Network Working Group                                           F. Baker
Request for Comments: 3289                                  Cisco System
Category: Standards Track                                        K. Chan
                                                        Nortel Networks
                                                               A. Smith
                                                       Harbour Networks
                                                               May 2002


                 Management Information Base for the
                 Differentiated Services Architecture

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

  This memo describes an SMIv2 (Structure of Management Information
  version 2) MIB for a device implementing the Differentiated Services
  Architecture.  It may be used both for monitoring and configuration
  of a router or switch capable of Differentiated Services
  functionality.

Table of Contents

  1 The SNMP Management Framework .................................   3
  2 Relationship to other working group documents .................   4
  2.1  Relationship to the Informal Management Model for
       Differentiated Services Router .............................   4
  2.2 Relationship to other MIBs and Policy Management ............   5
  3 MIB Overview ..................................................   6
  3.1 Processing Path .............................................   7
  3.1.1 diffServDataPathTable - The Data Path Table ...............   7
  3.2 Classifier ..................................................   7
  3.2.1 diffServClfrElementTable - The Classifier Element Table ...   8
  3.2.2 diffServMultiFieldClfrTable - The Multi-field Classifier
       Table ......................................................   9
  3.3 Metering Traffic ............................................  10
  3.3.1 diffServMeterTable - The Meter Table ......................  11



Baker, et. al.              Standards Track                     [Page 1]

RFC 3289              Differentiated Services MIB               May 2002


  3.3.2 diffServTBParamTable - The Token Bucket Parameters Table...  11
  3.4 Actions applied to packets ..................................  12
  3.4.1 diffServActionTable - The Action Table ....................  12
  3.4.2 diffServCountActTable - The Count Action Table ............  12
  3.4.3 diffServDscpMarkActTable - The Mark Action Table ..........  13
  3.4.4 diffServAlgDropTable - The Algorithmic Drop Table .........  13
  3.4.5 diffServRandomDropTable - The Random Drop Parameters Table   14
  3.5 Queuing and Scheduling of Packets ...........................  16
  3.5.1 diffServQTable - The Class or Queue Table .................  16
  3.5.2 diffServSchedulerTable - The Scheduler Table ..............  16
  3.5.3 diffServMinRateTable - The Minimum Rate Table .............  16
  3.5.4 diffServMaxRateTable - The Maximum Rate Table .............  17
  3.5.5 Using queues and schedulers together ......................  17
  3.6 Example configuration for AF and EF .........................  20
  3.6.1 AF and EF Ingress Interface Configuration .................  20
  3.6.1.1 Classification In The Example ...........................  22
  3.6.1.2 AF Implementation On an Ingress Edge Interface ..........  22
  3.6.1.2.1 AF Metering On an Ingress Edge Interface ..............  22
  3.6.1.2.2 AF Actions On an Ingress Edge Interface ...............  23
  3.6.1.3 EF Implementation On an Ingress Edge Interface ..........  23
  3.6.1.3.1 EF Metering On an Ingress Edge Interface ..............  23
  3.6.1.3.2 EF Actions On an Ingress Edge Interface ...............  23
  3.7 AF and EF Egress Edge Interface Configuration ...............  24
  3.7.1 Classification On an Egress Edge Interface ................  24
  3.7.2 AF Implementation On an Egress Edge Interface .............  26
  3.7.2.1 AF Metering On an Egress Edge Interface .................  26
  3.7.2.2 AF Actions On an Egress Edge Interface ..................  29
  3.7.2.3 AF Rate-based Queuing On an Egress Edge Interface .......  30
  3.7.3 EF Implementation On an Egress Edge Interface .............  30
  3.7.3.1 EF Metering On an Egress Edge Interface .................  30
  3.7.3.2 EF Actions On an Egress Edge Interface ..................  30
  3.7.3.3 EF Priority Queuing On an Egress Edge Interface .........  32
  4 Conventions used in this MIB ..................................  33
  4.1 The use of RowPointer to indicate data path linkage .........  33
  4.2 The use of RowPointer to indicate parameters ................  34
  4.3 Conceptual row creation and deletion ........................  34
  5 Extending this MIB ............................................  35
  6 MIB Definition ................................................  35
  7 Acknowledgments ............................................... 110
  8 Security Considerations ....................................... 110
  9 Intellectual Property Rights .................................. 111
  10 References ................................................... 112
  11 Authors' Addresses ........................................... 115
  12 Full Copyright Statement ..................................... 116







Baker, et. al.              Standards Track                     [Page 2]

RFC 3289              Differentiated Services MIB               May 2002


1.  The SNMP Management Framework

  The SNMP Management Framework presently consists of five major
  components:

     o  An overall architecture, described in [RFC 2571].

     o  Mechanisms for describing and naming objects and events for the
        purpose of management.  The first version of this Structure of
        Management Information (SMI) is called SMIv1 and is described
        in [RFC 1155], [RFC 1212] and [RFC 1215].  The second version,
        called SMIv2, is described in [RFC 2578], RFC 2579 [RFC 2579]
        and [RFC 2580].

     o  Message protocols for transferring management information.  The
        first version of the SNMP message protocol is called SNMPv1 and
        is described in [RFC 1157].  A second version of the SNMP
        message protocol, which is not an Internet standards track
        protocol, is called SNMPv2c and is described in [RFC 1901] and
        [RFC 1906].  The third version of the message protocol is
        called SNMPv3 and is described in [RFC 1906], [RFC 2572] and
        [RFC 2574].

     o  Protocol operations for accessing management information.  The
        first set of protocol operations and associated PDU formats is
        described in [RFC 1157].  A second set of protocol operations
        and associated PDU formats is described in [RFC 1905].

     o  A set of fundamental applications described in [RFC 2573] and
        the view-based access control mechanism described in [RFC
        2575].

  A more detailed introduction to the current SNMP Management Framework
  can be found in [RFC 2570].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  Objects in the MIB are
  defined using the mechanisms defined in the SMI.

  This memo specifies a MIB module that is compliant to the SMIv2.  A
  MIB conforming to the SMIv1 can be produced through the appropriate
  translations.  The resulting translated MIB must be semantically
  equivalent, except where objects or events are omitted because there
  is no translation is possible (use of Counter64).  Some machine-
  readable information in SMIv2 will be converted into textual
  descriptions in SMIv1 during the translation process.  However, this
  loss of machine readable information is not considered to change the
  semantics of the MIB.



Baker, et. al.              Standards Track                     [Page 3]

RFC 3289              Differentiated Services MIB               May 2002


  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC 2119].

2.  Relationship to other working group documents

  The Differentiated Services Working Group and related working groups
  developed other documents, notably the Informal Management Model and
  the policy configuration paradigm of SNMPCONF.  The relationship
  between the MIB and those documents is clarified here.

2.1.  Relationship to the Informal Management Model for Differentiated
     Services Router

  This MIB is similar in design to [MODEL], although it can be used to
  build functional data paths that the model would not well describe.
  The model conceptually describes ingress and egress interfaces of an
  n-port router, which may find some interfaces at a network edge and
  others facing into the network core.  It describes the configuration
  and management of a Differentiated Services interface in terms of one
  or more Traffic Conditioning Blocks (TCB), each containing, arranged
  in the specified order, by definition, zero or more classifiers,
  meters, actions, algorithmic droppers, queues and schedulers.
  Traffic may be classified, and classified traffic may be metered.
  Each stream of traffic identified by a combination of classifiers and
  meters may have some set of actions performed on it; it may have
  dropping algorithms applied and it may ultimately be stored into a
  queue before being scheduled out to its next destination, either onto
  a link or to another TCB.  At times, the treatment for a given packet
  must have any of those elements repeated.  [MODEL] models this by
  cascading multiple TCBs, while this MIB describes the policy by
  directly linking the functional data path elements.

  The MIB represents this cascade by following the "Next" attributes of
  the various elements.  They indicate what the next step in
  Differentiated Services processing will be, whether it be a
  classifier, meter, action, algorithmic dropper, queue, scheduler or a
  decision to now forward a packet.

  The higher level concept of a TCB is not required in the
  parameterization or in the linking together of the individual
  elements, hence it is not used in the MIB itself and is only
  mentioned in the text for relating the MIB with the [MODEL].  Rather,
  the MIB models the individual elements that make up the TCBs.

  This MIB uses the notion of a Data Path to indicate the
  Differentiated Services processing a packet may experience.  The Data
  Path a packet will initially follow is an attribute of the interface



Baker, et. al.              Standards Track                     [Page 4]

RFC 3289              Differentiated Services MIB               May 2002


  in question.  The Data Path Table provides a starting point for each
  direction (ingress or egress) on each interface.  A Data Path Table
  Entry indicates the first of possible multiple elements that will
  apply Differentiated Services treatment to the packet.

2.2.  Relationship to other MIBs and Policy Management

  This MIB provides for direct reporting and manipulation of detailed
  functional elements.  These elements consist of a structural element
  and one or more parameter-bearing elements.  While this can be
  cumbersome, it allows the reuse of parameters.  For example, a
  service provider may offer three varieties of contracts, and
  configure three parameter elements.  Each such data path on the
  system may then refer to these sets of parameters.  The
  diffServDataPathTable couples each direction on each interface with
  the specified data path linkage.  The concept of "interface" is as
  defined by InterfaceIndex/ifIndex of the IETF Interfaces MIB [IF-
  MIB].

  Other MIBs and data structure definitions for policy management
  mechanisms, other than SNMP/SMIv2 are likely to exist in the future
  for the purpose of abstracting the model in other ways.  An example
  is the Differentiated Services Policy Information Base, [DSPIB].

  In particular, abstractions in the direction of less detailed
  definitions of Differentiated Services functionality are likely e.g.
  some form of "Per-Hop Behavior"-based definition involving a template
  of detailed object values which is applied to specific instances of
  objects in this MIB semi-automatically.

  Another possible direction of abstraction is one using a concept of
  "roles" (often, but not always, applied to interfaces).  In this
  case, it may be possible to re-use the object definitions in this
  MIB, especially the parameterization tables.  The Data Path table
  will help in the reuse of the data path linkage tables by having the
  interface specific information centralized, allowing easier
  mechanical replacement of ifIndex by some sort of "roleIndex".  This
  work is ongoing.

  The reuse of parameter blocks on a variety of functional data paths
  is intended to simplify network management.  In many cases, one could
  also re-use the structural elements as well; this has the unfortunate
  side-effect of re-using the counters, so that monitoring information
  is lost.  For this reason, the re-use of structural elements is not
  generally recommended.






Baker, et. al.              Standards Track                     [Page 5]

RFC 3289              Differentiated Services MIB               May 2002


3.  MIB Overview

  The Differentiated Services Architecture does not specify how an
  implementation should be assembled.  The [MODEL] describes a general
  approach to implementation design, or to user interface design.  Its
  components could, however, be assembled in a different way.  For
  example, traffic conforming to a meter might be run through a second
  meter, or reclassified.

  This MIB models the same functional data path elements, allowing the
  network manager to assemble them in any fashion that meets the
  relevant policy.  These data path elements include Classifiers,
  Meters, Actions of various sorts, Queues, and Schedulers.

  In many of these tables, a distinction is drawn between the structure
  of the policy (do this, then do that) and the parameters applied to
  specific policy elements.  This is to facilitate configuration, if
  the MIB is used for that.  The concept is that a set of parameters,
  such as the values that describe a specific token bucket, might be
  configured once and applied to many interfaces.

  The RowPointer Textual Convention is therefore used in two ways in
  this MIB.  It is defined for the purpose of connecting an object to
  an entry dynamically; the RowPointer object identifies the first
  object in the target Entry, and in so doing points to the entire
  entry.  In this MIB, it is used as a connector between successive
  functional data path elements, and as the link between the policy
  structure and the parameters that are used.  When used as a
  connector, it says what happens "next"; what happens to classified
  traffic, to traffic conforming or not conforming to a meter, and so
  on.  When used to indicate the parameters applied in a policy, it
  says "specifically" what is meant; the structure points to the
  parameters of its policy.

  The use of RowPointers as connectors allows for the simple extension
  of the MIB.  The RowPointers, whether "next" or "specific", may point
  to Entries defined in other MIB modules.  For example, the only type
  of meter defined in this MIB is a token bucket meter; if another type
  of meter is required, another MIB could be defined describing that
  type of meter, and diffServMeterSpecific could point to it.
  Similarly, if a new action is required, the "next" pointer of the
  previous functional datapath element could point to an Entry defined
  in another MIB, public or proprietary.








Baker, et. al.              Standards Track                     [Page 6]

RFC 3289              Differentiated Services MIB               May 2002


3.1.  Processing Path

  An interface has an ingress and an egress direction, and will
  generally have a different policy in each direction.  As traffic
  enters an edge interface, it may be classified, metered, counted, and
  marked.  Traffic leaving the same interface might be remarked
  according to the contract with the next network, queued to manage the
  bandwidth, and so on.  As [MODEL] points out, the functional datapath
  elements used on ingress and egress are of the same type, but may be
  structured in very different ways to implement the relevant policies.

3.1.1.  diffServDataPathTable - The Data Path Table

  Therefore, when traffic arrives at an ingress or egress interface,
  the first step in applying the policy is determining what policy
  applies.  This MIB does that by providing a table of pointers to the
  first functional data path element, indexed by interface and
  direction on that interface.  The content of the
  diffServDataPathEntry is a single RowPointer, which points to that
  functional data path element.

  When diffServDataPathStart in a direction on an interface is
  undefined or is set to zeroDotZero, the implication is that there is
  no specific policy to apply.

3.2.  Classifier

  Classifiers are used to differentiate among types of traffic.  In the
  Differentiated Services architecture, one usually discusses a
  behavior aggregate identified by the application of one or more
  Differentiated Services Code Points (DSCPs).  However, especially at
  network edges (which include hosts and first hop routers serving
  hosts), traffic may arrive unmarked or the marks may not be trusted.
  In these cases, one applies a Multi-Field Classifier, which may
  select an aggregate as coarse as "all traffic", as fine as a specific
  microflow identified by IP Addresses, IP Protocol, and TCP or UDP
  ports, or variety of slices in between.

  Classifiers can be simple or complex.  In a core interface, one would
  expect to find simple behavior aggregate classification to be used.
  However, in an edge interface, one might first ask what application
  is being used, meter the arriving traffic, and then apply various
  policies to the non-conforming traffic depending on the Autonomous
  System number advertising the destination address.  To accomplish
  such a thing, traffic must be classified, metered, and then
  reclassified.  To this end, the MIB defines separate classifiers,
  which may be applied at any point in processing, and may have
  different content as needed.



Baker, et. al.              Standards Track                     [Page 7]

RFC 3289              Differentiated Services MIB               May 2002


  The MIB also allows for ambiguous classification in a structured
  fashion.  In the end, traffic classification must be unambiguous; one
  must know for certain what policy to apply to any given packet.
  However, writing an unambiguous specification is often tedious, while
  writing a specification in steps that permits and excludes various
  kinds of traffic may be simpler and more intuitive.  In such a case,
  the classification "steps" are enumerated; all classification
  elements of one precedence are applied as if in parallel, and then
  all classification elements of the next precedence.

  This MIB defines a single classifier parameter entry, the Multi-field
  Classifier.  A degenerate case of this multi-field classifier is a
  Behavior Aggregate classifier.  Other classifiers may be defined in
  other MIB modules, to select traffic from a given layer two neighbor
  or a given interface, traffic whose addresses belong to a given BGP
  Community or Autonomous System, and so on.

3.2.1.  diffServClfrElementTable - The Classifier Element Table

  A classifier consists of classifier elements.  A classifier element
  identifies a specific set of traffic that forms part of a behavior
  aggregate; other classifier elements within the same classifier may
  identify other traffic that also falls into the behavior aggregate.
  For example, in identifying AF traffic for the aggregate AF1, one
  might implement separate classifier elements for AF11, AF12, and AF13
  within the same classifier and pointing to the same subsequent meter.

  Generally, one would expect the Data Path Entry to point to a
  classifier (which is to say, a set of one or more classifier
  elements), although it may point to something else when appropriate.
  Reclassification in a functional data path is achieved by pointing to
  another Classifier Entry when appropriate.

  A classifier element is a structural element, indexed by classifier
  ID and element ID.  It has a precedence value, allowing for
  structured ambiguity as described above, a "specific" pointer that
  identifies what rule is to be applied, and a "next" pointer directing
  traffic matching the classifier to the next functional data path
  element.  If the "next" pointer is zeroDotZero, the indication is
  that there is no further differentiated services processing for this
  behavior aggregate.  However, if the "specific" pointer is
  zeroDotZero, the device is misconfigured.  In such a case, the
  classifier element should be operationally treated as if it were not
  present.

  When the MIB is used for configuration, diffServClfrNextFree and
  diffServClfrElementNextFree always contain legal values for
  diffServClfrId and diffServClfrElementId that are not currently used



Baker, et. al.              Standards Track                     [Page 8]

RFC 3289              Differentiated Services MIB               May 2002


  in the system's configuration.  The values are validated when
  creating diffServClfrId and diffServClfrElementId, and in the event
  of a failure (which would happen if two managers simultaneously
  attempted to create an entry) must be re-read.

3.2.2.  diffServMultiFieldClfrTable - The Multi-field Classifier Table

  This MIB defines a single parameter type for classification, the
  Multi-field Classifier.  As a parameter, a filter may be specified
  once and applied to many interfaces, using
  diffServClfrElementSpecific.  This filter matches:

     o  IP source address prefix, including host, CIDR Prefix, and "any
        source address"

     o  IP destination address prefix, including host, CIDR Prefix, and
        "any destination address"

     o  IPv6 Flow ID

     o  IP protocol or "any"

     o  TCP/UDP/SCTP source port range, including "any"

     o  TCP/UDP/SCTP destination port range, including "any"

     o  Differentiated Services Code Point

  Since port ranges, IP prefixes, or "any" are defined in each case, it
  is clear that a wide variety of filters can be constructed.  The
  Differentiated Services Behavior Aggregate filter is a special case
  of this filter, in which only the DSCP is specified.

  Other MIB modules may define similar filters in the same way.  For
  example, a filter for Ethernet information might define source and
  destination MAC addresses of "any", Ethernet Packet Type, IEEE 802.2
  SAPs, and IEEE 802.1 priorities.  A filter related to policy routing
  might be structured like the diffServMultiFieldClfrTable, but contain
  the BGP Communities of the source and destination prefix rather than
  the prefix itself, meaning "any prefix in this community".  For such
  a filter, a table similar to diffServMultiFieldClfrTable is
  constructed, and diffServClfrElementSpecific is configured to point
  to it.








Baker, et. al.              Standards Track                     [Page 9]

RFC 3289              Differentiated Services MIB               May 2002


  When the MIB is used for configuration,
  diffServMultiFieldClfrNextFree always contains a legal value for
  diffServMultiFieldClfrId that is not currently used in the system's
  configuration.

3.3.  Metering Traffic

  As discussed in [MODEL], a meter and a shaper are functions that
  operate on opposing ends of a link.  A shaper schedules traffic for
  transmission at specific times in order to approximate a particular
  line speed or combination of line speeds.  In its simplest form, if
  the traffic stream contains constant sized packets, it might transmit
  one packet per unit time to build the equivalent of a CBR circuit.
  However, various factors intervene to make the approximation inexact;
  multiple classes of traffic may occasionally schedule their traffic
  at the same time, the variable length nature of IP traffic may
  introduce variation, and factors in the link or physical layer may
  change traffic timing.  A meter integrates the arrival rate of
  traffic and determines whether the shaper at the far end was
  correctly applied, or whether the behavior of the application in
  question is naturally close enough to such behavior to be acceptable
  under a given policy.

  A common type of meter is a Token Bucket meter, such as [srTCM] or
  [trTCM].  This type of meter assumes the use of a shaper at a
  previous node; applications which send at a constant rate when
  sending may conform if the token bucket is properly specified.  It
  specifies the acceptable arrival rate and quantifies the acceptable
  variability, often by specifying a burst size or an interval; since
  rate = quantity/time, specifying any two of those parameters implies
  the third, and a large interval provides for a forgiving system.
  Multiple rates may be specified, as in AF, such that a subset of the
  traffic (up to one rate) is accepted with one set of guarantees, and
  traffic in excess of that but below another rate has a different set
  of guarantees.  Other types of meters exist as well.

  One use of a meter is when a service provider sells at most, a
  certain bit rate to one of its customers, and wants to drop the
  excess.  In such a case, the fractal nature of normal Internet
  traffic must be reflected in large burst intervals, as TCP frequently
  sends packet pairs or larger bursts, and responds poorly when more
  than one packet in a round trip interval is dropped.  Applications
  like FTP contain the effect by simply staying below the target bit
  rate; this type of configuration very adversely affects transaction
  applications like HTTP, however.  Another use of a meter is in the AF
  specification, in which excess traffic is marked with a related DSCP
  and subjected to slightly more active queue depth management.  The




Baker, et. al.              Standards Track                    [Page 10]

RFC 3289              Differentiated Services MIB               May 2002


  application is not sharply limited to a contracted rate in such a
  case, but can be readily contained should its traffic create a
  burden.

3.3.1.  diffServMeterTable - The Meter Table

  The Meter Table is a structural table, specifying a specific
  functional data path element.  Its entry consists essentially of
  three RowPointers - a "succeed" pointer, for traffic conforming to
  the meter, a "fail" pointer, for traffic not conforming to the meter,
  and a "specific" pointer, to identify the parameters in question.
  This structure is a bow to SNMP's limitations; it would be better to
  have a structure with N rates and N+1 "next" pointers, with a single
  algorithm specified.  In this case, multiple meter entries connected
  by the "fail" link are understood to contain the parameters for a
  specified algorithm, and traffic conforming to a given rate follows
  their "succeed" paths.  Within this MIB, only Token Bucket parameters
  are specified; other varieties of meters may be designed in other MIB
  modules.

  When the MIB is used for configuration, diffServMeterNextFree always
  contains a legal value for diffServMeterId that is not currently used
  in the system's configuration.

3.3.2.  diffServTBParamTable - The Token Bucket Parameters Table

  The Token Bucket Parameters Table is a set of parameters that define
  a Token Bucket Meter.  As a parameter, a token bucket may be
  specified once and applied to many interfaces, using
  diffServMeterSpecific.  Specifically, several modes of [srTCM] and
  [trTCM] are addressed.  Other varieties of meters may be specified in
  other MIB modules.

