Identifier option, a Client Identifier option if one was included in
  the message and a Status Code option with status UnSpecFail.

15.1. Use of Transaction IDs

  The "transaction-id" field holds a value used by clients and servers
  to synchronize server responses to client messages.  A client SHOULD
  generate a random number that cannot easily be guessed or predicted
  to use as the transaction ID for each new message it sends.  Note
  that if a client generates easily predictable transaction
  identifiers, it may become more vulnerable to certain kinds of
  attacks from off-path intruders.  A client MUST leave the transaction
  ID unchanged in retransmissions of a message.

15.2. Solicit Message

  Clients MUST discard any received Solicit messages.

  Servers MUST discard any Solicit messages that do not include a
  Client Identifier option or that do include a Server Identifier
  option.

15.3. Advertise Message

  Clients MUST discard any received Advertise messages that meet any of
  the following conditions:

  -  the message does not include a Server Identifier option.

  -  the message does not include a Client Identifier option.

  -  the contents of the Client Identifier option does not match the
     client's DUID.

  -  the "transaction-id" field value does not match the value the
     client used in its Solicit message.

  Servers and relay agents MUST discard any received Advertise
  messages.





Droms, et al.               Standards Track                    [Page 28]

RFC 3315                     DHCP for IPv6                     July 2003


15.4. Request Message

  Clients MUST discard any received Request messages.

  Servers MUST discard any received Request message that meet any of
  the following conditions:

  -  the message does not include a Server Identifier option.

  -  the contents of the Server Identifier option do not match the
     server's DUID.

  -  the message does not include a Client Identifier option.

15.5. Confirm Message

  Clients MUST discard any received Confirm messages.

  Servers MUST discard any received Confirm messages that do not
  include a Client Identifier option or that do include a Server
  Identifier option.

15.6. Renew Message

  Clients MUST discard any received Renew messages.

  Servers MUST discard any received Renew message that meets any of the
  following conditions:

  -  the message does not include a Server Identifier option.

  -  the contents of the Server Identifier option does not match the
     server's identifier.

  -  the message does not include a Client Identifier option.

15.7. Rebind Message

  Clients MUST discard any received Rebind messages.

  Servers MUST discard any received Rebind messages that do not include
  a Client Identifier option or that do include a Server Identifier
  option.








Droms, et al.               Standards Track                    [Page 29]

RFC 3315                     DHCP for IPv6                     July 2003


15.8. Decline Messages

  Clients MUST discard any received Decline messages.

  Servers MUST discard any received Decline message that meets any of
  the following conditions:

  -  the message does not include a Server Identifier option.

  -  the contents of the Server Identifier option does not match the
     server's identifier.

  -  the message does not include a Client Identifier option.

15.9. Release Message

  Clients MUST discard any received Release messages.

  Servers MUST discard any received Release message that meets any of
  the following conditions:

  -  the message does not include a Server Identifier option.

  -  the contents of the Server Identifier option does not match the
     server's identifier.

  -  the message does not include a Client Identifier option.

15.10. Reply Message

  Clients MUST discard any received Reply message that meets any of the
  following conditions:

  -  the message does not include a Server Identifier option.

  -  the "transaction-id" field in the message does not match the value
     used in the original message.

  If the client included a Client Identifier option in the original
  message, the Reply message MUST include a Client Identifier option
  and the contents of the Client Identifier option MUST match the DUID
  of the client; OR, if the client did not include a Client Identifier
  option in the original message, the Reply message MUST NOT include a
  Client Identifier option.

  Servers and relay agents MUST discard any received Reply messages.





Droms, et al.               Standards Track                    [Page 30]

RFC 3315                     DHCP for IPv6                     July 2003


15.11. Reconfigure Message

  Servers and relay agents MUST discard any received Reconfigure
  messages.

  Clients MUST discard any Reconfigure messages that meets any of the
  following conditions:

  -  the message was not unicast to the client.

  -  the message does not include a Server Identifier option.

  -  the message does not include a Client Identifier option that
     contains the client's DUID.

  -  the message does not contain a Reconfigure Message option and the
     msg-type must be a valid value.

  -  the message includes any IA options and the msg-type in the
     Reconfigure Message option is INFORMATION-REQUEST.

  -  the message does not include DHCP authentication:

     *  the message does not contain an authentication option.

     *  the message does not pass the authentication validation
        performed by the client.

15.12. Information-request Message

  Clients MUST discard any received Information-request messages.

  Servers MUST discard any received Information-request message that
  meets any of the following conditions:

  -  The message includes a Server Identifier option and the DUID in
     the option does not match the server's DUID.

  -  The message includes an IA option.

15.13. Relay-forward Message

  Clients MUST discard any received Relay-forward messages.

15.14. Relay-reply Message

  Clients and servers MUST discard any received Relay-reply messages.




Droms, et al.               Standards Track                    [Page 31]

RFC 3315                     DHCP for IPv6                     July 2003


16. Client Source Address and Interface Selection

  When a client sends a DHCP message to the
  All_DHCP_Relay_Agents_and_Servers address, it SHOULD send the message
  through the interface for which configuration information is being
  requested.  However, the client MAY send the message through another
  interface attached to the same link, if and only if the client is
  certain the two interfaces are attached to the same link.  The client
  MUST use a link-local address assigned to the interface for which it
  is requesting configuration information as the source address in the
  header of the IP datagram.

  When a client sends a DHCP message directly to a server using unicast
  (after receiving the Server Unicast option from that server), the
  source address in the header of the IP datagram MUST be an address
  assigned to the interface for which the client is interested in
  obtaining configuration and which is suitable for use by the server
  in responding to the client.

17. DHCP Server Solicitation

  This section describes how a client locates servers that will assign
  addresses to IAs belonging to the client.

  The client is responsible for creating IAs and requesting that a
  server assign IPv6 addresses to the IA.  The client first creates an
  IA and assigns it an IAID.  The client then transmits a Solicit
  message containing an IA option describing the IA.  Servers that can
  assign addresses to the IA respond to the client with an Advertise
  message.  The client then initiates a configuration exchange as
  described in section 18.

  If the client will accept a Reply message with committed address
  assignments and other resources in response to the Solicit message,
  the client includes a Rapid Commit option (see section 22.14) in the
  Solicit message.

17.1. Client Behavior

  A client uses the Solicit message to discover DHCP servers configured
  to assign addresses or return other configuration parameters on the
  link to which the client is attached.

17.1.1. Creation of Solicit Messages

  The client sets the "msg-type" field to SOLICIT.  The client
  generates a transaction ID and inserts this value in the
  "transaction-id" field.



Droms, et al.               Standards Track                    [Page 32]

RFC 3315                     DHCP for IPv6                     July 2003


  The client MUST include a Client Identifier option to identify itself
  to the server.  The client includes IA options for any IAs to which
  it wants the server to assign addresses.  The client MAY include
  addresses in the IAs as a hint to the server about addresses for
  which the client has a preference.  The client MUST NOT include any
  other options in the Solicit message, except as specifically allowed
  in the definition of individual options.

  The client uses IA_NA options to request the assignment of non-
  temporary addresses and uses IA_TA options to request the assignment
  of temporary addresses.  Either IA_NA or IA_TA options, or a
  combination of both, can be included in DHCP messages.

  The client SHOULD include an Option Request option (see section 22.7)
  to indicate the options the client is interested in receiving.  The
  client MAY additionally include instances of those options that are
  identified in the Option Request option, with data values as hints to
  the server about parameter values the client would like to have
  returned.

  The client includes a Reconfigure Accept option (see section 22.20)
  if the client is willing to accept Reconfigure messages from the
  server.

17.1.2. Transmission of Solicit Messages

  The first Solicit message from the client on the interface MUST be
  delayed by a random amount of time between 0 and SOL_MAX_DELAY.  In
  the case of a Solicit message transmitted when DHCP is initiated by
  IPv6 Neighbor Discovery, the delay gives the amount of time to wait
  after IPv6 Neighbor Discovery causes the client to invoke the
  stateful address autoconfiguration protocol (see section 5.5.3 of RFC
  2462).  This random delay desynchronizes clients which start at the
  same time (for example, after a power outage).

  The client transmits the message according to section 14, using the
  following parameters:

     IRT   SOL_TIMEOUT

     MRT   SOL_MAX_RT

     MRC   0

     MRD   0






Droms, et al.               Standards Track                    [Page 33]

RFC 3315                     DHCP for IPv6                     July 2003


  If the client has included a Rapid Commit option in its Solicit
  message, the client terminates the waiting process as soon as a Reply
  message with a Rapid Commit option is received.

  If the client is waiting for an Advertise message, the mechanism in
  section 14 is modified as follows for use in the transmission of
  Solicit messages.  The message exchange is not terminated by the
  receipt of an Advertise before the first RT has elapsed.  Rather, the
  client collects Advertise messages until the first RT has elapsed.
  Also, the first RT MUST be selected to be strictly greater than IRT
  by choosing RAND to be strictly greater than 0.

  A client MUST collect Advertise messages for the first RT seconds,
  unless it receives an Advertise message with a preference value of
  255.  The preference value is carried in the Preference option
  (section 22.8).  Any Advertise that does not include a Preference
  option is considered to have a preference value of 0.  If the client
  receives an Advertise message that includes a Preference option with
  a preference value of 255, the client immediately begins a client-
  initiated message exchange (as described in section 18) by sending a
  Request message to the server from which the Advertise message was
  received.  If the client receives an Advertise message that does not
  include a Preference option with a preference value of 255, the
  client continues to wait until the first RT elapses.  If the first RT
  elapses and the client has received an Advertise message, the client
  SHOULD continue with a client-initiated message exchange by sending a
  Request message.

  If the client does not receive any Advertise messages before the
  first RT has elapsed, it begins the retransmission mechanism
  described in section 14.  The client terminates the retransmission
  process as soon as it receives any Advertise message, and the client
  acts on the received Advertise message without waiting for any
  additional Advertise messages.

  A DHCP client SHOULD choose MRC and MRD to be 0.  If the DHCP client
  is configured with either MRC or MRD set to a value other than 0, it
  MUST stop trying to configure the interface if the message exchange
  fails.  After the DHCP client stops trying to configure the
  interface, it SHOULD restart the reconfiguration process after some
  external event, such as user input, system restart, or when the
  client is attached to a new link.









Droms, et al.               Standards Track                    [Page 34]

RFC 3315                     DHCP for IPv6                     July 2003


17.1.3. Receipt of Advertise Messages

  The client MUST ignore any Advertise message that includes a Status
  Code option containing the value NoAddrsAvail, with the exception
  that the client MAY display the associated status message to the
  user.

  Upon receipt of one or more valid Advertise messages, the client
  selects one or more Advertise messages based upon the following
  criteria.

  -  Those Advertise messages with the highest server preference value
     are preferred over all other Advertise messages.

  -  Within a group of Advertise messages with the same server
     preference value, a client MAY select those servers whose
     Advertise messages advertise information of interest to the
     client.  For example, the client may choose a server that returned
     an advertisement with configuration options of interest to the
     client.

  -  The client MAY choose a less-preferred server if that server has a
     better set of advertised parameters, such as the available
     addresses advertised in IAs.

  Once a client has selected Advertise message(s), the client will
  typically store information about each server, such as server
  preference value, addresses advertised, when the advertisement was
  received, and so on.

  If the client needs to select an alternate server in the case that a
  chosen server does not respond, the client chooses the next server
  according to the criteria given above.

17.1.4. Receipt of Reply Message

  If the client includes a Rapid Commit option in the Solicit message,
  it will expect a Reply message that includes a Rapid Commit option in
  response.  The client discards any Reply messages it receives that do
  not include a Rapid Commit option.  If the client receives a valid
  Reply message that includes a Rapid Commit option, it processes the
  message as described in section 18.1.8.  If it does not receive such
  a Reply message and does receive a valid Advertise message, the
  client processes the Advertise message as described in section
  17.1.3.






Droms, et al.               Standards Track                    [Page 35]

RFC 3315                     DHCP for IPv6                     July 2003


  If the client subsequently receives a valid Reply message that
  includes a Rapid Commit option, it either:

     processes the Reply message as described in section 18.1.8, and
     discards any Reply messages received in response to the Request
     message, or

     processes any Reply messages received in response to the Request
     message and discards the Reply message that includes the Rapid
     Commit option.

17.2. Server Behavior

  A server sends an Advertise message in response to valid Solicit
  messages it receives to announce the availability of the server to
  the client.

17.2.1. Receipt of Solicit Messages

  The server determines the information about the client and its
  location as described in section 11 and checks its administrative
  policy about responding to the client.  If the server is not
  permitted to respond to the client, the server discards the Solicit
  message.  For example, if the administrative policy for the server is
  that it may only respond to a client that is willing to accept a
  Reconfigure message, if the client indicates with a Reconfigure
  Accept option in the Solicit message that it will not accept a
  Reconfigure message, the servers discard the Solicit message.

  If the client has included a Rapid Commit option in the Solicit
  message and the server has been configured to respond with committed
  address assignments and other resources, the server responds to the
  Solicit with a Reply message as described in section 17.2.3.
  Otherwise, the server ignores the Rapid Commit option and processes
  the remainder of the message as if no Rapid Commit option were
  present.

17.2.2. Creation and Transmission of Advertise Messages

  The server sets the "msg-type" field to ADVERTISE and copies the
  contents of the transaction-id field from the Solicit message
  received from the client to the Advertise message.  The server
  includes its server identifier in a Server Identifier option and
  copies the Client Identifier from the Solicit message into the
  Advertise message.






Droms, et al.               Standards Track                    [Page 36]

RFC 3315                     DHCP for IPv6                     July 2003


  The server MAY add a Preference option to carry the preference value
  for the Advertise message.  The server implementation SHOULD allow
  the setting of a server preference value by the administrator.  The
  server preference value MUST default to zero unless otherwise
  configured by the server administrator.

  The server includes a Reconfigure Accept option if the server wants
  to require that the client accept Reconfigure messages.

