Network Working Group                                   W. Marshall, Ed.
Request for Comments: 3313                                          AT&T
Category: Informational                                     January 2003


         Private Session Initiation Protocol (SIP) Extensions
                       for Media Authorization

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This document describes the need for Quality of Service (QoS) and
  media authorization and defines a Session Initiation Protocol (SIP)
  extension that can be used to integrate QoS admission control with
  call signaling and help guard against denial of service attacks.  The
  use of this extension is only applicable in administrative domains,
  or among federations of administrative domains with previously
  agreed-upon policies, where both the SIP proxy authorizing the QoS,
  and the policy control of the underlying network providing the QoS,
  belong to that administrative domain or federation of domains.






















Marshall, Ed.                Informational                      [Page 1]

RFC 3313         SIP Extensions for Media Authorization     January 2003


Table of Contents

  1. Scope of Applicability.........................................  2
  2. Conventions Used in this Document..............................  3
  3. Background and Motivation......................................  3
  4. Overview.......................................................  4
  5. Changes to SIP to Support Media Authorization..................  4
     5.1 SIP Header Extension.......................................  5
     5.2 SIP Procedures.............................................  5
       5.2.1 User Agent Client (UAC)................................  6
       5.2.2 User Agent Server (UAS)................................  6
       5.2.3 Originating Proxy (OP).................................  7
       5.2.4 Destination Proxy (DP).................................  7
  6. Examples.......................................................  8
     6.1 Requesting Bandwidth via RSVP Messaging....................  8
       6.1.1 User Agent Client Side.................................  8
       6.1.2 User Agent Server Side................................. 10
  7. Advantages of the Proposed Approach............................ 12
  8. Security Considerations........................................ 13
  9. IANA Considerations............................................ 13
  10. Notice Regarding Intellectual Property Rights................. 13
  11. Normative References.......................................... 14
  12. Informative References........................................ 14
  13. Contributors.................................................. 15
  14. Acknowledgments............................................... 15
  15. Editor's Address.............................................. 15
  16. Full Copyright Statement...................................... 16

1. Scope of Applicability

  This document defines a SIP extension that can be used to integrate
  QoS admission control with call signaling and help guard against
  denial of service attacks.  The use of this extension is only
  applicable in administrative domains, or among federations of
  administrative domains with previously agreed-upon policies, where
  both the SIP proxy authorizing the QoS, and the policy control of the
  underlying network providing the QoS, belong to that administrative
  domain or federation of domains.  Furthermore, the mechanism is
  generally incompatible with end-to-end encryption of message bodies
  that describe media sessions.

  This is in contrast with general Internet principles, which separate
  data transport from applications.  Thus, the solution described in
  this document is not applicable to the Internet at large.  Despite
  these limitations, there are sufficiently useful specialized
  deployments that meet the assumptions described above, and can accept
  the limitations that result, to warrant informational publication of
  this mechanism.  An example deployment would be a closed network,



Marshall, Ed.                Informational                      [Page 2]

RFC 3313         SIP Extensions for Media Authorization     January 2003


  which emulates a traditional circuit switched telephone network.
  This document specifies a private header, facilitating use in these
  specialized configurations.

2. Conventions Used in this Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [2].

3. Background and Motivation

  Current IP telephony systems assume a perfect world in which there is
  either an unlimited amount of bandwidth, or network layer Quality of
  Service (QoS) is provided without any kind of policy control.
  However, the reality is that end-to-end bandwidth is not unlimited
  and uncontrolled access to QoS, in general, is unlikely.  The primary
  reason for this is that QoS provides preferential treatment of one
  flow, at the expense of another.  Consequently, it is important to
  have policy control over whether a given flow should have access to
  QoS.  This will not only enable fairness in general, but can also
  prevent denial of service attacks.