  In general, if a Token Bucket has N rates, it has N+1 potential
  outcomes - the traffic stream is slower than and therefore conforms
  to all of the rates, it fails the first few but is slower than and
  therefore conforms to the higher rates, or it fails all of them.  As
  such, multi-rate meters should specify those rates in monotonically
  increasing order, passing through the diffServMeterFailNext from more
  committed to more excess rates, and finally falling through
  diffServMeterFailNext to the set of actions that apply to traffic
  which conforms to none of the specified rates.  diffServTBParamType
  in the first entry indicates the algorithm being used.  At each rate,
  diffServTBParamRate is derivable from diffServTBParamBurstSize and
  diffServTBParamInterval; a superior implementation will allow the






Baker, et. al.              Standards Track                    [Page 11]

RFC 3289              Differentiated Services MIB               May 2002


  configuration of any two of diffServTBParamRate,
  diffServTBParamBurstSize, and diffServTBParamInterval, and respond
  with the appropriate error code if all three are specified but are
  not mathematically related.

  When the MIB is used for configuration, diffServTBParamNextFree
  always contains a legal value for diffServTBParamId that is not
  currently used in the system's configuration.

3.4.  Actions applied to packets

  "Actions" are the things a differentiated services interface PHB may
  do to a packet in transit.  At a minimum, such a policy might
  calculate statistics on traffic in various configured classes, mark
  it with a DSCP, drop it, or enqueue it before passing it on for other
  processing.

  Actions are composed of a structural element, the
  diffServActionTable, and various component action entries that may be
  applied.  In the case of the Algorithmic Dropper, an additional
  parameter table may be specified to control Active Queue Management,
  as defined in [RED93] and other AQM specifications.

3.4.1.  diffServActionTable - The Action Table

  The action table identifies sequences of actions to be applied to a
  packet.  Successive actions are chained through diffServActionNext,
  ultimately resulting in zeroDotZero (indicating that the policy is
  complete), a pointer to a queue, or a pointer to some other
  functional data path element.

  When the MIB is used for configuration, diffServActionNextFree always
  contains a legal value for diffServActionId that is not currently
  used in the system's configuration.

3.4.2.  diffServCountActTable - The Count Action Table

  The count action accumulates statistics pertaining to traffic passing
  through a given path through the policy.  It is intended to be useful
  for usage-based billing, for statistical studies, or for analysis of
  the behavior of a policy in a given network.  The objects in the
  Count Action are various counters and a discontinuity time.  The
  counters display the number of packets and bytes encountered on the
  path since the discontinuity time.  They share the same discontinuity
  time, which is the discontinuity time of the interface or agent.






Baker, et. al.              Standards Track                    [Page 12]

RFC 3289              Differentiated Services MIB               May 2002


  The designers of this MIB expect that every path through a policy
  should have a corresponding counter.  In early versions, it was
  impossible to configure an action without implementing a counter,
  although the current design makes them in effect the network
  manager's option, as a result of making actions consistent in
  structure and extensibility.  The assurance of proper debugging and
  accounting is therefore left with the policy designer.

  When the MIB is used for configuration, diffServCountActNextFree
  always contains a legal value for diffServCountActId that is not
  currently used in the system's configuration.

3.4.3.  diffServDscpMarkActTable - The Mark Action Table

  The Mark Action table is an unusual table, both in SNMP and in this
  MIB.  It might be viewed not so much as an array of single-object
  entries as an array of OBJECT-IDENTIFIER conventions, as the OID for
  a diffServDscpMarkActDscp instance conveys all of the necessary
  information: packets are to be marked with the requisite DSCP.

  As such, contrary to common practice, the index for the table is
  read- only, and is both the Entry's index and its only value.

3.4.4.  diffServAlgDropTable - The Algorithmic Drop Table

  The Algorithmic Drop Table identifies a dropping algorithm, drops
  packets, and counts the drops.  Classified as an action, it is in
  effect a method which applies a packet to a queue, and may modify
  either.  When the algorithm is "always drop", this is simple; when
  the algorithm calls for head-drop, tail-drop, or a variety of Active
  Queue Management, the queue is inspected, and in the case of Active
  Queue Management, additional parameters are REQUIRED.

  What may not be clear from the name is that an Algorithmic Drop
  action often does not drop traffic.  Algorithms other than "always
  drop" normally drop a few percent of packets at most.  The action
  inspects the diffServQEntry that diffServAlgDropQMeasure points to in
  order to determine whether the packet should be dropped.

  When the MIB is used for configuration, diffServAlgDropNextFree
  always contains a legal value for diffServAlgDropId that is not
  currently used in the system's configuration.









Baker, et. al.              Standards Track                    [Page 13]

RFC 3289              Differentiated Services MIB               May 2002


3.4.5.  diffServRandomDropTable - The Random Drop Parameters Table

  The Random Drop Table is an extension of the Algorithmic Drop Table
  intended for use on queues whose depth is actively managed.  Active
  Queue Management algorithms are typified by [RED93], but the
  parameters they use vary.  It was deemed for the purposes of this MIB
  that the proper values to represent include:

     o  Target case mean queue depth, expressed in bytes or packets

     o  Worst case mean queue depth, expressed in bytes or packets

     o  Maximum drop rate expressed as drops per thousand

     o  Coefficient of an exponentially weighted moving average,
        expressed as the numerator of a fraction whose denominator is
        65536.

     o  Sampling rate

  An example of the representation chosen in this MIB for this element
  is shown in Figure 1.

  Random droppers often have their drop probability function described
  as a plot of drop probability (P) against averaged queue length (Q).
  (Qmin,Pmin) then defines the start of the characteristic plot.
  Normally Pmin=0, meaning with average queue length below Qmin, there
  will be no drops.  (Qmax,Pmax) defines a "knee" on the plot, after
  which point the drop probability becomes more progressive (greater
  slope).  (Qclip,1) defines the queue length at which all packets will
  be dropped.  Notice this is different from Tail Drop because this
  uses an averaged queue length, although it is possible for Qclip to
  equal Qmax.

  In the MIB module, diffServRandomDropMinThreshBytes and
  diffServRandomDropMinThreshPkts represent Qmin.
  diffServRandomDropMaxThreshBytes and diffServRandomDropMaxThreshPkts
  represent Qmax.  diffServAlgDropQThreshold represents Qclip.
  diffServRandomDropInvProbMax represents Pmax (inverse).  This MIB
  does not represent Pmin (assumed to be zero unless otherwise
  represented).  In addition, since message memory is finite, queues
  generally have some upper bound above which they are incapable of
  storing additional traffic.  Normally this number is equal to Qclip,
  specified by diffServAlgDropQThreshold.







Baker, et. al.              Standards Track                    [Page 14]

RFC 3289              Differentiated Services MIB               May 2002


         AlgDrop                                   Queue
         +-----------------+                       +-------+
     --->| Next   ---------+--+------------------->| Next -+--> ...
         | QMeasure -------+--+                    | ...   |
         | QThreshold      |     RandomDrop        +-------+
         | Type=randomDrop |     +----------------+
         | Specific -------+---->| MinThreshBytes |
         +-----------------+     | MaxThreshBytes |
                                 | ProbMax        |
                                 | Weight         |
                                 | SamplingRate   |
                                 +----------------+

   Figure 1: Example Use of the RandomDropTable for Random Droppers

  Each random dropper specification is associated with a queue.  This
  allows multiple drop processes (of same or different types) to be
  associated with the same queue, as different PHB implementations may
  require.  This also allows for sequences of multiple droppers if
  necessary.

  The calculation of a smoothed queue length may also have an important
  bearing on the behavior of the dropper: parameters may include the
  sampling interval or rate, and the weight of each sample.  The
  performance may be very sensitive to the values of these parameters
  and a wide range of possible values may be required due to a wide
  range of link speeds.  Most algorithms include a sample weight,
  represented here by diffServRandomDropWeight.  The availability of
  diffServRandomDropSamplingRate as readable is important, the
  information provided by Sampling Rate is essential to the
  configuration of diffServRandomDropWeight.  Having Sampling Rate be
  configurable is also helpful, as line speed increases, the ability to
  have queue sampling be less frequent than packet arrival is needed.
  Note, however, that there is ongoing research on this topic, see e.g.
  [ACTQMGMT] and [AQMROUTER].

  Additional parameters may be added in an enterprise MIB module, e.g.
  by using AUGMENTS on this table, to handle aspects of random drop
  algorithms that are not standardized here.

  When the MIB is used for configuration, diffServRandomDropNextFree
  always contains a legal value for diffServRandomDropId that is not
  currently used in the system's configuration.








Baker, et. al.              Standards Track                    [Page 15]

RFC 3289              Differentiated Services MIB               May 2002


3.5.  Queuing and Scheduling of Packets

  These include Queues and Schedulers, which are inter-related in their
  use of queuing techniques.  By doing so, it is possible to build
  multi-level schedulers, such as those which treat a set of queues as
  having priority among them, and at a specific priority find a
  secondary WFQ scheduler with some number of queues.

3.5.1.  diffServQTable - The Class or Queue Table

  The Queue Table models simple FIFO queues.  The Scheduler Table
  allows flexibility in constructing both simple and somewhat more
  complex queuing hierarchies from those queues.

  Queue Table entries are pointed at by the "next" attributes of the
  upstream elements, such as diffServMeterSucceedNext or
  diffServActionNext.  Note that multiple upstream elements may direct
  their traffic to the same Queue Table entry.  For example, the
  Assured Forwarding PHB suggests that all traffic marked AF11, AF12 or
  AF13 be placed in the same queue, after metering, without reordering.
  To accomplish that, the upstream diffServAlgDropNext pointers each
  point to the same diffServQEntry.

  A common requirement of a queue is that its traffic enjoy a certain
  minimum or maximum rate, or that it be given a certain priority.
  Functionally, the selection of such is a function of a scheduler.
  The parameter is associated with the queue, however, using the
  Minimum or Maximum Rate Parameters Table.

  When the MIB is used for configuration, diffServQNextFree always
  contains a legal value for diffServQId that is not currently used in
  the system's configuration.

3.5.2.  diffServSchedulerTable - The Scheduler Table

  The scheduler, and therefore the Scheduler Table, accepts inputs from
  either queues or a preceding scheduler.  The Scheduler Table allows
  flexibility in constructing both simple and somewhat more complex
  queuing hierarchies from those queues.

  When the MIB is used for configuration, diffServSchedulerNextFree
  always contains a legal value for diffServSchedulerId that is not
  currently used in the system's configuration.

3.5.3.  diffServMinRateTable - The Minimum Rate Table

  When the output rate of a queue or scheduler must be given a minimum
  rate or a priority, this is done using the diffServMinRateTable.



Baker, et. al.              Standards Track                    [Page 16]

RFC 3289              Differentiated Services MIB               May 2002


  Rates may be expressed as absolute rates, or as a fraction of
  ifSpeed, and imply the use of a rate-based scheduler such as WFQ or
  WRR.  The use of a priority implies the use of a Priority Scheduler.
  Only one of the Absolute or Relative rates needs to be set; the other
  takes the relevant value as a result.  Excess capacity is distributed
  proportionally among the inputs to a scheduler using the assured
  rate.  More complex functionality may be described by augmenting this
  MIB.

  When a priority scheduler is used, its effect is to give the queue
  the entire capacity of the subject interface less the capacity used
  by higher priorities, if there is traffic present to use it.  This is
  true regardless of the rate specifications applied to that queue or
  other queues on the interface.  Policing excess traffic will mitigate
  this behavior.

  When the MIB is used for configuration, diffServMinRateNextFree
  always contains a legal value for diffServMinRateId that is not
  currently used in the system's configuration.

3.5.4.  diffServMaxRateTable - The Maximum Rate Table

  When the output rate of a queue or scheduler must be limited to at
  most a specified maximum rate, this is done using the
  diffServMaxRateTable.  Rates may be expressed as absolute rates, or
  as a fraction of ifSpeed.  Only one of the Absolute or Relative rate
  needs to be set; the other takes the relevant value as a result.

  The definition of a multirate shaper requires multiple
  diffServMaxRateEntries.  In this case, an algorithm such as [SHAPER]
  is used.  In that algorithm, more than one rate is specified, and at
  any given time traffic is shaped to the lowest specified rate which
  exceeds the arrival rate of traffic.

  When the MIB is used for configuration, diffServMaxRateNextFree
  always contains a legal value for diffServMaxRateId that is not
  currently used in the system's configuration.

3.5.5.  Using queues and schedulers together

  For representing a Strict Priority scheduler, each scheduler input is
  assigned a priority with respect to all the other inputs feeding the
  same scheduler, with default values for the other parameters.
  Higher-priority traffic that is not being delayed for shaping will be
  serviced before a lower-priority input.  An example is found in
  Figure 2.





Baker, et. al.              Standards Track                    [Page 17]

RFC 3289              Differentiated Services MIB               May 2002


  For weighted scheduling methods, such as WFQ or WRR, the "weight" of
  a given scheduler input is represented with a Minimum Service Rate
  leaky-bucket profile which provides a guaranteed minimum bandwidth to
  that input, if required.  This is represented by a rate
  diffServMinRateAbsolute; the classical weight is the ratio between
  that rate and the interface speed, or perhaps the ratio between that
  rate and the sum of the configured rates for classes.  The rate may
  be represented by a relative value, as a fraction of the interface's
  current line rate, diffServMinRateRelative, to assist in cases where
  line rates are variable or where a higher-level policy might be
  expressed in terms of fractions of network resources.  The two rate
  parameters are inter-related and changes in one may be reflected in
  the other.  An example is found in figure 3.

                                 +-----+
           +-------+             | P S |
           | Queue +------------>+ r c |
           +-------+-+--------+  | i h |
                     |Priority|  | o e |
                     +--------+  | r d +----------->
           +-------+             | i u |
           | Queue +------------>+ t l |
           +-------+-+--------+  | y e |
                     |Priority|  |   r |
                     +--------+  +-----+

           Figure 2: Priority Scheduler with two queues

  For weighted scheduling methods, one can say loosely, that WRR
  focuses on meeting bandwidth sharing, without concern for relative
  delay amongst the queues; where WFQ controls both queue the service
  order and the amount of traffic serviced, providing bandwidth sharing
  and relative delay ordering amongst the queues.

  A queue or scheduled set of queues (which is an input to a scheduler)
  may also be capable of acting as a non-work-conserving [MODEL]
  traffic shaper: this is done by defining a Maximum Service Rate
  leaky-bucket profile in order to limit the scheduler bandwidth
  available to that input.  This is represented by a rate, in
  diffServMaxRateAbsolute; the classical weight is the ratio between
  that rate and the interface speed, or perhaps the ratio between that
  rate and the sum of the configured rates for classes.  The rate may
  be represented by a relative value, as a fraction of the interface's
  current line rate, diffServMaxRateRelative.  This MIB presumes that
  shaping is something a scheduler does to its inputs, which it models
  as a queue with a maximum rate or a scheduler whose output has a
  maximum rate.




Baker, et. al.              Standards Track                    [Page 18]

RFC 3289              Differentiated Services MIB               May 2002


                                 +-----+
           +-------+             | W S |
           | Queue +------------>+ R c |
           +-------+-+--------+  | R h |
                     |  Rate  |  |   e |
                     +--------+  | o d +----------->
           +-------+             | r u |
           | Queue +------------>+   l |
           +-------+-+--------+  | W e |
                     |  Rate  |  | F r |
                     +--------+  | Q   |
                                 +-----+

           Figure 3: WRR or WFQ rate-based scheduler with two inputs

  The same may be done on a queue, if a given class is to be shaped to
  a maximum rate without shaping other classes, as in Figure 5.

  Other types of priority and weighted scheduling methods can be
  defined using existing parameters in diffServMinRateEntry.  NOTE:
  diffServSchedulerMethod uses OBJECT IDENTIFIER syntax, with the
  different types of scheduling methods defined as OBJECT-IDENTITY.

                                 +---+
           +-------+             | S |
           | Queue +------------>+ c |
           +-------+-+--------+  | h |
                     |        |  | e +----------->
                     +--------+  | d +-+-------+
                                 | u | |Shaping|
           +-------+             | l | | Rate  |
           | Queue +------------>+ e | +-------+
           +-------+-+--------+  | r |
                     |        |  +---+
                     +--------+

           Figure 4: Shaping scheduled traffic to a known rate














Baker, et. al.              Standards Track                    [Page 19]

RFC 3289              Differentiated Services MIB               May 2002


                                 +---+
           +-------+             | S |
           | Queue +------------>+ c |
           +-------+-+--------+  | h |
                     |Min Rate|  | e +----------->
                     +--------+  | d |
                                 | u |
           +-------+             | l |
           | Queue +------------>+ e |
           +-------+-+--------+  | r |
                     |Min Rate|  |   |
                     +--------+  |   |
                     |Max Rate|  |   |
                     +--------+  +---+

           Figure 5: Shaping one input to a work-conserving scheduler

  Future scheduling methods may be defined in other MIBs.  This
  requires an OBJECT-IDENTITY definition, a description of how the
  existing objects are reused, if they are, and any new objects they
  require.

  To implement an EF and two AF classes, one must use a combination of
  priority and WRR/WFQ scheduling.  This requires us to cascade two
  schedulers.  If one were to additionally shape the output of the
  system to a rate lower than the interface rate, one must place an
  upper bound rate on the output of the priority scheduler.  See figure
  6.

3.6.  Example configuration for AF and EF

  For the sake of argument, let us build an example with one EF class
  and four AF classes using the constructs in this MIB.

3.6.1.  AF and EF Ingress Interface Configuration

  The ingress edge interface identifies traffic into classes, meters
  it, and ensures that any excess is appropriately dealt with according
  to the PHB.  For AF, this means marking excess; for EF, it means
  dropping excess or shaping it to a maximum rate.











Baker, et. al.              Standards Track                    [Page 20]

RFC 3289              Differentiated Services MIB               May 2002


                                                 +-----+
     +-------+                                   | P S |
     | Queue +---------------------------------->+ r c |
     +-------+----------------------+--------+   | i h |
                                    |Priority|   | o e +----------->
                                    +--------+   | r d +-+-------+
                           +------+              | i u | |Shaping|
     +-------+             | W S  +------------->+ t l | | Rate  |
     | Queue +------------>+ R c  +-+--------+   | y e | +-------+
     +-------+-+--------+  | R h  | |Priority|   |   r |
               |Min Rate|  |   e  | +--------+   +-----+
               +--------+  | o d  |
     +-------+             | r u  |
     | Queue +------------>+   l  |
     +-------+-+--------+  | W e  |
               |Min Rate|  | F r  |
               +--------+  | Q    |
                           +------+

     Figure 6: Combined EF and AF services using cascaded schedulers.

       +-----------------------+
       | diffServDataPathStart |
       +-----------+-----------+
                   |
        +----------+
        |
     +--+--+     +-----+     +-----+     +-----+     +-----+
     | AF1 +-----+ AF2 +-----+ AF3 +-----+ AF4 +-----+ EF  |
     +--+--+     +--+--+     +--+--+     +--+--+     +--+--+
        |           |           |           |           |
     +--+--+     +--+--+     +--+--+     +--+--+     +--+--+
     |trTCM|     |trTCM|     |trTCM|     |trTCM|     |srTCM|
     |Meter|     |Meter|     |Meter|     |Meter|     |Meter|
     +-+++-+     +-+++-+     +-+++-+     +-+++-+     +-+-+-+
       |||         |||         |||         |||         | |
     +-+||---+   +-+||---+   +-+||---+   +-+||---+   +-+-|---+
     |+-+|----+  |+-+|----+  |+-+|----+  |+-+|----+  |+--+----+
     ||+-+-----+ ||+-+-----+ ||+-+-----+ ||+-+-----+ ||Actions|
     +||Actions| +||Actions| +||Actions| +||Actions| +|       |
      +|       |  +|       |  +|       |  +|       |  +-+-----+
       +-+-----+   +-+-----+   +-+-----+   +-+-----+    |
       |||         |||         |||         |||          |
       VVV         VVV         VVV         VVV          V

             Accepted traffic is sent to IP forwarding

     Figure 7: combined EF and AF implementation, ingress side



Baker, et. al.              Standards Track                    [Page 21]

RFC 3289              Differentiated Services MIB               May 2002


3.6.1.1.  Classification In The Example

  A packet arriving at an ingress interface picks up its policy from
  the diffServDataPathTable.  This points to a classifier, which will
  select traffic according to some specification for each traffic
  class.

  An example of a classifier for an AFm class would be a set of three
  classifier elements, each pointing to a Multi-field classification
  parameter block identifying one of the AFmn DSCPs.  Alternatively,
  the filters might contain selectors for HTTP traffic or some other
  application.

  An example of a classifier for EF traffic might be a classifier
  element pointing to a filter specifying the EF code point, a
  collection of classifiers with parameter blocks specifying individual
  telephone calls, or a variety of other approaches.

  Typically, of course, a classifier identifies a variety of traffic
  and breaks it up into separate classes.  It might very well contain
  fourteen classifier elements indicating the twelve AFmn DSCP values,
  EF, and "everything else".  These would presumably direct traffic
  down six functional data paths: one for each AF or EF class, and one
  for all other traffic.

3.6.1.2.  AF Implementation On an Ingress Edge Interface

  Each AFm class applies a Two Rate Three Color Meter, dividing traffic
  into three groups.  These groups of traffic conform to both specified
  rates, only the higher one, or none.  The intent, on the ingress
  interface at the edge of the network, is to measure and appropriately
  mark traffic.

3.6.1.2.1.  AF Metering On an Ingress Edge Interface

  Each AFm class applies a Two Rate Three Color Meter, dividing traffic
  into three groups.  If two rates R and S, where R < S, are specified
  and traffic arrives at rate T, traffic comprising up to R bits per
  second is considered to conform to the "confirmed" rate, R.  If
  R < T, traffic comprising up to S-R bits per second is considered to
  conform to the "excess" rate, S.  Any further excess is non-
  conformant.

  Two meter entries are used to configure this, one for the conforming
  rate and one for the excess rate.  The rate parameters are stored in
  associated Token Bucket Parameter Entries.  The "FailNext" pointer of
  the lower rate Meter Entry points to the other Meter Entry; both
  "SucceedNext" pointers and the "FailNext" pointer of the higher Meter



Baker, et. al.              Standards Track                    [Page 22]

RFC 3289              Differentiated Services MIB               May 2002


  Entry point to lists of actions.  In the color-blind mode, all three
  classifier "next" entries point to the lower rate meter entry.  In
  the color-aware mode, the AFm1 classifier points to the lower rate
  entry, the AFm2 classifier points to the higher rate entry (as it is
  only compared against that rate), and the AFm3 classifier points
  directly to the actions taken when both rates fail.

