Network Working Group                                           A. Niemi
Request for Comments: 3310                                         Nokia
Category: Informational                                         J. Arkko
                                                            V. Torvinen
                                                               Ericsson
                                                         September 2002


      Hypertext Transfer Protocol (HTTP) Digest Authentication
             Using Authentication and Key Agreement (AKA)

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

  This memo specifies an Authentication and Key Agreement (AKA) based
  one-time password generation mechanism for Hypertext Transfer
  Protocol (HTTP) Digest access authentication.  The HTTP
  Authentication Framework includes two authentication schemes: Basic
  and Digest.  Both schemes employ a shared secret based mechanism for
  access authentication.  The AKA mechanism performs user
  authentication and session key distribution in Universal Mobile
  Telecommunications System (UMTS) networks.  AKA is a challenge-
  response based mechanism that uses symmetric cryptography.



















Niemi, et. al.               Informational                      [Page 1]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


Table of Contents

  1.  Introduction and Motivation  . . . . . . . . . . . . . . . . .  2
  1.1 Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  3
  1.2 Conventions  . . . . . . . . . . . . . . . . . . . . . . . . .  4
  2.  AKA Mechanism Overview . . . . . . . . . . . . . . . . . . . .  4
  3.  Specification of Digest AKA  . . . . . . . . . . . . . . . . .  5
  3.1 Algorithm Directive  . . . . . . . . . . . . . . . . . . . . .  5
  3.2 Creating a Challenge . . . . . . . . . . . . . . . . . . . . .  6
  3.3 Client Authentication  . . . . . . . . . . . . . . . . . . . .  7
  3.4 Synchronization Failure  . . . . . . . . . . . . . . . . . . .  7
  3.5 Server Authentication  . . . . . . . . . . . . . . . . . . . .  8
  4.  Example Digest AKA Operation . . . . . . . . . . . . . . . . .  8
  5.  Security Considerations  . . . . . . . . . . . . . . . . . . . 12
  5.1 Authentication of Clients using Digest AKA . . . . . . . . . . 13
  5.2 Limited Use of Nonce Values  . . . . . . . . . . . . . . . . . 13
  5.3 Multiple Authentication Schemes and Algorithms . . . . . . . . 14
  5.4 Online Dictionary Attacks  . . . . . . . . . . . . . . . . . . 14
  5.5 Session Protection . . . . . . . . . . . . . . . . . . . . . . 14
  5.6 Replay Protection  . . . . . . . . . . . . . . . . . . . . . . 15
  5.7 Improvements to AKA Security . . . . . . . . . . . . . . . . . 15
  6.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 15
  6.1 Registration Template  . . . . . . . . . . . . . . . . . . . . 16
      Normative References . . . . . . . . . . . . . . . . . . . . . 16
      Informative References . . . . . . . . . . . . . . . . . . . . 16
  A.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 17
      Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 17
      Full Copyright Statement . . . . . . . . . . . . . . . . . . . 18

1. Introduction and Motivation

  The Hypertext Transfer Protocol (HTTP) Authentication Framework,
  described in RFC 2617 [2], includes two authentication schemes: Basic
  and Digest.  Both schemes employ a shared secret based mechanism for
  access authentication.  The Basic scheme is inherently insecure in
  that it transmits user credentials in plain text.  The Digest scheme
  improves security by hiding user credentials with cryptographic
  hashes, and additionally by providing limited message integrity.

  The Authentication and Key Agreement (AKA) [6] mechanism performs
  authentication and session key distribution in Universal Mobile
  Telecommunications System (UMTS) networks.  AKA is a challenge-
  response based mechanism that uses symmetric cryptography.  AKA is
  typically run in a UMTS IM Services Identity Module (ISIM), which
  resides on a smart card like device that also provides tamper
  resistant storage of shared secrets.