  The server includes options the server will return to the client in a
  subsequent Reply message.  The information in these options may be
  used by the client in the selection of a server if the client
  receives more than one Advertise message.  If the client has included
  an Option Request option in the Solicit message, the server includes
  options in the Advertise message containing configuration parameters
  for all of the options identified in the Option Request option that
  the server has been configured to return to the client.  The server
  MAY return additional options to the client if it has been configured
  to do so.  The server must be aware of the recommendations on packet
  sizes and the use of fragmentation in section 5 of RFC 2460.

  If the Solicit message from the client included one or more IA
  options, the server MUST include IA options in the Advertise message
  containing any addresses that would be assigned to IAs contained in
  the Solicit message from the client.  If the client has included
  addresses in the IAs in the Solicit message, the server uses those
  addresses as hints about the addresses the client would like to
  receive.

  If the server will not assign any addresses to any IAs in a
  subsequent Request from the client, the server MUST send an Advertise
  message to the client that includes only a Status Code option with
  code NoAddrsAvail and a status message for the user, a Server
  Identifier option with the server's DUID, and a Client Identifier
  option with the client's DUID.

  If the Solicit message was received directly by the server, the
  server unicasts the Advertise message directly to the client using
  the address in the source address field from the IP datagram in which
  the Solicit message was received.  The Advertise message MUST be
  unicast on the link from which the Solicit message was received.

  If the Solicit message was received in a Relay-forward message, the
  server constructs a Relay-reply message with the Advertise message in
  the payload of a "relay-message" option.  If the Relay-forward
  messages included an Interface-id option, the server copies that
  option to the Relay-reply message.  The server unicasts the
  Relay-reply message directly to the relay agent using the address in



Droms, et al.               Standards Track                    [Page 37]

RFC 3315                     DHCP for IPv6                     July 2003


  the source address field from the IP datagram in which the Relay-
  forward message was received.

17.2.3. Creation and Transmission of Reply Messages

  The server MUST commit the assignment of any addresses or other
  configuration information message before sending a Reply message to a
  client in response to a Solicit message.

  DISCUSSION:

     When using the Solicit-Reply message exchange, the server commits
     the assignment of any addresses before sending the Reply message.
     The client can assume it has been assigned the addresses in the
     Reply message and does not need to send a Request message for
     those addresses.

     Typically, servers that are configured to use the Solicit-Reply
     message exchange will be deployed so that only one server will
     respond to a Solicit message.  If more than one server responds,
     the client will only use the addresses from one of the servers,
     while the addresses from the other servers will be committed to
     the client but not used by the client.

  The server includes a Rapid Commit option in the Reply message to
  indicate that the Reply is in response to a Solicit message.

  The server includes a Reconfigure Accept option if the server wants
  to require that the client accept Reconfigure messages.

  The server produces the Reply message as though it had received a
  Request message, as described in section 18.2.1.  The server
  transmits the Reply message as described in section 18.2.8.

18. DHCP Client-Initiated Configuration Exchange

  A client initiates a message exchange with a server or servers to
  acquire or update configuration information of interest.  The client
  may initiate the configuration exchange as part of the operating
  system configuration process, when requested to do so by the
  application layer, when required by Stateless Address
  Autoconfiguration or as required to extend the lifetime of an address
  (Renew and Rebind messages).








Droms, et al.               Standards Track                    [Page 38]

RFC 3315                     DHCP for IPv6                     July 2003


18.1. Client Behavior

  A client uses Request, Renew, Rebind, Release and Decline messages
  during the normal life cycle of addresses.  It uses Confirm to
  validate addresses when it may have moved to a new link.  It uses
  Information-Request messages when it needs configuration information
  but no addresses.

  If the client has a source address of sufficient scope that can be
  used by the server as a return address, and the client has received a
  Server Unicast option (section 22.12) from the server, the client
  SHOULD unicast any Request, Renew, Release and Decline messages to
  the server.

  DISCUSSION:

     Use of unicast may avoid delays due to the relaying of messages by
     relay agents, as well as avoid overhead and duplicate responses by
     servers due to the delivery of client messages to multiple
     servers.  Requiring the client to relay all DHCP messages through
     a relay agent enables the inclusion of relay agent options in all
     messages sent by the client.  The server should enable the use of
     unicast only when relay agent options will not be used.

18.1.1. Creation and Transmission of Request Messages

  The client uses a Request message to populate IAs with addresses and
  obtain other configuration information.  The client includes one or
  more IA options in the Request message.  The server then returns
  addresses and other information about the IAs to the client in IA
  options in a Reply message.

  The client generates a transaction ID and inserts this value in the
  "transaction-id" field.

  The client places the identifier of the destination server in a
  Server Identifier option.

  The client MUST include a Client Identifier option to identify itself
  to the server.  The client adds any other appropriate options,
  including one or more IA options (if the client is requesting that
  the server assign it some network addresses).

  The client MUST include an Option Request option (see section 22.7)
  to indicate the options the client is interested in receiving.  The
  client MAY include options with data values as hints to the server
  about parameter values the client would like to have returned.




Droms, et al.               Standards Track                    [Page 39]

RFC 3315                     DHCP for IPv6                     July 2003


  The client includes a Reconfigure Accept option (see section 22.20)
  indicating whether or not the client is willing to accept Reconfigure
  messages from the server.

  The client transmits the message according to section 14, using the
  following parameters:

     IRT   REQ_TIMEOUT

     MRT   REQ_MAX_RT

     MRC   REQ_MAX_RC

     MRD   0

  If the message exchange fails, the client takes an action based on
  the client's local policy.  Examples of actions the client might take
  include:

  -  Select another server from a list of servers known to the client;
     for example, servers that responded with an Advertise message.

  -  Initiate the server discovery process described in section 17.

  -  Terminate the configuration process and report failure.

18.1.2. Creation and Transmission of Confirm Messages

  Whenever a client may have moved to a new link, the prefixes from the
  addresses assigned to the interfaces on that link may no longer be
  appropriate for the link to which the client is attached.  Examples
  of times when a client may have moved to a new link include:

  o  The client reboots.

  o  The client is physically connected to a wired connection.

  o  The client returns from sleep mode.

  o  The client using a wireless technology changes access points.

  In any situation when a client may have moved to a new link, the
  client MUST initiate a Confirm/Reply message exchange.  The client
  includes any IAs assigned to the interface that may have moved to a
  new link, along with the addresses associated with those IAs, in its






Droms, et al.               Standards Track                    [Page 40]

RFC 3315                     DHCP for IPv6                     July 2003


  Confirm message.  Any responding servers will indicate whether those
  addresses are appropriate for the link to which the client is
  attached with the status in the Reply message it returns to the
  client.

  The client sets the "msg-type" field to CONFIRM.  The client
  generates a transaction ID and inserts this value in the
  "transaction-id" field.

  The client MUST include a Client Identifier option to identify itself
  to the server.  The client includes IA options for all of the IAs
  assigned to the interface for which the Confirm message is being
  sent.  The IA options include all of the addresses the client
  currently has associated with those IAs.  The client SHOULD set the
  T1 and T2 fields in any IA_NA options, and the preferred-lifetime and
  valid-lifetime fields in the IA Address options to 0, as the server
  will ignore these fields.

  The first Confirm message from the client on the interface MUST be
  delayed by a random amount of time between 0 and CNF_MAX_DELAY.  The
  client transmits the message according to section 14, using the
  following parameters:

     IRT   CNF_TIMEOUT

     MRT   CNF_MAX_RT

     MRC   0

     MRD   CNF_MAX_RD

  If the client receives no responses before the message transmission
  process terminates, as described in section 14, the client SHOULD
  continue to use any IP addresses, using the last known lifetimes for
  those addresses, and SHOULD continue to use any other previously
  obtained configuration parameters.

18.1.3. Creation and Transmission of Renew Messages

  To extend the valid and preferred lifetimes for the addresses
  associated with an IA, the client sends a Renew message to the server
  from which the client obtained the addresses in the IA containing an
  IA option for the IA.  The client includes IA Address options in the
  IA option for the addresses associated with the IA.  The server
  determines new lifetimes for the addresses in the IA according to the
  administrative configuration of the server.  The server may also add





Droms, et al.               Standards Track                    [Page 41]

RFC 3315                     DHCP for IPv6                     July 2003


  new addresses to the IA.  The server may remove addresses from the IA
  by setting the preferred and valid lifetimes of those addresses to
  zero.

  The server controls the time at which the client contacts the server
  to extend the lifetimes on assigned addresses through the T1 and T2
  parameters assigned to an IA.

  At time T1 for an IA, the client initiates a Renew/Reply message
  exchange to extend the lifetimes on any addresses in the IA.  The
  client includes an IA option with all addresses currently assigned to
  the IA in its Renew message.

  If T1 or T2 is set to 0 by the server (for an IA_NA) or there are no
  T1 or T2 times (for an IA_TA), the client may send a Renew or Rebind
  message, respectively, at the client's discretion.

  The client sets the "msg-type" field to RENEW.  The client generates
  a transaction ID and inserts this value in the "transaction-id"
  field.

  The client places the identifier of the destination server in a
  Server Identifier option.

  The client MUST include a Client Identifier option to identify itself
  to the server.  The client adds any appropriate options, including
  one or more IA options.  The client MUST include the list of
  addresses the client currently has associated with the IAs in the
  Renew message.

  The client MUST include an Option Request option (see section 22.7)
  to indicate the options the client is interested in receiving.  The
  client MAY include options with data values as hints to the server
  about parameter values the client would like to have returned.

  The client transmits the message according to section 14, using the
  following parameters:

     IRT   REN_TIMEOUT

     MRT   REN_MAX_RT

     MRC   0

     MRD   Remaining time until T2






Droms, et al.               Standards Track                    [Page 42]

RFC 3315                     DHCP for IPv6                     July 2003


  The message exchange is terminated when time T2 is reached (see
  section 18.1.4), at which time the client begins a Rebind message
  exchange.

18.1.4. Creation and Transmission of Rebind Messages

  At time T2 for an IA (which will only be reached if the server to
  which the Renew message was sent at time T1 has not responded), the
  client initiates a Rebind/Reply message exchange with any available
  server.  The client includes an IA option with all addresses
  currently assigned to the IA in its Rebind message.

  The client sets the "msg-type" field to REBIND.  The client generates
  a transaction ID and inserts this value in the "transaction-id"
  field.

  The client MUST include a Client Identifier option to identify itself
  to the server.  The client adds any appropriate options, including
  one or more IA options.  The client MUST include the list of
  addresses the client currently has associated with the IAs in the
  Rebind message.

  The client MUST include an Option Request option (see section 22.7)
  to indicate the options the client is interested in receiving.  The
  client MAY include options with data values as hints to the server
  about parameter values the client would like to have returned.

  The client transmits the message according to section 14, using the
  following parameters:

     IRT   REB_TIMEOUT

     MRT   REB_MAX_RT

     MRC   0

     MRD   Remaining time until valid lifetimes of all addresses have
           expired

  The message exchange is terminated when the valid lifetimes of all
  the addresses assigned to the IA expire (see section 10), at which
  time the client has several alternative actions to choose from; for
  example:

  -  The client may choose to use a Solicit message to locate a new
     DHCP server and send a Request for the expired IA to the new
     server.




Droms, et al.               Standards Track                    [Page 43]

RFC 3315                     DHCP for IPv6                     July 2003


  -  The client may have other addresses in other IAs, so the client
     may choose to discard the expired IA and use the addresses in the
     other IAs.

18.1.5. Creation and Transmission of Information-request Messages

  The client uses an Information-request message to obtain
  configuration information without having addresses assigned to it.

  The client sets the "msg-type" field to INFORMATION-REQUEST.  The
  client generates a transaction ID and inserts this value in the
  "transaction-id" field.

  The client SHOULD include a Client Identifier option to identify
  itself to the server.  If the client does not include a Client
  Identifier option, the server will not be able to return any client-
  specific options to the client, or the server may choose not to
  respond to the message at all.  The client MUST include a Client
  Identifier option if the Information-Request message will be
  authenticated.

  The client MUST include an Option Request option (see section 22.7)
  to indicate the options the client is interested in receiving.  The
  client MAY include options with data values as hints to the server
  about parameter values the client would like to have returned.

  The first Information-request message from the client on the
  interface MUST be delayed by a random amount of time between 0 and
  INF_MAX_DELAY.  The client transmits the message according to section
  14, using the following parameters:

     IRT   INF_TIMEOUT

     MRT   INF_MAX_RT

     MRC   0

     MRD   0

18.1.6. Creation and Transmission of Release Messages

  To release one or more addresses, a client sends a Release message to
  the server.

  The client sets the "msg-type" field to RELEASE.  The client
  generates a transaction ID and places this value in the
  "transaction-id" field.




Droms, et al.               Standards Track                    [Page 44]

RFC 3315                     DHCP for IPv6                     July 2003


  The client places the identifier of the server that allocated the
  address(es) in a Server Identifier option.

  The client MUST include a Client Identifier option to identify itself
  to the server.  The client includes options containing the IAs for
  the addresses it is releasing in the "options" field.  The addresses
  to be released MUST be included in the IAs.  Any addresses for the
  IAs the client wishes to continue to use MUST NOT be added to the
  IAs.

  The client MUST NOT use any of the addresses it is releasing as the
  source address in the Release message or in any subsequently
  transmitted message.

  Because Release messages may be lost, the client should retransmit
  the Release if no Reply is received.  However, there are scenarios
  where the client may not wish to wait for the normal retransmission
  timeout before giving up (e.g., on power down).  Implementations
  SHOULD retransmit one or more times, but MAY choose to terminate the
  retransmission procedure early.

  The client transmits the message according to section 14, using the
  following parameters:

     IRT   REL_TIMEOUT

     MRT   0

     MRC   REL_MAX_RC

     MRD   0

  The client MUST stop using all of the addresses being released as
  soon as the client begins the Release message exchange process.  If
  addresses are released but the Reply from a DHCP server is lost, the
  client will retransmit the Release message, and the server may
  respond with a Reply indicating a status of NoBinding.  Therefore,
  the client does not treat a Reply message with a status of NoBinding
  in a Release message exchange as if it indicates an error.

  Note that if the client fails to release the addresses, each address
  assigned to the IA will be reclaimed by the server when the valid
  lifetime of that address expires.