3.6.1.2.2.  AF Actions On an Ingress Edge Interface

  For network planning and perhaps for billing purposes, arriving
  traffic is normally counted.  Therefore, a "count" action, consisting
  of an action table entry pointing to a count table entry, is
  configured.

  Also, traffic is marked with the appropriate DSCP.  The first R bits
  per second are marked AFm1, the next S-R bits per second are marked
  AFm2, and the rest is marked AFm3.  It may be that traffic is
  arriving marked with the same DSCP, but in general, the additional
  complexity of deciding that it is being remarked to the same value is
  not useful.  Therefore, a "mark" action, consisting of an action
  table entry pointing to a mark table entry, is configured.

  At this point, the usual case is that traffic is now forwarded in the
  usual manner.  To indicate this, the "SucceedNext" pointer of the
  Mark Action is set to zeroDotZero.

3.6.1.3.  EF Implementation On an Ingress Edge Interface

  The EF class applies a Single Rate Two Color Meter, dividing traffic
  into "conforming" and "excess" groups.  The intent, on the ingress
  interface at the edge of the network, is to measure and appropriately
  mark conforming traffic and drop the excess.

3.6.1.3.1.  EF Metering On an Ingress Edge Interface

  A single rate two color (srTCM) meter requires one token bucket.  It
  is therefore configured using a single meter entry with a
  corresponding Token Bucket Parameter Entry.  Arriving traffic either
  "succeeds" or "fails".

3.6.1.3.2.  EF Actions On an Ingress Edge Interface

  For network planning and perhaps for billing purposes, arriving
  traffic that conforms to the meter is normally counted.  Therefore, a
  "count" action, consisting of an action table entry pointing to a
  count table entry, is configured.





Baker, et. al.              Standards Track                    [Page 23]

RFC 3289              Differentiated Services MIB               May 2002


  Also, traffic is (re)marked with the EF DSCP.  Therefore, a "mark"
  action, consisting of an action table entry pointing to a mark table
  entry, is configured.

  At this point, the successful traffic is now forwarded in the usual
  manner.  To indicate this, the "SucceedNext" pointer of the Mark
  Action is set to zeroDotZero.

  Traffic that exceeded the arrival policy, however, is to be dropped.
  One can use a count action on this traffic if the several counters
  are interesting.  However, since the drop counter in the Algorithmic
  Drop Entry will count packets dropped, this is not clearly necessary.
  An Algorithmic Drop Entry of the type "alwaysDrop" with no successor
  is sufficient.

3.7.  AF and EF Egress Edge Interface Configuration

3.7.1.  Classification On an Egress Edge Interface

  A packet arriving at an egress interface may have been classified on
  an ingress interface, and the egress interface may have access to
  that information.  If it is relevant, there is no reason not to use
  that information.  If it is not available, however, there may be a
  need to (re)classify on the egress interface.  In any event, it picks
  up its "program" from the diffServDataPathTable.  This points to a
  classifier, which will select traffic according to some specification
  for each traffic class.
























Baker, et. al.              Standards Track                    [Page 24]

RFC 3289              Differentiated Services MIB               May 2002


       +-----------------------+
       | diffServDataPathStart |
       +-----------+-----------+
                   |
        +----------+
        |
     +--+--+     +-----+     +-----+     +-----+     +-----+
     | AF1 +-----+ AF2 +-----+ AF3 +-----+ AF4 +-----+ EF  |
     +-+++-+     +-+++-+     +-+++-+     +-+++-+     +-+-+-+
       |||         |||         |||         |||         | |
     +-+++-+     +-+++-+     +-+++-+     +-+++-+     +-+-+-+
     |trTCM|     |trTCM|     |trTCM|     |trTCM|     |srTCM|
     |Meter|     |Meter|     |Meter|     |Meter|     |Meter|
     +-+++-+     +-+++-+     +-+++-+     +-+++-+     +-+-+-+
       |||         |||         |||         |||         | |
     +-+||---+   +-+||---+   +-+||---+   +-+||---+   +-+-|---+
     |+-+|----+  |+-+|----+  |+-+|----+  |+-+|----+  |+--+----+
     ||+-+-----+ ||+-+-----+ ||+-+-----+ ||+-+-----+ ||Actions|
     +||Actions| +||Actions| +||Actions| +||Actions| +|       |
      +|       |  +|       |  +|       |  +|       |  +-+-----+
       +-+-----+   +-+-----+   +-+-----+   +-+-----+    |
       |||         |||         |||         |||          |
     +-+++--+    +-+++--+    +-+++--+    +-+++--+    +--+---+
     | Queue|    | Queue|    | Queue|    | Queue|    | Queue|
     +--+---+    +--+---+    +--+---+    +--+---+    +--+---+
        |           |           |           |           |
     +--+-----------+-----------+-----------+---+       |
     |     WFQ/WRR Scheduler                    |       |
     +--------------------------------------+---+       |
                                            |           |
                                      +-----+-----------+----+
                                      |  Priority Scheduler  |
                                      +----------+-----------+
                                                 |
                                                 V

         Figure 8: combined EF and AF implementation

  An example of a classifier for an AFm class would be a succession of
  three classifier elements, each pointing to a Multi-field
  classification parameter block identifying one of the AFmn DSCPs.
  Alternatively, the filter might contain selectors for HTTP traffic or
  some other application.








Baker, et. al.              Standards Track                    [Page 25]

RFC 3289              Differentiated Services MIB               May 2002


  An example of a classifier for EF traffic might be either a
  classifier element pointing to a Multi-field parameter specifying the
  EF code point, or a collection of classifiers with parameter blocks
  specifying individual telephone calls, or a variety of other
  approaches.

  Each classifier delivers traffic to appropriate functional data path
  elements.

3.7.2.  AF Implementation On an Egress Edge Interface

  Each AFm class applies a Two Rate Three Color Meter, dividing traffic
  into three groups.  These groups of traffic conform to both specified
  rates, only the higher one, or none.  The intent, on the ingress
  interface at the edge of the network, is to measure and appropriately
  mark traffic.

3.7.2.1.  AF Metering On an Egress Edge Interface

  Each AFm class applies a Two Rate Three Color Meter, dividing traffic
  into three groups.  If two rates R and S, where R < S, are specified
  and traffic arrives at rate T, traffic comprising up to R bits per
  second is considered to conform to the "confirmed" rate, R.  If
  R < T, traffic comprising up to S-R bits per second is considered to
  conform to the "excess" rate, S.  Any further excess is non-
  conformant.

  Two meter entries are used to configure this, one for the conforming
  rate and one for the excess rate.  The rate parameters are stored in
  associated Token Bucket Parameter Entries.  The "FailNext" pointer of
  the lower rate Meter Entry points to the other Meter Entry; both
  "SucceedNext" pointers and the "FailNext" pointer of the higher Meter
  Entry point to lists of actions.  In the color-blind mode, all three
  classifier "next" entries point to the lower rate meter entry.  In
  the color-aware mode, the AFm1 classifier points to the lower rate
  entry, the AFm2 classifier points to the higher rate entry (as it is
  only compared against that rate), and the AFm3 classifier points
  directly to the actions taken when both rates fail.













Baker, et. al.              Standards Track                    [Page 26]

RFC 3289              Differentiated Services MIB               May 2002


     +-----------------------------------------------------+
     |                     Classifier                      |
     +--------+--------------------------------------------+
              |Green| Yellow| Red
              |     |       |
           +--+-----+-------+--+ Fail +--------------------+
           |      Meter        +------+      Meter         |
           +--+----------------+      +---+-------+--------+
              | Succeed (Green)           |       |Fail (Red)
              |                 +---------+       |
              |                 | Succeed (Yellow)|
         +----+----+       +----+----+       +----+----+
         |  Count  |       |  Count  |       |  Count  |
         |  Action |       |  Action |       |  Action |
         +----+----+       +----+----+       +----+----+
              |                 |                 |
         +----+----+       +----+----+       +----+----+
         |Mark AFx1|       |Mark AFx2|       |Mark AFx3|
         |  Action |       |  Action |       |  Action |
         +----+----+       +----+----+       +----+----+
              |                 |                 |
         +----+----+       +----+----+       +----+----+
         |  Random |       |  Random |       |  Random |
         |  Drop   |       |  Drop   |       |  Drop   |
         |  Action |       |  Action |       |  Action |
         +----+----+       +----+----+       +----+----+
              |                 |                 |
     +--------+-----------------+-----------------+--------+
     |                        Queue                        |
     +--------------------------+--------------------------+
                                |
                           +----+----+
                           |  Rate   |
                           |Scheduler|
                           +----+----+
                                |

     Figure 9a: Typical AF Edge egress interface configuration,
                using color-blind meters












Baker, et. al.              Standards Track                    [Page 27]

RFC 3289              Differentiated Services MIB               May 2002


     +-----------------------------------------------------+
     |                     Classifier                      |
     +--------+--------------------------------------------+
              |Green            | Yellow          | Red
              |                 |                 |
         +----+----+       +----+----+            |
         |  Count  |       |  Count  |            |
         |  Action +-------+  Action +------------+
         +----+----+ Fail  +----+----+  Fail      |
              |Succeed          |Succeed          |
         +----+----+       +----+----+       +----+----+
         |  Count  |       |  Count  |       |  Count  |
         |  Action |       |  Action |       |  Action |
         +----+----+       +----+----+       +----+----+
              |                 |                 |
         +----+----+       +----+----+       +----+----+
         |Mark AFx1|       |Mark AFx2|       |Mark AFx3|
         |  Action |       |  Action |       |  Action |
         +----+----+       +----+----+       +----+----+
              |                 |                 |
         +----+----+       +----+----+       +----+----+
         |  Random |       |  Random |       |  Random |
         |  Drop   |       |  Drop   |       |  Drop   |
         |  Action |       |  Action |       |  Action |
         +----+----+       +----+----+       +----+----+
              |                 |                 |
     +--------+-----------------+-----------------+--------+
     |                        Queue                        |
     +--------------------------+--------------------------+
                                |
                           +----+----+
                           |  Rate   |
                           |Scheduler|
                           +----+----+
                                |

     Figure 9b: Typical AF Edge egress interface configuration,
                using color-aware meters













Baker, et. al.              Standards Track                    [Page 28]

RFC 3289              Differentiated Services MIB               May 2002


     +-----------------------------------------------------+
     |                     Classifier                      |
     +--------+-----------------+-----------------+--------+
              | Green           | Yellow          | Red
              |                 |                 |
         +----+----+       +----+----+       +----+----+
         |  Count  |       |  Count  |       |  Count  |
         |  Action |       |  Action |       |  Action |
         +----+----+       +----+----+       +----+----+
              |                 |                 |
         +----+----+       +----+----+       +----+----+
         |  Random |       |  Random |       |  Random |
         |  Drop   |       |  Drop   |       |  Drop   |
         |  Action |       |  Action |       |  Action |
         +----+----+       +----+----+       +----+----+
              |                 |                 |
     +--------+-----------------+-----------------+--------+
     |                        Queue                        |
     +--------------------------+--------------------------+
                                |
                           +----+----+
                           |  Rate   |
                           |Scheduler|
                           +----+----+
                                |

     Figure 10: Typical AF Edge core interface configuration

3.7.2.2.  AF Actions On an Egress Edge Interface

  For network planning and perhaps for billing purposes, departing
  traffic is normally counted.  Therefore, a "count" action, consisting
  of an action table entry pointing to a count table entry, is
  configured.

  Also, traffic may be marked with an appropriate DSCP.  The first R
  bits per second are marked AFm1, the next S-R bits per second are
  marked AFm2, and the rest is marked AFm3.  It may be that traffic is
  arriving marked with the same DSCP, but in general, the additional
  complexity of deciding that it is being remarked to the same value is
  not useful.  Therefore, a "mark" action, consisting of an action
  table entry pointing to a mark table entry, is configured.

  At this point, the usual case is that traffic is now queued for
  transmission.  The queue uses Active Queue Management, using an
  algorithm such as RED.  Therefore, an Algorithmic Dropper is





Baker, et. al.              Standards Track                    [Page 29]

RFC 3289              Differentiated Services MIB               May 2002


  configured for each AFmn traffic stream, with a slightly lower min-
  threshold (and possibly lower max-threshold) for the excess traffic
  than for the committed traffic.

3.7.2.3.  AF Rate-based Queuing On an Egress Edge Interface

  The queue expected by AF is normally a work-conserving queue.  It
  usually has a specified minimum rate, and may have a maximum rate
  below the bandwidth of the interface.  In concept, it will use as
  much bandwidth as is available to it, but assure the lower bound.

  Common ways to implement this include various forms of Weighted Fair
  Queuing (WFQ) or Weighted Round Robin (WRR).  Integrated over a
  longer interval, these give each class a predictable throughput rate.
  They differ in that over short intervals they will order traffic
  differently.  In general, traffic classes that keep traffic in queue
  will tend to absorb latency from queues with lower mean occupancy, in
  exchange for which they make use of any available capacity.

3.7.3.  EF Implementation On an Egress Edge Interface

  The EF class applies a Single Rate Two Color Meter, dividing traffic
  into "conforming" and "excess" groups.  The intent, on the egress
  interface at the edge of the network, is to measure and appropriately
  mark conforming traffic and drop the excess.

3.7.3.1.  EF Metering On an Egress Edge Interface

  A single rate two color (srTCM) meter requires one token bucket.  It
  is therefore configured using a single meter entry with a
  corresponding Token Bucket Parameter Entry.  Arriving traffic either
  "succeeds" or "fails".

3.7.3.2.  EF Actions On an Egress Edge Interface

  For network planning and perhaps for billing purposes, departing
  traffic that conforms to the meter is normally counted.  Therefore, a
  "count" action, consisting of an action table entry pointing to a
  count table entry, is configured.

  Also, traffic is (re)marked with the EF DSCP.  Therefore, a "mark"
  action, consisting of an action table entry pointing to a mark table
  entry, is configured.








Baker, et. al.              Standards Track                    [Page 30]

RFC 3289              Differentiated Services MIB               May 2002


     +-----------------------------------------------------+
     |                     Classifier                      |
     +-------------------------+---------------------------+
                               | Voice
                               |
                 +-------------+----------+
                 |           Meter        |
                 +----+-------------+-----+
                      | Succeed     | Fail
                      |             |
                 +----+----+   +----+----+
                 |  Count  |   |  Always |
                 |  Action |   |  Drop   |
                 +----+----+   |  Action |
                      |        +---------+
                 +----+---------+
                 |  Algorithmic |
                 |  Drop Action |
                 +----+---------+
                      |
     +----------------+---------------+
     |              Queue             |
     +----------------+---------------+
                      |
                +-----+-----+
                |  Priority |
                | Scheduler |
                +-----+-----+

     Figure 11: Typical EF Edge (Policing) Configuration





















Baker, et. al.              Standards Track                    [Page 31]

RFC 3289              Differentiated Services MIB               May 2002


             +--------------------------------+
             |           Classifier           |
             +----------------+---------------+
                              | Voice
                              |
                         +----+----+
                         |  Count  |
                         |  Action |
                         +----+----+
                              |
                       +------+-------+
                       |  Algorithmic |
                       |  Drop Action |
                       +------+-------+
                              |
             +----------------+---------------+
             |              Queue             |
             +----------------+---------------+
                              |
                        +-----+-----+
                        |  Priority |
                        | Scheduler |
                        +-----+-----+

     Figure 12: Typical EF Core interface Configuration

  At this point, the successful traffic is now queued for transmission,
  using a priority queue or perhaps a rate-based queue with significant
  over-provision.  Since the amount of traffic present is known, one
  might not drop from this queue at all.

  Traffic that exceeded the policy, however, is dropped.  A count
  action can be used on this traffic if the several counters are
  interesting.  However, since the drop counter in the Algorithmic Drop
  Entry will count packets dropped, this is not clearly necessary.  An
  Algorithmic Drop Entry of the type "alwaysDrop" with no successor is
  sufficient.

3.7.3.3.  EF Priority Queuing On an Egress Edge Interface

  The normal implementation is a priority queue, to minimize induced
  jitter.  A separate queue is used for each EF class, with a strict
  ordering.








Baker, et. al.              Standards Track                    [Page 32]

RFC 3289              Differentiated Services MIB               May 2002


4.  Conventions used in this MIB

4.1.  The use of RowPointer to indicate data path linkage

  RowPointer is a textual convention used to identify a conceptual row
  in a MIB Table by pointing to one of its objects.  One of the ways
  this MIB uses it is to indicate succession, pointing to data path
  linkage table entries.

  For succession, it answers the question "what happens next?".  Rather
  than presume that the next table must be as specified in the
  conceptual model [MODEL] and providing its index, the RowPointer
  takes you to the MIB row representing that thing.  In the
  diffServMeterTable, for example, the diffServMeterFailNext RowPointer
  might take you to another meter, while the diffServMeterSucceedNext
  RowPointer would take you to an action.

  Since a RowPointer is not tied to any specific object except by the
  value it contains, it is possible and acceptable to use RowPointers
  to merge data paths.  An obvious example of such a use is in the
  classifier: traffic matching the DSCPs AF11, AF12, and AF13 might be
  presented to the same meter in order to perform the processing
  described in the Assured Forwarding PHB.  Another use would be to
  merge data paths from several interfaces; if they represent a single
  service contract, having them share a common set of counters and
  common policy may be a desirable configuration.  Note well, however,
  that such configurations may have related implementation issues - if
  Differentiated Services processing for the interfaces is implemented
  in multiple forwarding engines, the engines will need to communicate
  if they are to implement such a feature.  An implementation that
  fails to provide this capability is not considered to have failed the
  intention of this MIB or of the [MODEL]; an implementation that does
  provide it is not considered superior from a standards perspective.

     NOTE -- the RowPointer construct is used to connect the functional
     data paths.  The [MODEL] describes these as TCBs, as an aid to
     understanding.  This MIB, however, does not model TCBs directly.
     It operates at a lower level of abstraction using only individual
     elements, connected in succession by RowPointers.  Therefore, the
     concept of TCBs enclosing individual Functional Data Path elements
     is not directly applicable to this MIB, although management tools
     that use this MIB may employ such a concept.

  It is possible that a path through a device following a set of
  RowPointers is indeterminate i.e. it ends in a dangling RowPointer.
  Guidance is provided in the MIB module's DESCRIPTION-clause for each
  of the linkage attribute.  In general, for both zeroDotZero and
  dangling RowPointer, it is assumed the data path ends and the traffic



Baker, et. al.              Standards Track                    [Page 33]

RFC 3289              Differentiated Services MIB               May 2002


  should be given to the next logical part of the device, usually a
  forwarding process or a transmission engine, or the proverbial bit-
  bucket.  Any variation from this usage is indicated by the attribute
  affected.

4.2.  The use of RowPointer to indicate parameters

  RowPointer is also used in this MIB to indicate parameterization, for
  pointing to parameterization table entries.

  For indirection (as in the diffServClfrElementTable), the idea is to
  allow other MIBs, including proprietary ones, to define new and
  arcane filters - MAC headers, IPv4 and IPv6 headers, BGP Communities
  and all sorts of other things - while still utilizing the structures
  of this MIB.  This is a form of class inheritance (in "object
  oriented" language): it allows base object definitions ("classes") to
  be extended in proprietary or standard ways, in the future, by other
  documents.

  RowPointer also clearly indicates the identified conceptual row's
  content does not change, hence they can be simultaneously used and
  pointed to, by more than one data path linkage table entries.  The
  identification of RowPointer allows higher level policy mechanisms to
  take advantage of this characteristic.

4.3.  Conceptual row creation and deletion

  A number of conceptual tables defined in this MIB use as an index an
  arbitrary integer value, unique across the scope of the agent.  In
  order to help with multi-manager row-creation problems, a mechanism
  must be provided to allow a manager to obtain unique values for such
  an index and to ensure that, when used, the manager knows whether it
  got what it wanted or not.

  Typically, such a table has an associated NextFree variable e.g.
  diffServClfrNextFree which provides a suitable value for the index of
  the next row to be created e.g. diffServClfrId.  The value zero is
  used to indicate that the agent can configure no more entries.  The
  table also has a columnar Status attribute with RowStatus syntax [RFC
  2579].

  Generally, if a manager attempts to create a row, the agent will
  create the row and return success.  If the agent has insufficient
  resources or such a row already exists, then it returns an error.  A
  manager must be prepared to try again in such circumstances, probably
  by re-reading the NextFree to obtain a new index value in case a
  second manager had got in between the first manager's read of the
  NextFree value and the first manager's row-creation attempt.



Baker, et. al.              Standards Track                    [Page 34]

RFC 3289              Differentiated Services MIB               May 2002


  To simplify management creation and deletion of rows in this MIB, the
  agent is expected to assist in maintaining its consistency.  It may
  accomplish this by maintaining internal usage counters for any row
  that might be pointed to by a RowPointer, or by any equivalent means.
  When a RowPointer is created or written, and the row it points to
  does not exist, the SET returns an inconsistentValue error.  When a
  RowStatus variable is set to 'destroy' but the usage counter is non-
  zero, the SET returns no error but the indicated row is left intact.
  The agent should later remove the row in the event that the usage
  counter becomes zero.

  The use of RowStatus is covered in more detail in [RFC 2579].

5.  Extending this MIB

  With the structures of this MIB divided into data path linkage tables
  and parameterization tables, and with the use of RowPointer, new data
  path linkage and parameterization tables can be defined in other MIB
  modules, and used with tables defined in this MIB.  This MIB does not
  limit the type of entries its RowPointer attributes can point to,
  hence new functional data path elements can be defined in other MIBs
  and integrated with functional data path elements of this MIB.  For
  example, new Action functional data path element can be defined for
  Traffic Engineering and be integrated with Differentiated Services
  functional data path elements, possibly used within the same data
  path sharing the same classifiers and meters.

  It is more likely that new parameterization tables will be created in
  other MIBs as new methods or proprietary methods get deployed for
  existing Differentiated Services Functional Data Path Elements.  For
  example, different kinds of filters can be defined by using new
  filter parameterization tables.  New scheduling methods can be
  deployed by defining new scheduling method OIDs and new scheduling
  parameter tables.