Niemi, et. al.               Informational                      [Page 2]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


  This document specifies a mapping of AKA parameters onto HTTP Digest
  authentication.  In essence, this mapping enables the usage of AKA as
  a one-time password generation mechanism for Digest authentication.

  As the Session Initiation Protocol (SIP) [3] Authentication Framework
  closely follows the HTTP Authentication Framework, Digest AKA is
  directly applicable to SIP as well as any other embodiment of HTTP
  Digest.

1.1 Terminology

  This chapter explains the terminology used in this document.

  AKA
     Authentication and Key Agreement.

  AuC
     Authentication Center.  The network element in mobile networks
     that can authorize users either in GSM or in UMTS networks.

  AUTN
     Authentication Token.  A 128 bit value generated by the AuC, which
     together with the RAND parameter authenticates the server to the
     client.

  AUTS
     Authentication Token.  A 112 bit value generated by the client
     upon experiencing an SQN synchronization failure.

  CK
     Cipher Key.  An AKA session key for encryption.

  IK
     Integrity Key.  An AKA session key for integrity check.

  ISIM
     IP Multimedia Services Identity Module.

  PIN
     Personal Identification Number.  Commonly assigned passcodes for
     use with automatic cash machines, smart cards, etc.

  RAND
     Random Challenge.  Generated by the AuC using the SQN.

  RES
     Authentication Response.  Generated by the ISIM.




Niemi, et. al.               Informational                      [Page 3]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


  SIM
     Subscriber Identity Module.  GSM counter part for ISIM.

  SQN
     Sequence Number.  Both AuC and ISIM maintain the value of the SQN.

  UMTS
     Universal Mobile Telecommunications System.

  XRES
     Expected Authentication Response.  In a successful authentication
     this is equal to RES.

1.2 Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, RFC 2119 [1].

2. AKA Mechanism Overview

  This chapter describes the AKA operation in detail:

  1. A shared secret K is established beforehand between the ISIM and
     the Authentication Center (AuC).  The secret is stored in the
     ISIM, which resides on a smart card like, tamper resistant device.

  2. The AuC of the home network produces an authentication vector AV,
     based on the shared secret K and a sequence number SQN.  The
     authentication vector contains a random challenge RAND, network
     authentication token AUTN, expected authentication result XRES, a
     session key for integrity check IK, and a session key for
     encryption CK.

  3. The authentication vector is downloaded to a server.  Optionally,
     the server can also download a batch of AVs, containing more than
     one authentication vector.

  4. The server creates an authentication request, which contains the
     random challenge RAND, and the network authenticator token AUTN.

  5. The authentication request is delivered to the client.

  6. Using the shared secret K and the sequence number SQN, the client
     verifies the AUTN with the ISIM.  If the verification is
     successful, the network has been authenticated.  The client then
     produces an authentication response RES, using the shared secret K
     and the random challenge RAND.



Niemi, et. al.               Informational                      [Page 4]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


  7. The authentication response, RES, is delivered to the server.

  8. The server compares the authentication response RES with the
     expected response, XRES.  If the two match, the user has been
     successfully authenticated, and the session keys, IK and CK, can
     be used for protecting further communications between the client
     and the server.

  When verifying the AUTN, the client may detect that the sequence
  numbers between the client and the server have fallen out of sync.
  In this case, the client produces a synchronization parameter AUTS,
  using the shared secret K and the client sequence number SQN.  The
  AUTS parameter is delivered to the network in the authentication
  response, and the authentication can be tried again based on
  authentication vectors generated with the synchronized sequence
  number.

  For a specification of the AKA mechanism and the generation of the
  cryptographic parameters AUTN, RES, IK, CK, and AUTS, see reference
  3GPP TS 33.102 [6].

3. Specification of Digest AKA

  In general, the Digest AKA operation is identical to the Digest
  operation in RFC 2617 [2].  This chapter specifies the parts in which
  Digest AKA extends the Digest operation.  The notation used in the
  Augmented BNF definitions for the new and modified syntax elements in
  this section is as used in SIP [3], and any elements not defined in
  this section are as defined in SIP and the documents to which it
  refers.