  In this document, we are concerned with providing QoS for media
  streams established via the Session Initiation Protocol (SIP) [3].
  We assume an architecture that integrates call signaling with media
  authorization, as illustrated in the Figure below.  The solid lines
  (A and B) show interfaces, whereas the dotted line (C) illustrates
  the QoS enabled media flow:

                              +---------+
                              |  Proxy  |
                   +--------->|         |
                   |          +---------+
                   |               ^
                 A)|            B) |
                   |              { }
                   |               |
                   |               v
                   v           +------+
               +------+   C)   | Edge |
               |  UA  |........|router|......
               +------+        +------+


                      Figure 1 - Basic Architecture





Marshall, Ed.                Informational                      [Page 3]

RFC 3313         SIP Extensions for Media Authorization     January 2003


  In this architecture, we assume a SIP UA connected to a QoS enabled
  network with an edge router acting as a Policy Enforcement Point
  (PEP) [6].  We further assume that a SIP UA that wishes to obtain QoS
  initiates sessions through a proxy which can interface with the QoS
  policy control for the data network being used.  We will refer to
  such a proxy as a QoS enabled proxy.  We assume that the SIP UA needs
  to present an authorization token to the network in order to obtain
  Quality of Service (C).  The SIP UA obtains this authorization token
  via SIP (A) from the QoS enabled proxy by means of an extension SIP
  header, defined in this document.  The proxy, in turn, communicates
  either directly with the edge router or with a Policy Decision Point
  (PDP - not shown) [6] in order to obtain a suitable authorization
  token for the UA.

  Examples of access data networks, where such a QoS enabled proxy
  could be used, include DOCSIS based cable networks and 3rd generation
  (3G) wireless networks.

4. Overview

  A session that needs to obtain QoS for the media streams in
  accordance with our basic architecture described above goes through
  the following steps.

  The SIP UA sends an INVITE to the QoS enabled proxy, which for each
  resulting dialog includes one or more media authorization tokens in
  all unreliable provisional responses (except 100), the first reliable
  1xx or 2xx response, and all retransmissions of that reliable
  response for the dialog.  When the UA requests QoS, it includes the
  media authorization tokens with the resource reservation.

  A SIP UA may also receive an INVITE from its QoS enabled proxy which
  includes one or more media authorization tokens.  In that case, when
  the UA requests QoS, it includes the media authorization tokens with
  the resource reservation.  The resource reservation mechanism is not
  part of SIP and is not described within the scope of this document.

5. Changes to SIP to Support Media Authorization

  This document defines a private SIP header extension to support a
  media authorization scheme.  In this architecture, a QoS enabled SIP
  proxy supplies the UA with one or more authorization tokens which are
  to be used in QoS requests.  The extension defined allows network QoS
  resources to be authorized by the QoS enabled SIP proxy.







Marshall, Ed.                Informational                      [Page 4]

RFC 3313         SIP Extensions for Media Authorization     January 2003


5.1 SIP Header Extension

  A new P-Media-Authorization general header field is defined.  The P-
  Media-Authorization header field contains one or more media
  authorization tokens which are to be included in subsequent resource
  reservations for the media flows associated with the session, that
  is, passed to an independent resource reservation mechanism, which is
  not specified here.  The media authorization tokens are used for
  authorizing QoS for the media stream(s).  The P-Media-Authorization
  header field is described by the following ABNF [4]:

     P-Media-Authorization   = "P-Media-Authorization" HCOLON
                                 P-Media-Authorization-Token
                                 *(COMMA P-Media-Authorization-Token)

     P-Media-Authorization-Token = 1*HEXDIG

  Table 1 below is an extension of tables 2 and 3 in [3] for the new
  header field defined here.  For informational purposes, this table
  also includes relevant entries for standards track extension methods
  published at the time this document was published.  The INFO, PRACK,
  UPDATE, and SUBSCRIBE and NOTIFY methods are defined respectively in
  [11], [9], [12], and [10].

                             Where  proxy  ACK  BYE  CAN  INV  OPT  REG
     P-Media-Authorization     R      ad    o    -    -    o    -    -
     P-Media-Authorization    2xx     ad    -    -    -    o    -    -
     P-Media-Authorization  101-199   ad    -    -    -    o    -    -

                             Where  proxy  INF  PRA  UPD  SUB  NOT
     P-Media-Authorization     R      ad    -    o    o    -    -
     P-Media-Authorization    2xx     ad    -    o    o    -    -

                     Table 1: Summary of header fields.