  Notice both new data path linkage tables and parameterization tables
  can be added without needing to change this MIB document or affect
  existing tables and their usage.

6.  MIB Definition

DIFFSERV-DSCP-TC DEFINITIONS ::= BEGIN

   IMPORTS
   Integer32, MODULE-IDENTITY, mib-2
        FROM SNMPv2-SMI
   TEXTUAL-CONVENTION
        FROM SNMPv2-TC;



Baker, et. al.              Standards Track                    [Page 35]

RFC 3289              Differentiated Services MIB               May 2002


diffServDSCPTC MODULE-IDENTITY
   LAST-UPDATED "200205090000Z"
   ORGANIZATION "IETF Differentiated Services WG"
   CONTACT-INFO
      "       Fred Baker
              Cisco Systems
              1121 Via Del Rey
              Santa Barbara, CA 93117, USA
              E-mail: [email protected]

              Kwok Ho Chan
              Nortel Networks
              600 Technology Park Drive
              Billerica, MA 01821, USA
              E-mail: [email protected]

              Andrew Smith
              Harbour Networks
              Jiuling Building
              21 North Xisanhuan Ave.
              Beijing, 100089, PRC
              E-mail: [email protected]

                Differentiated Services Working Group:
                [email protected]"
   DESCRIPTION
      "The Textual Conventions defined in this module should be used
      whenever a Differentiated Services Code Point is used in a MIB."
   REVISION "200205090000Z"
   DESCRIPTION
      "Initial version, published as RFC 3289."
   ::= { mib-2 96 }

Dscp ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "d"
   STATUS   current
   DESCRIPTION
      "A Differentiated Services Code-Point that may be used for
      marking a traffic stream."
   REFERENCE
       "RFC 2474, RFC 2780"
   SYNTAX   Integer32 (0..63)

DscpOrAny ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "d"
   STATUS   current
   DESCRIPTION
      "The IP header Differentiated Services Code-Point that may be



Baker, et. al.              Standards Track                    [Page 36]

RFC 3289              Differentiated Services MIB               May 2002


      used for discriminating among traffic streams. The value -1 is
      used to indicate a wild card i.e. any value."
   REFERENCE
       "RFC 2474, RFC 2780"
   SYNTAX   Integer32 (-1 | 0..63)

END

DIFFSERV-MIB DEFINITIONS ::= BEGIN

   IMPORTS
   Unsigned32, Counter64, MODULE-IDENTITY, OBJECT-TYPE,
   OBJECT-IDENTITY, zeroDotZero, mib-2
        FROM SNMPv2-SMI
   TEXTUAL-CONVENTION, RowStatus, RowPointer,
   StorageType, AutonomousType
        FROM SNMPv2-TC
   MODULE-COMPLIANCE, OBJECT-GROUP
        FROM SNMPv2-CONF
   ifIndex, InterfaceIndexOrZero
       FROM IF-MIB
   InetAddressType, InetAddress, InetAddressPrefixLength,
   InetPortNumber
       FROM INET-ADDRESS-MIB
   BurstSize
       FROM INTEGRATED-SERVICES-MIB
   Dscp, DscpOrAny
       FROM DIFFSERV-DSCP-TC;

diffServMib MODULE-IDENTITY
   LAST-UPDATED "200202070000Z"
   ORGANIZATION "IETF Differentiated Services WG"
   CONTACT-INFO
      "       Fred Baker
              Cisco Systems
              1121 Via Del Rey
              Santa Barbara, CA 93117, USA
              E-mail: [email protected]

              Kwok Ho Chan
              Nortel Networks
              600 Technology Park Drive
              Billerica, MA 01821, USA
              E-mail: [email protected]

              Andrew Smith
              Harbour Networks
              Jiuling Building



Baker, et. al.              Standards Track                    [Page 37]

RFC 3289              Differentiated Services MIB               May 2002


              21 North Xisanhuan Ave.
              Beijing, 100089, PRC
              E-mail: [email protected]

              Differentiated Services Working Group:
              [email protected]"
   DESCRIPTION
      "This MIB defines the objects necessary to manage a device that
      uses the Differentiated Services Architecture described in RFC
      2475. The Conceptual Model of a Differentiated Services Router
      provides supporting information on how such a router is modeled."
   REVISION "200202070000Z"
   DESCRIPTION
      "Initial version, published as RFC 3289."
   ::= { mib-2 97 }

diffServMIBObjects     OBJECT IDENTIFIER ::= { diffServMib 1 }
diffServMIBConformance OBJECT IDENTIFIER ::= { diffServMib 2 }
diffServMIBAdmin       OBJECT IDENTIFIER ::= { diffServMib 3 }

IndexInteger ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "d"
   STATUS   current
   DESCRIPTION
      "An integer which may be used as a table index."
   SYNTAX   Unsigned32 (1..4294967295)

IndexIntegerNextFree ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "d"
   STATUS   current
   DESCRIPTION
      "An integer which may be used as a new Index in a table.

      The special value of 0 indicates that no more new entries can be
      created in the relevant table.

      When a MIB is used for configuration, an object with this SYNTAX
      always contains a legal value (if non-zero) for an index that is
      not currently used in the relevant table. The Command Generator
      (Network Management Application) reads this variable and uses the
      (non-zero) value read when creating a new row with an SNMP SET.
      When the SET is performed, the Command Responder (agent) must
      determine whether the value is indeed still unused; Two Network
      Management Applications may attempt to create a row
      (configuration entry) simultaneously and use the same value. If
      it is currently unused, the SET succeeds and the Command
      Responder (agent) changes the value of this object, according to
      an implementation-specific algorithm.  If the value is in use,



Baker, et. al.              Standards Track                    [Page 38]

RFC 3289              Differentiated Services MIB               May 2002


      however, the SET fails.  The Network Management Application must
      then re-read this variable to obtain a new usable value.

      An OBJECT-TYPE definition using this SYNTAX MUST specify the
      relevant table for which the object is providing this
      functionality."
   SYNTAX   Unsigned32 (0..4294967295)

IfDirection ::= TEXTUAL-CONVENTION
   STATUS current
   DESCRIPTION
      "IfDirection specifies a direction of data travel on an
      interface. 'inbound' traffic is operated on during reception from
      the interface, while 'outbound' traffic is operated on prior to
      transmission on the interface."
   SYNTAX  INTEGER {
               inbound(1),     -- ingress interface
               outbound(2)     -- egress interface
}

--
-- Data Path
--

diffServDataPath       OBJECT IDENTIFIER ::= { diffServMIBObjects 1 }

--
-- Data Path Table
--
-- The Data Path Table enumerates the Differentiated Services
-- Functional Data Paths within this device.  Each entry in this table
-- is indexed by ifIndex and ifDirection.  Each entry provides the
-- first Differentiated Services Functional Data Path Element to
-- process data flowing along specific data path.  This table should
-- have at most two entries for each interface capable of
-- Differentiated Services processing on this device: ingress and
-- egress.

-- Note that Differentiated Services Functional Data Path Elements
-- linked together using their individual next pointers and anchored by
-- an entry of the diffServDataPathTable constitute a functional data
-- path.
--

diffServDataPathTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServDataPathEntry
   MAX-ACCESS   not-accessible
   STATUS       current



Baker, et. al.              Standards Track                    [Page 39]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "The data path table contains RowPointers indicating the start of
      the functional data path for each interface and traffic direction
      in this device. These may merge, or be separated into parallel
      data paths."
   ::= { diffServDataPath 1 }

diffServDataPathEntry OBJECT-TYPE
   SYNTAX       DiffServDataPathEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An entry in the data path table indicates the start of a single
      Differentiated Services Functional Data Path in this device.

      These are associated with individual interfaces, logical or
      physical, and therefore are instantiated by ifIndex. Therefore,
      the interface index must have been assigned, according to the
      procedures applicable to that, before it can be meaningfully
      used. Generally, this means that the interface must exist.

      When diffServDataPathStorage is of type nonVolatile, however,
      this may reflect the configuration for an interface whose ifIndex
      has been assigned but for which the supporting implementation is
      not currently present."
   INDEX { ifIndex, diffServDataPathIfDirection }
   ::= { diffServDataPathTable 1 }

DiffServDataPathEntry ::= SEQUENCE  {
   diffServDataPathIfDirection    IfDirection,
   diffServDataPathStart          RowPointer,
   diffServDataPathStorage        StorageType,
   diffServDataPathStatus         RowStatus
}

diffServDataPathIfDirection OBJECT-TYPE
   SYNTAX       IfDirection
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "IfDirection specifies whether the reception or transmission path
      for this interface is in view."
   ::= { diffServDataPathEntry 1 }

diffServDataPathStart OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current



Baker, et. al.              Standards Track                    [Page 40]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "This selects the first Differentiated Services Functional Data
      Path Element to handle traffic for this data path. This
      RowPointer should point to an instance of one of:
        diffServClfrEntry
        diffServMeterEntry
        diffServActionEntry
        diffServAlgDropEntry
        diffServQEntry

      A value of zeroDotZero in this attribute indicates that no
      Differentiated Services treatment is performed on traffic of this
      data path. A pointer with the value zeroDotZero normally
      terminates a functional data path.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."
   ::= { diffServDataPathEntry 2 }

diffServDataPathStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServDataPathEntry 3 }

diffServDataPathStatus OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time."
   ::= { diffServDataPathEntry 4 }

--
-- Classifiers
--

diffServClassifier     OBJECT IDENTIFIER ::= { diffServMIBObjects 2 }

--



Baker, et. al.              Standards Track                    [Page 41]

RFC 3289              Differentiated Services MIB               May 2002


-- Classifier Table
--
-- The Classifier Table allows multiple classifier elements, of same or
-- different types, to be used together. A classifier must completely
-- classify all packets presented to it. This means that all traffic
-- presented to a classifier must match at least one classifier element
-- within the classifier, with the classifier element parameters
-- specified by a filter.

-- If there is ambiguity between classifier elements of different
-- classifier, classifier linkage order indicates their precedence; the
-- first classifier in the link is applied to the traffic first.

-- Entries in the classifier element table serves as the anchor for
-- each classification pattern, defined in filter table entries.  Each
-- classifier element table entry also specifies the subsequent
-- downstream Differentiated Services Functional Data Path Element when
-- the classification pattern is satisfied. Each entry in the
-- classifier element table describes one branch of the fan-out
-- characteristic of a classifier indicated in the Informal
-- Differentiated Services Model section 4.1.  A classifier is composed
-- of one or more classifier elements.

diffServClfrNextFree OBJECT-TYPE
   SYNTAX       IndexIntegerNextFree
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "This object contains an unused value for diffServClfrId, or a
      zero to indicate that none exist."
   ::= { diffServClassifier 1 }

diffServClfrTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServClfrEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "This table enumerates all the diffserv classifier functional
      data path elements of this device.  The actual classification
      definitions are defined in diffServClfrElementTable entries
      belonging to each classifier.

      An entry in this table, pointed to by a RowPointer specifying an
      instance of diffServClfrStatus, is frequently used as the name
      for a set of classifier elements, which all use the index
      diffServClfrId. Per the semantics of the classifier element
      table, these entries constitute one or more unordered sets of
      tests which may be simultaneously applied to a message to



Baker, et. al.              Standards Track                    [Page 42]

RFC 3289              Differentiated Services MIB               May 2002


      classify it.

      The primary function of this table is to ensure that the value of
      diffServClfrId is unique before attempting to use it in creating
      a diffServClfrElementEntry. Therefore, the diffServClfrEntry must
      be created on the same SET as the diffServClfrElementEntry, or
      before the diffServClfrElementEntry is created."
   ::= { diffServClassifier 2 }

diffServClfrEntry OBJECT-TYPE
   SYNTAX       DiffServClfrEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An entry in the classifier table describes a single classifier.
      All classifier elements belonging to the same classifier use the
      classifier's diffServClfrId as part of their index."
   INDEX { diffServClfrId }
   ::= { diffServClfrTable 1 }

DiffServClfrEntry ::= SEQUENCE  {
   diffServClfrId              IndexInteger,
   diffServClfrStorage         StorageType,
   diffServClfrStatus          RowStatus
}

diffServClfrId OBJECT-TYPE
   SYNTAX       IndexInteger
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An index that enumerates the classifier entries.  Managers
      should obtain new values for row creation in this table by
      reading diffServClfrNextFree."
   ::= { diffServClfrEntry 1 }

diffServClfrStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServClfrEntry 2 }

diffServClfrStatus OBJECT-TYPE



Baker, et. al.              Standards Track                    [Page 43]

RFC 3289              Differentiated Services MIB               May 2002


   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time. Setting this variable to
      'destroy' when the MIB contains one or more RowPointers pointing
      to it results in destruction being delayed until the row is no
      longer used."
   ::= { diffServClfrEntry 3 }

--
-- Classifier Element Table
--
diffServClfrElementNextFree OBJECT-TYPE
   SYNTAX       IndexIntegerNextFree
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "This object contains an unused value for diffServClfrElementId,
      or a zero to indicate that none exist."
   ::= { diffServClassifier 3 }

diffServClfrElementTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServClfrElementEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "The classifier element table enumerates the relationship between
      classification patterns and subsequent downstream Differentiated
      Services Functional Data Path elements.
      diffServClfrElementSpecific points to a filter that specifies the
      classification parameters. A classifier may use filter tables of
      different types together.

      One example of a filter table defined in this MIB is
      diffServMultiFieldClfrTable, for IP Multi-Field Classifiers
      (MFCs). Such an entry might identify anything from a single
      micro-flow (an identifiable sub-session packet stream directed
      from one sending transport to the receiving transport or
      transports), or aggregates of those such as the traffic from a
      host, traffic for an application, or traffic between two hosts
      using an application and a given DSCP. The standard Behavior
      Aggregate used in the Differentiated Services Architecture is
      encoded as a degenerate case of such an aggregate - the traffic
      using a particular DSCP value.

      Filter tables for other filter types may be defined elsewhere."



Baker, et. al.              Standards Track                    [Page 44]

RFC 3289              Differentiated Services MIB               May 2002


   ::= { diffServClassifier 4 }

diffServClfrElementEntry OBJECT-TYPE
   SYNTAX       DiffServClfrElementEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An entry in the classifier element table describes a single
      element of the classifier."
   INDEX { diffServClfrId, diffServClfrElementId }
   ::= { diffServClfrElementTable 1 }

DiffServClfrElementEntry ::= SEQUENCE  {
   diffServClfrElementId          IndexInteger,
   diffServClfrElementPrecedence  Unsigned32,
   diffServClfrElementNext        RowPointer,
   diffServClfrElementSpecific    RowPointer,
   diffServClfrElementStorage     StorageType,
   diffServClfrElementStatus      RowStatus
}

diffServClfrElementId OBJECT-TYPE
   SYNTAX       IndexInteger
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An index that enumerates the Classifier Element entries.
      Managers obtain new values for row creation in this table by
      reading diffServClfrElementNextFree."
   ::= { diffServClfrElementEntry 1 }

diffServClfrElementPrecedence OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The relative order in which classifier elements are applied:
      higher numbers represent classifier element with higher
      precedence.  Classifier elements with the same order must be
      unambiguous i.e. they must define non-overlapping patterns, and
      are considered to be applied simultaneously to the traffic
      stream. Classifier elements with different order may overlap in
      their filters:  the classifier element with the highest order
      that matches is taken.

      On a given interface, there must be a complete classifier in
      place at all times in the ingress direction.  This means one or
      more filters must match any possible pattern. There is no such



Baker, et. al.              Standards Track                    [Page 45]

RFC 3289              Differentiated Services MIB               May 2002


      requirement in the egress direction."
   ::= { diffServClfrElementEntry 2 }

diffServClfrElementNext OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "This attribute provides one branch of the fan-out functionality
      of a classifier described in the Informal Differentiated Services
      Model section 4.1.

      This selects the next Differentiated Services Functional Data
      Path Element to handle traffic for this data path. This
      RowPointer should point to an instance of one of:
        diffServClfrEntry
        diffServMeterEntry
        diffServActionEntry
        diffServAlgDropEntry
        diffServQEntry

      A value of zeroDotZero in this attribute indicates no further
      Differentiated Services treatment is performed on traffic of this
      data path. The use of zeroDotZero is the normal usage for the
      last functional data path element of the current data path.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."

   ::= { diffServClfrElementEntry 3 }

diffServClfrElementSpecific OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "A pointer to a valid entry in another table, filter table, that
      describes the applicable classification parameters, e.g. an entry
      in diffServMultiFieldClfrTable.

      The value zeroDotZero is interpreted to match anything not
      matched by another classifier element - only one such entry may
      exist for each classifier.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or



Baker, et. al.              Standards Track                    [Page 46]

RFC 3289              Differentiated Services MIB               May 2002


      becomes inactive by other means, the element is ignored."
   ::= { diffServClfrElementEntry 4 }

diffServClfrElementStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServClfrElementEntry 5 }

diffServClfrElementStatus OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time. Setting this variable to
      'destroy' when the MIB contains one or more RowPointers pointing
      to it results in destruction being delayed until the row is no
      longer used."
   ::= { diffServClfrElementEntry 6 }

--
-- IP Multi-field Classification Table
--
-- Classification based on six different fields in the IP header.
-- Functional Data Paths may share definitions by using the same entry.
--

diffServMultiFieldClfrNextFree OBJECT-TYPE
   SYNTAX       IndexIntegerNextFree
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "This object contains an unused value for
      diffServMultiFieldClfrId, or a zero to indicate that none exist."
   ::= { diffServClassifier 5 }

diffServMultiFieldClfrTable OBJECT-TYPE
   SYNTAX   SEQUENCE OF DiffServMultiFieldClfrEntry
   MAX-ACCESS   not-accessible
   STATUS   current
   DESCRIPTION
      "A table of IP Multi-field Classifier filter entries that a



Baker, et. al.              Standards Track                    [Page 47]

RFC 3289              Differentiated Services MIB               May 2002


      system may use to identify IP traffic."
   ::= { diffServClassifier 6 }

diffServMultiFieldClfrEntry OBJECT-TYPE
   SYNTAX       DiffServMultiFieldClfrEntry
   MAX-ACCESS   not-accessible
   STATUS   current
   DESCRIPTION
      "An IP Multi-field Classifier entry describes a single filter."
   INDEX { diffServMultiFieldClfrId }
   ::= { diffServMultiFieldClfrTable 1 }

DiffServMultiFieldClfrEntry ::= SEQUENCE {
   diffServMultiFieldClfrId           IndexInteger,
   diffServMultiFieldClfrAddrType     InetAddressType,
   diffServMultiFieldClfrDstAddr      InetAddress,
   diffServMultiFieldClfrDstPrefixLength InetAddressPrefixLength,
   diffServMultiFieldClfrSrcAddr      InetAddress,
   diffServMultiFieldClfrSrcPrefixLength InetAddressPrefixLength,
   diffServMultiFieldClfrDscp         DscpOrAny,
   diffServMultiFieldClfrFlowId       Unsigned32,
   diffServMultiFieldClfrProtocol     Unsigned32,
   diffServMultiFieldClfrDstL4PortMin InetPortNumber,
   diffServMultiFieldClfrDstL4PortMax InetPortNumber,
   diffServMultiFieldClfrSrcL4PortMin InetPortNumber,
   diffServMultiFieldClfrSrcL4PortMax InetPortNumber,
   diffServMultiFieldClfrStorage      StorageType,
   diffServMultiFieldClfrStatus       RowStatus
}

diffServMultiFieldClfrId OBJECT-TYPE
   SYNTAX         IndexInteger
   MAX-ACCESS     not-accessible
   STATUS     current
   DESCRIPTION
      "An index that enumerates the MultiField Classifier filter
      entries.  Managers obtain new values for row creation in this
      table by reading diffServMultiFieldClfrNextFree."