3.1 Algorithm Directive

  In order to direct the client into using AKA for authentication
  instead of the standard password system, the RFC 2617 defined
  algorithm directive is overloaded in Digest AKA:

          algorithm           =  "algorithm" EQUAL ( aka-namespace
                                 / algorithm-value )
          aka-namespace       =  aka-version "-" algorithm-value
          aka-version         =  "AKAv" 1*DIGIT
          algorithm-value     =  ( "MD5" / "MD5-sess" / token )

  algorithm
     A string indicating the algorithm used in producing the digest and
     the checksum.  If the directive is not understood, the nonce
     SHOULD be ignored, and another challenge (if one is present)
     should be used instead.  The default aka-version is "AKAv1".



Niemi, et. al.               Informational                      [Page 5]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


     Further AKA versions can be specified, with version numbers
     assigned by IANA [7].  When the algorithm directive is not
     present, it is assumed to be "MD5".  This indicates, that AKA is
     not used to produce the Digest password.

     Example:

           algorithm=AKAv1-MD5

     If the entropy of the used RES value is limited (e.g., only 32
     bits), reuse of the same RES value in authenticating subsequent
     requests and responses is NOT RECOMMENDED.  Such a RES value
     SHOULD only be used as a one-time password, and algorithms such as
     "MD5-sess", which limit the amount of material hashed with a
     single key, by producing a session key for authentication, SHOULD
     NOT be used.

3.2 Creating a Challenge

  In order to deliver the AKA authentication challenge to the client in
  Digest AKA, the nonce directive defined in RFC 2617 is extended:

          nonce               =  "nonce" EQUAL ( aka-nonce
                                 / nonce-value )
          aka-nonce           =  LDQUOT aka-nonce-value RDQUOT
          aka-nonce-value     =  <base64 encoding of RAND, AUTN, and
                                  server specific data>

  nonce
     A parameter, which is populated with the Base64 [4] encoding of
     the concatenation of the AKA authentication challenge RAND, the
     AKA AUTN token, and optionally some server specific data, as in
     Figure 1.


















Niemi, et. al.               Informational                      [Page 6]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


     Example:

         nonce="MzQ0a2xrbGtmbGtsZm9wb2tsc2tqaHJzZXNy9uQyMzMzMzQK="

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                            RAND                               |
     |                                                               |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                            AUTN                               |
     |                                                               |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Server Data...
     +-+-+-+-+-+-+-+-+-+-+-+

                   Figure 1: Generating the nonce value.

  If the server receives a client authentication containing the "auts"
  parameter defined in Section 3.4, that includes a valid AKA AUTS
  parameter, the server MUST use it to generate a new challenge to the
  client.  Note that when the AUTS is present, the included "response"
  parameter is calculated using an empty password (password of ""),
  instead of a RES.

3.3 Client Authentication

  When a client receives a Digest AKA authentication challenge, it
  extracts the RAND and AUTN from the "nonce" parameter, and assesses
  the AUTN token provided by the server.  If the client successfully
  authenticates the server with the AUTN, and determines that the SQN
  used in generating the challenge is within expected range, the AKA
  algorithms are run with the RAND challenge and shared secret K.

  The resulting AKA RES parameter is treated as a "password" when
  calculating the response directive of RFC 2617.

3.4 Synchronization Failure

  For indicating an AKA sequence number synchronization failure, and to
  re-synchronize the SQN in the AuC using the AUTS token, a new
  directive is defined for the "digest-response" of the "Authorization"
  request header defined in RFC 2617:




Niemi, et. al.               Informational                      [Page 7]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


          auts                =  "auts" EQUAL auts-param
          auts-param          =  LDQUOT auts-value RDQUOT
          auts-value          =  <base64 encoding of AUTS>


  auts
     A string carrying a base64 encoded AKA AUTS parameter.  This
     directive is used to re-synchronize the server side SQN.  If the
     directive is present, the client doesn't use any password when
     calculating its credentials.  Instead, the client MUST calculate
     its credentials using an empty password (password of "").