Droms, et al.               Standards Track                    [Page 45]

RFC 3315                     DHCP for IPv6                     July 2003


18.1.7. Creation and Transmission of Decline Messages

  If a client detects that one or more addresses assigned to it by a
  server are already in use by another node, the client sends a Decline
  message to the server to inform it that the address is suspect.

  The client sets the "msg-type" field to DECLINE.  The client
  generates a transaction ID and places this value in the
  "transaction-id" field.

  The client places the identifier of the server that allocated the
  address(es) in a Server Identifier option.

  The client MUST include a Client Identifier option to identify itself
  to the server.  The client includes options containing the IAs for
  the addresses it is declining in the "options" field.  The addresses
  to be declined MUST be included in the IAs.  Any addresses for the
  IAs the client wishes to continue to use should not be in added to
  the IAs.

  The client MUST NOT use any of the addresses it is declining as the
  source address in the Decline message or in any subsequently
  transmitted message.

  The client transmits the message according to section 14, using the
  following parameters:

     IRT   DEC_TIMEOUT

     MRT   0

     MRC   DEC_MAX_RC

     MRD   0

  If addresses are declined but the Reply from a DHCP server is lost,
  the client will retransmit the Decline message, and the server may
  respond with a Reply indicating a status of NoBinding.  Therefore,
  the client does not treat a Reply message with a status of NoBinding
  in a Decline message exchange as if it indicates an error.

18.1.8. Receipt of Reply Messages

  Upon the receipt of a valid Reply message in response to a Solicit
  (with a Rapid Commit option), Request, Confirm, Renew, Rebind or
  Information-request message, the client extracts the configuration





Droms, et al.               Standards Track                    [Page 46]

RFC 3315                     DHCP for IPv6                     July 2003


  information contained in the Reply.  The client MAY choose to report
  any status code or message from the status code option in the Reply
  message.

  The client SHOULD perform duplicate address detection [17] on each of
  the addresses in any IAs it receives in the Reply message before
  using that address for traffic.  If any of the addresses are found to
  be in use on the link, the client sends a Decline message to the
  server as described in section 18.1.7.

  If the Reply was received in response to a Solicit (with a Rapid
  Commit option), Request, Renew or Rebind message, the client updates
  the information it has recorded about IAs from the IA options
  contained in the Reply message:

  -  Record T1 and T2 times.

  -  Add any new addresses in the IA option to the IA as recorded by
     the client.

  -  Update lifetimes for any addresses in the IA option that the
     client already has recorded in the IA.

  -  Discard any addresses from the IA, as recorded by the client, that
     have a valid lifetime of 0 in the IA Address option.

  -  Leave unchanged any information about addresses the client has
     recorded in the IA but that were not included in the IA from the
     server.

  Management of the specific configuration information is detailed in
  the definition of each option in section 22.

  If the client receives a Reply message with a Status Code containing
  UnspecFail, the server is indicating that it was unable to process
  the message due to an unspecified failure condition.  If the client
  retransmits the original message to the same server to retry the
  desired operation, the client MUST limit the rate at which it
  retransmits the message and limit the duration of the time during
  which it retransmits the message.

  When the client receives a Reply message with a Status Code option
  with the value UseMulticast, the client records the receipt of the
  message and sends subsequent messages to the server through the
  interface on which the message was received using multicast.  The
  client resends the original message using multicast.





Droms, et al.               Standards Track                    [Page 47]

RFC 3315                     DHCP for IPv6                     July 2003


  When the client receives a NotOnLink status from the server in
  response to a Confirm message, the client performs DHCP server
  solicitation, as described in section 17, and client-initiated
  configuration as described in section 18.  If the client receives any
  Reply messages that do not indicate a NotOnLink status, the client
  can use the addresses in the IA and ignore any messages that indicate
  a NotOnLink status.

  When the client receives a NotOnLink status from the server in
  response to a Request, the client can either re-issue the Request
  without specifying any addresses or restart the DHCP server discovery
  process (see section 17).

  The client examines the status code in each IA individually.  If the
  status code is NoAddrsAvail, the client has received no usable
  addresses in the IA and may choose to try obtaining addresses for the
  IA from another server.  The client uses addresses and other
  information from any IAs that do not contain a Status Code option
  with the NoAddrsAvail code.  If the client receives no addresses in
  any of the IAs, it may either try another server (perhaps restarting
  the DHCP server discovery process) or use the Information-request
  message to obtain other configuration information only.

  When the client receives a Reply message in response to a Renew or
  Rebind message, the client examines each IA independently.  For each
  IA in the original Renew or Rebind message, the client:

  -  sends a Request message if the IA contained a Status Code option
     with the NoBinding status (and does not send any additional
     Renew/Rebind messages)

  -  sends a Renew/Rebind if the IA is not in the Reply message

  -  otherwise accepts the information in the IA

  When the client receives a valid Reply message in response to a
  Release message, the client considers the Release event completed,
  regardless of the Status Code option(s) returned by the server.

  When the client receives a valid Reply message in response to a
  Decline message, the client considers the Decline event completed,
  regardless of the Status Code option(s) returned by the server.

18.2. Server Behavior

  For this discussion, the Server is assumed to have been configured in
  an implementation specific manner with configuration of interest to
  clients.



Droms, et al.               Standards Track                    [Page 48]

RFC 3315                     DHCP for IPv6                     July 2003


  In most instances, the server will send a Reply in response to a
  client message.  This Reply message MUST always contain the Server
  Identifier option containing the server's DUID and the Client
  Identifier option from the client message if one was present.

  In most Reply messages, the server includes options containing
  configuration information for the client.  The server must be aware
  of the recommendations on packet sizes and the use of fragmentation
  in section 5 of RFC 2460.  If the client included an Option Request
  option in its message, the server includes options in the Reply
  message containing configuration parameters for all of the options
  identified in the Option Request option that the server has been
  configured to return to the client.  The server MAY return additional
  options to the client if it has been configured to do so.

18.2.1. Receipt of Request Messages

  When the server receives a Request message via unicast from a client
  to which the server has not sent a unicast option, the server
  discards the Request message and responds with a Reply message
  containing a Status Code option with the value UseMulticast, a Server
  Identifier option containing the server's DUID, the Client Identifier
  option from the client message, and no other options.

  When the server receives a valid Request message, the server creates
  the bindings for that client according to the server's policy and
  configuration information and records the IAs and other information
  requested by the client.

  The server constructs a Reply message by setting the "msg-type" field
  to REPLY, and copying the transaction ID from the Request message
  into the transaction-id field.

  The server MUST include a Server Identifier option containing the
  server's DUID and the Client Identifier option from the Request
  message in the Reply message.

  If the server finds that the prefix on one or more IP addresses in
  any IA in the message from the client is not appropriate for the link
  to which the client is connected, the server MUST return the IA to
  the client with a Status Code option with the value NotOnLink.

  If the server cannot assign any addresses to an IA in the message
  from the client, the server MUST include the IA in the Reply message
  with no addresses in the IA and a Status Code option in the IA
  containing status code NoAddrsAvail.





Droms, et al.               Standards Track                    [Page 49]

RFC 3315                     DHCP for IPv6                     July 2003


  For any IAs to which the server can assign addresses, the server
  includes the IA with addresses and other configuration parameters,
  and records the IA as a new client binding.

  The server includes a Reconfigure Accept option if the server wants
  to require that the client accept Reconfigure messages.

  The server includes other options containing configuration
  information to be returned to the client as described in section
  18.2.

  If the server finds that the client has included an IA in the Request
  message for which the server already has a binding that associates
  the IA with the client, the client has resent a Request message for
  which it did not receive a Reply message.  The server either resends
  a previously cached Reply message or sends a new Reply message.

18.2.2. Receipt of Confirm Messages

  When the server receives a Confirm message, the server determines
  whether the addresses in the Confirm message are appropriate for the
  link to which the client is attached.  If all of the addresses in the
  Confirm message pass this test, the server returns a status of
  Success.  If any of the addresses do not pass this test, the server
  returns a status of NotOnLink.  If the server is unable to perform
  this test (for example, the server does not have information about
  prefixes on the link to which the client is connected), or there were
  no addresses in any of the IAs sent by the client, the server MUST
  NOT send a reply to the client.

  The server ignores the T1 and T2 fields in the IA options and the
  preferred-lifetime and valid-lifetime fields in the IA Address
  options.

  The server constructs a Reply message by setting the "msg-type" field
  to REPLY, and copying the transaction ID from the Confirm message
  into the transaction-id field.

  The server MUST include a Server Identifier option containing the
  server's DUID and the Client Identifier option from the Confirm
  message in the Reply message.  The server includes a Status Code
  option indicating the status of the Confirm message.









Droms, et al.               Standards Track                    [Page 50]

RFC 3315                     DHCP for IPv6                     July 2003


18.2.3. Receipt of Renew Messages

  When the server receives a Renew message via unicast from a client to
  which the server has not sent a unicast option, the server discards
  the Renew message and responds with a Reply message containing a
  Status Code option with the value UseMulticast, a Server Identifier
  option containing the server's DUID, the Client Identifier option
  from the client message, and no other options.

  When the server receives a Renew message that contains an IA option
  from a client, it locates the client's binding and verifies that the
  information in the IA from the client matches the information stored
  for that client.

  If the server cannot find a client entry for the IA the server
  returns the IA containing no addresses with a Status Code option set
  to NoBinding in the Reply message.

  If the server finds that any of the addresses are not appropriate for
  the link to which the client is attached, the server returns the
  address to the client with lifetimes of 0.

  If the server finds the addresses in the IA for the client then the
  server sends back the IA to the client with new lifetimes and T1/T2
  times.  The server may choose to change the list of addresses and the
  lifetimes of addresses in IAs that are returned to the client.

  The server constructs a Reply message by setting the "msg-type" field
  to REPLY, and copying the transaction ID from the Renew message into
  the transaction-id field.

  The server MUST include a Server Identifier option containing the
  server's DUID and the Client Identifier option from the Renew message
  in the Reply message.

  The server includes other options containing configuration
  information to be returned to the client as described in section
  18.2.

18.2.4. Receipt of Rebind Messages

  When the server receives a Rebind message that contains an IA option
  from a client, it locates the client's binding and verifies that the
  information in the IA from the client matches the information stored
  for that client.






Droms, et al.               Standards Track                    [Page 51]

RFC 3315                     DHCP for IPv6                     July 2003


  If the server cannot find a client entry for the IA and the server
  determines that the addresses in the IA are not appropriate for the
  link to which the client's interface is attached according to the
  server's explicit configuration information, the server MAY send a
  Reply message to the client containing the client's IA, with the
  lifetimes for the addresses in the IA set to zero.  This Reply
  constitutes an explicit notification to the client that the addresses
  in the IA are no longer valid.  In this situation, if the server does
  not send a Reply message it silently discards the Rebind message.

  If the server finds that any of the addresses are no longer
  appropriate for the link to which the client is attached, the server
  returns the address to the client with lifetimes of 0.

  If the server finds the addresses in the IA for the client then the
  server SHOULD send back the IA to the client with new lifetimes and
  T1/T2 times.

  The server constructs a Reply message by setting the "msg-type" field
  to REPLY, and copying the transaction ID from the Rebind message into
  the transaction-id field.

  The server MUST include a Server Identifier option containing the
  server's DUID and the Client Identifier option from the Rebind
  message in the Reply message.

  The server includes other options containing configuration
  information to be returned to the client as described in section
  18.2.

18.2.5. Receipt of Information-request Messages

  When the server receives an Information-request message, the client
  is requesting configuration information that does not include the
  assignment of any addresses.  The server determines all configuration
  parameters appropriate to the client, based on the server
  configuration policies known to the server.

  The server constructs a Reply message by setting the "msg-type" field
  to REPLY, and copying the transaction ID from the Information-request
  message into the transaction-id field.

  The server MUST include a Server Identifier option containing the
  server's DUID in the Reply message.  If the client included a Client
  Identification option in the Information-request message, the server
  copies that option to the Reply message.





Droms, et al.               Standards Track                    [Page 52]

RFC 3315                     DHCP for IPv6                     July 2003


  The server includes options containing configuration information to
  be returned to the client as described in section 18.2.

  If the Information-request message received from the client did not
  include a Client Identifier option, the server SHOULD respond with a
  Reply message containing any configuration parameters that are not
  determined by the client's identity.  If the server chooses not to
  respond, the client may continue to retransmit the
  Information-request message indefinitely.

18.2.6. Receipt of Release Messages

  When the server receives a Release message via unicast from a client
  to which the server has not sent a unicast option, the server
  discards the Release message and responds with a Reply message
  containing a Status Code option with value UseMulticast, a Server
  Identifier option containing the server's DUID, the Client Identifier
  option from the client message, and no other options.

  Upon the receipt of a valid Release message, the server examines the
  IAs and the addresses in the IAs for validity.  If the IAs in the
  message are in a binding for the client, and the addresses in the IAs
  have been assigned by the server to those IAs, the server deletes the
  addresses from the IAs and makes the addresses available for
  assignment to other clients.  The server ignores addresses not
  assigned to the IA, although it may choose to log an error.

  After all the addresses have been processed, the server generates a
  Reply message and includes a Status Code option with value Success, a
  Server Identifier option with the server's DUID, and a Client
  Identifier option with the client's DUID.  For each IA in the Release
  message for which the server has no binding information, the server
  adds an IA option using the IAID from the Release message, and
  includes a Status Code option with the value NoBinding in the IA
  option.  No other options are included in the IA option.

  A server may choose to retain a record of assigned addresses and IAs
  after the lifetimes on the addresses have expired to allow the server
  to reassign the previously assigned addresses to a client.

18.2.7. Receipt of Decline Messages

  When the server receives a Decline message via unicast from a client
  to which the server has not sent a unicast option, the server
  discards the Decline message and responds with a Reply message
  containing a Status Code option with the value UseMulticast, a Server
  Identifier option containing the server's DUID, the Client Identifier
  option from the client message, and no other options.



Droms, et al.               Standards Track                    [Page 53]

RFC 3315                     DHCP for IPv6                     July 2003


  Upon the receipt of a valid Decline message, the server examines the
  IAs and the addresses in the IAs for validity.  If the IAs in the
  message are in a binding for the client, and the addresses in the IAs
  have been assigned by the server to those IAs, the server deletes the
  addresses from the IAs.  The server ignores addresses not assigned to
  the IA (though it may choose to log an error if it finds such an
  address).