   ::= { diffServMultiFieldClfrEntry 1 }

diffServMultiFieldClfrAddrType OBJECT-TYPE
   SYNTAX         InetAddressType
   MAX-ACCESS     read-create
   STATUS         current
   DESCRIPTION
      "The type of IP address used by this classifier entry.  While
      other types of addresses are defined in the InetAddressType



Baker, et. al.              Standards Track                    [Page 48]

RFC 3289              Differentiated Services MIB               May 2002


      textual convention, and DNS names, a classifier can only look at
      packets on the wire. Therefore, this object is limited to IPv4
      and IPv6 addresses."
   ::= { diffServMultiFieldClfrEntry 2 }

diffServMultiFieldClfrDstAddr OBJECT-TYPE
   SYNTAX         InetAddress
   MAX-ACCESS     read-create
   STATUS         current
   DESCRIPTION
      "The IP address to match against the packet's destination IP
      address. This may not be a DNS name, but may be an IPv4 or IPv6
      prefix.  diffServMultiFieldClfrDstPrefixLength indicates the
      number of bits that are relevant."
   ::= { diffServMultiFieldClfrEntry 3 }

diffServMultiFieldClfrDstPrefixLength OBJECT-TYPE
   SYNTAX         InetAddressPrefixLength
   UNITS          "bits"
   MAX-ACCESS     read-create
   STATUS         current
   DESCRIPTION
      "The length of the CIDR Prefix carried in
      diffServMultiFieldClfrDstAddr. In IPv4 addresses, a length of 0
      indicates a match of any address; a length of 32 indicates a
      match of a single host address, and a length between 0 and 32
      indicates the use of a CIDR Prefix. IPv6 is similar, except that
      prefix lengths range from 0..128."
   DEFVAL         { 0 }
   ::= { diffServMultiFieldClfrEntry 4 }

diffServMultiFieldClfrSrcAddr OBJECT-TYPE
   SYNTAX         InetAddress
   MAX-ACCESS     read-create
   STATUS         current
   DESCRIPTION
      "The IP address to match against the packet's source IP address.
      This may not be a DNS name, but may be an IPv4 or IPv6 prefix.
      diffServMultiFieldClfrSrcPrefixLength indicates the number of
      bits that are relevant."
   ::= { diffServMultiFieldClfrEntry 5 }

diffServMultiFieldClfrSrcPrefixLength OBJECT-TYPE
   SYNTAX         InetAddressPrefixLength
   UNITS          "bits"
   MAX-ACCESS     read-create
   STATUS         current
   DESCRIPTION



Baker, et. al.              Standards Track                    [Page 49]

RFC 3289              Differentiated Services MIB               May 2002


      "The length of the CIDR Prefix carried in
      diffServMultiFieldClfrSrcAddr. In IPv4 addresses, a length of 0
      indicates a match of any address; a length of 32 indicates a
      match of a single host address, and a length between 0 and 32
      indicates the use of a CIDR Prefix. IPv6 is similar, except that
      prefix lengths range from 0..128."
   DEFVAL         { 0 }
   ::= { diffServMultiFieldClfrEntry 6 }

diffServMultiFieldClfrDscp OBJECT-TYPE
   SYNTAX         DscpOrAny
   MAX-ACCESS     read-create
   STATUS         current
   DESCRIPTION
      "The value that the DSCP in the packet must have to match this
      entry. A value of -1 indicates that a specific DSCP value has not
      been defined and thus all DSCP values are considered a match."
   DEFVAL         { -1 }
   ::= { diffServMultiFieldClfrEntry 7 }

diffServMultiFieldClfrFlowId OBJECT-TYPE
   SYNTAX         Unsigned32 (0..1048575)
   MAX-ACCESS     read-create
   STATUS         current
   DESCRIPTION
      "The flow identifier in an IPv6 header."
   ::= { diffServMultiFieldClfrEntry 8 }

diffServMultiFieldClfrProtocol OBJECT-TYPE
   SYNTAX         Unsigned32 (0..255)
   MAX-ACCESS     read-create
   STATUS         current
   DESCRIPTION
      "The IP protocol to match against the IPv4 protocol number or the
      IPv6 Next- Header number in the packet. A value of 255 means
      match all.  Note the protocol number of 255 is reserved by IANA,
      and Next-Header number of 0 is used in IPv6."
   DEFVAL         { 255 }
   ::= { diffServMultiFieldClfrEntry 9 }

diffServMultiFieldClfrDstL4PortMin OBJECT-TYPE
   SYNTAX         InetPortNumber
   MAX-ACCESS     read-create
   STATUS         current
   DESCRIPTION
      "The minimum value that the layer-4 destination port number in
      the packet must have in order to match this classifier entry."
   DEFVAL         { 0 }



Baker, et. al.              Standards Track                    [Page 50]

RFC 3289              Differentiated Services MIB               May 2002


   ::= { diffServMultiFieldClfrEntry 10 }

diffServMultiFieldClfrDstL4PortMax OBJECT-TYPE
   SYNTAX         InetPortNumber
   MAX-ACCESS     read-create
   STATUS         current
   DESCRIPTION
      "The maximum value that the layer-4 destination port number in
      the packet must have in order to match this classifier entry.
      This value must be equal to or greater than the value specified
      for this entry in diffServMultiFieldClfrDstL4PortMin."
   DEFVAL         { 65535 }
   ::= { diffServMultiFieldClfrEntry 11 }

diffServMultiFieldClfrSrcL4PortMin OBJECT-TYPE
   SYNTAX         InetPortNumber
   MAX-ACCESS     read-create
   STATUS         current
   DESCRIPTION
      "The minimum value that the layer-4 source port number in the
      packet must have in order to match this classifier entry."
   DEFVAL         { 0 }
   ::= { diffServMultiFieldClfrEntry 12 }

diffServMultiFieldClfrSrcL4PortMax OBJECT-TYPE
   SYNTAX         InetPortNumber
   MAX-ACCESS     read-create
   STATUS         current
   DESCRIPTION
      "The maximum value that the layer-4 source port number in the
      packet must have in order to match this classifier entry. This
      value must be equal to or greater than the value specified for
      this entry in diffServMultiFieldClfrSrcL4PortMin."
   DEFVAL         { 65535 }
   ::= { diffServMultiFieldClfrEntry 13 }

diffServMultiFieldClfrStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServMultiFieldClfrEntry 14 }

diffServMultiFieldClfrStatus OBJECT-TYPE



Baker, et. al.              Standards Track                    [Page 51]

RFC 3289              Differentiated Services MIB               May 2002


   SYNTAX      RowStatus
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time. Setting this variable to
      'destroy' when the MIB contains one or more RowPointers pointing
      to it results in destruction being delayed until the row is no
      longer used."
   ::= { diffServMultiFieldClfrEntry 15 }

--
-- Meters
--

diffServMeter          OBJECT IDENTIFIER ::= { diffServMIBObjects 3 }

--
-- This MIB supports a variety of Meters.  It includes a specific
-- definition for Token Bucket Meter, which are but one type of
-- specification. Other metering parameter sets can be defined in other
-- MIBs.

-- Multiple meter elements may be logically cascaded using their
-- diffServMeterSucceedNext and diffServMeterFailNext pointers if
-- required. One example of this might be for an AF PHB implementation
-- that uses multiple level conformance meters.

-- Cascading of individual meter elements in the MIB is intended to be
-- functionally equivalent to multiple level conformance determination
-- of a packet.  The sequential nature of the representation is merely
-- a notational convenience for this MIB.

-- srTCM meters (RFC 2697) can be specified using two sets of
-- diffServMeterEntry and diffServTBParamEntry. The first set specifies
-- the Committed Information Rate and Committed Burst Size
-- token-bucket.  The second set specifies the Excess Burst Size
-- token-bucket.

-- trTCM meters (RFC 2698) can be specified using two sets of
-- diffServMeterEntry and diffServTBParamEntry. The first set specifies
-- the Committed Information Rate and Committed Burst Size
-- token-bucket.  The second set specifies the Peak Information Rate
-- and Peak Burst Size token-bucket.

-- tswTCM meters (RFC 2859) can be specified using two sets of
-- diffServMeterEntry and diffServTBParamEntry. The first set specifies
-- the Committed Target Rate token-bucket.  The second set specifies



Baker, et. al.              Standards Track                    [Page 52]

RFC 3289              Differentiated Services MIB               May 2002


-- the Peak Target Rate token-bucket. diffServTBParamInterval in each
-- token bucket reflects the Average Interval.
--

diffServMeterNextFree OBJECT-TYPE
   SYNTAX       IndexIntegerNextFree
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "This object contains an unused value for diffServMeterId, or a
      zero to indicate that none exist."
   ::= { diffServMeter 1 }

diffServMeterTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServMeterEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "This table enumerates specific meters that a system may use to
      police a stream of traffic. The traffic stream to be metered is
      determined by the Differentiated Services Functional Data Path
      Element(s) upstream of the meter i.e. by the object(s) that point
      to each entry in this table.  This may include all traffic on an
      interface.

      Specific meter details are to be found in table entry referenced
      by diffServMeterSpecific."
   ::= { diffServMeter 2 }

diffServMeterEntry OBJECT-TYPE
   SYNTAX       DiffServMeterEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An entry in the meter table describes a single conformance level
      of a meter."
   INDEX { diffServMeterId }
   ::= { diffServMeterTable 1 }

DiffServMeterEntry ::= SEQUENCE  {
   diffServMeterId                IndexInteger,
   diffServMeterSucceedNext       RowPointer,
   diffServMeterFailNext          RowPointer,
   diffServMeterSpecific          RowPointer,
   diffServMeterStorage           StorageType,
   diffServMeterStatus            RowStatus
}




Baker, et. al.              Standards Track                    [Page 53]

RFC 3289              Differentiated Services MIB               May 2002


diffServMeterId OBJECT-TYPE
   SYNTAX       IndexInteger
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An index that enumerates the Meter entries.  Managers obtain new
      values for row creation in this table by reading
      diffServMeterNextFree."
   ::= { diffServMeterEntry 1 }

diffServMeterSucceedNext OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "If the traffic does conform, this selects the next
      Differentiated Services Functional Data Path element to handle
      traffic for this data path. This RowPointer should point to an
      instance of one of:
        diffServClfrEntry
        diffServMeterEntry
        diffServActionEntry
        diffServAlgDropEntry
        diffServQEntry

      A value of zeroDotZero in this attribute indicates that no
      further Differentiated Services treatment is performed on traffic
      of this data path. The use of zeroDotZero is the normal usage for
      the last functional data path element of the current data path.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."
   DEFVAL      { zeroDotZero }
   ::= { diffServMeterEntry 2 }

diffServMeterFailNext OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "If the traffic does not conform, this selects the next
      Differentiated Services Functional Data Path element to handle
      traffic for this data path. This RowPointer should point to an
      instance of one of:
        diffServClfrEntry
        diffServMeterEntry



Baker, et. al.              Standards Track                    [Page 54]

RFC 3289              Differentiated Services MIB               May 2002


        diffServActionEntry
        diffServAlgDropEntry
        diffServQEntry

      A value of zeroDotZero in this attribute indicates no further
      Differentiated Services treatment is performed on traffic of this
      data path. The use of zeroDotZero is the normal usage for the
      last functional data path element of the current data path.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."
   DEFVAL      { zeroDotZero }
   ::= { diffServMeterEntry 3 }

diffServMeterSpecific OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "This indicates the behavior of the meter by pointing to an entry
      containing detailed parameters. Note that entries in that
      specific table must be managed explicitly.

      For example, diffServMeterSpecific may point to an entry in
      diffServTBParamTable, which contains an instance of a single set
      of Token Bucket parameters.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the meter always succeeds."
   ::= { diffServMeterEntry 4 }

diffServMeterStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServMeterEntry 5 }

diffServMeterStatus OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create



Baker, et. al.              Standards Track                    [Page 55]

RFC 3289              Differentiated Services MIB               May 2002


   STATUS       current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time. Setting this variable to
      'destroy' when the MIB contains one or more RowPointers pointing
      to it results in destruction being delayed until the row is no
      longer used."
   ::= { diffServMeterEntry 6 }

--
-- Token Bucket Parameter Table
--

diffServTBParam        OBJECT IDENTIFIER ::= { diffServMIBObjects 4 }

-- Each entry in the Token Bucket Parameter Table parameterize a single
-- token bucket.  Multiple token buckets can be used together to
-- parameterize multiple levels of conformance.

-- Note that an entry in the Token Bucket Parameter Table can be shared
-- by multiple diffServMeterTable entries.
--

diffServTBParamNextFree OBJECT-TYPE
   SYNTAX       IndexIntegerNextFree
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "This object contains an unused value for diffServTBParamId, or a
      zero to indicate that none exist."
   ::= { diffServTBParam 1 }

diffServTBParamTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServTBParamEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "This table enumerates a single set of token bucket meter
      parameters that a system may use to police a stream of traffic.
      Such meters are modeled here as having a single rate and a single
      burst size. Multiple entries are used when multiple rates/burst
      sizes are needed."
   ::= { diffServTBParam 2 }

diffServTBParamEntry OBJECT-TYPE
   SYNTAX       DiffServTBParamEntry
   MAX-ACCESS   not-accessible
   STATUS       current



Baker, et. al.              Standards Track                    [Page 56]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "An entry that describes a single set of token bucket
      parameters."
   INDEX { diffServTBParamId }
   ::= { diffServTBParamTable 1 }

DiffServTBParamEntry ::= SEQUENCE  {
   diffServTBParamId              IndexInteger,
   diffServTBParamType            AutonomousType,
   diffServTBParamRate            Unsigned32,
   diffServTBParamBurstSize       BurstSize,
   diffServTBParamInterval        Unsigned32,
   diffServTBParamStorage         StorageType,
   diffServTBParamStatus          RowStatus
}

diffServTBParamId OBJECT-TYPE
   SYNTAX       IndexInteger
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An index that enumerates the Token Bucket Parameter entries.
      Managers obtain new values for row creation in this table by
      reading diffServTBParamNextFree."
   ::= { diffServTBParamEntry 1 }

diffServTBParamType OBJECT-TYPE
   SYNTAX       AutonomousType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The Metering algorithm associated with the Token Bucket
      parameters.  zeroDotZero indicates this is unknown.

      Standard values for generic algorithms:
      diffServTBParamSimpleTokenBucket, diffServTBParamAvgRate,
      diffServTBParamSrTCMBlind, diffServTBParamSrTCMAware,
      diffServTBParamTrTCMBlind, diffServTBParamTrTCMAware, and
      diffServTBParamTswTCM are specified in this MIB as OBJECT-
      IDENTITYs; additional values may be further specified in other
      MIBs."
   ::= { diffServTBParamEntry 2 }

diffServTBParamRate OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "kilobits per second"
   MAX-ACCESS   read-create
   STATUS       current



Baker, et. al.              Standards Track                    [Page 57]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "The token-bucket rate, in kilobits per second (kbps). This
      attribute is used for:
      1. CIR in RFC 2697 for srTCM
      2. CIR and PIR in RFC 2698 for trTCM
      3. CTR and PTR in RFC 2859 for TSWTCM
      4. AverageRate in RFC 3290."
   ::= { diffServTBParamEntry 3 }

diffServTBParamBurstSize OBJECT-TYPE
   SYNTAX       BurstSize
   UNITS        "Bytes"
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The maximum number of bytes in a single transmission burst. This
      attribute is used for:
      1. CBS and EBS in RFC 2697 for srTCM
      2. CBS and PBS in RFC 2698 for trTCM
      3. Burst Size in RFC 3290."
   ::= { diffServTBParamEntry 4 }

diffServTBParamInterval OBJECT-TYPE
   SYNTAX       Unsigned32 (1..4294967295)
   UNITS        "microseconds"
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The time interval used with the token bucket.  For:
      1. Average Rate Meter, the Informal Differentiated Services Model
         section 5.2.1, - Delta.
      2. Simple Token Bucket Meter, the Informal Differentiated
         Services Model section 5.1, - time interval t.
      3. RFC 2859 TSWTCM, - AVG_INTERVAL.
      4. RFC 2697 srTCM, RFC 2698 trTCM, - token bucket update time
         interval."
   ::= { diffServTBParamEntry 5 }

diffServTBParamStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServTBParamEntry 6 }



Baker, et. al.              Standards Track                    [Page 58]

RFC 3289              Differentiated Services MIB               May 2002


diffServTBParamStatus OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time. Setting this variable to
      'destroy' when the MIB contains one or more RowPointers pointing
      to it results in destruction being delayed until the row is no
      longer used."
   ::= { diffServTBParamEntry 7 }

--
-- OIDs for diffServTBParamType definitions.
--

diffServTBMeters  OBJECT IDENTIFIER ::= { diffServMIBAdmin 1 }

diffServTBParamSimpleTokenBucket OBJECT-IDENTITY
   STATUS       current
   DESCRIPTION
      "Two Parameter Token Bucket Meter as described in the Informal
      Differentiated Services Model section 5.2.3."
   ::= { diffServTBMeters 1 }

diffServTBParamAvgRate OBJECT-IDENTITY
   STATUS       current
   DESCRIPTION
      "Average Rate Meter as described in the Informal Differentiated
      Services Model section 5.2.1."
   ::= { diffServTBMeters 2 }

diffServTBParamSrTCMBlind OBJECT-IDENTITY
   STATUS       current
   DESCRIPTION
      "Single Rate Three Color Marker Metering as defined by RFC 2697,
      in the `Color Blind' mode as described by the RFC."
   REFERENCE
       "RFC 2697"
   ::= { diffServTBMeters 3 }

diffServTBParamSrTCMAware OBJECT-IDENTITY
   STATUS       current
   DESCRIPTION
      "Single Rate Three Color Marker Metering as defined by RFC 2697,
      in the `Color Aware' mode as described by the RFC."
   REFERENCE
       "RFC 2697"



Baker, et. al.              Standards Track                    [Page 59]

RFC 3289              Differentiated Services MIB               May 2002


   ::= { diffServTBMeters 4 }

diffServTBParamTrTCMBlind OBJECT-IDENTITY
   STATUS       current
   DESCRIPTION
      "Two Rate Three Color Marker Metering as defined by RFC 2698, in
      the `Color Blind' mode as described by the RFC."
   REFERENCE
       "RFC 2698"
   ::= { diffServTBMeters 5 }

diffServTBParamTrTCMAware OBJECT-IDENTITY
   STATUS       current
   DESCRIPTION
      "Two Rate Three Color Marker Metering as defined by RFC 2698, in
      the `Color Aware' mode as described by the RFC."
   REFERENCE
       "RFC 2698"
   ::= { diffServTBMeters 6 }

diffServTBParamTswTCM OBJECT-IDENTITY
   STATUS       current
   DESCRIPTION
      "Time Sliding Window Three Color Marker Metering as defined by
      RFC 2859."
   REFERENCE
       "RFC 2859"
   ::= { diffServTBMeters 7 }

--
-- Actions
--

diffServAction         OBJECT IDENTIFIER ::= { diffServMIBObjects 5 }

--
-- The Action Table allows enumeration of the different types of
-- actions to be applied to a traffic flow.
--

diffServActionNextFree OBJECT-TYPE
   SYNTAX       IndexIntegerNextFree
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "This object contains an unused value for diffServActionId, or a
      zero to indicate that none exist."
   ::= { diffServAction 1 }



Baker, et. al.              Standards Track                    [Page 60]

RFC 3289              Differentiated Services MIB               May 2002


diffServActionTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServActionEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "The Action Table enumerates actions that can be performed to a
      stream of traffic. Multiple actions can be concatenated. For
      example, traffic exiting from a meter may be counted, marked, and
      potentially dropped before entering a queue.

      Specific actions are indicated by diffServActionSpecific which
      points to an entry of a specific action type parameterizing the
      action in detail."
   ::= { diffServAction 2 }

diffServActionEntry OBJECT-TYPE
   SYNTAX       DiffServActionEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "Each entry in the action table allows description of one
      specific action to be applied to traffic."
   INDEX { diffServActionId }
   ::= { diffServActionTable 1 }

DiffServActionEntry ::= SEQUENCE  {
   diffServActionId                IndexInteger,
   diffServActionInterface         InterfaceIndexOrZero,
   diffServActionNext              RowPointer,
   diffServActionSpecific          RowPointer,
   diffServActionStorage           StorageType,
   diffServActionStatus            RowStatus
}

diffServActionId OBJECT-TYPE
   SYNTAX       IndexInteger
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An index that enumerates the Action entries.  Managers obtain
      new values for row creation in this table by reading
      diffServActionNextFree."
   ::= { diffServActionEntry 1 }

diffServActionInterface  OBJECT-TYPE
    SYNTAX        InterfaceIndexOrZero
    MAX-ACCESS    read-create
    STATUS        current



Baker, et. al.              Standards Track                    [Page 61]

RFC 3289              Differentiated Services MIB               May 2002


    DESCRIPTION
      "The interface index (value of ifIndex) that this action occurs
      on. This may be derived from the diffServDataPathStartEntry's
      index by extension through the various RowPointers. However, as
      this may be difficult for a network management station, it is
      placed here as well.  If this is indeterminate, the value is
      zero.

      This is of especial relevance when reporting the counters which
      may apply to traffic crossing an interface:
         diffServCountActOctets,
         diffServCountActPkts,
         diffServAlgDropOctets,
         diffServAlgDropPkts,
         diffServAlgRandomDropOctets, and
         diffServAlgRandomDropPkts.

      It is also especially relevant to the queue and scheduler which
      may be subsequently applied."
    ::= { diffServActionEntry 2 }

diffServActionNext OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "This selects the next Differentiated Services Functional Data
      Path Element to handle traffic for this data path. This
      RowPointer should point to an instance of one of:
        diffServClfrEntry
        diffServMeterEntry
        diffServActionEntry
        diffServAlgDropEntry
        diffServQEntry

      A value of zeroDotZero in this attribute indicates no further
      Differentiated Services treatment is performed on traffic of this
      data path. The use of zeroDotZero is the normal usage for the
      last functional data path element of the current data path.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."
   DEFVAL      { zeroDotZero }
   ::= { diffServActionEntry 3 }

diffServActionSpecific OBJECT-TYPE



Baker, et. al.              Standards Track                    [Page 62]

RFC 3289              Differentiated Services MIB               May 2002


   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "A pointer to an object instance providing additional information
      for the type of action indicated by this action table entry.

      For the standard actions defined by this MIB module, this should
      point to either a diffServDscpMarkActEntry or a
      diffServCountActEntry. For other actions, it may point to an
      object instance defined in some other MIB.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the Meter should be treated as
      if it were not present.  This may lead to incorrect policy
      behavior."
   ::= { diffServActionEntry 4 }

diffServActionStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServActionEntry 5 }

diffServActionStatus OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time. Setting this variable to
      'destroy' when the MIB contains one or more RowPointers pointing
      to it results in destruction being delayed until the row is no
      longer used."
   ::= { diffServActionEntry 6 }

-- DSCP Mark Action Table
--
-- Rows of this table are pointed to by diffServActionSpecific to
-- provide detailed parameters specific to the DSCP Mark action.
--
-- A single entry in this table can be shared by multiple



Baker, et. al.              Standards Track                    [Page 63]

RFC 3289              Differentiated Services MIB               May 2002


-- diffServActionTable entries.
--

diffServDscpMarkActTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServDscpMarkActEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "This table enumerates specific DSCPs used for marking or
      remarking the DSCP field of IP packets. The entries of this table
      may be referenced by a diffServActionSpecific attribute."
   ::= { diffServAction 3 }

diffServDscpMarkActEntry OBJECT-TYPE
   SYNTAX       DiffServDscpMarkActEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An entry in the DSCP mark action table that describes a single
      DSCP used for marking."
   INDEX { diffServDscpMarkActDscp }
   ::= { diffServDscpMarkActTable 1 }

DiffServDscpMarkActEntry ::= SEQUENCE  {
   diffServDscpMarkActDscp          Dscp
}

diffServDscpMarkActDscp OBJECT-TYPE
   SYNTAX       Dscp
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "The DSCP that this Action will store into the DSCP field of the
      subject. It is quite possible that the only packets subject to
      this Action are already marked with this DSCP. Note also that
      Differentiated Services processing may result in packet being
      marked on both ingress to a network and on egress from it, and
      that ingress and egress can occur in the same router."
   ::= { diffServDscpMarkActEntry 1 }

--
-- Count Action Table
--
-- Because the MIB structure allows multiple cascading
-- diffServActionEntry be used to describe multiple actions for a data
-- path, the counter became an optional action type.  In normal
-- implementation, either a data path has counters or it does not, as
-- opposed to being configurable. The management entity may choose to



Baker, et. al.              Standards Track                    [Page 64]

RFC 3289              Differentiated Services MIB               May 2002


-- read the counter or not.  Hence it is recommended for implementation
-- that have counters to always configure the count action as the first
-- of multiple actions.
--

diffServCountActNextFree OBJECT-TYPE
   SYNTAX       IndexIntegerNextFree
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "This object contains an unused value for
      diffServCountActId, or a zero to indicate that none exist."
   ::= { diffServAction 4 }

diffServCountActTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServCountActEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "This table contains counters for all the traffic passing through
      an action element."
   ::= { diffServAction 5 }

diffServCountActEntry OBJECT-TYPE
   SYNTAX       DiffServCountActEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An entry in the count action table describes a single set of
      traffic counters."
   INDEX { diffServCountActId }
   ::= { diffServCountActTable 1 }

DiffServCountActEntry ::= SEQUENCE  {
   diffServCountActId           IndexInteger,
   diffServCountActOctets       Counter64,
   diffServCountActPkts         Counter64,
   diffServCountActStorage      StorageType,
   diffServCountActStatus       RowStatus
}

diffServCountActId OBJECT-TYPE
   SYNTAX       IndexInteger
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An index that enumerates the Count Action entries.  Managers
      obtain new values for row creation in this table by reading



Baker, et. al.              Standards Track                    [Page 65]

RFC 3289              Differentiated Services MIB               May 2002


      diffServCountActNextFree."
   ::= { diffServCountActEntry 1 }

diffServCountActOctets OBJECT-TYPE
   SYNTAX       Counter64
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "The number of octets at the Action data path element.