     Example:

           auts="CjkyMzRfOiwg5CfkJ2UK="

  Upon receiving the "auts" parameter, the server will check the
  validity of the parameter value using the shared secret K.  A valid
  AUTS parameter is used to re-synchronize the SQN in the AuC.  The
  synchronized SQN is then used to generate a fresh authentication
  vector AV, with which the client is then re-challenged.

3.5 Server Authentication

  Even though AKA provides inherent mutual authentication with the AKA
  AUTN token, mutual authentication mechanisms provided by Digest may
  still be useful in order to provide message integrity.

  In Digest AKA, the server uses the AKA XRES parameter as "password"
  when calculating the "response-auth" of the "Authentication-Info"
  header defined in RFC 2617.

4. Example Digest AKA Operation

  Figure 2 below describes a message flow describing a Digest AKA
  process of authenticating a SIP request, namely the SIP REGISTER
  request.














Niemi, et. al.               Informational                      [Page 8]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


     Client                                                  Server

       | 1) REGISTER                                           |
       |------------------------------------------------------>|
       |                                                       |
       |                            +-----------------------------+
       |                            | Server runs AKA algorithms, |
       |                            | generates RAND and AUTN.    |
       |                            +-----------------------------+
       |                                                       |
       |              2) 401 Unauthorized                      |
       |                 WWW-Authenticate: Digest              |
       |                                (RAND, AUTN delivered) |
       |<------------------------------------------------------|
       |                                                       |
   +------------------------------------+                      |
   | Client runs AKA algorithms on ISIM,|                      |
   | verifies AUTN, derives RES         |                      |
   | and session keys.                  |                      |
   +------------------------------------+                      |
       |                                                       |
       | 3) REGISTER                                           |
       |    Authorization: Digest (RES is used)                |
       |------------------------------------------------------>|
       |                                                       |
       |                            +------------------------------+
       |                            | Server checks the given RES, |
       |                            | and finds it correct.        |
       |                            +------------------------------+
       |                                                       |
       |               4) 200 OK                               |
       |                  Authentication-Info: (XRES is used)  |
       |<------------------------------------------------------|
       |                                                       |

    Figure 2: Message flow representing a successful authentication.

  1) Initial request

     REGISTER sip:home.mobile.biz SIP/2.0











Niemi, et. al.               Informational                      [Page 9]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


  2) Response containing a challenge

     SIP/2.0 401 Unauthorized
     WWW-Authenticate: Digest
             realm="[email protected]",
             nonce="CjPk9mRqNuT25eRkajM09uTl9nM09uTl9nMz5OX25PZz==",
             qop="auth,auth-int",
             opaque="5ccc069c403ebaf9f0171e9517f40e41",
             algorithm=AKAv1-MD5

  3) Request containing credentials

     REGISTER sip:home.mobile.biz SIP/2.0
     Authorization: Digest
             username="[email protected]",
             realm="[email protected]",
             nonce="CjPk9mRqNuT25eRkajM09uTl9nM09uTl9nMz5OX25PZz==",
             uri="sip:home.mobile.biz",
             qop=auth-int,
             nc=00000001,
             cnonce="0a4f113b",
             response="6629fae49393a05397450978507c4ef1",
             opaque="5ccc069c403ebaf9f0171e9517f40e41"

  4) Successful response

     SIP/2.0 200 OK
     Authentication-Info:
             qop=auth-int,
             rspauth="6629fae49393a05397450978507c4ef1",
             cnonce="0a4f113b",
             nc=00000001



















Niemi, et. al.               Informational                     [Page 10]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


  Figure 3 below describes a message flow describing a Digest AKA
  authentication process, in which there is a synchronization failure.