  The client has found any addresses in the Decline messages to be
  already in use on its link.  Therefore, the server SHOULD mark the
  addresses declined by the client so that those addresses are not
  assigned to other clients, and MAY choose to make a notification that
  addresses were declined.  Local policy on the server determines when
  the addresses identified in a Decline message may be made available
  for assignment.

  After all the addresses have been processed, the server generates a
  Reply message and includes a Status Code option with the value
  Success, a Server Identifier option with the server's DUID, and a
  Client Identifier option with the client's DUID.  For each IA in the
  Decline message for which the server has no binding information, the
  server adds an IA option using the IAID from the Release message and
  includes a Status Code option with the value NoBinding in the IA
  option.  No other options are included in the IA option.

18.2.8. Transmission of Reply Messages

  If the original message was received directly by the server, the
  server unicasts the Reply message directly to the client using the
  address in the source address field from the IP datagram in which the
  original message was received.  The Reply message MUST be unicast
  through the interface on which the original message was received.

  If the original message was received in a Relay-forward message, the
  server constructs a Relay-reply message with the Reply message in the
  payload of a Relay Message option (see section 22.10).  If the
  Relay-forward messages included an Interface-id option, the server
  copies that option to the Relay-reply message.  The server unicasts
  the Relay-reply message directly to the relay agent using the address
  in the source address field from the IP datagram in which the
  Relay-forward message was received.

19. DHCP Server-Initiated Configuration Exchange

  A server initiates a configuration exchange to cause DHCP clients to
  obtain new addresses and other configuration information.  For
  example, an administrator may use a server-initiated configuration
  exchange when links in the DHCP domain are to be renumbered.  Other



Droms, et al.               Standards Track                    [Page 54]

RFC 3315                     DHCP for IPv6                     July 2003


  examples include changes in the location of directory servers,
  addition of new services such as printing, and availability of new
  software.

19.1. Server Behavior

  A server sends a Reconfigure message to cause a client to initiate
  immediately a Renew/Reply or Information-request/Reply message
  exchange with the server.

19.1.1. Creation and Transmission of Reconfigure Messages

  The server sets the "msg-type" field to RECONFIGURE.  The server sets
  the transaction-id field to 0.  The server includes a Server
  Identifier option containing its DUID and a Client Identifier option
  containing the client's DUID in the Reconfigure message.

  The server MAY include an Option Request option to inform the client
  of what information has been changed or new information that has been
  added.  In particular, the server specifies the IA option in the
  Option Request option if the server wants the client to obtain new
  address information.  If the server identifies the IA option in the
  Option Request option, the server MUST include an IA option that
  contains no other sub-options to identify each IA that is to be
  reconfigured on the client.

  Because of the risk of denial of service attacks against DHCP
  clients, the use of a security mechanism is mandated in Reconfigure
  messages.  The server MUST use DHCP authentication in the Reconfigure
  message.

  The server MUST include a Reconfigure Message option (defined in
  section 22.19) to select whether the client responds with a Renew
  message or an Information-Request message.

  The server MUST NOT include any other options in the Reconfigure
  except as specifically allowed in the definition of individual
  options.

  A server sends each Reconfigure message to a single DHCP client,
  using an IPv6 unicast address of sufficient scope belonging to the
  DHCP client.  If the server does not have an address to which it can
  send the Reconfigure message directly to the client, the server uses
  a Relay-reply message (as described in section 20.3) to send the
  Reconfigure message to a relay agent that will relay the message to
  the client.  The server may obtain the address of the client (and the





Droms, et al.               Standards Track                    [Page 55]

RFC 3315                     DHCP for IPv6                     July 2003


  appropriate relay agent, if required) through the information the
  server has about clients that have been in contact with the server,
  or through some external agent.

  To reconfigure more than one client, the server unicasts a separate
  message to each client.  The server may initiate the reconfiguration
  of multiple clients concurrently; for example, a server may send a
  Reconfigure message to additional clients while previous
  reconfiguration message exchanges are still in progress.

  The Reconfigure message causes the client to initiate a Renew/Reply
  or Information-request/Reply message exchange with the server.  The
  server interprets the receipt of a Renew or Information-request
  message (whichever was specified in the original Reconfigure message)
  from the client as satisfying the Reconfigure message request.

19.1.2. Time Out and Retransmission of Reconfigure Messages

  If the server does not receive a Renew or Information-request message
  from the client in REC_TIMEOUT milliseconds, the server retransmits
  the Reconfigure message, doubles the REC_TIMEOUT value and waits
  again.  The server continues this process until REC_MAX_RC
  unsuccessful attempts have been made, at which point the server
  SHOULD abort the reconfigure process for that client.

  Default and initial values for REC_TIMEOUT and REC_MAX_RC are
  documented in section 5.5.

19.2. Receipt of Renew Messages

  The server generates and sends a Reply message to the client as
  described in sections 18.2.3 and 18.2.8, including options for
  configuration parameters.

  The server MAY include options containing the IAs and new values for
  other configuration parameters in the Reply message, even if those
  IAs and parameters were not requested in the Renew message from the
  client.

19.3. Receipt of Information-request Messages

  The server generates and sends a Reply message to the client as
  described in sections 18.2.5 and 18.2.8, including options for
  configuration parameters.







Droms, et al.               Standards Track                    [Page 56]

RFC 3315                     DHCP for IPv6                     July 2003


  The server MAY include options containing new values for other
  configuration parameters in the Reply message, even if those
  parameters were not requested in the Information-request message from
  the client.

19.4. Client Behavior

  A client receives Reconfigure messages sent to the UDP port 546 on
  interfaces for which it has acquired configuration information
  through DHCP.  These messages may be sent at any time.  Since the
  results of a reconfiguration event may affect application layer
  programs, the client SHOULD log these events, and MAY notify these
  programs of the change through an implementation-specific interface.

19.4.1. Receipt of Reconfigure Messages

  Upon receipt of a valid Reconfigure message, the client responds with
  either a Renew message or an Information-request message as indicated
  by the Reconfigure Message option (as defined in section 22.19).  The
  client ignores the transaction-id field in the received Reconfigure
  message.  While the transaction is in progress, the client silently
  discards any Reconfigure messages it receives.

  DISCUSSION:

     The Reconfigure message acts as a trigger that signals the client
     to complete a successful message exchange.  Once the client has
     received a Reconfigure, the client proceeds with the message
     exchange (retransmitting the Renew or Information-request message
     if necessary); the client ignores any additional Reconfigure
     messages until the exchange is complete.  Subsequent Reconfigure
     messages cause the client to initiate a new exchange.

     How does this mechanism work in the face of duplicated or
     retransmitted Reconfigure messages?  Duplicate messages will be
     ignored because the client will begin the exchange after the
     receipt of the first Reconfigure.  Retransmitted messages will
     either trigger the exchange (if the first Reconfigure was not
     received by the client) or will be ignored.  The server can
     discontinue retransmission of Reconfigure messages to the client
     once the server receives the Renew or Information-request message
     from the client.

     It might be possible for a duplicate or retransmitted Reconfigure
     to be sufficiently delayed (and delivered out of order) to arrive
     at the client after the exchange (initiated by the original
     Reconfigure) has been completed.  In this case, the client would
     initiate a redundant exchange.  The likelihood of delayed and out



Droms, et al.               Standards Track                    [Page 57]

RFC 3315                     DHCP for IPv6                     July 2003


     of order delivery is small enough to be ignored.  The consequence
     of the redundant exchange is inefficiency rather than incorrect
     operation.

19.4.2. Creation and Transmission of Renew Messages

  When responding to a Reconfigure, the client creates and sends the
  Renew message in exactly the same manner as outlined in section
  18.1.3, with the exception that the client copies the Option Request
  option and any IA options from the Reconfigure message into the Renew
  message.

19.4.3. Creation and Transmission of Information-request Messages

  When responding to a Reconfigure, the client creates and sends the
  Information-request message in exactly the same manner as outlined in
  section 18.1.5, with the exception that the client includes a Server
  Identifier option with the identifier from the Reconfigure message to
  which the client is responding.

19.4.4. Time Out and Retransmission of Renew or Information-request
       Messages

  The client uses the same variables and retransmission algorithm as it
  does with Renew or Information-request messages generated as part of
  a client-initiated configuration exchange.  See sections 18.1.3 and
  18.1.5 for details.  If the client does not receive a response from
  the server by the end of the retransmission process, the client
  ignores and discards the Reconfigure message.

19.4.5. Receipt of Reply Messages

  Upon the receipt of a valid Reply message, the client processes the
  options and sets (or resets) configuration parameters appropriately.
  The client records and updates the lifetimes for any addresses
  specified in IAs in the Reply message.

20. Relay Agent Behavior

  The relay agent MAY be configured to use a list of destination
  addresses, which MAY include unicast addresses, the All_DHCP_Servers
  multicast address, or other addresses selected by the network
  administrator.  If the relay agent has not been explicitly
  configured, it MUST use the All_DHCP_Servers multicast address as the
  default.






Droms, et al.               Standards Track                    [Page 58]

RFC 3315                     DHCP for IPv6                     July 2003


  If the relay agent relays messages to the All_DHCP_Servers multicast
  address or other multicast addresses, it sets the Hop Limit field to
  32.

20.1. Relaying a Client Message or a Relay-forward Message

  A relay agent relays both messages from clients and Relay-forward
  messages from other relay agents.  When a relay agent receives a
  valid message to be relayed, it constructs a new Relay-forward
  message.  The relay agent copies the source address from the header
  of the IP datagram in which the message was received to the
  peer-address field of the Relay-forward message.  The relay agent
  copies the received DHCP message (excluding any IP or UDP headers)
  into a Relay Message option in the new message.  The relay agent adds
  to the Relay-forward message any other options it is configured to
  include.

20.1.1. Relaying a Message from a Client

  If the relay agent received the message to be relayed from a client,
  the relay agent places a global or site-scoped address with a prefix
  assigned to the link on which the client should be assigned an
  address in the link-address field.  This address will be used by the
  server to determine the link from which the client should be assigned
  an address and other configuration information.  The hop-count in the
  Relay-forward message is set to 0.

  If the relay agent cannot use the address in the link-address field
  to identify the interface through which the response to the client
  will be relayed, the relay agent MUST include an Interface-id option
  (see section 22.18) in the Relay-forward message.  The server will
  include the Interface-id option in its Relay-reply message.  The
  relay agent fills in the link-address field as described in the
  previous paragraph regardless of whether the relay agent includes an
  Interface-id option in the Relay-forward message.

20.1.2. Relaying a Message from a Relay Agent

  If the message received by the relay agent is a Relay-forward message
  and the hop-count in the message is greater than or equal to
  HOP_COUNT_LIMIT, the relay agent discards the received message.

  The relay agent copies the source address from the IP datagram in
  which the message was received from the client into the peer-address
  field in the Relay-forward message and sets the hop-count field to
  the value of the hop-count field in the received message incremented
  by 1.




Droms, et al.               Standards Track                    [Page 59]

RFC 3315                     DHCP for IPv6                     July 2003


  If the source address from the IP datagram header of the received
  message is a global or site-local address (and the device on which
  the relay agent is running belongs to only one site), the relay agent
  sets the link-address field to 0; otherwise the relay agent sets the
  link-address field to a global or site-local address assigned to the
  interface on which the message was received, or includes an
  Interface-ID option to identify the interface on which the message
  was received.

20.2. Relaying a Relay-reply Message

  The relay agent processes any options included in the Relay-reply
  message in addition to the Relay Message option, and then discards
  those options.

  The relay agent extracts the message from the Relay Message option
  and relays it to the address contained in the peer-address field of
  the Relay-reply message.

  If the Relay-reply message includes an Interface-id option, the relay
  agent relays the message from the server to the client on the link
  identified by the Interface-id option.  Otherwise, if the
  link-address field is not set to zero, the relay agent relays the
  message on the link identified by the link-address field.

20.3. Construction of Relay-reply Messages

  A server uses a Relay-reply message to return a response to a client
  if the original message from the client was relayed to the server in
  a Relay-forward message or to send a Reconfigure message to a client
  if the server does not have an address it can use to send the message
  directly to the client.

  A response to the client MUST be relayed through the same relay
  agents as the original client message.  The server causes this to
  happen by creating a Relay-reply message that includes a Relay
  Message option containing the message for the next relay agent in the
  return path to the client.  The contained Relay-reply message
  contains another Relay Message option to be sent to the next relay
  agent, and so on.  The server must record the contents of the
  peer-address fields in the received message so it can construct the
  appropriate Relay-reply message carrying the response from the
  server.








Droms, et al.               Standards Track                    [Page 60]

RFC 3315                     DHCP for IPv6                     July 2003


  For example, if client C sent a message that was relayed by relay
  agent A to relay agent B and then to the server, the server would
  send the following Relay-Reply message to relay agent B:

  msg-type:       RELAY-REPLY
  hop-count:      1
  link-address:   0
  peer-address:   A
  Relay Message option, containing:
    msg-type:     RELAY-REPLY
    hop-count:    0
    link-address: address from link to which C is attached
    peer-address: C
    Relay Message option: <response from server>

  When sending a Reconfigure message to a client through a relay agent,
  the server creates a Relay-reply message that includes a Relay
  Message option containing the Reconfigure message for the next relay
  agent in the return path to the client.  The server sets the
  peer-address field in the Relay-reply message header to the address
  of the client, and sets the link-address field as required by the
  relay agent to relay the Reconfigure message to the client.  The
  server obtains the addresses of the client and the relay agent
  through prior interaction with the client or through some external
  mechanism.

21. Authentication of DHCP Messages

  Some network administrators may wish to provide authentication of the
  source and contents of DHCP messages.  For example, clients may be
  subject to denial of service attacks through the use of bogus DHCP
  servers, or may simply be misconfigured due to unintentionally
  instantiated DHCP servers.  Network administrators may wish to
  constrain the allocation of addresses to authorized hosts to avoid
  denial of service attacks in "hostile" environments where the network
  medium is not physically secured, such as wireless networks or
  college residence halls.