  The P-Media-Authorization header field can be used only in SIP
  requests or responses that can carry a SIP offer or answer.  This
  naturally keeps the scope of this header field narrow.

5.2 SIP Procedures

  This section defines SIP [3] procedures for usage in media
  authorization compatible systems, from the point of view of the
  authorizing QoS.







Marshall, Ed.                Informational                      [Page 5]

RFC 3313         SIP Extensions for Media Authorization     January 2003


5.2.1 User Agent Client (UAC)

  The initial SIP INVITE message, mid-call messages that result in
  network QoS resource changes, and mid-call changes in call
  destination should be authorized.  These SIP messages are sent
  through the QoS enabled proxies to receive this authorization.  In
  order to authorize QoS, the QoS enabled SIP proxy MAY need to inspect
  message bodies that describe the media streams (e.g., SDP).  Hence,
  it is recommended (as may be appropriate within the applicability
  scope in Section 1 of this document) that such message bodies not be
  encrypted end-to-end.

  The P-Media-Authorization-Token, which is contained in the P-Media-
  Authorization header, is included for each dialog in all unreliable
  provisional responses (except 100), the first reliable 1xx or 2xx
  response, and all retransmissions of that reliable response for the
  dialog sent by the QoS enabled SIP proxy to the UAC.

  The UAC should use all the P-Media-Authorization-Tokens from the most
  recent request/response that contained the P-Media-Authorization
  header when requesting QoS for the associated media stream(s).  This
  applies to both initial and subsequent refresh reservation messages
  (for example, in an RSVP-based reservation system).  A reservation
  function within the UAC should convert each string of hex digits into
  binary, and utilize each result as a Policy-Element, as defined in
  RFC 2750 [5] (excluding Length, but including P-Type which is
  included in each token).  These Policy-Elements would typically
  contain the authorizing entity and credentials, and be used in an
  RSVP request for media data stream QoS resources.

5.2.2 User Agent Server (UAS)

  The User Agent Server receives the P-Media-Authorization-Token in an
  INVITE (or other) message from the QoS enabled SIP proxy.  If the
  response contains a message body that describes media streams for
  which the UA desires QoS, it is recommended (as may be appropriate
  within the applicability scope in Section 1 of this document) that
  this message body not be encrypted end-to-end.

  The UAS should use all the P-Media-Authorization-Tokens from the most
  recent request/response that contained the P-Media-Authorization
  header when requesting QoS for the associated media stream(s).  This
  applies both to initial and subsequent refresh reservation messages
  (for example, in an RSVP-based reservation system).  A reservation
  function within the UAS should convert each string of hex digits into
  binary, and utilize each result as a Policy-Element, as defined in
  RFC 2750 [5] (excluding Length, but including P-Type which is
  included in each token).  These Policy-Elements would typically



Marshall, Ed.                Informational                      [Page 6]

RFC 3313         SIP Extensions for Media Authorization     January 2003


  contain the authorizing entity and credentials, and be used in an
  RSVP request for media data stream QoS resources.

5.2.3 Originating Proxy (OP)

  When the originating QoS enabled proxy (OP) receives an INVITE (or
  other) message from the UAC, the proxy authenticates the caller, and
  verifies that the caller is authorized to receive QoS.

  In cooperation with an originating Policy Decision Point (PDP-o), the
  OP obtains and/or generates one or more media authorization tokens.
  These contain sufficient information for the UAC to get the
  authorized QoS for the media streams.  Each media authorization token
  is formatted as a Policy-Element, as defined in RFC 2750 [5]
  (excluding Length, but including P-Type which is included in each
  token), and then converted to a string of hex digits to form a P-
  Media-Authorization-Token.  The proxy's resource management function
  may inspect message bodies that describe the media streams (e.g.,
  SDP), in both requests and responses in order to decide what QoS to
  authorize.

  For each dialog that results from the INVITE (or other) message
  received from the UAC, the originating proxy must add a P-Media-
  Authorization header with the P-Media-Authorization-Token in all
  unreliable provisional responses (except 100), the first reliable 1xx
  or 2xx response, and all retransmissions of that reliable response
  the proxy sends to the UAC, if that response may result in network
  QoS changes.  A response with an SDP may result in such changes.