     Client                                                 Server

       | 1) REGISTER                                           |
       |------------------------------------------------------>|
       |                                                       |
       |                            +-----------------------------+
       |                            | Server runs AKA algorithms, |
       |                            | generates RAND and AUTN.    |
       |                            +-----------------------------+
       |                                                       |
       |              2) 401 Unauthorized                      |
       |                 WWW-Authenticate: Digest              |
       |                                (RAND, AUTN delivered) |
       |<------------------------------------------------------|
       |                                                       |
   +------------------------------------+                      |
   | Client runs AKA algorithms on ISIM,|                      |
   | verifies the AUTN, but discovers   |                      |
   | that it contains an invalid        |                      |
   | sequence number. The client then   |                      |
   | generates an AUTS token.           |                      |
   +------------------------------------+                      |
       |                                                       |
       | 3) REGISTER                                           |
       |    Authorization: Digest (AUTS is delivered)          |
       |------------------------------------------------------>|
       |                                                       |
       |                                  +-----------------------+
       |                                  | Server performs       |
       |                                  | re-synchronization    |
       |                                  | using AUTS and RAND.  |
       |                                  +-----------------------+
       |                                                       |
       |              4) 401 Unauthorized                      |
       |                 WWW-Authenticate: Digest              |
       |                                (re-synchronized RAND, |
       |                                 AUTN delivered)       |
       |<------------------------------------------------------|
       |                                                       |

  Figure 3: Message flow representing an authentication synchronization
  failure.






Niemi, et. al.               Informational                     [Page 11]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


  1) Initial request

     REGISTER sip:home.mobile.biz SIP/2.0

  2) Response containing a challenge

     SIP/2.0 401 Unauthorized
     WWW-Authenticate: Digest
           realm="[email protected]",
           qop="auth",
           nonce="CjPk9mRqNuT25eRkajM09uTl9nM09uTl9nMz5OX25PZz==",
           opaque="5ccc069c403ebaf9f0171e9517f40e41",
           algorithm=AKAv1-MD5

  3) Request containing credentials

     REGISTER sip:home.mobile.biz SIP/2.0
     Authorization: Digest
           username="[email protected]",
           realm="[email protected]",
           nonce="CjPk9mRqNuT25eRkajM09uTl9nM09uTl9nMz5OX25PZz==",
           uri="sip:home.mobile.biz",
           qop=auth,
           nc=00000001,
           cnonce="0a4f113b",
           response="4429ffe49393c02397450934607c4ef1",
           opaque="5ccc069c403ebaf9f0171e9517f40e41",
           auts="5PYxMuX2NOT2NeQ="

  4) Response containing a new challenge

     SIP/2.0 401 Unauthorized
     WWW-Authenticate: Digest
           realm="[email protected]",
           qop="auth,auth-int",
           nonce="9uQzNPbk9jM05Pbl5Pbl5DIz9uTl9uTl9jM0NTHk9uXk==",
           opaque="dcd98b7102dd2f0e8b11d0f600bfb0c093",
           algorithm=AKAv1-MD5

5. Security Considerations

  In general, Digest AKA is vulnerable to the same security threats as
  HTTP authentication [2].  This chapter discusses the relevant
  exceptions.







Niemi, et. al.               Informational                     [Page 12]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


5.1 Authentication of Clients using Digest AKA

  AKA is typically -- though this isn't a theoretical limitation -- run
  on an ISIM application that usually resides in a tamper resistant
  smart card.  Interfaces to the ISIM exist, which enable the host
  device to request authentication to be performed on the card.
  However, these interfaces do not allow access to the long-term secret
  outside the ISIM, and the authentication can only be performed if the
  device accessing the ISIM has knowledge of a PIN code, shared between
  the user and the ISIM.  Such PIN codes are typically obtained from
  user input, and are usually required when the device is powered on.