      Discontinuities in the value of this counter can occur at re-
      initialization of the management system and at other times as
      indicated by the value of ifCounterDiscontinuityTime on the
      relevant interface."
   ::= { diffServCountActEntry 2 }

diffServCountActPkts OBJECT-TYPE
   SYNTAX       Counter64
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "The number of packets at the Action data path element.

      Discontinuities in the value of this counter can occur at re-
      initialization of the management system and at other times as
      indicated by the value of ifCounterDiscontinuityTime on the
      relevant interface."
   ::= { diffServCountActEntry 3 }

diffServCountActStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServCountActEntry 4 }

diffServCountActStatus OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time. Setting this variable to
      'destroy' when the MIB contains one or more RowPointers pointing



Baker, et. al.              Standards Track                    [Page 66]

RFC 3289              Differentiated Services MIB               May 2002


      to it results in destruction being delayed until the row is no
      longer used."
   ::= { diffServCountActEntry 5 }

--
-- Algorithmic Drop Table
--

diffServAlgDrop        OBJECT IDENTIFIER ::= { diffServMIBObjects 6 }

diffServAlgDropNextFree OBJECT-TYPE
   SYNTAX       IndexIntegerNextFree
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "This object contains an unused value for diffServAlgDropId, or a
      zero to indicate that none exist."
   ::= { diffServAlgDrop 1 }

diffServAlgDropTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServAlgDropEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "The algorithmic drop table contains entries describing an
      element that drops packets according to some algorithm."
   ::= { diffServAlgDrop 2 }

diffServAlgDropEntry OBJECT-TYPE
   SYNTAX       DiffServAlgDropEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An entry describes a process that drops packets according to
      some algorithm. Further details of the algorithm type are to be
      found in diffServAlgDropType and with more detail parameter entry
      pointed to by diffServAlgDropSpecific when necessary."
   INDEX { diffServAlgDropId }
   ::= { diffServAlgDropTable 1 }

DiffServAlgDropEntry ::= SEQUENCE  {
   diffServAlgDropId               IndexInteger,
   diffServAlgDropType             INTEGER,
   diffServAlgDropNext             RowPointer,
   diffServAlgDropQMeasure         RowPointer,
   diffServAlgDropQThreshold       Unsigned32,
   diffServAlgDropSpecific         RowPointer,
   diffServAlgDropOctets           Counter64,



Baker, et. al.              Standards Track                    [Page 67]

RFC 3289              Differentiated Services MIB               May 2002


   diffServAlgDropPkts             Counter64,
   diffServAlgRandomDropOctets     Counter64,
   diffServAlgRandomDropPkts       Counter64,
   diffServAlgDropStorage          StorageType,
   diffServAlgDropStatus           RowStatus
}

diffServAlgDropId OBJECT-TYPE
   SYNTAX       IndexInteger
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An index that enumerates the Algorithmic Dropper entries.
      Managers obtain new values for row creation in this table by
      reading diffServAlgDropNextFree."
   ::= { diffServAlgDropEntry 1 }

diffServAlgDropType OBJECT-TYPE
   SYNTAX       INTEGER {
                    other(1),
                    tailDrop(2),
                    headDrop(3),
                    randomDrop(4),
                    alwaysDrop(5)
}
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The type of algorithm used by this dropper. The value other(1)
      requires further specification in some other MIB module.

      In the tailDrop(2) algorithm, diffServAlgDropQThreshold
      represents the maximum depth of the queue, pointed to by
      diffServAlgDropQMeasure, beyond which all newly arriving packets
      will be dropped.

      In the headDrop(3) algorithm, if a packet arrives when the
      current depth of the queue, pointed to by
      diffServAlgDropQMeasure, is at diffServAlgDropQThreshold, packets
      currently at the head of the queue are dropped to make room for
      the new packet to be enqueued at the tail of the queue.

      In the randomDrop(4) algorithm, on packet arrival, an Active
      Queue Management algorithm is executed which may randomly drop a
      packet. This algorithm may be proprietary, and it may drop either
      the arriving packet or another packet in the queue.
      diffServAlgDropSpecific points to a diffServRandomDropEntry that
      describes the algorithm. For this algorithm,



Baker, et. al.              Standards Track                    [Page 68]

RFC 3289              Differentiated Services MIB               May 2002


      diffServAlgDropQThreshold is understood to be the absolute
      maximum size of the queue and additional parameters are described
      in diffServRandomDropTable.

      The alwaysDrop(5) algorithm is as its name specifies; always
      drop. In this case, the other configuration values in this Entry
      are not meaningful; There is no useful 'next' processing step,
      there is no queue, and parameters describing the queue are not
      useful. Therefore, diffServAlgDropNext, diffServAlgDropMeasure,
      and diffServAlgDropSpecific are all zeroDotZero."
   ::= { diffServAlgDropEntry 2 }

diffServAlgDropNext OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "This selects the next Differentiated Services Functional Data
      Path Element to handle traffic for this data path. This
      RowPointer should point to an instance of one of:
        diffServClfrEntry
        diffServMeterEntry
        diffServActionEntry
        diffServQEntry

      A value of zeroDotZero in this attribute indicates no further
      Differentiated Services treatment is performed on traffic of this
      data path. The use of zeroDotZero is the normal usage for the
      last functional data path element of the current data path.

      When diffServAlgDropType is alwaysDrop(5), this object is
      ignored.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."
   ::= { diffServAlgDropEntry 3 }

diffServAlgDropQMeasure OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "Points to an entry in the diffServQTable to indicate the queue
      that a drop algorithm is to monitor when deciding whether to drop
      a packet. If the row pointed to does not exist, the algorithmic
      dropper element is considered inactive.



Baker, et. al.              Standards Track                    [Page 69]

RFC 3289              Differentiated Services MIB               May 2002


      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."
   ::= { diffServAlgDropEntry 4 }

diffServAlgDropQThreshold OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "Bytes"
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "A threshold on the depth in bytes of the queue being measured at
      which a trigger is generated to the dropping algorithm, unless
      diffServAlgDropType is alwaysDrop(5) where this object is
      ignored.

      For the tailDrop(2) or headDrop(3) algorithms, this represents
      the depth of the queue, pointed to by diffServAlgDropQMeasure, at
      which the drop action will take place. Other algorithms will need
      to define their own semantics for this threshold."
   ::= { diffServAlgDropEntry 5 }

diffServAlgDropSpecific OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "Points to a table entry that provides further detail regarding a
      drop algorithm.

      Entries with diffServAlgDropType equal to other(1) may have this
      point to a table defined in another MIB module.

      Entries with diffServAlgDropType equal to randomDrop(4) must have
      this point to an entry in diffServRandomDropTable.

      For all other algorithms specified in this MIB, this should take
      the value zeroDotZero.

      The diffServAlgDropType is authoritative for the type of the drop
      algorithm and the specific parameters for the drop algorithm
      needs to be evaluated based on the diffServAlgDropType.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."



Baker, et. al.              Standards Track                    [Page 70]

RFC 3289              Differentiated Services MIB               May 2002


   ::= { diffServAlgDropEntry 6 }

diffServAlgDropOctets OBJECT-TYPE
   SYNTAX       Counter64
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "The number of octets that have been deterministically dropped by
      this drop process.

      Discontinuities in the value of this counter can occur at re-
      initialization of the management system and at other times as
      indicated by the value of ifCounterDiscontinuityTime on the
      relevant interface."
   ::= { diffServAlgDropEntry 7 }

diffServAlgDropPkts OBJECT-TYPE
   SYNTAX       Counter64
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "The number of packets that have been deterministically dropped
      by this drop process.

      Discontinuities in the value of this counter can occur at re-
      initialization of the management system and at other times as
      indicated by the value of ifCounterDiscontinuityTime on the
      relevant interface."
   ::= { diffServAlgDropEntry 8 }

diffServAlgRandomDropOctets OBJECT-TYPE
   SYNTAX       Counter64
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "The number of octets that have been randomly dropped by this
      drop process.  This counter applies, therefore, only to random
      droppers.

      Discontinuities in the value of this counter can occur at re-
      initialization of the management system and at other times as
      indicated by the value of ifCounterDiscontinuityTime on the
      relevant interface."
   ::= { diffServAlgDropEntry 9 }

diffServAlgRandomDropPkts OBJECT-TYPE
   SYNTAX       Counter64
   MAX-ACCESS   read-only



Baker, et. al.              Standards Track                    [Page 71]

RFC 3289              Differentiated Services MIB               May 2002


   STATUS       current
   DESCRIPTION
      "The number of packets that have been randomly dropped by this
      drop process. This counter applies, therefore, only to random
      droppers.

      Discontinuities in the value of this counter can occur at re-
      initialization of the management system and at other times as
      indicated by the value of ifCounterDiscontinuityTime on the
      relevant interface."
   ::= { diffServAlgDropEntry 10 }

diffServAlgDropStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServAlgDropEntry 11 }

diffServAlgDropStatus OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time. Setting this variable to
      'destroy' when the MIB contains one or more RowPointers pointing
      to it results in destruction being delayed until the row is no
      longer used."
   ::= { diffServAlgDropEntry 12 }

--
-- Random Drop Table
--

diffServRandomDropNextFree OBJECT-TYPE
   SYNTAX       IndexIntegerNextFree
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "This object contains an unused value for diffServRandomDropId,
      or a zero to indicate that none exist."
   ::= { diffServAlgDrop 3 }




Baker, et. al.              Standards Track                    [Page 72]

RFC 3289              Differentiated Services MIB               May 2002


diffServRandomDropTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServRandomDropEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "The random drop table contains entries describing a process that
      drops packets randomly. Entries in this table are pointed to by
      diffServAlgDropSpecific."
   ::= { diffServAlgDrop 4 }

diffServRandomDropEntry OBJECT-TYPE
   SYNTAX       DiffServRandomDropEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An entry describes a process that drops packets according to a
      random algorithm."
   INDEX { diffServRandomDropId }
   ::= { diffServRandomDropTable 1 }

DiffServRandomDropEntry ::= SEQUENCE  {
   diffServRandomDropId               IndexInteger,
   diffServRandomDropMinThreshBytes   Unsigned32,
   diffServRandomDropMinThreshPkts    Unsigned32,
   diffServRandomDropMaxThreshBytes   Unsigned32,
   diffServRandomDropMaxThreshPkts    Unsigned32,
   diffServRandomDropProbMax          Unsigned32,
   diffServRandomDropWeight           Unsigned32,
   diffServRandomDropSamplingRate     Unsigned32,
   diffServRandomDropStorage          StorageType,
   diffServRandomDropStatus           RowStatus
}

diffServRandomDropId OBJECT-TYPE
   SYNTAX       IndexInteger
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An index that enumerates the Random Drop entries.  Managers
      obtain new values for row creation in this table by reading
      diffServRandomDropNextFree."
   ::= { diffServRandomDropEntry 1 }

diffServRandomDropMinThreshBytes OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "bytes"
   MAX-ACCESS   read-create
   STATUS       current



Baker, et. al.              Standards Track                    [Page 73]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "The average queue depth in bytes, beyond which traffic has a
      non-zero probability of being dropped. Changes in this variable
      may or may not be reflected in the reported value of
      diffServRandomDropMinThreshPkts."
   ::= { diffServRandomDropEntry 2 }

diffServRandomDropMinThreshPkts OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "packets"
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The average queue depth in packets, beyond which traffic has a
      non-zero probability of being dropped. Changes in this variable
      may or may not be reflected in the reported value of
      diffServRandomDropMinThreshBytes."
   ::= { diffServRandomDropEntry 3 }

diffServRandomDropMaxThreshBytes OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "bytes"
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The average queue depth beyond which traffic has a probability
      indicated by diffServRandomDropProbMax of being dropped or
      marked. Note that this differs from the physical queue limit,
      which is stored in diffServAlgDropQThreshold. Changes in this
      variable may or may not be reflected in the reported value of
      diffServRandomDropMaxThreshPkts."
   ::= { diffServRandomDropEntry 4 }

diffServRandomDropMaxThreshPkts OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "packets"
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The average queue depth beyond which traffic has a probability
      indicated by diffServRandomDropProbMax of being dropped or
      marked. Note that this differs from the physical queue limit,
      which is stored in diffServAlgDropQThreshold. Changes in this
      variable may or may not be reflected in the reported value of
      diffServRandomDropMaxThreshBytes."
   ::= { diffServRandomDropEntry 5 }

diffServRandomDropProbMax OBJECT-TYPE



Baker, et. al.              Standards Track                    [Page 74]

RFC 3289              Differentiated Services MIB               May 2002


   SYNTAX       Unsigned32 (0..1000)
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The worst case random drop probability, expressed in drops per
      thousand packets.

      For example, if in the worst case every arriving packet may be
      dropped (100%) for a period, this has the value 1000.
      Alternatively, if in the worst case only one percent (1%) of
      traffic may be dropped, it has the value 10."
  ::= { diffServRandomDropEntry 6 }

diffServRandomDropWeight OBJECT-TYPE
   SYNTAX       Unsigned32 (0..65536)
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The weighting of past history in affecting the Exponentially
      Weighted Moving Average function that calculates the current
      average queue depth.  The equation uses
      diffServRandomDropWeight/65536 as the coefficient for the new
      sample in the equation, and (65536 -
      diffServRandomDropWeight)/65536 as the coefficient of the old
      value.

      Implementations may limit the values of diffServRandomDropWeight
      to a subset of the possible range of values, such as powers of
      two. Doing this would facilitate implementation of the
      Exponentially Weighted Moving Average using shift instructions or
      registers."
   ::= { diffServRandomDropEntry 7 }

diffServRandomDropSamplingRate OBJECT-TYPE
   SYNTAX       Unsigned32 (0..1000000)
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The number of times per second the queue is sampled for queue
      average calculation.  A value of zero is used to mean that the
      queue is sampled approximately each time a packet is enqueued (or
      dequeued)."
   ::= { diffServRandomDropEntry 8 }

diffServRandomDropStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current



Baker, et. al.              Standards Track                    [Page 75]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServRandomDropEntry 9 }

diffServRandomDropStatus OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time. Setting this variable to
      'destroy' when the MIB contains one or more RowPointers pointing
      to it results in destruction being delayed until the row is no
      longer used."
   ::= { diffServRandomDropEntry 10 }

--
-- Queue Table
--

diffServQueue          OBJECT IDENTIFIER ::= { diffServMIBObjects 7 }

--
-- An entry of diffServQTable represents a FIFO queue Differentiated
-- Services Functional Data Path element as described in the Informal
-- Differentiated Services Model section 7.1.1. Note that the
-- specification of scheduling parameters for a queue as part of the
-- input to a scheduler functional data path element as described in
-- the Informal Differentiated Services Model section 7.1.2. This
-- allows building of hierarchical queuing/scheduling. A queue
-- therefore has these attributes:
--
-- 1. Which scheduler will service this queue, diffServQNext.
-- 2. How the scheduler will service this queue, with respect
--    to all the other queues the same scheduler needs to service,
--    diffServQMinRate.
--
-- Note that upstream Differentiated Services Functional Data Path
-- elements may point to a shared diffServQTable entry as described
-- in the Informal Differentiated Services Model section 7.1.1.
--

diffServQNextFree OBJECT-TYPE
   SYNTAX       IndexIntegerNextFree
   MAX-ACCESS   read-only



Baker, et. al.              Standards Track                    [Page 76]

RFC 3289              Differentiated Services MIB               May 2002


   STATUS       current
   DESCRIPTION
      "This object contains an unused value for diffServQId, or a zero
      to indicate that none exist."
   ::= { diffServQueue 1 }

diffServQTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServQEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "The Queue Table enumerates the individual queues.  Note that the
      MIB models queuing systems as composed of individual queues, one
      per class of traffic, even though they may in fact be structured
      as classes of traffic scheduled using a common calendar queue, or
      in other ways."
   ::= { diffServQueue 2 }

diffServQEntry OBJECT-TYPE
   SYNTAX       DiffServQEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An entry in the Queue Table describes a single queue or class of
      traffic."
   INDEX { diffServQId }
   ::= { diffServQTable 1 }

DiffServQEntry ::= SEQUENCE  {
   diffServQId                      IndexInteger,
   diffServQNext                    RowPointer,
   diffServQMinRate                 RowPointer,
   diffServQMaxRate                 RowPointer,
   diffServQStorage                 StorageType,
   diffServQStatus                  RowStatus
}

diffServQId OBJECT-TYPE
   SYNTAX       IndexInteger
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An index that enumerates the Queue entries.  Managers obtain new
      values for row creation in this table by reading
      diffServQNextFree."
   ::= { diffServQEntry 1 }

diffServQNext OBJECT-TYPE



Baker, et. al.              Standards Track                    [Page 77]

RFC 3289              Differentiated Services MIB               May 2002


   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "This selects the next Differentiated Services Scheduler.  The
      RowPointer must point to a diffServSchedulerEntry.

      A value of zeroDotZero in this attribute indicates an incomplete
      diffServQEntry instance. In such a case, the entry has no
      operational effect, since it has no parameters to give it
      meaning.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."
   ::= { diffServQEntry 2 }

diffServQMinRate OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "This RowPointer indicates the diffServMinRateEntry that the
      scheduler, pointed to by diffServQNext, should use to service
      this queue.

      If the row pointed to is zeroDotZero, the minimum rate and
      priority is unspecified.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."
   ::= { diffServQEntry 3 }

diffServQMaxRate OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "This RowPointer indicates the diffServMaxRateEntry that the
      scheduler, pointed to by diffServQNext, should use to service
      this queue.

      If the row pointed to is zeroDotZero, the maximum rate is the
      line speed of the interface.




Baker, et. al.              Standards Track                    [Page 78]

RFC 3289              Differentiated Services MIB               May 2002


      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."
   ::= { diffServQEntry 4 }

diffServQStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServQEntry 5 }

diffServQStatus OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time. Setting this variable to
      'destroy' when the MIB contains one or more RowPointers pointing
      to it results in destruction being delayed until the row is no
      longer used."
   ::= { diffServQEntry 6 }

--
-- Scheduler Table
--

diffServScheduler      OBJECT IDENTIFIER ::= { diffServMIBObjects 8 }

--
-- A Scheduler Entry represents a packet scheduler, such as a priority
-- scheduler or a WFQ scheduler. It provides flexibility for multiple
-- scheduling algorithms, each servicing multiple queues, to be used on
-- the same logical/physical interface.
--
-- Note that upstream queues or schedulers specify several of the
-- scheduler's parameters. These must be properly specified if the
-- scheduler is to behave as expected.
--
-- The diffServSchedulerMaxRate attribute specifies the parameters when
-- a scheduler's output is sent to another scheduler. This is used in
-- building hierarchical queues or schedulers.



Baker, et. al.              Standards Track                    [Page 79]

RFC 3289              Differentiated Services MIB               May 2002


--
-- More discussion of the scheduler functional data path element is in
-- the Informal Differentiated Services Model section 7.1.2.
--

diffServSchedulerNextFree OBJECT-TYPE
   SYNTAX       IndexIntegerNextFree
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "This object contains an unused value for diffServSchedulerId, or
      a zero to indicate that none exist."
   ::= { diffServScheduler 1 }

diffServSchedulerTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServSchedulerEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "The Scheduler Table enumerates packet schedulers. Multiple
      scheduling algorithms can be used on a given data path, with each
      algorithm described by one diffServSchedulerEntry."
   ::= { diffServScheduler 2 }

diffServSchedulerEntry OBJECT-TYPE
   SYNTAX       DiffServSchedulerEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An entry in the Scheduler Table describing a single instance of
      a scheduling algorithm."
   INDEX { diffServSchedulerId }
   ::= { diffServSchedulerTable 1 }

DiffServSchedulerEntry ::= SEQUENCE  {
   diffServSchedulerId                   IndexInteger,
   diffServSchedulerNext                 RowPointer,
   diffServSchedulerMethod               AutonomousType,
   diffServSchedulerMinRate              RowPointer,
   diffServSchedulerMaxRate              RowPointer,
   diffServSchedulerStorage              StorageType,
   diffServSchedulerStatus               RowStatus
}

diffServSchedulerId OBJECT-TYPE
   SYNTAX       IndexInteger
   MAX-ACCESS   not-accessible
   STATUS       current



Baker, et. al.              Standards Track                    [Page 80]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "An index that enumerates the Scheduler entries.  Managers obtain
      new values for row creation in this table by reading
      diffServSchedulerNextFree."
   ::= { diffServSchedulerEntry 1 }

diffServSchedulerNext OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "This selects the next Differentiated Services Functional Data
      Path Element to handle traffic for this data path. This normally
      is null (zeroDotZero), or points to a diffServSchedulerEntry or a
      diffServQEntry.

      However, this RowPointer may also point to an instance of:
        diffServClfrEntry,
        diffServMeterEntry,
        diffServActionEntry,
        diffServAlgDropEntry.

      It would point another diffServSchedulerEntry when implementing
      multiple scheduler methods for the same data path, such as having
      one set of queues scheduled by WRR and that group participating
      in a priority scheduling system in which other queues compete
      with it in that way.  It might also point to a second scheduler
      in a hierarchical scheduling system.