  The DHCP authentication mechanism is based on the design of
  authentication for DHCPv4 [4].

21.1. Security of Messages Sent Between Servers and Relay Agents

  Relay agents and servers that exchange messages securely use the
  IPsec mechanisms for IPv6 [7].  If a client message is relayed
  through multiple relay agents, each of the relay agents must have
  established independent, pairwise trust relationships.  That is, if
  messages from client C will be relayed by relay agent A to relay



Droms, et al.               Standards Track                    [Page 61]

RFC 3315                     DHCP for IPv6                     July 2003


  agent B and then to the server, relay agents A and B must be
  configured to use IPSec for the messages they exchange, and relay
  agent B and the server must be configured to use IPSec for the
  messages they exchange.

  Relay agents and servers that support secure relay agent to server or
  relay agent to relay agent communication use IPsec under the
  following conditions:

     Selectors        Relay agents are manually configured with the
                      addresses of the relay agent or server to which
                      DHCP messages are to be forwarded.  Each relay
                      agent and server that will be using IPsec for
                      securing DHCP messages must also be configured
                      with a list of the relay agents to which messages
                      will be returned.  The selectors for the relay
                      agents and servers will be the pairs of addresses
                      defining relay agents and servers that exchange
                      DHCP messages on the DHCPv6 UDP ports 546 and
                      547.

     Mode             Relay agents and servers use transport mode and
                      ESP. The information in DHCP messages is not
                      generally considered confidential, so encryption
                      need not be used (i.e., NULL encryption can be
                      used).

     Key management   Because the relay agents and servers are used
                      within an organization, public key schemes are
                      not necessary.  Because the relay agents and
                      servers must be manually configured, manually
                      configured key management may suffice, but does
                      not provide defense against replayed messages.
                      Accordingly, IKE with preshared secrets SHOULD be
                      supported.  IKE with public keys MAY be
                      supported.

     Security policy  DHCP messages between relay agents and servers
                      should only be accepted from DHCP peers as
                      identified in the local configuration.

     Authentication   Shared keys, indexed to the source IP address of
                      the received DHCP message, are adequate in this
                      application.

     Availability     Appropriate IPsec implementations are likely to
                      be available for servers and for relay agents in
                      more featureful devices used in enterprise and



Droms, et al.               Standards Track                    [Page 62]

RFC 3315                     DHCP for IPv6                     July 2003


                      core ISP networks.  IPsec is less likely to be
                      available for relay agents in low end devices
                      primarily used in the home or small office
                      markets.

21.2. Summary of DHCP Authentication

  Authentication of DHCP messages is accomplished through the use of
  the Authentication option (see section 22.11).  The authentication
  information carried in the Authentication option can be used to
  reliably identify the source of a DHCP message and to confirm that
  the contents of the DHCP message have not been tampered with.

  The Authentication option provides a framework for multiple
  authentication protocols.  Two such protocols are defined here.
  Other protocols defined in the future will be specified in separate
  documents.

  Any DHCP message MUST NOT include more than one Authentication
  option.

  The protocol field in the Authentication option identifies the
  specific protocol used to generate the authentication information
  carried in the option.  The algorithm field identifies a specific
  algorithm within the authentication protocol; for example, the
  algorithm field specifies the hash algorithm used to generate the
  message authentication code (MAC) in the authentication option.  The
  replay detection method (RDM) field specifies the type of replay
  detection used in the replay detection field.

21.3. Replay Detection

  The Replay Detection Method (RDM) field determines the type of replay
  detection used in the Replay Detection field.

  If the RDM field contains 0x00, the replay detection field MUST be
  set to the value of a monotonically increasing counter.  Using a
  counter value, such as the current time of day (for example, an NTP-
  format timestamp [9]), can reduce the danger of replay attacks.  This
  method MUST be supported by all protocols.

21.4. Delayed Authentication Protocol

  If the protocol field is 2, the message is using the "delayed
  authentication" mechanism.  In delayed authentication, the client
  requests authentication in its Solicit message, and the server
  replies with an Advertise message that includes authentication




Droms, et al.               Standards Track                    [Page 63]

RFC 3315                     DHCP for IPv6                     July 2003


  information.  This authentication information contains a nonce value
  generated by the source as a message authentication code (MAC) to
  provide message authentication and entity authentication.

  The use of a particular technique based on the HMAC protocol [8]
  using the MD5 hash [16] is defined here.

21.4.1. Use of the Authentication Option in the Delayed Authentication
       Protocol

  In a Solicit message, the client fills in the protocol, algorithm and
  RDM fields in the Authentication option with the client's
  preferences.  The client sets the replay detection field to zero and
  omits the authentication information field.  The client sets the
  option-len field to 11.

  In all other messages, the protocol and algorithm fields identify the
  method used to construct the contents of the authentication
  information field.  The RDM field identifies the method used to
  construct the contents of the replay detection field.

  The format of the Authentication information is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          DHCP realm                           |
   |                      (variable length)                        |
   .                                                               .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            key ID                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                           HMAC-MD5                            |
   |                          (128 bits)                           |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     DHCP realm  The DHCP realm that identifies the key used to
                 generate the HMAC-MD5 value.

     key ID      The key identifier that identified the key used to
                 generate the HMAC-MD5 value.

     HMAC-MD5    The message authentication code generated by applying
                 MD5 to the DHCP message using the key identified by
                 the DHCP realm, client DUID, and key ID.



Droms, et al.               Standards Track                    [Page 64]

RFC 3315                     DHCP for IPv6                     July 2003


  The sender computes the MAC using the HMAC generation algorithm [8]
  and the MD5 hash function [16].  The entire DHCP message (setting the
  MAC field of the authentication option to zero), including the DHCP
  message header and the options field, is used as input to the HMAC-
  MD5 computation function.

  DISCUSSION:

     Algorithm 1 specifies the use of HMAC-MD5.  Use of a different
     technique, such as HMAC-SHA, will be specified as a separate
     protocol.

     The DHCP realm used to identify authentication keys is chosen to
     be unique among administrative domains.  Use of the DHCP realm
     allows DHCP administrators to avoid conflict in the use of key
     identifiers, and allows a host using DHCP to use authenticated
     DHCP while roaming among DHCP administrative domains.

21.4.2. Message Validation

  Any DHCP message that includes more than one authentication option
  MUST be discarded.

  To validate an incoming message, the receiver first checks that the
  value in the replay detection field is acceptable according to the
  replay detection method specified by the RDM field.  Next, the
  receiver computes the MAC as described in [8].  The entire DHCP
  message (setting the MAC field of the authentication option to 0) is
  used as input to the HMAC-MD5 computation function.  If the MAC
  computed by the receiver does not match the MAC contained in the
  authentication option, the receiver MUST discard the DHCP message.

21.4.3. Key Utilization

  Each DHCP client has a set of keys.  Each key is identified by <DHCP
  realm, client DUID, key id>.  Each key also has a lifetime.  The key
  may not be used past the end of its lifetime.  The client's keys are
  initially distributed to the client through some out-of-band
  mechanism.  The lifetime for each key is distributed with the key.
  Mechanisms for key distribution and lifetime specification are beyond
  the scope of this document.

  The client and server use one of the client's keys to authenticate
  DHCP messages during a session (until the next Solicit message sent
  by the client).






Droms, et al.               Standards Track                    [Page 65]

RFC 3315                     DHCP for IPv6                     July 2003


21.4.4. Client Considerations for Delayed Authentication Protocol

  The client announces its intention to use DHCP authentication by
  including an Authentication option in its Solicit message.  The
  server selects a key for the client based on the client's DUID.  The
  client and server use that key to authenticate all DHCP messages
  exchanged during the session.

21.4.4.1. Sending Solicit Messages

  When the client sends a Solicit message and wishes to use
  authentication, it includes an Authentication option with the desired
  protocol, algorithm and RDM as described in section 21.4.  The client
  does not include any replay detection or authentication information
  in the Authentication option.

21.4.4.2. Receiving Advertise Messages

  The client validates any Advertise messages containing an
  Authentication option specifying the delayed authentication protocol
  using the validation test described in section 21.4.2.

  Client behavior, if no Advertise messages include authentication
  information or pass the validation test, is controlled by local
  policy on the client.  According to client policy, the client MAY
  choose to respond to an Advertise message that has not been
  authenticated.

  The decision to set local policy to accept unauthenticated messages
  should be made with care.  Accepting an unauthenticated Advertise
  message can make the client vulnerable to spoofing and other attacks.
  If local users are not explicitly informed that the client has
  accepted an unauthenticated Advertise message, the users may
  incorrectly assume that the client has received an authenticated
  address and is not subject to DHCP attacks through unauthenticated
  messages.

  A client MUST be configurable to discard unauthenticated messages,
  and SHOULD be configured by default to discard unauthenticated
  messages if the client has been configured with an authentication key
  or other authentication information.  A client MAY choose to
  differentiate between Advertise messages with no authentication
  information and Advertise messages that do not pass the validation
  test; for example, a client might accept the former and discard the
  latter.  If a client does accept an unauthenticated message, the
  client SHOULD inform any local users and SHOULD log the event.





Droms, et al.               Standards Track                    [Page 66]

RFC 3315                     DHCP for IPv6                     July 2003


21.4.4.3. Sending Request, Confirm, Renew, Rebind, Decline or Release
         Messages

  If the client authenticated the Advertise message through which the
  client selected the server, the client MUST generate authentication
  information for subsequent Request, Confirm, Renew, Rebind or Release
  messages sent to the server, as described in section 21.4.  When the
  client sends a subsequent message, it MUST use the same key used by
  the server to generate the authentication information.

21.4.4.4. Sending Information-request Messages

  If the server has selected a key for the client in a previous message
  exchange (see section 21.4.5.1), the client MUST use the same key to
  generate the authentication information throughout the session.

21.4.4.5. Receiving Reply Messages

  If the client authenticated the Advertise it accepted, the client
  MUST validate the associated Reply message from the server.  The
  client MUST discard the Reply if the message fails to pass the
  validation test and MAY log the validation failure.  If the Reply
  fails to pass the validation test, the client MUST restart the DHCP
  configuration process by sending a Solicit message.

  If the client accepted an Advertise message that did not include
  authentication information or did not pass the validation test, the
  client MAY accept an unauthenticated Reply message from the server.

21.4.4.6. Receiving Reconfigure Messages

  The client MUST discard the Reconfigure if the message fails to pass
  the validation test and MAY log the validation failure.

21.4.5. Server Considerations for Delayed Authentication Protocol

  After receiving a Solicit message that contains an Authentication
  option, the server selects a key for the client, based on the
  client's DUID and key selection policies with which the server has
  been configured.  The server identifies the selected key in the
  Advertise message and uses the key to validate subsequent messages
  between the client and the server.









Droms, et al.               Standards Track                    [Page 67]

RFC 3315                     DHCP for IPv6                     July 2003


21.4.5.1. Receiving Solicit Messages and Sending Advertise Messages

  The server selects a key for the client and includes authentication
  information in the Advertise message returned to the client as
  specified in section 21.4.  The server MUST record the identifier of
  the key selected for the client and use that same key for validating
  subsequent messages with the client.

21.4.5.2. Receiving Request, Confirm, Renew, Rebind or Release Messages
         and Sending Reply Messages

  The server uses the key identified in the message and validates the
  message as specified in section 21.4.2.  If the message fails to pass
  the validation test or the server does not know the key identified by
  the 'key ID' field, the server MUST discard the message and MAY
  choose to log the validation failure.

  If the message passes the validation test, the server responds to the
  specific message as described in section 18.2.  The server MUST
  include authentication information generated using the key identified
  in the received message, as specified in section 21.4.

21.5. Reconfigure Key Authentication Protocol

  The Reconfigure key authentication protocol provides protection
  against misconfiguration of a client caused by a Reconfigure message
  sent by a malicious DHCP server.  In this protocol, a DHCP server
  sends a Reconfigure Key to the client in the initial exchange of DHCP
  messages.  The client records the Reconfigure Key for use in
  authenticating subsequent Reconfigure messages from that server.  The
  server then includes an HMAC computed from the Reconfigure Key in
  subsequent Reconfigure messages.

  Both the Reconfigure Key sent from the server to the client and the
  HMAC in subsequent Reconfigure messages are carried as the
  Authentication information in an Authentication option.  The format
  of the Authentication information is defined in the following
  section.

  The Reconfigure Key protocol is used (initiated by the server) only
  if the client and server are not using any other authentication
  protocol and the client and server have negotiated to use Reconfigure
  messages.








Droms, et al.               Standards Track                    [Page 68]

RFC 3315                     DHCP for IPv6                     July 2003


21.5.1. Use of the Authentication Option in the Reconfigure Key
       Authentication Protocol

  The following fields are set in an Authentication option for the
  Reconfigure Key Authentication Protocol:

     protocol    3

     algorithm   1

     RDM         0

  The format of the Authentication information for the Reconfigure Key
  Authentication Protocol is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |                 Value (128 bits)              |
   +-+-+-+-+-+-+-+-+                                               |
   .                                                               .
   .                                                               .
   .                                               +-+-+-+-+-+-+-+-+
   |                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Type    Type of data in Value field carried in this option:

                1   Reconfigure Key value (used in Reply message).

                2   HMAC-MD5 digest of the message (used in Reconfigure
                    message).

     Value   Data as defined by field.

21.5.2. Server considerations for Reconfigure Key protocol

  The server selects a Reconfigure Key for a client during the
  Request/Reply, Solicit/Reply or Information-request/Reply message
  exchange.  The server records the Reconfigure Key and transmits that
  key to the client in an Authentication option in the Reply message.

  The Reconfigure Key is 128 bits long, and MUST be a cryptographically
  strong random or pseudo-random number that cannot easily be
  predicted.






Droms, et al.               Standards Track                    [Page 69]

RFC 3315                     DHCP for IPv6                     July 2003


  To provide authentication for a Reconfigure message, the server
  selects a replay detection value according to the RDM selected by the
  server, and computes an HMAC-MD5 of the Reconfigure message using the
  Reconfigure Key for the client.  The server computes the HMAC-MD5
  over the entire DHCP Reconfigure message, including the
  Authentication option; the HMAC-MD5 field in the Authentication
  option is set to zero for the HMAC-MD5 computation.  The server
  includes the HMAC-MD5 in the authentication information field in an
  Authentication option included in the Reconfigure message sent to the
  client.