5.2.4 Destination Proxy (DP)

  The Destination QoS Enabled Proxy (DP) verifies that the called party
  is authorized to receive QoS.

  In cooperation with a terminating Policy Decision Point (PDP-t), the
  DP obtains and/or generates a media authorization token that contains
  sufficient information for the UAS to get the authorized QoS for the
  media streams.  The media authorization token is formatted as a
  Policy-Element, as defined in RFC 2750 [5] (excluding Length, but
  including P-Type which is included in each token), and then converted
  to a string of hex digits to form a P-Media-Authorization-Token.  The
  proxy's resource management function may inspect message bodies that
  describe the media streams (e.g., SDP), in both requests and
  responses in order to decide what QoS to authorize.







Marshall, Ed.                Informational                      [Page 7]

RFC 3313         SIP Extensions for Media Authorization     January 2003


  The Destination Proxy must add the P-Media-Authorization header with
  the P-Media-Authorization-Token in the INVITE (or other) request that
  it sends to the UAS if that message may result in network QoS
  changes.  A message with an SDP body may result in such changes.

6. Examples

6.1 Requesting Bandwidth via RSVP Messaging

  Below we provide an example of how the P-Media-Authorization header
  field can be used in conjunction with the Resource Reservation
  Protocol (RSVP) [7].  The example assumes that an offer arrives in
  the initial INVITE and an answer arrives in a reliable provisional
  response [9], which contains an SDP description of the media flow.

6.1.1 User Agent Client Side

  Figure 2 presents a high-level overview of a basic call flow with
  media authorization from the viewpoint of the UAC.  Some policy
  interactions have been omitted for brevity.

  When a user goes off-hook and dials a telephone number, the UAC
  collects the dialed digits and sends the initial (1)INVITE message to
  the originating SIP proxy.

  The originating SIP proxy (OP) authenticates the user/UAC and
  forwards the (2)INVITE message to the proper SIP proxy.

  Assuming the call is not forwarded, the terminating end-point sends a
  (3)18x response to the initial INVITE via OP.  Included in this
  response is an indication of the negotiated bandwidth requirement for
  the connection (in the form of an SDP description [8]).

  When OP receives the (3)18x, it has sufficient information regarding
  the end-points, bandwidth and characteristics of the media exchange.
  It initiates a Policy-Setup message to PDP-o, (4)AuthProfile.

  The PDP-o stores the authorized media description in its local store,
  generates an authorization token that points to this description, and
  returns the authorization token to the OP, (5)AuthToken.











Marshall, Ed.                Informational                      [Page 8]

RFC 3313         SIP Extensions for Media Authorization     January 2003


  UAC         ER-o            PDP-o           OP
  |(1)INVITE   |               |               | Client Authentication
  |------------------------------------------->| and Call Authoriz.
  |            |               |               | (2)INVITE
  |            |               |               |-------------->
  |            |               |               | (3)18x
  |            |               |(4)AuthProfile |<--------------
  |            |               |<--------------|
  |            |               |(5)AuthToken   |
  |            |               |-------------->| Auth. Token put into
  |            |               |        (6)18x | P-Media-Authorization
  |<-------------------------------------------| header extension.
  |---(7)PRACK-------------------------------->|
  |                                            |--(8)PRACK---->
  |                                            |<-(9)200 (PRACK)
  |<--(10)200 (PRACK)--------------------------|
  |            |               |               |
  |Copies the RSVP policy object               |
  |from the P-Media-Authorization              |
  |(11)RSVP-PATH               |               |
  |----------->| (12)REQ       |               |
  |            |-------------->| Using the Auth-Token and Authorized
  |            |       (13)DEC | Profile that is set by the SIP Proxy
  |            |<--------------| the PDP makes the decision
  |            |               |               |(14)RSVP-PATH
  |            |------------------------------------------------>
  |            |               |               |(15)RSVP-PATH
  |<--------------------------------------------------------------
  |Copies the RSVP policy object               |
  |from the P-Media-Authorization              |
  |(16)RSVP-RESV               |               |
  |----------->|   (17)REQ     |               |
  |            |-------------->| Using the Auth-Token and Authorized
  |            |   (18)DEC     | Profile that is set by the SIP Proxy
  |            |<--------------| the PDP makes the decision
  |            |               |               |(19)RSVP-RESV
  |            |--------------------------------------------------->
  |            |               |               |(20)RSVP-RESV
  |<----------------------------------------------------------------
  |            |               |               |

            Figure 2 - Media Authorization with RSVP (UAC)

  The OP includes the authorization token in the P-Media-Authorization
  header extension of the (6)18x message.