      If the row pointed to is zeroDotZero, no further Differentiated
      Services treatment is performed on traffic of this data path.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."
   DEFVAL       { zeroDotZero }
   ::= { diffServSchedulerEntry 2 }

diffServSchedulerMethod OBJECT-TYPE
   SYNTAX       AutonomousType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The scheduling algorithm used by this Scheduler. zeroDotZero
      indicates that this is unknown.  Standard values for generic
      algorithms: diffServSchedulerPriority, diffServSchedulerWRR, and
      diffServSchedulerWFQ are specified in this MIB; additional values



Baker, et. al.              Standards Track                    [Page 81]

RFC 3289              Differentiated Services MIB               May 2002


      may be further specified in other MIBs."
   ::= { diffServSchedulerEntry 3 }

diffServSchedulerMinRate OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "This RowPointer indicates the entry in diffServMinRateTable
      which indicates the priority or minimum output rate from this
      scheduler. This attribute is used only when there is more than
      one level of scheduler.

      When it has the value zeroDotZero, it indicates that no minimum
      rate or priority is imposed.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."
   DEFVAL      { zeroDotZero }
   ::= { diffServSchedulerEntry 4 }

diffServSchedulerMaxRate OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "This RowPointer indicates the entry in diffServMaxRateTable
      which indicates the maximum output rate from this scheduler.
      When more than one maximum rate applies (eg, when a multi-rate
      shaper is in view), it points to the first of those rate entries.
      This attribute is used only when there is more than one level of
      scheduler.

      When it has the value zeroDotZero, it indicates that no maximum
      rate is imposed.

      Setting this to point to a target that does not exist results in
      an inconsistentValue error.  If the row pointed to is removed or
      becomes inactive by other means, the treatment is as if this
      attribute contains a value of zeroDotZero."
   DEFVAL      { zeroDotZero }
   ::= { diffServSchedulerEntry 5 }

diffServSchedulerStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create



Baker, et. al.              Standards Track                    [Page 82]

RFC 3289              Differentiated Services MIB               May 2002


   STATUS       current
   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServSchedulerEntry 6 }

diffServSchedulerStatus OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time. Setting this variable to
      'destroy' when the MIB contains one or more RowPointers pointing
      to it results in destruction being delayed until the row is no
      longer used."
   ::= { diffServSchedulerEntry 7 }

--
-- OIDs for diffServTBParamType definitions.
--

diffServSchedulers  OBJECT IDENTIFIER ::= { diffServMIBAdmin 2 }

diffServSchedulerPriority OBJECT-IDENTITY
   STATUS       current
   DESCRIPTION
      "For use with diffServSchedulerMethod to indicate the Priority
      scheduling method.  This is defined as an algorithm in which the
      presence of data in a queue or set of queues absolutely precludes
      dequeue from another queue or set of queues of lower priority.
      Note that attributes from diffServMinRateEntry of the
      queues/schedulers feeding this scheduler are used when
      determining the next packet to schedule."
   ::= { diffServSchedulers 1 }

diffServSchedulerWRR OBJECT-IDENTITY
   STATUS       current
   DESCRIPTION
      "For use with diffServSchedulerMethod to indicate the Weighted
      Round Robin scheduling method, defined as any algorithm in which
      a set of queues are visited in a fixed order, and varying amounts
      of traffic are removed from each queue in turn to implement an
      average output rate by class. Notice attributes from
      diffServMinRateEntry of the queues/schedulers feeding this
      scheduler are used when determining the next packet to schedule."



Baker, et. al.              Standards Track                    [Page 83]

RFC 3289              Differentiated Services MIB               May 2002


   ::= { diffServSchedulers 2 }

diffServSchedulerWFQ OBJECT-IDENTITY
   STATUS       current
   DESCRIPTION
      "For use with diffServSchedulerMethod to indicate the Weighted
      Fair Queuing scheduling method, defined as any algorithm in which
      a set of queues are conceptually visited in some order, to
      implement an average output rate by class. Notice attributes from
      diffServMinRateEntry of the queues/schedulers feeding this
      scheduler are used when determining the next packet to schedule."
   ::= { diffServSchedulers 3 }

--
-- Minimum Rate Parameters Table
--
-- The parameters used by a scheduler for its inputs or outputs are
-- maintained separately from the Queue or Scheduler table entries for
-- reusability reasons and so that they may be used by both queues and
-- schedulers.  This follows the approach for separation of data path
-- elements from parameterization that is used throughout this MIB.
-- Use of these Minimum Rate Parameter Table entries by Queues and
-- Schedulers allows the modeling of hierarchical scheduling systems.
--
-- Specifically, a Scheduler has one or more inputs and one output.
-- Any queue feeding a scheduler, or any scheduler which feeds a second
-- scheduler, might specify a minimum transfer rate by pointing to an
-- Minimum Rate Parameter Table entry.
--
-- The diffServMinRatePriority/Abs/Rel attributes are used as
-- parameters to the work-conserving portion of a scheduler:
-- "work-conserving" implies that the scheduler can continue to emit
-- data as long as there is data available at its input(s).  This has
-- the effect of guaranteeing a certain priority relative to other
-- scheduler inputs and/or a certain minimum proportion of the
-- available output bandwidth. Properly configured, this means a
-- certain minimum rate, which may be exceeded should traffic be
-- available should there be spare bandwidth after all other classes
-- have had opportunities to consume their own minimum rates.
--

diffServMinRateNextFree OBJECT-TYPE
   SYNTAX       IndexIntegerNextFree
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "This object contains an unused value for diffServMinRateId, or a
      zero to indicate that none exist."



Baker, et. al.              Standards Track                    [Page 84]

RFC 3289              Differentiated Services MIB               May 2002


   ::= { diffServScheduler 3 }

diffServMinRateTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServMinRateEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "The Minimum Rate Parameters Table enumerates individual sets of
      scheduling parameter that can be used/reused by Queues and
      Schedulers."
   ::= { diffServScheduler 4 }

diffServMinRateEntry OBJECT-TYPE
   SYNTAX       DiffServMinRateEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An entry in the Minimum Rate Parameters Table describes a single
      set of scheduling parameters for use by one or more queues or
      schedulers."
   INDEX { diffServMinRateId }
   ::= { diffServMinRateTable 1 }

DiffServMinRateEntry ::= SEQUENCE  {
   diffServMinRateId              IndexInteger,
   diffServMinRatePriority        Unsigned32,
   diffServMinRateAbsolute        Unsigned32,
   diffServMinRateRelative        Unsigned32,
   diffServMinRateStorage         StorageType,
   diffServMinRateStatus          RowStatus
}

diffServMinRateId OBJECT-TYPE
   SYNTAX       IndexInteger
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An index that enumerates the Scheduler Parameter entries.
      Managers obtain new values for row creation in this table by
      reading diffServMinRateNextFree."
   ::= { diffServMinRateEntry 1 }

diffServMinRatePriority OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The priority of this input to the associated scheduler, relative



Baker, et. al.              Standards Track                    [Page 85]

RFC 3289              Differentiated Services MIB               May 2002


      to the scheduler's other inputs. A queue or scheduler with a
      larger numeric value will be served before another with a smaller
      numeric value."
   ::= { diffServMinRateEntry 2 }

diffServMinRateAbsolute OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "kilobits per second"
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The minimum absolute rate, in kilobits/sec, that a downstream
      scheduler element should allocate to this queue. If the value is
      zero, then there is effectively no minimum rate guarantee. If the
      value is non-zero, the scheduler will assure the servicing of
      this queue to at least this rate.

      Note that this attribute value and that of
      diffServMinRateRelative are coupled: changes to one will affect
      the value of the other. They are linked by the following
      equation, in that setting one will change the other:

        diffServMinRateRelative =
                (diffServMinRateAbsolute*1000000)/ifSpeed

      or, if appropriate:

        diffServMinRateRelative = diffServMinRateAbsolute/ifHighSpeed"
   REFERENCE
       "ifSpeed, ifHighSpeed, Interface MIB, RFC 2863"
   ::= { diffServMinRateEntry 3 }

diffServMinRateRelative OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The minimum rate that a downstream scheduler element should
      allocate to this queue, relative to the maximum rate of the
      interface as reported by ifSpeed or ifHighSpeed, in units of
      1/1000 of 1. If the value is zero, then there is effectively no
      minimum rate guarantee. If the value is non-zero, the scheduler
      will assure the servicing of this queue to at least this rate.

      Note that this attribute value and that of
      diffServMinRateAbsolute are coupled: changes to one will affect
      the value of the other. They are linked by the following
      equation, in that setting one will change the other:



Baker, et. al.              Standards Track                    [Page 86]

RFC 3289              Differentiated Services MIB               May 2002


        diffServMinRateRelative =
                (diffServMinRateAbsolute*1000000)/ifSpeed

      or, if appropriate:

        diffServMinRateRelative = diffServMinRateAbsolute/ifHighSpeed"
   REFERENCE
       "ifSpeed, ifHighSpeed, Interface MIB, RFC 2863"
   ::= { diffServMinRateEntry 4 }

diffServMinRateStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServMinRateEntry 5 }

diffServMinRateStatus OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time. Setting this variable to
      'destroy' when the MIB contains one or more RowPointers pointing
      to it results in destruction being delayed until the row is no
      longer used."
   ::= { diffServMinRateEntry 6 }

--
-- Maximum Rate Parameter Table
--
-- The parameters used by a scheduler for its inputs or outputs are
-- maintained separately from the Queue or Scheduler table entries for
-- reusability reasons and so that they may be used by both queues and
-- schedulers.  This follows the approach for separation of data path
-- elements from parameterization that is used throughout this MIB.
-- Use of these Maximum Rate Parameter Table entries by Queues and
-- Schedulers allows the modeling of hierarchical scheduling systems.
--
-- Specifically, a Scheduler has one or more inputs and one output.
-- Any queue feeding a scheduler, or any scheduler which feeds a second
-- scheduler, might specify a maximum transfer rate by pointing to a
-- Maximum Rate Parameter Table entry. Multi-rate shapers, such as a



Baker, et. al.              Standards Track                    [Page 87]

RFC 3289              Differentiated Services MIB               May 2002


-- Dual Leaky Bucket algorithm, specify their rates using multiple
-- Maximum Rate Parameter Entries with the same diffServMaxRateId but
-- different diffServMaxRateLevels.
--
-- The diffServMaxRateLevel/Abs/Rel attributes are used as
-- parameters to the non-work-conserving portion of a scheduler:
-- non-work-conserving implies that the scheduler may sometimes not
-- emit a packet, even if there is data available at its input(s).
-- This has the effect of limiting the servicing of the queue/scheduler
-- input or output, in effect performing shaping of the packet stream
-- passing through the queue/scheduler, as described in the Informal
-- Differentiated Services Model section 7.2.
--

diffServMaxRateNextFree OBJECT-TYPE
   SYNTAX       IndexIntegerNextFree
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "This object contains an unused value for diffServMaxRateId, or a
      zero to indicate that none exist."
   ::= { diffServScheduler 5 }

diffServMaxRateTable OBJECT-TYPE
   SYNTAX       SEQUENCE OF DiffServMaxRateEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "The Maximum Rate Parameter Table enumerates individual sets of
      scheduling parameter that can be used/reused by Queues and
      Schedulers."
   ::= { diffServScheduler 6 }

diffServMaxRateEntry OBJECT-TYPE
   SYNTAX       DiffServMaxRateEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An entry in the Maximum Rate Parameter Table describes a single
      set of scheduling parameters for use by one or more queues or
      schedulers."
   INDEX { diffServMaxRateId, diffServMaxRateLevel }
   ::= { diffServMaxRateTable 1 }

DiffServMaxRateEntry ::= SEQUENCE  {
   diffServMaxRateId              IndexInteger,
   diffServMaxRateLevel           Unsigned32,
   diffServMaxRateAbsolute        Unsigned32,



Baker, et. al.              Standards Track                    [Page 88]

RFC 3289              Differentiated Services MIB               May 2002


   diffServMaxRateRelative        Unsigned32,
   diffServMaxRateThreshold       BurstSize,
   diffServMaxRateStorage         StorageType,
   diffServMaxRateStatus          RowStatus
}

diffServMaxRateId OBJECT-TYPE
   SYNTAX       IndexInteger
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An index that enumerates the Maximum Rate Parameter entries.
      Managers obtain new values for row creation in this table by
      reading diffServMaxRateNextFree."
   ::= { diffServMaxRateEntry 1 }

diffServMaxRateLevel OBJECT-TYPE
   SYNTAX       Unsigned32 (1..32)
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION
      "An index that indicates which level of a multi-rate shaper is
      being given its parameters. A multi-rate shaper has some number
      of rate levels. Frame Relay's dual rate specification refers to a
      'committed' and an 'excess' rate; ATM's dual rate specification
      refers to a 'mean' and a 'peak' rate. This table is generalized
      to support an arbitrary number of rates. The committed or mean
      rate is level 1, the peak rate (if any) is the highest level rate
      configured, and if there are other rates they are distributed in
      monotonically increasing order between them."
   ::= { diffServMaxRateEntry 2 }

diffServMaxRateAbsolute OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   UNITS        "kilobits per second"
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The maximum rate in kilobits/sec that a downstream scheduler
      element should allocate to this queue. If the value is zero, then
      there is effectively no maximum rate limit and that the scheduler
      should attempt to be work conserving for this queue. If the value
      is non-zero, the scheduler will limit the servicing of this queue
      to, at most, this rate in a non-work-conserving manner.

      Note that this attribute value and that of
      diffServMaxRateRelative are coupled: changes to one will affect
      the value of the other. They are linked by the following



Baker, et. al.              Standards Track                    [Page 89]

RFC 3289              Differentiated Services MIB               May 2002


      equation, in that setting one will change the other:

        diffServMaxRateRelative =
                (diffServMaxRateAbsolute*1000000)/ifSpeed

      or, if appropriate:

        diffServMaxRateRelative = diffServMaxRateAbsolute/ifHighSpeed"
   REFERENCE
       "ifSpeed, ifHighSpeed, Interface MIB, RFC 2863"
   ::= { diffServMaxRateEntry 3 }

diffServMaxRateRelative OBJECT-TYPE
   SYNTAX       Unsigned32  (1..4294967295)
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The maximum rate that a downstream scheduler element should
      allocate to this queue, relative to the maximum rate of the
      interface as reported by ifSpeed or ifHighSpeed, in units of
      1/1000 of 1. If the value is zero, then there is effectively no
      maximum rate limit and the scheduler should attempt to be work
      conserving for this queue. If the value is non-zero, the
      scheduler will limit the servicing of this queue to, at most,
      this rate in a non-work-conserving manner.

      Note that this attribute value and that of
      diffServMaxRateAbsolute are coupled: changes to one will affect
      the value of the other. They are linked by the following
      equation, in that setting one will change the other:

        diffServMaxRateRelative =
                (diffServMaxRateAbsolute*1000000)/ifSpeed

      or, if appropriate:

        diffServMaxRateRelative = diffServMaxRateAbsolute/ifHighSpeed"
   REFERENCE
       "ifSpeed, ifHighSpeed, Interface MIB, RFC 2863"
   ::= { diffServMaxRateEntry 4 }

diffServMaxRateThreshold OBJECT-TYPE
   SYNTAX       BurstSize
   UNITS        "Bytes"
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The number of bytes of queue depth at which the rate of a



Baker, et. al.              Standards Track                    [Page 90]

RFC 3289              Differentiated Services MIB               May 2002


      multi-rate scheduler will increase to the next output rate. In
      the last conceptual row for such a shaper, this threshold is
      ignored and by convention is zero."
   REFERENCE
       "Adaptive rate Shaper, RFC 2963"
   ::= { diffServMaxRateEntry 5 }

diffServMaxRateStorage OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The storage type for this conceptual row.  Conceptual rows
      having the value 'permanent' need not allow write-access to any
      columnar objects in the row."
   DEFVAL { nonVolatile }
   ::= { diffServMaxRateEntry 6 }

diffServMaxRateStatus OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
      "The status of this conceptual row. All writable objects in this
      row may be modified at any time. Setting this variable to
      'destroy' when the MIB contains one or more RowPointers pointing
      to it results in destruction being delayed until the row is no
      longer used."
   ::= { diffServMaxRateEntry 7 }

--
-- MIB Compliance statements.
--

diffServMIBCompliances OBJECT IDENTIFIER ::=
                                    { diffServMIBConformance 1 }
diffServMIBGroups      OBJECT IDENTIFIER ::=
                                    { diffServMIBConformance 2 }

diffServMIBFullCompliance MODULE-COMPLIANCE
   STATUS current
   DESCRIPTION
      "When this MIB is implemented with support for read-create, then
      such an implementation can claim full compliance. Such devices
      can then be both monitored and configured with this MIB."

   MODULE IF-MIB -- The interfaces MIB, RFC2863
   MANDATORY-GROUPS {



Baker, et. al.              Standards Track                    [Page 91]

RFC 3289              Differentiated Services MIB               May 2002


      ifCounterDiscontinuityGroup
   }

   MODULE -- This Module
   MANDATORY-GROUPS {
       diffServMIBDataPathGroup, diffServMIBClfrGroup,
       diffServMIBClfrElementGroup, diffServMIBMultiFieldClfrGroup,
       diffServMIBActionGroup, diffServMIBAlgDropGroup,
       diffServMIBQGroup, diffServMIBSchedulerGroup,
       diffServMIBMaxRateGroup, diffServMIBMinRateGroup,
       diffServMIBCounterGroup
   }

   GROUP diffServMIBMeterGroup
   DESCRIPTION
      "This group is mandatory for devices that implement metering
      functions."

   GROUP diffServMIBTBParamGroup
   DESCRIPTION
      "This group is mandatory for devices that implement token-bucket
      metering functions."

   GROUP diffServMIBDscpMarkActGroup
   DESCRIPTION
      "This group is mandatory for devices that implement DSCP-Marking
      functions."

   GROUP diffServMIBRandomDropGroup
   DESCRIPTION
      "This group is mandatory for devices that implement Random Drop
      functions."

   OBJECT diffServDataPathStatus
   SYNTAX RowStatus { active(1) }
   WRITE-SYNTAX RowStatus { createAndGo(4), destroy(6) }
   DESCRIPTION
      "Support for createAndWait and notInService is not required."

   OBJECT diffServClfrStatus
   SYNTAX RowStatus { active(1) }
   WRITE-SYNTAX RowStatus { createAndGo(4), destroy(6) }
   DESCRIPTION
      "Support for createAndWait and notInService is not required."

   OBJECT diffServClfrElementStatus
   SYNTAX RowStatus { active(1) }
   WRITE-SYNTAX RowStatus { createAndGo(4), destroy(6) }



Baker, et. al.              Standards Track                    [Page 92]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "Support for createAndWait and notInService is not required."

   OBJECT diffServMultiFieldClfrAddrType
   SYNTAX  InetAddressType { unknown(0), ipv4(1), ipv6(2) }
   DESCRIPTION
      "An implementation is only required to support IPv4 and IPv6
      addresses."

   OBJECT diffServMultiFieldClfrDstAddr
   SYNTAX  InetAddress (SIZE(0|4|16))
   DESCRIPTION
      "An implementation is only required to support IPv4 and globally
      unique IPv6 addresses."

   OBJECT diffServAlgDropStatus
   SYNTAX RowStatus { active(1) }
   WRITE-SYNTAX RowStatus { createAndGo(4), destroy(6) }
   DESCRIPTION
      "Support for createAndWait and notInService is not required."

   OBJECT diffServRandomDropStatus
   SYNTAX RowStatus { active(1) }
   WRITE-SYNTAX RowStatus { createAndGo(4), destroy(6) }
   DESCRIPTION
      "Support for createAndWait and notInService is not required."

   OBJECT diffServQStatus
   SYNTAX RowStatus { active(1) }
   WRITE-SYNTAX RowStatus { createAndGo(4), destroy(6) }
   DESCRIPTION
      "Support for createAndWait and notInService is not required."

   OBJECT diffServSchedulerStatus
   SYNTAX RowStatus { active(1) }
   WRITE-SYNTAX RowStatus { createAndGo(4), destroy(6) }
   DESCRIPTION
      "Support for createAndWait and notInService is not required."

   OBJECT diffServMinRateStatus
   SYNTAX RowStatus { active(1) }
   WRITE-SYNTAX RowStatus { createAndGo(4), destroy(6) }
   DESCRIPTION
      "Support for createAndWait and notInService is not required."

   OBJECT diffServMaxRateStatus
   SYNTAX RowStatus { active(1) }
   WRITE-SYNTAX RowStatus { createAndGo(4), destroy(6) }



Baker, et. al.              Standards Track                    [Page 93]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "Support for createAndWait and notInService is not required."

   ::= { diffServMIBCompliances 1 }

--
-- Read-Only Compliance
--

diffServMIBReadOnlyCompliance MODULE-COMPLIANCE
   STATUS current
   DESCRIPTION
      "When this MIB is implemented without support for read-create
      (i.e. in read-only mode), then such an implementation can claim
      read-only compliance. Such a device can then be monitored but can
      not be configured with this MIB."

   MODULE IF-MIB -- The interfaces MIB, RFC2863
   MANDATORY-GROUPS {
      ifCounterDiscontinuityGroup
   }

   MODULE -- This Module
   MANDATORY-GROUPS {
       diffServMIBDataPathGroup, diffServMIBClfrGroup,
       diffServMIBClfrElementGroup, diffServMIBMultiFieldClfrGroup,
       diffServMIBActionGroup, diffServMIBAlgDropGroup,
       diffServMIBQGroup, diffServMIBSchedulerGroup,
       diffServMIBMaxRateGroup, diffServMIBMinRateGroup,
       diffServMIBCounterGroup
   }

   GROUP diffServMIBMeterGroup
   DESCRIPTION
      "This group is mandatory for devices that implement metering
      functions."

   GROUP diffServMIBTBParamGroup
   DESCRIPTION
      "This group is mandatory for devices that implement token-bucket
      metering functions."

   GROUP        diffServMIBDscpMarkActGroup
   DESCRIPTION
      "This group is mandatory for devices that implement DSCP-Marking
      functions."

   GROUP        diffServMIBRandomDropGroup



Baker, et. al.              Standards Track                    [Page 94]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "This group is mandatory for devices that implement Random Drop
      functions."

   OBJECT       diffServDataPathStart
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServDataPathStorage
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServDataPathStatus
   SYNTAX       RowStatus { active(1) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, and active is the only status that
      needs to be supported."