21.5.3. Client considerations for Reconfigure Key protocol

  The client will receive a Reconfigure Key from the server in the
  initial Reply message from the server.  The client records the
  Reconfigure Key for use in authenticating subsequent Reconfigure
  messages.

  To authenticate a Reconfigure message, the client computes an
  HMAC-MD5 over the DHCP Reconfigure message, using the Reconfigure Key
  received from the server.  If this computed HMAC-MD5 matches the
  value in the Authentication option, the client accepts the
  Reconfigure message.

22. DHCP Options

  Options are used to carry additional information and parameters in
  DHCP messages.  Every option shares a common base format, as
  described in section 22.1.  All values in options are represented in
  network byte order.

  This document describes the DHCP options defined as part of the base
  DHCP specification.  Other options may be defined in the future in
  separate documents.

  Unless otherwise noted, each option may appear only in the options
  area of a DHCP message and may appear only once.  If an option does
  appear multiple times, each instance is considered separate and the
  data areas of the options MUST NOT be concatenated or otherwise
  combined.











Droms, et al.               Standards Track                    [Page 70]

RFC 3315                     DHCP for IPv6                     July 2003


22.1. Format of DHCP Options

  The format of DHCP options is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          option-code          |           option-len          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          option-data                          |
     |                      (option-len octets)                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code   An unsigned integer identifying the specific option
                   type carried in this option.

     option-len    An unsigned integer giving the length of the
                   option-data field in this option in octets.

     option-data   The data for the option; the format of this data
                   depends on the definition of the option.

  DHCPv6 options are scoped by using encapsulation.  Some options apply
  generally to the client, some are specific to an IA, and some are
  specific to the addresses within an IA.  These latter two cases are
  discussed in sections 22.4 and 22.6.

22.2. Client Identifier Option

  The Client Identifier option is used to carry a DUID (see section 9)
  identifying a client between a client and a server.  The format of
  the Client Identifier option is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        OPTION_CLIENTID        |          option-len           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     .                                                               .
     .                              DUID                             .
     .                        (variable length)                      .
     .                                                               .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code   OPTION_CLIENTID (1).

     option-len    Length of DUID in octets.




Droms, et al.               Standards Track                    [Page 71]

RFC 3315                     DHCP for IPv6                     July 2003


     DUID          The DUID for the client.

22.3. Server Identifier Option

  The Server Identifier option is used to carry a DUID (see section 9)
  identifying a server between a client and a server.  The format of
  the Server Identifier option is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        OPTION_SERVERID        |          option-len           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     .                                                               .
     .                              DUID                             .
     .                        (variable length)                      .
     .                                                               .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code   OPTION_SERVERID (2).

     option-len    Length of DUID in octets.

     DUID          The DUID for the server.

22.4. Identity Association for Non-temporary Addresses Option

  The Identity Association for Non-temporary Addresses option (IA_NA
  option) is used to carry an IA_NA, the parameters associated with the
  IA_NA, and the non-temporary addresses associated with the IA_NA.

  Addresses appearing in an IA_NA option are not temporary addresses
  (see section 22.5).


















Droms, et al.               Standards Track                    [Page 72]

RFC 3315                     DHCP for IPv6                     July 2003


  The format of the IA_NA option is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          OPTION_IA_NA         |          option-len           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        IAID (4 octets)                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                              T1                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                              T2                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     .                         IA_NA-options                         .
     .                                                               .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code          OPTION_IA_NA (3).

     option-len           12 + length of IA_NA-options field.

     IAID                 The unique identifier for this IA_NA; the
                          IAID must be unique among the identifiers for
                          all of this client's IA_NAs.  The number
                          space for IA_NA IAIDs is separate from the
                          number space for IA_TA IAIDs.

     T1                   The time at which the client contacts the
                          server from which the addresses in the IA_NA
                          were obtained to extend the lifetimes of the
                          addresses assigned to the IA_NA; T1 is a
                          time duration relative to the current time
                          expressed in units of seconds.

     T2                   The time at which the client contacts any
                          available server to extend the lifetimes of
                          the addresses assigned to the IA_NA; T2 is a
                          time duration relative to the current time
                          expressed in units of seconds.

     IA_NA-options        Options associated with this IA_NA.

  The IA_NA-options field encapsulates those options that are specific
  to this IA_NA.  For example, all of the IA Address Options carrying
  the addresses associated with this IA_NA are in the IA_NA-options
  field.




Droms, et al.               Standards Track                    [Page 73]

RFC 3315                     DHCP for IPv6                     July 2003


  An IA_NA option may only appear in the options area of a DHCP
  message.  A DHCP message may contain multiple IA_NA options.

  The status of any operations involving this IA_NA is indicated in a
  Status Code option in the IA_NA-options field.

  Note that an IA_NA has no explicit "lifetime" or "lease length" of
  its own.  When the valid lifetimes of all of the addresses in an
  IA_NA have expired, the IA_NA can be considered as having expired.
  T1 and T2 are included to give servers explicit control over when a
  client recontacts the server about a specific IA_NA.

  In a message sent by a client to a server, values in the T1 and T2
  fields indicate the client's preference for those parameters.  The
  client sets T1 and T2 to 0 if it has no preference for those values.
  In a message sent by a server to a client, the client MUST use the
  values in the T1 and T2 fields for the T1 and T2 parameters, unless
  those values in those fields are 0.  The values in the T1 and T2
  fields are the number of seconds until T1 and T2.

  The server selects the T1 and T2 times to allow the client to extend
  the lifetimes of any addresses in the IA_NA before the lifetimes
  expire, even if the server is unavailable for some short period of
  time.  Recommended values for T1 and T2 are .5 and .8 times the
  shortest preferred lifetime of the addresses in the IA that the
  server is willing to extend, respectively.  If the "shortest"
  preferred lifetime is 0xffffffff ("infinity"), the recommended T1 and
  T2 values are also 0xffffffff.  If the time at which the addresses in
  an IA_NA are to be renewed is to be left to the discretion of the
  client, the server sets T1 and T2 to 0.

  If a server receives an IA_NA with T1 greater than T2, and both T1
  and T2 are greater than 0, the server ignores the invalid values of
  T1 and T2 and processes the IA_NA as though the client had set T1 and
  T2 to 0.

  If a client receives an IA_NA with T1 greater than T2, and both T1
  and T2 are greater than 0, the client discards the IA_NA option and
  processes the remainder of the message as though the server had not
  included the invalid IA_NA option.

  Care should be taken in setting T1 or T2 to 0xffffffff ("infinity").
  A client will never attempt to extend the lifetimes of any addresses
  in an IA with T1 set to 0xffffffff.  A client will never attempt to
  use a Rebind message to locate a different server to extend the
  lifetimes of any addresses in an IA with T2 set to 0xffffffff.





Droms, et al.               Standards Track                    [Page 74]

RFC 3315                     DHCP for IPv6                     July 2003


22.5. Identity Association for Temporary Addresses Option

  The Identity Association for the Temporary Addresses (IA_TA) option
  is used to carry an IA_TA, the parameters associated with the IA_TA
  and the addresses associated with the IA_TA.  All of the addresses in
  this option are used by the client as temporary addresses, as defined
  in RFC 3041 [12].  The format of the IA_TA option is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         OPTION_IA_TA          |          option-len           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        IAID (4 octets)                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     .                         IA_TA-options                         .
     .                                                               .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code          OPTION_IA_TA (4).

     option-len           4 + length of IA_TA-options field.

     IAID                 The unique identifier for this IA_TA; the
                          IAID must be unique among the identifiers
                          for all of this client's IA_TAs.  The number
                          space for IA_TA IAIDs is separate from the
                          number space for IA_NA IAIDs.

     IA_TA-options        Options associated with this IA_TA.

  The IA_TA-Options field encapsulates those options that are specific
  to this IA_TA.  For example, all of the IA Address Options carrying
  the addresses associated with this IA_TA are in the IA_TA-options
  field.

  Each IA_TA carries one "set" of temporary addresses; that is, at most
  one address from each prefix assigned to the link to which the client
  is attached.

  An IA_TA option may only appear in the options area of a DHCP
  message.  A DHCP message may contain multiple IA_TA options.

  The status of any operations involving this IA_TA is indicated in a
  Status Code option in the IA_TA-options field.





Droms, et al.               Standards Track                    [Page 75]

RFC 3315                     DHCP for IPv6                     July 2003


  Note that an IA has no explicit "lifetime" or "lease length" of its
  own.  When the valid lifetimes of all of the addresses in an IA_TA
  have expired, the IA can be considered as having expired.

  An IA_TA option does not include values for T1 and T2.  A client MAY
  request that the lifetimes on temporary addresses be extended by
  including the addresses in a IA_TA option sent in a Renew or Rebind
  message to a server.  For example, a client would request an
  extension on the lifetime of a temporary address to allow an
  application to continue to use an established TCP connection.

  The client obtains new temporary addresses by sending an IA_TA option
  with a new IAID to a server.  Requesting new temporary addresses from
  the server is the equivalent of generating new temporary addresses as
  described in RFC 3041.  The server will generate new temporary
  addresses and return them to the client.  The client should request
  new temporary addresses before the lifetimes on the previously
  assigned addresses expire.

  A server MUST return the same set of temporary address for the same
  IA_TA (as identified by the IAID) as long as those addresses are
  still valid.  After the lifetimes of the addresses in an IA_TA have
  expired, the IAID may be reused to identify a new IA_TA with new
  temporary addresses.

  This option MAY appear in a Confirm message if the lifetimes on the
  temporary addresses in the associated IA have not expired.

22.6. IA Address Option

  The IA Address option is used to specify IPv6 addresses associated
  with an IA_NA or an IA_TA.  The IA Address option must be
  encapsulated in the Options field of an IA_NA or IA_TA option.  The
  Options field encapsulates those options that are specific to this
  address.
















Droms, et al.               Standards Track                    [Page 76]

RFC 3315                     DHCP for IPv6                     July 2003


  The format of the IA Address option is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          OPTION_IAADDR        |          option-len           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                         IPv6 address                          |
     |                                                               |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      preferred-lifetime                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        valid-lifetime                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     .                                                               .
     .                        IAaddr-options                         .
     .                                                               .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code   OPTION_IAADDR (5).

     option-len    24 + length of IAaddr-options field.

     IPv6 address  An IPv6 address.

     preferred-lifetime The preferred lifetime for the IPv6 address in
                   the option, expressed in units of seconds.

     valid-lifetime The valid lifetime for the IPv6 address in the
                   option, expressed in units of seconds.

     IAaddr-options Options associated with this address.

  In a message sent by a client to a server, values in the preferred
  and valid lifetime fields indicate the client's preference for those
  parameters.  The client may send 0 if it has no preference for the
  preferred and valid lifetimes.  In a message sent by a server to a
  client, the client MUST use the values in the preferred and valid
  lifetime fields for the preferred and valid lifetimes.  The values in
  the preferred and valid lifetimes are the number of seconds remaining
  in each lifetime.








Droms, et al.               Standards Track                    [Page 77]

RFC 3315                     DHCP for IPv6                     July 2003


  A client discards any addresses for which the preferred lifetime is
  greater than the valid lifetime.  A server ignores the lifetimes set
  by the client if the preferred lifetime is greater than the valid
  lifetime and ignores the values for T1 and T2 set by the client if
  those values are greater than the preferred lifetime.

  Care should be taken in setting the valid lifetime of an address to
  0xffffffff ("infinity"), which amounts to a permanent assignment of
  an address to a client.

  An IA Address option may appear only in an IA_NA option or an IA_TA
  option.  More than one IA Address Option can appear in an IA_NA
  option or an IA_TA option.

  The status of any operations involving this IA Address is indicated
  in a Status Code option in the IAaddr-options field.

22.7. Option Request Option

  The Option Request option is used to identify a list of options in a
  message between a client and a server.  The format of the Option
  Request option is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           OPTION_ORO          |           option-len          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    requested-option-code-1    |    requested-option-code-2    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                              ...                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code   OPTION_ORO (6).

     option-len    2 * number of requested options.

     requested-option-code-n The option code for an option requested by
                   the client.

  A client MAY include an Option Request option in a Solicit, Request,
  Renew, Rebind, Confirm or Information-request message to inform the
  server about options the client wants the server to send to the
  client.  A server MAY include an Option Request option in a
  Reconfigure option to indicate which options the client should
  request from the server.





Droms, et al.               Standards Track                    [Page 78]

RFC 3315                     DHCP for IPv6                     July 2003


22.8. Preference Option

  The Preference option is sent by a server to a client to affect the
  selection of a server by the client.

  The format of the Preference option is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       OPTION_PREFERENCE       |          option-len           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  pref-value   |
     +-+-+-+-+-+-+-+-+

     option-code   OPTION_PREFERENCE (7).

     option-len    1.

     pref-value    The preference value for the server in this message.

  A server MAY include a Preference option in an Advertise message to
  control the selection of a server by the client.  See section 17.1.3
  for the use of the Preference option by the client and the
  interpretation of Preference option data value.

22.9. Elapsed Time Option

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      OPTION_ELAPSED_TIME      |           option-len          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          elapsed-time         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code   OPTION_ELAPSED_TIME (8).

     option-len    2.

     elapsed-time  The amount of time since the client began its
                   current DHCP transaction.  This time is expressed in
                   hundredths of a second (10^-2 seconds).

  A client MUST include an Elapsed Time option in messages to indicate
  how long the client has been trying to complete a DHCP message
  exchange.  The elapsed time is measured from the time at which the
  client sent the first message in the message exchange, and the



Droms, et al.               Standards Track                    [Page 79]

RFC 3315                     DHCP for IPv6                     July 2003


  elapsed-time field is set to 0 in the first message in the message
  exchange.  Servers and Relay Agents use the data value in this option
  as input to policy controlling how a server responds to a client
  message.  For example, the elapsed time option allows a secondary
  DHCP server to respond to a request when a primary server has not
  answered in a reasonable time.  The elapsed time value is an
  unsigned, 16 bit integer.  The client uses the value 0xffff to
  represent any elapsed time values greater than the largest time value
  that can be represented in the Elapsed Time option.