Marshall, Ed.                Informational                      [Page 9]

RFC 3313         SIP Extensions for Media Authorization     January 2003


  Upon receipt of the (6)18x message, the UAC stores the media
  authorization token from the P-Media-Authorization header.  Also, the
  UAC acknowledges the 18x message by sending a (7)PRACK message, which
  is responded to with (10) 200.

  Before sending any media, the UAC requests QoS by sending an
  (11)RSVP-PATH message, which includes the previously stored P-Media-
  Authorization-Token as a Policy-Element.

  ER-o, upon receipt of the (11)RSVP-PATH message, checks the
  authorization through a PDP-o COPS message exchange, (12)REQ.  PDP-o
  checks the authorization using the stored authorized media
  description that was linked to the authorization token it returned to
  OP.  If authorization is successful, PDP-o returns an "install"
  Decision, (13)DEC.

  ER-o checks the admissibility for the request, and if admission
  succeeds, it forwards the (14)RSVP-PATH message.

  Once UAC receives the (15)RSVP-PATH message from UAS, it sends the
  (16)RSVP-RESV message to reserve the network resources.

  ER-o, upon receiving the (16)RSVP-RESV message checks the
  authorization through a PDP-o COPS message exchange, (17)REQ.  PDP-o
  checks the authorization using the stored authorized media
  description that was linked to the authorization token it returned to
  OP.  If authorization is successful, PDP-o returns an "install"
  Decision, (18)DEC.

  ER-o checks the admissibility for the request, and if admission
  succeeds, it forwards the (19)RSVP-RESV message.

  Upon receiving the (20)RSVP-RESV message, network resources have been
  reserved in both directions.

6.1.2 User Agent Server Side

  Figure 3 presents a high-level overview of a call flow with media
  authorization from the viewpoint of the UAS.  Some policy
  interactions have been omitted for brevity.

  Since the destination SIP proxy (DP) has sufficient information
  regarding the endpoints, bandwidth, and characteristics of the media
  exchange, it initiates a Policy-Setup message to the terminating
  Policy Decision Point (PDP-t) on receipt of the (1)INVITE.






Marshall, Ed.                Informational                     [Page 10]

RFC 3313         SIP Extensions for Media Authorization     January 2003


  UAS         ER-t           PDP-t            DP
   |           |               |               | (1)INVITE
   |           |               |               |<--------------
   |           |               |               | Proxy Authentication
   |           |               | (2)AuthProfile| and Call Authoriz.
   |           |               |<--------------|
   |           |               | (3)AuthToken  |
   |           |               |-------------->| Auth. Token put into
   |           |               |     (4)INVITE | P-Media-Authorization
   |<------------------------------------------| header extension
   |  (5)18x   |               |               |
   |------------------------------------------>| (6)18x
   |Copies the RSVP policy object              |-------------->
   |from the P-Media-Authorization             |
   |(7)RSVP-PATH               |               |
   |---------->| (8)REQ        |               |
   |           |-------------->| Using the Auth-Token and Authorized
   |           |       (9)DEC  | Profile that is set by the SIP Proxy
   |           |<--------------| the PDP makes the decision
   |           |               |               |(10)RSVP-PATH
   |           |-------------------------------------------------->
   |           |               |               |(11)RSVP-PATH
   |<--------------------------------------------------------------
   |Copies the RSVP policy object              |
   |from the P-Media-Authorization             |
   | (12)RSVP-RESV             |               |
   |---------->|               |               |
   |           | (13)REQ       |               |
   |           |-------------->| Using the Auth-Token and Authorized
   |           |       (14)DEC | Profile that is set by the SIP Proxy
   |           |<--------------| the PDP makes the decision
   |           |               |               |(15)RSVP-RESV
   |           |--------------------------------------------------->
   |           |               |               |(16)RSVP-RESV
   |<---------------------------------------------------------------
   |           |               |               |<-(17)PRACK---------
   |<--(18)PRACK ------------------------------|
   |---(19)200 (PRACK) ----------------------->|
   |           |               |               |--(20)200 (PRACK)-->
   |           |               |               |