  The use of tamper resistant cards with secure interfaces implies that
  Digest AKA is typically more secure than regular Digest
  implementations, as neither possession of the host device nor Trojan
  Horses in the software give access to the long term secret.  Where a
  PIN scheme is used, the user is also authenticated when the device is
  powered on.  However, there may be a difference in the resulting
  security of Digest AKA, compared to traditional Digest
  implementations, depending of course on whether those implementations
  cache/store passwords that are received from the user.

5.2 Limited Use of Nonce Values

  The Digest scheme uses server-specified nonce values to seed the
  generation of the request-digest value.  The server is free to
  construct the nonce in such a way, that it may only be used from a
  particular client, for a particular resource, for a limited period of
  time or number of uses, or any other restrictions.  Doing so
  strengthens the protection provided against, for example, replay
  attacks.

  Digest AKA limits the applicability of a nonce value to a particular
  ISIM.  Typically, the ISIM is accessible only to one client device at
  a time.  However, the nonce values are strong and secure even though
  limited to a particular ISIM.  Additionally, this requires that the
  server is provided with the client identity before an authentication
  challenge can be generated.  If a client identity is not available,
  an additional round trip is needed to acquire it.  Such a case is
  analogous to an AKA synchronization failure.

  A server may allow each nonce value to be used only once by sending a
  next-nonce directive in the Authentication-Info header field of every
  response.  However, this may cause a synchronization failure, and
  consequently some additional round trips in AKA, if the same SQN
  space is also used for other access schemes at the same time.





Niemi, et. al.               Informational                     [Page 13]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


5.3 Multiple Authentication Schemes and Algorithms

  In HTTP authentication, a user agent MUST choose the strongest
  authentication scheme it understands and request credentials from the
  user, based upon that challenge.

  In general, using passwords generated by Digest AKA with other HTTP
  authentication schemes is not recommended even though the realm
  values or protection domains would coincide.  In these cases, a
  password should be requested from the end-user instead.  Digest AKA
  passwords MUST NOT be re-used with such HTTP authentication schemes,
  which send the password in clear.  In particular, AKA passwords MUST
  NOT be re-used with HTTP Basic.

  The same principle must be applied within a scheme if several
  algorithms are supported.  A client receiving an HTTP Digest
  challenge with several available algorithms MUST choose the strongest
  algorithm it understands.  For example, Digest with "AKAv1-MD5" would
  be stronger than Digest with "MD5".

5.4 Online Dictionary Attacks

  Since user-selected passwords are typically quite simple, it has been
  proposed that servers should not accept passwords for HTTP Digest,
  which are in the dictionary [2].  This potential threat does not
  exist in HTTP Digest AKA because the algorithm will use ISIM
  originated passwords.  However, the end-user must still be careful
  with PIN codes.  Even though HTTP Digest AKA password requests are
  never displayed to the end-user, she will be authenticated to the
  ISIM via a PIN code.  Commonly known initial PIN codes are typically
  installed to the ISIM during manufacturing and if the end-users do
  not change them, there is a danger that an unauthorized user may be
  able to use the device.  Naturally this requires that the
  unauthorized user has access to the physical device, and that the
  end-user has not changed the initial PIN code.  For this reason,
  end-users are strongly encouraged to change their PIN codes when they
  receive an ISIM.

5.5 Session Protection

  Digest AKA is able to generate additional session keys for integrity
  (IK) and confidentiality (CK) protection.  Even though this document
  does not specify the use of these additional keys, they may be used
  for creating additional security within HTTP authentication or some
  other security mechanism.