22.10. Relay Message Option

  The Relay Message option carries a DHCP message in a Relay-forward or
  Relay-reply message.

  The format of the Relay Message option is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        OPTION_RELAY_MSG       |           option-len          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     .                       DHCP-relay-message                      .
     .                                                               .
     .                                                               .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code   OPTION_RELAY_MSG (9)

     option-len    Length of DHCP-relay-message

     DHCP-relay-message In a Relay-forward message, the received
                   message, relayed verbatim to the next relay agent
                   or server; in a Relay-reply message, the message to
                   be copied and relayed to the relay agent or client
                   whose address is in the peer-address field of the
                   Relay-reply message













Droms, et al.               Standards Track                    [Page 80]

RFC 3315                     DHCP for IPv6                     July 2003


22.11. Authentication Option

  The Authentication option carries authentication information to
  authenticate the identity and contents of DHCP messages.  The use of
  the Authentication option is described in section 21.  The format of
  the Authentication option is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          OPTION_AUTH          |          option-len           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   protocol    |   algorithm   |      RDM      |               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               |
   |                                                               |
   |          replay detection (64 bits)           +-+-+-+-+-+-+-+-+
   |                                               |   auth-info   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               |
   .                   authentication information                  .
   .                       (variable length)                       .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code                  OPTION_AUTH (11)

     option-len                   11 + length of authentication
                                  information field

     protocol                     The authentication protocol used in
                                  this authentication option

     algorithm                    The algorithm used in the
                                  authentication protocol

     RDM                          The replay detection method used in
                                  this authentication option

     Replay detection             The replay detection information for
                                  the RDM

     authentication information   The authentication information,
                                  as specified by the protocol and
                                  algorithm used in this authentication
                                  option








Droms, et al.               Standards Track                    [Page 81]

RFC 3315                     DHCP for IPv6                     July 2003


22.12. Server Unicast Option

  The server sends this option to a client to indicate to the client
  that it is allowed to unicast messages to the server.  The format of
  the Server Unicast option is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          OPTION_UNICAST       |        option-len             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                       server-address                          |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code     OPTION_UNICAST (12).

     option-len      16.

     server-address  The IP address to which the client should send
                     messages delivered using unicast.

  The server specifies the IPv6 address to which the client is to send
  unicast messages in the server-address field.  When a client receives
  this option, where permissible and appropriate, the client sends
  messages directly to the server using the IPv6 address specified in
  the server-address field of the option.

  When the server sends a Unicast option to the client, some messages
  from the client will not be relayed by Relay Agents, and will not
  include Relay Agent options from the Relay Agents.  Therefore, a
  server should only send a Unicast option to a client when Relay
  Agents are not sending Relay Agent options.  A DHCP server rejects
  any messages sent inappropriately using unicast to ensure that
  messages are relayed by Relay Agents when Relay Agent options are in
  use.

  Details about when the client may send messages to the server using
  unicast are in section 18.

22.13. Status Code Option

  This option returns a status indication related to the DHCP message
  or option in which it appears.  The format of the Status Code option
  is:




Droms, et al.               Standards Track                    [Page 82]

RFC 3315                     DHCP for IPv6                     July 2003


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       OPTION_STATUS_CODE      |         option-len            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          status-code          |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
   .                                                               .
   .                        status-message                         .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code          OPTION_STATUS_CODE (13).

     option-len           2 + length of status-message.

     status-code          The numeric code for the status encoded in
                          this option.  The status codes are defined in
                          section 24.4.

     status-message       A UTF-8 encoded text string suitable for
                          display to an end user, which MUST NOT be
                          null-terminated.

  A Status Code option may appear in the options field of a DHCP
  message and/or in the options field of another option.  If the Status
  Code option does not appear in a message in which the option could
  appear, the status of the message is assumed to be Success.

22.14. Rapid Commit Option

  The Rapid Commit option is used to signal the use of the two message
  exchange for address assignment.  The format of the Rapid Commit
  option is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      OPTION_RAPID_COMMIT      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code     OPTION_RAPID_COMMIT (14).

     option-len      0.

  A client MAY include this option in a Solicit message if the client
  is prepared to perform the Solicit-Reply message exchange described
  in section 17.1.1.



Droms, et al.               Standards Track                    [Page 83]

RFC 3315                     DHCP for IPv6                     July 2003


  A server MUST include this option in a Reply message sent in response
  to a Solicit message when completing the Solicit-Reply message
  exchange.

  DISCUSSION:

     Each server that responds with a Reply to a Solicit that includes
     a Rapid Commit option will commit the assigned addresses in the
     Reply message to the client, and will not receive any confirmation
     that the client has received the Reply message.  Therefore, if
     more than one server responds to a Solicit that includes a Rapid
     Commit option, some servers will commit addresses that are not
     actually used by the client.

     The problem of unused addresses can be minimized, for example, by
     designing the DHCP service so that only one server responds to the
     Solicit or by using relatively short lifetimes for assigned
     addresses.

22.15. User Class Option

  The User Class option is used by a client to identify the type or
  category of user or applications it represents.

  The format of the User Class option is:

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       OPTION_USER_CLASS       |          option-len           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     .                                                               .
     .                          user-class-data                      .
     .                                                               .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code          OPTION_USER_CLASS (15).

     option-len           Length of user class data field.

     user-class-data      The user classes carried by the client.

  The information contained in the data area of this option is
  contained in one or more opaque fields that represent the user class
  or classes of which the client is a member.  A server selects
  configuration information for the client based on the classes
  identified in this option.  For example, the User Class option can be
  used to configure all clients of people in the accounting department




Droms, et al.               Standards Track                    [Page 84]

RFC 3315                     DHCP for IPv6                     July 2003


  with a different printer than clients of people in the marketing
  department.  The user class information carried in this option MUST
  be configurable on the client.

  The data area of the user class option MUST contain one or more
  instances of user class data.  Each instance of the user class data
  is formatted as follows:

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+-+-+-+-+-+-+
     |        user-class-len         |          opaque-data          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+-+-+-+-+-+-+

  The user-class-len is two octets long and specifies the length of the
  opaque user class data in network byte order.

  A server interprets the classes identified in this option according
  to its configuration to select the appropriate configuration
  information for the client.  A server may use only those user classes
  that it is configured to interpret in selecting configuration
  information for a client and ignore any other user classes.  In
  response to a message containing a User Class option, a server
  includes a User Class option containing those classes that were
  successfully interpreted by the server, so that the client can be
  informed of the classes interpreted by the server.

22.16. Vendor Class Option

  This option is used by a client to identify the vendor that
  manufactured the hardware on which the client is running.  The
  information contained in the data area of this option is contained in
  one or more opaque fields that identify details of the hardware
  configuration.  The format of the Vendor Class option is:

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      OPTION_VENDOR_CLASS      |           option-len          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       enterprise-number                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     .                                                               .
     .                       vendor-class-data                       .
     .                             . . .                             .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code          OPTION_VENDOR_CLASS (16).

     option-len           4 + length of vendor class data field.




Droms, et al.               Standards Track                    [Page 85]

RFC 3315                     DHCP for IPv6                     July 2003


     enterprise-number    The vendor's registered Enterprise Number as
                          registered with IANA [6].

     vendor-class-data    The hardware configuration of the host on
                          which the client is running.

  The vendor-class-data is composed of a series of separate items, each
  of which describes some characteristic of the client's hardware
  configuration.  Examples of vendor-class-data instances might include
  the version of the operating system the client is running or the
  amount of memory installed on the client.

  Each instance of the vendor-class-data is formatted as follows:

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+-+-+-+-+-+-+
     |       vendor-class-len        |          opaque-data          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+-+-+-+-+-+-+

  The vendor-class-len is two octets long and specifies the length of
  the opaque vendor class data in network byte order.

22.17. Vendor-specific Information Option

  This option is used by clients and servers to exchange
  vendor-specific information.

  The format of the Vendor-specific Information option is:

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      OPTION_VENDOR_OPTS       |           option-len          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       enterprise-number                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     .                                                               .
     .                          option-data                          .
     .                                                               .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code          OPTION_VENDOR_OPTS (17)

     option-len           4 + length of option-data field

     enterprise-number    The vendor's registered Enterprise Number as
                          registered with IANA [6].






Droms, et al.               Standards Track                    [Page 86]

RFC 3315                     DHCP for IPv6                     July 2003


     option-data          An opaque object of option-len octets,
                          interpreted by vendor-specific code on the
                          clients and servers

  The definition of the information carried in this option is vendor
  specific.  The vendor is indicated in the enterprise-number field.
  Use of vendor-specific information allows enhanced operation,
  utilizing additional features in a vendor's DHCP implementation.  A
  DHCP client that does not receive requested vendor-specific
  information will still configure the host device's IPv6 stack to be
  functional.

  The encapsulated vendor-specific options field MUST be encoded as a
  sequence of code/length/value fields of identical format to the DHCP
  options field.  The option codes are defined by the vendor identified
  in the enterprise-number field and are not managed by IANA.  Each of
  the encapsulated options is formatted as follows:

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          opt-code             |             option-len        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     .                                                               .
     .                          option-data                          .
     .                                                               .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     opt-code             The code for the encapsulated option.

     option-len           An unsigned integer giving the length of the
                          option-data field in this encapsulated option
                          in octets.

     option-data          The data area for the encapsulated option.

  Multiple instances of the Vendor-specific Information option may
  appear in a DHCP message.  Each instance of the option is interpreted
  according to the option codes defined by the vendor identified by the
  Enterprise Number in that option.

22.18. Interface-Id Option

  The relay agent MAY send the Interface-id option to identify the
  interface on which the client message was received.  If a relay agent
  receives a Relay-reply message with an Interface-id option, the relay
  agent relays the message to the client through the interface
  identified by the option.




Droms, et al.               Standards Track                    [Page 87]

RFC 3315                     DHCP for IPv6                     July 2003


  The format of the Interface ID option is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      OPTION_INTERFACE_ID      |         option-len            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   .                                                               .
   .                         interface-id                          .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code          OPTION_INTERFACE_ID (18).

     option-len           Length of interface-id field.

     interface-id         An opaque value of arbitrary length generated
                          by the relay agent to identify one of the
                          relay agent's interfaces.

  The server MUST copy the Interface-Id option from the Relay-Forward
  message into the Relay-Reply message the server sends to the relay
  agent in response to the Relay-Forward message.  This option MUST NOT
  appear in any message except a Relay-Forward or Relay-Reply message.

  Servers MAY use the Interface-ID for parameter assignment policies.
  The Interface-ID SHOULD be considered an opaque value, with policies
  based on exact match only; that is, the Interface-ID SHOULD NOT be
  internally parsed by the server.  The Interface-ID value for an
  interface SHOULD be stable and remain unchanged, for example, after
  the relay agent is restarted; if the Interface-ID changes, a server
  will not be able to use it reliably in parameter assignment policies.

22.19. Reconfigure Message Option

  A server includes a Reconfigure Message option in a Reconfigure
  message to indicate to the client whether the client responds with a
  Renew message or an Information-request message.  The format of this
  option is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      OPTION_RECONF_MSG        |         option-len            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    msg-type   |
   +-+-+-+-+-+-+-+-+




Droms, et al.               Standards Track                    [Page 88]

RFC 3315                     DHCP for IPv6                     July 2003


     option-code          OPTION_RECONF_MSG (19).

     option-len           1.

     msg-type             5 for Renew message, 11 for
                          Information-request message.

  The Reconfigure Message option can only appear in a Reconfigure
  message.

22.20. Reconfigure Accept Option

  A client uses the Reconfigure Accept option to announce to the server
  whether the client is willing to accept Reconfigure messages, and a
  server uses this option to tell the client whether or not to accept
  Reconfigure messages.  The default behavior, in the absence of this
  option, means unwillingness to accept Reconfigure messages, or
  instruction not to accept Reconfigure messages, for the client and
  server messages, respectively.  The following figure gives the format
  of the Reconfigure Accept option:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     OPTION_RECONF_ACCEPT      |               0               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     option-code   OPTION_RECONF_ACCEPT (20).

     option-len    0.

23. Security Considerations

  The threat to DHCP is inherently an insider threat (assuming a
  properly configured network where DHCPv6 ports are blocked on the
  perimeter gateways of the enterprise).  Regardless of the gateway
  configuration, however, the potential attacks by insiders and
  outsiders are the same.

  Use of manually configured preshared keys for IPsec between relay
  agents and servers does not defend against replayed DHCP messages.
  Replayed messages can represent a DOS attack through exhaustion of
  processing resources, but not through mis-configuration or exhaustion
  of other resources such as assignable addresses.

  One attack specific to a DHCP client is the establishment of a
  malicious server with the intent of providing incorrect configuration
  information to the client.  The motivation for doing so may be to



Droms, et al.               Standards Track                    [Page 89]

RFC 3315                     DHCP for IPv6                     July 2003


  mount a "man in the middle" attack that causes the client to
  communicate with a malicious server instead of a valid server for
  some service such as DNS or NTP.  The malicious server may also mount
  a denial of service attack through misconfiguration of the client
  that causes all network communication from the client to fail.

  There is another threat to DHCP clients from mistakenly or
  accidentally configured DHCP servers that answer DHCP client requests
  with unintentionally incorrect configuration parameters.

  A DHCP client may also be subject to attack through the receipt of a
  Reconfigure message from a malicious server that causes the client to
  obtain incorrect configuration information from that server.  Note
  that although a client sends its response (Renew or
  Information-request message) through a relay agent and, therefore,
  that response will only be received by servers to which DHCP messages
  are relayed, a malicious server could send a Reconfigure message to a
  client, followed (after an appropriate delay) by a Reply message that
  would be accepted by the client.  Thus, a malicious server that is
  not on the network path between the client and the server may still
  be able to mount a Reconfigure attack on a client.  The use of
  transaction IDs that are cryptographically sound and cannot easily be
  predicted will also reduce the probability that such an attack will
  be successful.

  The threat specific to a DHCP server is an invalid client
  masquerading as a valid client.  The motivation for this may be for
  theft of service, or to circumvent auditing for any number of
  nefarious purposes.