             Figure 3 - Media Authorization with RSVP (UAS)

  PDP-t stores the authorized media description in its local store,
  generates an authorization token that points to this description, and
  returns the authorization token to DP.  The token is placed in the
  (4)INVITE message and forwarded to the UAS.




Marshall, Ed.                Informational                     [Page 11]

RFC 3313         SIP Extensions for Media Authorization     January 2003


  Assuming that the call is not forwarded, the UAS sends a (5)18x
  response to the initial INVITE message, which is forwarded back to
  UAC.  At the same time, the UAS sends a (7)RSVP-PATH message which
  includes the previously stored P-Media-Authorization-Token as a
  Policy-Element.

  ER-t, upon receiving the (7)RSVP-PATH message checks the
  authorization through a PDP-t COPS message exchange.  PDP-t checks
  the authorization using the stored authorized media description that
  was linked to the authorization token it returned to DP.  If
  authorization is successful, PDP-t returns an "install" Decision,
  (9)DEC.

  ER-t checks the admissibility for the request, and if admission
  succeeds, it forwards the (10)RSVP-PATH message.

  Once the UAS receives the (11)RSVP-PATH message, it sends the
  (12)RSVP-RESV message to reserve the network resources.

  ER-t, upon reception of the (12)RSVP-RESV message, checks the
  authorization through a PDP-t COPS message exchange.  PDP-t checks
  the authorization using the stored authorized media description that
  was linked to the authorization token that it returned to DP.  If
  authorization is successful, PDP-t returns an "install" Decision,
  (14)DEC.

  ER-t checks the admissibility for the request and if admission
  succeeds, it forwards the (15)RSVP-RESV message.

  Upon receiving the (16)RSVP-RESV message, network resources have been
  reserved in both directions.

  For completeness, we show the (17)PRACK message for the (5) 18x
  response and the resulting (19) 200 response acknowledging the PRACK.

7. Advantages of the Proposed Approach

  The use of media authorization makes it possible to control the usage
  of network resources.  In turn, this makes IP Telephony more robust
  against denial of service attacks and various kinds of service
  frauds.  By using the authorization capability, the number of flows,
  and the amount of network resources reserved can be controlled,
  thereby making the IP Telephony system dependable in the presence of
  scarce resources.







Marshall, Ed.                Informational                     [Page 12]

RFC 3313         SIP Extensions for Media Authorization     January 2003


8. Security Considerations

  In order to control access to QoS, a QoS enabled proxy should
  authenticate the UA before providing it with a media authorization
  token.  Both the method and policy associated with such
  authentication are outside the scope of this document, however it
  could, for example, be done by using standard SIP authentication
  mechanisms, as described in [3].

  Media authorization tokens sent in the P-Media-Authorization header
  from a QoS enabled proxy to a UA MUST be protected from eavesdropping
  and tampering.  This can, for example, be done through a mechanism
  such as IPSec or TLS.  However, this will only provide hop-by-hop
  security.  If there is one or more intermediaries (e.g., proxies),
  between the UA and the QoS enabled proxy, these intermediaries will
  have access to the P-Media-Authorization header field value, thereby
  compromising confidentiality and integrity.  This will enable both
  theft-of-service and denial-of-service attacks against the UA.
  Consequently, the P-Media-Authorization header field MUST NOT be
  available to any untrusted intermediary in the clear or without
  integrity protection.  There is currently no mechanism defined in SIP
  that would satisfy these requirements.  Until such a mechanism
  exists, proxies MUST NOT send P-Media-Authorization headers through
  untrusted intermediaries, which might reveal or modify the contents
  of this header.  (Note that S/MIME-based encryption in SIP is not
  available to proxy servers, as proxies are not allowed to add message
  bodies.)