Niemi, et. al.               Informational                     [Page 14]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


5.6 Replay Protection

  AKA allows sequence numbers to be tracked for each authentication,
  with the SQN parameter.  This allows authentications to be replay
  protected even if the RAND parameter happened to be the same for two
  authentication requests.  More importantly, this offers additional
  protection for the case where an attacker replays an old
  authentication request sent by the network.  The client will be able
  to detect that the request is old, and refuse authentication.  This
  proves liveliness of the authentication request even in the case
  where a MitM attacker tries to trick the client into providing an
  authentication response, and then replaces parts of the message with
  something else.  In other words, a client challenged by Digest AKA is
  not vulnerable for chosen plain text attacks.  Finally, frequent
  sequence number errors would reveal an attack where the tamper
  resistant card has been cloned and is being used in multiple devices.

  The downside of sequence number tracking is that servers must hold
  more information for each user than just their long-term secret,
  namely the current SQN value.  However, this information is typically
  not stored in the SIP nodes, but in dedicated authentication servers
  instead.

5.7 Improvements to AKA Security

  Even though AKA is perceived as a secure mechanism, Digest AKA is
  able to improve it.  More specifically, the AKA parameters carried
  between the client and the server during authentication may be
  protected along with other parts of the message by using Digest AKA.
  This is not possible with plain AKA.

6. IANA Considerations

  This document specifies an aka-version namespace in Section 3.1 which
  requires a central coordinating body.  The body responsible for this
  coordination is the Internet Assigned Numbers Authority (IANA).

  The default aka-version defined in this document is "AKAv1".
  Following the policies outlined in [5], versions above 1 are
  allocated as Expert Review.

  Registrations with the IANA MUST include the version number being
  registered, including the "AKAv" prefix.  For example, a registration
  for "AKAv2" would potentially be a valid one, whereas a registration
  for "FOOv2" or "2" would not be valid.  Further, the registration
  MUST include contact information for the party responsible for the
  registration.




Niemi, et. al.               Informational                     [Page 15]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


  As this document defines the default aka-version, the initial IANA
  registration for aka-version values will contain an entry for
  "AKAv1".

6.1 Registration Template

     To: [email protected]
     Subject: Registration of a new AKA version

     Version identifier:

         (Must contain a valid aka-version value,
          as described in section 3.1.)

     Person & email address to contact for further information:

         (Must contain contact information for the
          person(s) responsible for the registration.)

Normative References

  [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [2]  Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
       Leach, P., Luotonen, A. and L. Stewart, "HTTP Authentication:
       Basic and Digest Access Authentication", RFC 2617, June 1999.

  [3]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
       Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
       Session Initiation Protocol", RFC 3261, June 2002.

  [4]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
       Extensions (MIME) Part One: Format of Internet Message Bodies",
       RFC 2045, November 1996.

Informative References

  [5]  Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
       Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

  [6]  3rd Generation Partnership Project, "Security Architecture
       (Release 4)", TS 33.102, December 2001.

  [7]  http://www.iana.org, "Assigned Numbers".






Niemi, et. al.               Informational                     [Page 16]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


Appendix A. Acknowledgements

  The authors would like to thank Sanjoy Sen, Jonathan Rosenberg, Pete
  McCann, Tao Haukka, Ilkka Uusitalo, Henry Haverinen, John Loughney,
  Allison Mankin and Greg Rose.

Authors' Addresses

  Aki Niemi
  Nokia
  P.O. Box 301
  NOKIA GROUP, FIN  00045
  Finland

  Phone: +358 50 389 1644
  EMail: [email protected]


  Jari Arkko
  Ericsson
  Hirsalantie 1
  Jorvas, FIN  02420
  Finland

  Phone: +358 40 5079256
  EMail: [email protected]


  Vesa Torvinen
  Ericsson
  Joukahaisenkatu 1
  Turku, FIN  20520
  Finland

  Phone: +358 40 7230822
  EMail: [email protected]















Niemi, et. al.               Informational                     [Page 17]

RFC 3310          HTTP Digest Authentication Using AKA    September 2002


Full Copyright Statement

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Niemi, et. al.               Informational                     [Page 18]