  The threat common to both the client and the server is the resource
  "denial of service" (DoS) attack.  These attacks typically involve
  the exhaustion of available addresses, or the exhaustion of CPU or
  network bandwidth, and are present anytime there is a shared
  resource.

  In the case where relay agents add additional options to Relay
  Forward messages, the messages exchanged between relay agents and
  servers may be used to mount a "man in the middle" or denial of
  service attack.

  This threat model does not consider the privacy of the contents of
  DHCP messages to be important.  DHCP is not used to exchange
  authentication or configuration information that must be kept secret
  from other networks nodes.






Droms, et al.               Standards Track                    [Page 90]

RFC 3315                     DHCP for IPv6                     July 2003


  DHCP authentication provides for authentication of the identity of
  DHCP clients and servers, and for the integrity of messages delivered
  between DHCP clients and servers.  DHCP authentication does not
  provide any privacy for the contents of DHCP messages.

  The Delayed Authentication protocol described in section 21.4 uses a
  secret key that is shared between a client and a server.  The use of
  a "DHCP realm" in the shared key allows identification of
  administrative domains so that a client can select the appropriate
  key or keys when roaming between administrative domains.  However,
  the Delayed Authentication protocol does not define any mechanism for
  sharing of keys, so a client may require separate keys for each
  administrative domain it encounters.  The use of shared keys may not
  scale well and does not provide for repudiation of compromised keys.
  This protocol is focused on solving the intradomain problem where the
  out-of-band exchange of a shared key is feasible.

  Because of the opportunity for attack through the Reconfigure
  message, a DHCP client MUST discard any Reconfigure message that does
  not include authentication or that does not pass the validation
  process for the authentication protocol.

  The Reconfigure Key protocol described in section 21.5 provides
  protection against the use of a Reconfigure message by a malicious
  DHCP server to mount a denial of service or man-in-the-middle attack
  on a client.  This protocol can be compromised by an attacker that
  can intercept the initial message in which the DHCP server sends the
  key to the client.

  Communication between a server and a relay agent, and communication
  between relay agents, can be secured through the use of IPSec, as
  described in section 21.1.  The use of manual configuration and
  installation of static keys are acceptable in this instance because
  relay agents and the server will belong to the same administrative
  domain and the relay agents will require other specific configuration
  (for example, configuration of the DHCP server address) as well as
  the IPSec configuration.

24. IANA Considerations

  This document defines several new name spaces associated with DHCPv6
  and DHCPv6 options:

     -  Message types

     -  Status codes

     -  DUID



Droms, et al.               Standards Track                    [Page 91]

RFC 3315                     DHCP for IPv6                     July 2003


     -  Option codes

  IANA has established a registry of values for each of these name
  spaces, which are described in the remainder of this section.  These
  name spaces will be managed by the IANA and all will be managed
  separately from the name spaces defined for DHCPv4.

  New multicast addresses, message types, status codes, and DUID types
  are assigned via Standards Action [11].

  New DHCP option codes are tentatively assigned after the
  specification for the associated option, published as an Internet
  Draft, has received expert review by a designated expert [11].  The
  final assignment of DHCP option codes is through Standards Action, as
  defined in RFC 2434 [11].

  This document also references three name spaces in section 21 that
  are associated with the Authentication Option (section 22.11).  These
  name spaces are defined by the authentication mechanism for DHCPv4 in
  RFC 3118 [4].

  The authentication name spaces currently registered by IANA will
  apply to both DHCPv6 and DHCPv4.  In the future, specifications that
  define new Protocol, Algorithm and RDM mechanisms will explicitly
  define whether the new mechanisms are used with DHCPv4, DHCPv6 or
  both.

24.1. Multicast Addresses

  Section 5.1 defines the following multicast addresses, which have
  been assigned by IANA for use by DHCPv6:

     All_DHCP_Relay_Agents_and_Servers address:   FF02::1:2

     All_DHCP_Servers address:                    FF05::1:3
















Droms, et al.               Standards Track                    [Page 92]

RFC 3315                     DHCP for IPv6                     July 2003


24.2. DHCP Message Types

  IANA has recorded the following message types (defined in section
  5.3).  IANA will maintain the registry of DHCP message types.

     SOLICIT               1

     ADVERTISE             2

     REQUEST               3

     CONFIRM               4

     RENEW                 5

     REBIND                6

     REPLY                 7

     RELEASE               8

     DECLINE               9

     RECONFIGURE           10

     INFORMATION-REQUEST   11

     RELAY-FORW            12

     RELAY-REPL            13





















Droms, et al.               Standards Track                    [Page 93]

RFC 3315                     DHCP for IPv6                     July 2003


24.3. DHCP Options

  IANA has recorded the following option-codes (as defined in section
  22).  IANA will maintain the registry of DHCP option codes.

     OPTION_CLIENTID       1

     OPTION_SERVERID       2

     OPTION_IA_NA          3

     OPTION_IA_TA          4

     OPTION_IAADDR         5

     OPTION_ORO            6

     OPTION_PREFERENCE     7

     OPTION_ELAPSED_TIME   8

     OPTION_RELAY_MSG      9

     OPTION_AUTH           11

     OPTION_UNICAST        12

     OPTION_STATUS_CODE    13

     OPTION_RAPID_COMMIT   14

     OPTION_USER_CLASS     15

     OPTION_VENDOR_CLASS   16

     OPTION_VENDOR_OPTS    17

     OPTION_INTERFACE_ID   18

     OPTION_RECONF_MSG     19

     OPTION_RECONF_ACCEPT  20









Droms, et al.               Standards Track                    [Page 94]

RFC 3315                     DHCP for IPv6                     July 2003


24.4. Status Codes

  IANA has recorded the status codes defined in the following table.
  IANA will manage the definition of additional status codes in the
  future.

  Name         Code Description
  ----------   ---- -----------
  Success         0 Success.
  UnspecFail      1 Failure, reason unspecified; this
                    status code is sent by either a client
                    or a server to indicate a failure
                    not explicitly specified in this
                    document.
  NoAddrsAvail    2 Server has no addresses available to assign to
                    the IA(s).
  NoBinding       3 Client record (binding) unavailable.
  NotOnLink       4 The prefix for the address is not appropriate for
                    the link to which the client is attached.
  UseMulticast    5 Sent by a server to a client to force the
                    client to send messages to the server.
                    using the All_DHCP_Relay_Agents_and_Servers
                    address.

24.5. DUID

  IANA has recorded the following DUID types (as defined in section
  9.1).  IANA will manage the definition of additional DUID types in
  the future.

     DUID-LLT                       1

     DUID-EN                        2

     DUID-LL                        3

25. Acknowledgments

  Thanks to the DHC Working Group and the members of the IETF for their
  time and input into the specification.  In particular, thanks also
  for the consistent input, ideas, and review by (in alphabetical
  order) Bernard Aboba, Bill Arbaugh, Thirumalesh Bhat, Steve Bellovin,
  A. K. Vijayabhaskar, Brian Carpenter, Matt Crawford, Francis Dupont,
  Richard Hussong, Kim Kinnear, Fredrik Lindholm, Tony Lindstrom, Josh
  Littlefield, Gerald Maguire, Jack McCann, Shin Miyakawa, Thomas
  Narten, Erik Nordmark, Jarno Rajahalme, Yakov Rekhter, Mark Stapp,
  Matt Thomas, Sue Thomson, Tatuya Jinmei and Phil Wells.




Droms, et al.               Standards Track                    [Page 95]

RFC 3315                     DHCP for IPv6                     July 2003


  Thanks to Steve Deering and Bob Hinden, who have consistently taken
  the time to discuss the more complex parts of the IPv6
  specifications.

  And, thanks to Steve Deering for pointing out at IETF 51 in London
  that the DHCPv6 specification has the highest revision number of any
  Internet Draft.

26. References

26.1. Normative References

  [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [2]  Crawford, M., "Transmission of IPv6 Packets over Ethernet
       Networks", RFC 2464, December 1998.

  [3]  Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
       Specification", RFC 2460, December 1998.

  [4]  Droms, R., Ed. and W. Arbaugh, Ed., "Authentication for DHCP
       Messages", RFC 3118, June 2001.

  [5]  Hinden, R. and S. Deering, "IP Version 6 Addressing
       Architecture", RFC 2373, July 1998.

  [6]  IANA.  Private Enterprise Numbers.
       http://www.iana.org/assignments/enterprise-numbers.html.

  [7]  Kent, S. and R. Atkinson, "Security Architecture for the
       Internet Protocol", RFC 2401, November 1998.

  [8]  Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-Hashing
       for Message Authentication", RFC 2104, February 1997.

  [9]  Mills, D., "Network Time Protocol (Version 3) Specification,
       Implementation", RFC 1305, March 1992.

  [10] Mockapetris, P., "Domain names - implementation and
       specification", RFC 1035, November 1987.

  [11] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
       Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

  [12] Narten, T. and R. Draves, "Privacy Extensions for Stateless
       Address Autoconfiguration in IPv6", RFC 3041, January 2001.




Droms, et al.               Standards Track                    [Page 96]

RFC 3315                     DHCP for IPv6                     July 2003


  [13] Narten, T., Nordmark, E. and W. Simpson, "Neighbor Discovery for
       IP Version 6 (IPv6)", RFC 2461, December 1998.

  [14] Plummer, D.C., "Ethernet Address Resolution Protocol:  Or
       converting network protocol addresses to 48.bit Ethernet address
       for transmission on Ethernet hardware", STD 37, RFC 826,
       November 1982.

  [15] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August
       1980.

  [16] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April
       1992.

  [17] Thomson, S. and T. Narten, "IPv6 Stateless Address
       Autoconfiguration", RFC 2462, December 1998.

26.2. Informative References

  [18] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
       Extensions", RFC 2132, March 1997.

  [19] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131,
       March 1997.

  [20] R. Droms, Ed.  DNS Configuration options for DHCPv6.  April
       2002.  Work in Progress.

  [21] A. K. Vijayabhaskar.  Time Configuration Options for DHCPv6.
       May 2002.  Work in Progress.

  [22] Vixie, P., Ed., Thomson, S., Rekhter, Y. and J. Bound, "Dynamic
       Updates in the Domain Name System (DNS UPDATE)", RFC 2136, April
       1997.

















Droms, et al.               Standards Track                    [Page 97]

RFC 3315                     DHCP for IPv6                     July 2003


A. Appearance of Options in Message Types

  The following table indicates with a "*" the options are allowed in
  each DHCP message type:

          Client Server IA_NA  Option Pref  Time Relay Auth. Server
            ID     ID   IA_TA  Request            Msg.       Unica.
  Solicit   *             *      *           *           *
  Advert.   *      *      *            *                 *
  Request   *      *      *      *           *           *
  Confirm   *             *      *           *           *
  Renew     *      *      *      *           *           *
  Rebind    *             *      *           *           *
  Decline   *      *      *      *           *           *
  Release   *      *      *      *           *           *
  Reply     *      *      *            *                 *     *
  Reconf.   *      *             *                       *
  Inform.   * (see note)         *           *           *
  R-forw.                                          *     *
  R-repl.                                          *     *

  NOTE:

     Only included in Information-Request messages that are sent
     in response to a Reconfigure (see section 19.4.3).

           Status  Rap. User  Vendor Vendor Inter. Recon. Recon.
            Code  Comm. Class Class  Spec.    ID    Msg.  Accept
  Solicit           *     *     *      *                    *
  Advert.    *            *     *      *                    *
  Request                 *     *      *                    *
  Confirm                 *     *      *
  Renew                   *     *      *                    *
  Rebind                  *     *      *                    *
  Decline                 *     *      *
  Release                 *     *      *
  Reply      *      *     *     *      *                    *
  Reconf.                                            *
  Inform.                 *     *      *                    *
  R-forw.                 *     *      *      *
  R-repl.                 *     *      *      *










Droms, et al.               Standards Track                    [Page 98]

RFC 3315                     DHCP for IPv6                     July 2003


B. Appearance of Options in the Options Field of DHCP Options

  The following table indicates with a "*" where options can appear in
  the options field of other options:

               Option  IA_NA/ IAADDR Relay  Relay
               Field   IA_TA         Forw.  Reply
  Client ID      *
  Server ID      *
  IA_NA/IA_TA    *
  IAADDR                 *
  ORO            *
  Preference     *
  Elapsed Time   *
  Relay Message                        *      *
  Authentic.     *
  Server Uni.    *
  Status Code    *       *       *
  Rapid Comm.    *
  User Class     *
  Vendor Class   *
  Vendor Info.   *
  Interf. ID                           *      *
  Reconf. MSG.   *
  Reconf. Accept *

  Note: "Relay Forw" / "Relay Reply" options appear in the options
  field of the message but may only appear in these messages.

Chair's Address

  The working group can be contacted via the current chair:

  Ralph Droms
  Cisco Systems
  1414 Massachusetts Avenue
  Boxborough, MA 01719

  Phone: (978) 936-1674
  EMail: [email protected]











Droms, et al.               Standards Track                    [Page 99]

RFC 3315                     DHCP for IPv6                     July 2003


Authors' Addresses

  Jim Bound
  Hewlett Packard Corporation
  ZK3-3/W20
  110 Spit Brook Road
  Nashua, NH 03062-2698
  USA

  Phone:  +1 603 884 0062
  EMail:  [email protected]

  Bernie Volz
  116 Hawkins Pond Road
  Center Harbor, NH  03226-3103
  USA

  Phone:  +1-508-259-3734
  EMail:  [email protected]

  Ted Lemon
  Nominum, Inc.
  950 Charter Street
  Redwood City, CA 94043
  USA

  EMail:  [email protected]

  Charles E. Perkins
  Communications Systems Lab
  Nokia Research Center
  313 Fairchild Drive
  Mountain View, California 94043
  USA

  Phone:  +1-650 625-2986
  EMail:  [email protected]

  Mike Carney
  Sun Microsystems, Inc
  17 Network Circle
  Menlo Park, CA 94025
  USA

  Phone:  +1-650-786-4171
  EMail:  [email protected]





Droms, et al.               Standards Track                   [Page 100]

RFC 3315                     DHCP for IPv6                     July 2003


Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Droms, et al.               Standards Track                   [Page 101]