  QoS enabled proxies may need to inspect message bodies describing
  media streams (e.g., SDP).  Consequently, such message bodies should
  not be encrypted.  In turn, this will prevent end-to-end
  confidentiality of the said message bodies, which lowers the overall
  security possible.

9. IANA Considerations

  This document defines a new private SIP header for media
  authorization, "P-Media-Authorization".  This header has been
  registered by the IANA in the SIP header registry, using the RFC
  number of this document as its reference.

10. Notice Regarding Intellectual Property Rights

  The IETF has been notified of intellectual property rights claimed in
  regard to some or all of the specification contained in this
  document.  For more information consult the online list of claimed
  rights.




Marshall, Ed.                Informational                     [Page 13]

RFC 3313         SIP Extensions for Media Authorization     January 2003


11. Normative References

  [1]  Bradner, S., "The Internet Standards Process -- Revision 3", BCP
       9, RFC 2026, October 1996.

  [2]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [3]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
       Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
       Session Initiation Protocol", RFC 3261, June 2002.

  [4]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
       Specifications: ABNF", RFC 2234, November 1997.

  [5]  Herzog, S., "RSVP Extensions for Policy Control", RFC 2750,
       January 2000.

12. Informative References

  [6]  Yavatkar, R., Pendarakis, D. and R. Guerin, "A Framework for
       Policy-based Admission Control", RFC 2753, January 2000.

  [7]  Braden, R., Zhang, L., Berson, S., Herzog, S. and S. Jamin,
       "Resource Reservation Protocol (RSVP) -- Version 1 Functional
       Specification", RFC 2205, September 1997.

  [8]  Handley, M. and V. Jacobson, "SDP: Session Description
       Protocol", RFC 2327, April 1998.

  [9]  Rosenberg, J. and H. Schulzrinne, "Reliability of Provisional
       Responses in Session Initiation Protocol (SIP)", RFC 3262, June
       2002.

  [10] Roach, A. B., "Session Initiation Protocol (SIP)-Specific Event
       Notification", RFC 3265, June 2002.

  [11] Donovan, S., "The SIP INFO Method", RFC 2976, October 2000.

  [12] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE
       Method", RFC 3311, September 2002.










Marshall, Ed.                Informational                     [Page 14]

RFC 3313         SIP Extensions for Media Authorization     January 2003


13. Contributors

  The following people contributed significantly and were co-authors on
  earlier versions of this document:

     Bill Marshall (AT&T), K. K. Ramakrishnan (AT&T), Ed Miller
     (Terayon), Glenn Russell (CableLabs), Burcak Beser (Juniper
     Networks), Mike Mannette (3Com), Kurt Steinbrenner (3Com), Dave
     Oran (Cisco), Flemming Andreasen (Cisco), John Pickens (Com21),
     Poornima Lalwaney (Nokia), Jon Fellows (Copper Mountain Networks),
     Doc Evans (Arris), and Keith Kelly (NetSpeak).

14. Acknowledgments

  The Distributed Call Signaling work in the PacketCable project is the
  work of a large number of people, representing many different
  companies.  The contributors would like to recognize and thank the
  following for their assistance: John Wheeler, Motorola; David
  Boardman, Daniel Paul, Arris Interactive; Bill Blum, Jay Strater,
  Jeff Ollis, Clive Holborow, Motorola; Doug Newlin, Guido Schuster,
  Ikhlaq Sidhu, 3Com; Jiri Matousek, Bay Networks; Farzi Khazai,
  Nortel; John Chapman, Bill Guckel, Michael Ramalho, Cisco; Chuck
  Kalmanek, Doug Nortz, John Lawser, James Cheng, Tung-Hai Hsiao,
  Partho Mishra, AT&T; Telcordia Technologies; and Lucent Cable
  Communications.  Dean Willis and Rohan Mahy provided valuable
  feedback as well.

15. Editor's Address

  Bill Marshall
  AT&T
  Florham Park, NJ  07932

  EMail: [email protected]

















Marshall, Ed.                Informational                     [Page 15]

RFC 3313         SIP Extensions for Media Authorization     January 2003


16. Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Marshall, Ed.                Informational                     [Page 16]