   OBJECT       diffServClfrNextFree
   MIN-ACCESS   not-accessible
   DESCRIPTION
      "Object not needed when diffServClfrTable is implemented read-
      only"

   OBJECT       diffServClfrStorage
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServClfrStatus
   SYNTAX       RowStatus { active(1) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, and active is the only status that
      needs to be supported."

   OBJECT       diffServClfrElementNextFree
   MIN-ACCESS   not-accessible
   DESCRIPTION
      "Object not needed when diffServClfrelementTable is implemented
      read-only"

   OBJECT       diffServClfrElementPrecedence
   MIN-ACCESS   read-only
   DESCRIPTION



Baker, et. al.              Standards Track                    [Page 95]

RFC 3289              Differentiated Services MIB               May 2002


      "Write access is not required."

   OBJECT       diffServClfrElementNext
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServClfrElementSpecific
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServClfrElementStorage
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServClfrElementStatus
   SYNTAX       RowStatus { active(1) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, and active is the only status that
      needs to be supported."

   OBJECT       diffServMultiFieldClfrNextFree
   MIN-ACCESS   not-accessible
   DESCRIPTION
      "Object is not needed when diffServMultiFieldClfrTable is
      implemented in read-only mode."

   OBJECT       diffServMultiFieldClfrAddrType
   SYNTAX       InetAddressType { unknown(0), ipv4(1), ipv6(2) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required. An implementation is only required
      to support IPv4 and IPv6 addresses."

   OBJECT       diffServMultiFieldClfrDstAddr
   SYNTAX       InetAddress (SIZE(0|4|16))
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required. An implementation is only required
      to support IPv4 and globally unique IPv6 addresses."

   OBJECT       diffServMultiFieldClfrDstPrefixLength
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."



Baker, et. al.              Standards Track                    [Page 96]

RFC 3289              Differentiated Services MIB               May 2002


   OBJECT       diffServMultiFieldClfrSrcAddr
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required. An implementation is only required
      to support IPv4 and globally unique IPv6 addresses."

   OBJECT       diffServMultiFieldClfrSrcPrefixLength
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMultiFieldClfrDscp
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMultiFieldClfrFlowId
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMultiFieldClfrProtocol
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMultiFieldClfrDstL4PortMin
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMultiFieldClfrDstL4PortMax
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMultiFieldClfrSrcL4PortMin
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMultiFieldClfrSrcL4PortMax
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMultiFieldClfrStorage
   MIN-ACCESS   read-only



Baker, et. al.              Standards Track                    [Page 97]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMultiFieldClfrStatus
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, createAndWait and notInService
      support is not required."

   OBJECT       diffServMeterNextFree
   MIN-ACCESS   not-accessible
   DESCRIPTION
      "Object is not needed when diffServMultiFieldClfrTable is
      implemented in read-only mode."

   OBJECT       diffServMeterSucceedNext
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMeterFailNext
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMeterSpecific
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMeterStorage
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMeterStatus
   SYNTAX       RowStatus { active(1) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, and active is the only status that
      needs to be supported."

   OBJECT       diffServTBParamNextFree
   MIN-ACCESS   not-accessible
   DESCRIPTION
      "Object is not needed when diffServTBParamTable is implemented in
      read-only mode."




Baker, et. al.              Standards Track                    [Page 98]

RFC 3289              Differentiated Services MIB               May 2002


   OBJECT       diffServTBParamType
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServTBParamRate
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServTBParamBurstSize
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServTBParamInterval
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServTBParamStorage
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServTBParamStatus
   SYNTAX       RowStatus { active(1) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, and active is the only status that
      needs to be supported."

   OBJECT       diffServActionNextFree
   MIN-ACCESS   not-accessible
   DESCRIPTION
      "Object is not needed when diffServActionTable is implemented in
      read-only mode."

   OBJECT       diffServActionInterface
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServActionNext
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."




Baker, et. al.              Standards Track                    [Page 99]

RFC 3289              Differentiated Services MIB               May 2002


   OBJECT       diffServActionSpecific
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServActionStorage
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServActionStatus
   SYNTAX       RowStatus { active(1) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, and active is the only status that
      needs to be supported."

   OBJECT       diffServCountActNextFree
   MIN-ACCESS   not-accessible
   DESCRIPTION
      "Object is not needed when diffServCountActTable is implemented
      in read-only mode."

   OBJECT       diffServCountActStorage
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServCountActStatus
   SYNTAX       RowStatus { active(1) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, and active is the only status that
      needs to be supported."

   OBJECT       diffServAlgDropNextFree
   MIN-ACCESS   not-accessible
   DESCRIPTION
      "Object is not needed when diffServAlgDropTable is implemented in
      read-only mode."

   OBJECT       diffServAlgDropType
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServAlgDropNext
   MIN-ACCESS   read-only



Baker, et. al.              Standards Track                   [Page 100]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServAlgDropQMeasure
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServAlgDropQThreshold
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServAlgDropSpecific
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServAlgDropStorage
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServAlgDropStatus
   SYNTAX       RowStatus { active(1) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, and active is the only status that
      needs to be supported."

   OBJECT       diffServRandomDropNextFree
   MIN-ACCESS   not-accessible
   DESCRIPTION
      "Object is not needed when diffServRandomDropTable is implemented
      in read-only mode."

   OBJECT       diffServRandomDropMinThreshBytes
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServRandomDropMinThreshPkts
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServRandomDropMaxThreshBytes
   MIN-ACCESS   read-only



Baker, et. al.              Standards Track                   [Page 101]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServRandomDropMaxThreshPkts
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServRandomDropProbMax
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServRandomDropWeight
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServRandomDropSamplingRate
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServRandomDropStorage
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServRandomDropStatus
   SYNTAX       RowStatus { active(1) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, and active is the only status that
      needs to be supported."

   OBJECT       diffServQNextFree
   MIN-ACCESS   not-accessible
   DESCRIPTION
      "Object is not needed when diffServQTable is implemented in
      read-only mode."

   OBJECT       diffServQNext
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServQMinRate
   MIN-ACCESS   read-only



Baker, et. al.              Standards Track                   [Page 102]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServQMaxRate
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServQStorage
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServQStatus
   SYNTAX       RowStatus { active(1) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, and active is the only status that
      needs to be supported."

   OBJECT       diffServSchedulerNextFree
   MIN-ACCESS   not-accessible
   DESCRIPTION
      "Object is not needed when diffServSchedulerTable is implemented
      in read-only mode."

   OBJECT       diffServSchedulerNext
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServSchedulerMethod
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServSchedulerMinRate
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServSchedulerMaxRate
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServSchedulerStorage
   MIN-ACCESS   read-only



Baker, et. al.              Standards Track                   [Page 103]

RFC 3289              Differentiated Services MIB               May 2002


   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServSchedulerStatus
   SYNTAX       RowStatus { active(1) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, and active is the only status that
      needs to be supported."

   OBJECT       diffServMinRateNextFree
   MIN-ACCESS   not-accessible
   DESCRIPTION
      "Object is not needed when diffServMinRateTable is implemented in
      read-only mode."

   OBJECT       diffServMinRatePriority
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMinRateAbsolute
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMinRateRelative
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMinRateStorage
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMinRateStatus
   SYNTAX       RowStatus { active(1) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, and active is the only status that
      needs to be supported."

   OBJECT       diffServMaxRateNextFree
   MIN-ACCESS   not-accessible
   DESCRIPTION
      "Object is not needed when diffServMaxrateTable is implemented in
      read-only mode."



Baker, et. al.              Standards Track                   [Page 104]

RFC 3289              Differentiated Services MIB               May 2002


   OBJECT       diffServMaxRateAbsolute
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMaxRateRelative
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMaxRateThreshold
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMaxRateStorage
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required."

   OBJECT       diffServMaxRateStatus
   SYNTAX       RowStatus { active(1) }
   MIN-ACCESS   read-only
   DESCRIPTION
      "Write access is not required, and active is the only status that
      needs to be supported."

   ::= { diffServMIBCompliances 2 }

diffServMIBDataPathGroup OBJECT-GROUP
   OBJECTS {
             diffServDataPathStart, diffServDataPathStorage,
             diffServDataPathStatus
   }
   STATUS       current
   DESCRIPTION
      "The Data Path Group defines the MIB Objects that describe a
      functional data path."
   ::= { diffServMIBGroups 1 }

diffServMIBClfrGroup OBJECT-GROUP
   OBJECTS {
             diffServClfrNextFree, diffServClfrStorage,
             diffServClfrStatus
   }
   STATUS       current
   DESCRIPTION
      "The Classifier Group defines the MIB Objects that describe the



Baker, et. al.              Standards Track                   [Page 105]

RFC 3289              Differentiated Services MIB               May 2002


      list the starts of individual classifiers."
   ::= { diffServMIBGroups 2 }

diffServMIBClfrElementGroup OBJECT-GROUP
   OBJECTS {
             diffServClfrElementNextFree,
             diffServClfrElementPrecedence, diffServClfrElementNext,
             diffServClfrElementSpecific, diffServClfrElementStorage,
             diffServClfrElementStatus
   }
   STATUS       current
   DESCRIPTION
      "The Classifier Element Group defines the MIB Objects that
      describe the classifier elements that make up a generic
      classifier."
   ::= { diffServMIBGroups 3 }

diffServMIBMultiFieldClfrGroup OBJECT-GROUP
   OBJECTS {
             diffServMultiFieldClfrNextFree,
             diffServMultiFieldClfrAddrType,
             diffServMultiFieldClfrDstAddr,
             diffServMultiFieldClfrDstPrefixLength,
             diffServMultiFieldClfrFlowId,
             diffServMultiFieldClfrSrcAddr,
             diffServMultiFieldClfrSrcPrefixLength,
             diffServMultiFieldClfrDscp,
             diffServMultiFieldClfrProtocol,
             diffServMultiFieldClfrDstL4PortMin,
             diffServMultiFieldClfrDstL4PortMax,
             diffServMultiFieldClfrSrcL4PortMin,
             diffServMultiFieldClfrSrcL4PortMax,
             diffServMultiFieldClfrStorage,
             diffServMultiFieldClfrStatus
   }
   STATUS       current
   DESCRIPTION
      "The Multi-field Classifier Group defines the MIB Objects that
      describe a classifier element for matching on various fields of
      an IP and upper-layer protocol header."
   ::= { diffServMIBGroups 4 }

diffServMIBMeterGroup OBJECT-GROUP
   OBJECTS {
             diffServMeterNextFree, diffServMeterSucceedNext,
             diffServMeterFailNext, diffServMeterSpecific,
             diffServMeterStorage, diffServMeterStatus
   }



Baker, et. al.              Standards Track                   [Page 106]

RFC 3289              Differentiated Services MIB               May 2002


   STATUS       current
   DESCRIPTION
      "The Meter Group defines the objects used in describing a generic
      meter element."
   ::= { diffServMIBGroups 5 }

diffServMIBTBParamGroup OBJECT-GROUP
   OBJECTS {
             diffServTBParamNextFree, diffServTBParamType,
             diffServTBParamRate, diffServTBParamBurstSize,
             diffServTBParamInterval, diffServTBParamStorage,
             diffServTBParamStatus
   }
   STATUS       current
   DESCRIPTION
      "The Token-Bucket Meter Group defines the objects used in
      describing a token bucket meter element."
   ::= { diffServMIBGroups 6 }

diffServMIBActionGroup OBJECT-GROUP
   OBJECTS {
             diffServActionNextFree, diffServActionNext,
             diffServActionSpecific, diffServActionStorage,
             diffServActionInterface, diffServActionStatus
   }
   STATUS       current
   DESCRIPTION
      "The Action Group defines the objects used in describing a
      generic action element."
   ::= { diffServMIBGroups 7 }

diffServMIBDscpMarkActGroup OBJECT-GROUP
   OBJECTS {
             diffServDscpMarkActDscp
   }
   STATUS       current
   DESCRIPTION
      "The DSCP Mark Action Group defines the objects used in
      describing a DSCP Marking Action element."
   ::= { diffServMIBGroups 8 }

diffServMIBCounterGroup OBJECT-GROUP
   OBJECTS {
             diffServCountActOctets, diffServCountActPkts,
             diffServAlgDropOctets, diffServAlgDropPkts,
             diffServAlgRandomDropOctets, diffServAlgRandomDropPkts,
             diffServCountActStorage, diffServCountActStatus,
             diffServCountActNextFree



Baker, et. al.              Standards Track                   [Page 107]

RFC 3289              Differentiated Services MIB               May 2002


   }
   STATUS       current
   DESCRIPTION
      "A collection of objects providing information specific to
      packet-oriented network interfaces."
   ::= { diffServMIBGroups 9 }

diffServMIBAlgDropGroup OBJECT-GROUP
   OBJECTS {
             diffServAlgDropNextFree, diffServAlgDropType,
             diffServAlgDropNext, diffServAlgDropQMeasure,
             diffServAlgDropQThreshold, diffServAlgDropSpecific,
             diffServAlgDropStorage, diffServAlgDropStatus
   }
   STATUS       current
   DESCRIPTION
      "The Algorithmic Drop Group contains the objects that describe
      algorithmic dropper operation and configuration."
   ::= { diffServMIBGroups 10 }

diffServMIBRandomDropGroup OBJECT-GROUP
   OBJECTS {
             diffServRandomDropNextFree,
             diffServRandomDropMinThreshBytes,
             diffServRandomDropMinThreshPkts,
             diffServRandomDropMaxThreshBytes,
             diffServRandomDropMaxThreshPkts,
             diffServRandomDropProbMax,
             diffServRandomDropWeight,
             diffServRandomDropSamplingRate,
             diffServRandomDropStorage,
             diffServRandomDropStatus
   }
   STATUS       current
   DESCRIPTION
      "The Random Drop Group augments the Algorithmic Drop Group for
      random dropper operation and configuration."
   ::= { diffServMIBGroups 11 }

diffServMIBQGroup OBJECT-GROUP

   OBJECTS {
             diffServQNextFree, diffServQNext, diffServQMinRate,
             diffServQMaxRate, diffServQStorage, diffServQStatus
   }
   STATUS       current
   DESCRIPTION
      "The Queue Group contains the objects that describe an



Baker, et. al.              Standards Track                   [Page 108]

RFC 3289              Differentiated Services MIB               May 2002


      interface's queues."
   ::= { diffServMIBGroups 12 }

diffServMIBSchedulerGroup OBJECT-GROUP
   OBJECTS {
             diffServSchedulerNextFree, diffServSchedulerNext,
             diffServSchedulerMethod, diffServSchedulerMinRate,
             diffServSchedulerMaxRate, diffServSchedulerStorage,
             diffServSchedulerStatus
   }
   STATUS       current
   DESCRIPTION
      "The Scheduler Group contains the objects that describe packet
      schedulers on interfaces."
   ::= { diffServMIBGroups 13 }

diffServMIBMinRateGroup OBJECT-GROUP
   OBJECTS {
             diffServMinRateNextFree, diffServMinRatePriority,
             diffServMinRateAbsolute, diffServMinRateRelative,
             diffServMinRateStorage, diffServMinRateStatus
   }
   STATUS       current
   DESCRIPTION
      "The Minimum Rate Parameter Group contains the objects that
      describe packet schedulers' minimum rate or priority guarantees."
   ::= { diffServMIBGroups 14 }

diffServMIBMaxRateGroup OBJECT-GROUP
   OBJECTS {
             diffServMaxRateNextFree, diffServMaxRateAbsolute,
             diffServMaxRateRelative, diffServMaxRateThreshold,
             diffServMaxRateStorage, diffServMaxRateStatus
   }
   STATUS       current
   DESCRIPTION
      "The Maximum Rate Parameter Group contains the objects that
      describe packet schedulers' maximum rate guarantees."
   ::= { diffServMIBGroups 15 }

END










Baker, et. al.              Standards Track                   [Page 109]

RFC 3289              Differentiated Services MIB               May 2002


7.  Acknowledgments

  This MIB builds on all the work that has gone into the Informal
  Management Model for Differentiated Services Routers, Differentiated
  Services PIB, and Differentiated Services Policy MIB (SNMPCONF WG).

  It has been developed with the active involvement of many people, but
  most notably Yoram Bernet, Steve Blake, Brian Carpenter, Dave Durham,
  Michael Fine, Victor Firoiu, Jeremy Greene, Dan Grossman, Roch
  Guerin, Scott Hahn, Joel Halpern, Van Jacobsen, Keith McCloghrie, Bob
  Moore, Kathleen Nichols, Ping Pan, Nabil Seddigh, John Seligson, and
  Walter Weiss.

  Juergen Schoenwaelder, Dave Perkins, Frank Strauss, Harrie
  Hazewinkel, and Bert Wijnen are especially to be noted for review
  comments on the structure and usage of the MIB for network management
  purposes, and its compliance with SMIv2.

8.  Security Considerations

  It is clear that this MIB is potentially useful for configuration.
  Anything that can be configured can be misconfigured, with
  potentially disastrous effects.

  At this writing, no security holes have been identified beyond those
  that SNMP Security is itself intended to address.  These relate
  primarily to controlled access to sensitive information and the
  ability to configure a device - or which might result from operator
  error, which is beyond the scope of any security architecture.

  There are many read-write and read-create management objects defined
  in this MIB.  Such objects are often sensitive or vulnerable in some
  network environments.  The support for SET operations in a non-secure
  environment without proper protection can have a negative effect on
  network operations.  The use of SNMP Version 3 is recommended over
  prior versions for configuration control as its security model is
  improved.

  There are a number of managed objects in this MIB that may contain
  information that may be sensitive from a business perspective, in
  that they may represent a customer's service contract or the filters
  that the service provider chooses to apply to a customer's ingress or
  egress traffic.  There are no objects which are sensitive in their
  own right, such as passwords or monetary amounts.







Baker, et. al.              Standards Track                   [Page 110]

RFC 3289              Differentiated Services MIB               May 2002


  It may be important to even control GET access to these objects and
  possibly to even encrypt the values of these objects when sending
  them over the network via SNMP.  Not all versions of SNMP provide
  features for such a secure environment.

  SNMPv1 by itself is not a secure environment.  Even if the network
  itself is secure (for example by using IPSec), even then, there is no
  control as to who on the secure network is allowed to access and
  GET/SET (read/change/create/delete) the objects in this MIB.

  It is recommended that the implementors consider the security
  features as provided by the SNMPv3 framework.  Specifically, the use
  of the User-based Security Model [RFC 2574] and the View-based Access
  Control Model [RFC 2575] is recommended.

  It is then a customer/user responsibility to ensure that the SNMP
  entity giving access to an instance of this MIB, is properly
  configured to give access to the objects only to those principals
  (users) that have legitimate rights to indeed GET or SET
  (change/create/delete) them.

9. Intellectual Property Rights

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.









Baker, et. al.              Standards Track                   [Page 111]

RFC 3289              Differentiated Services MIB               May 2002


10.  References

  [RFC 2571]    Harrington, D., Presuhn, R. and B. Wijnen, "An
                Architecture for Describing SNMP Management
                Frameworks", RFC 2571, April 1999.

  [RFC 1155]    Rose, M. and K. McCloghrie, "Structure and
                Identification of Management Information for TCP/IP-
                based Internets", STD 16, RFC 1155, May 1990.

  [RFC 1212]    Rose, M. and K. McCloghrie, "Concise MIB Definitions",
                STD 16, RFC 1212, March 1991.

  [RFC 1215]    Rose, M., "A Convention for Defining Traps for use with
                the SNMP", RFC 1215, March 1991.

  [RFC 2578]    McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
                J., Rose, M. and S. Waldbusser, "Structure of
                Management Information Version 2 (SMIv2)", STD 58, RFC
                2578, April 1999.

  [RFC 2579]    McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
                J., Rose, M. and S. Waldbusser, "Textual Conventions
                for SMIv2", STD 58, RFC 2579, April 1999.

  [RFC 2580]    McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
                J., Rose, M. and S. Waldbusser, "Conformance Statements
                for SMIv2", STD 58, RFC 2580, April 1999.

  [RFC 1157]    Case, J., Fedor, M., Schoffstall, M. and J. Davin,
                "Simple Network Management Protocol", STD 15, RFC 1157,
                May 1990.

  [RFC 1901]    Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
                "Introduction to Community-based SNMPv2", RFC 1901,
                January 1996.

  [RFC 1906]    Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
                "Transport Mappings for Version 2 of the Simple Network
                Management Protocol (SNMPv2)", RFC 1906, January 1996.

  [RFC 2572]    Case, J., Harrington D., Presuhn R. and B. Wijnen,
                "Message Processing and Dispatching for the Simple
                Network Management Protocol (SNMP)", RFC 2572, April
                1999.






Baker, et. al.              Standards Track                   [Page 112]

RFC 3289              Differentiated Services MIB               May 2002


  [RFC 2574]    Blumenthal, U. and B. Wijnen, "User-based Security
                Model (USM) for version 3 of the Simple Network
                Management Protocol (SNMPv3)", RFC 2574, April 1999.

  [RFC 1905]    Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
                "Protocol Operations for Version 2 of the Simple
                Network Management Protocol (SNMPv2)", RFC 1905,
                January 1996.

  [RFC 2573]    Levi, D., Meyer, P. and B. Stewart, "SNMP
                Applications", RFC 2573, April 1999.

  [RFC 2575]    Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
                Access Control Model (VACM) for the Simple Network
                Management Protocol (SNMP)", RFC 2575, April 1999.

  [RFC 2570]    Case, J., Mundy, R., Partain, D. and B. Stewart,
                "Introduction to Version 3 of the Internet-standard
                Network Management Framework", RFC 2570, April 1999.

  [RFC 2119]    Bradner, S., "Key words to use in the RFCs", BCP 14,
                RFC 2119, March 1997.

  [ACTQMGMT]    V. Firoiu, M. Borden, "A Study of Active Queue
                Management for Congestion Control", March 2000, In IEEE
                Infocom 2000, http://www.ieee-
                infocom.org/2000/papers/405.pdf

  [AQMROUTER]   V. Misra, W. Gong, D. Towsley, "Fluid-based analysis of
                a network of AQM routers supporting TCP flows with an
                application to RED", In SIGCOMM
                2000,http://www.acm.org/sigcomm/sigcomm2000/conf/
                paper/sigcomm2000-4-3.ps.gz

  [AF-PHB]      Heinanen, J., Baker, F., Weiss, W. and J. Wroclawski,
                "Assured Forwarding PHB Group", RFC 2597, June 1999.

  [DSARCH]      Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.
                and W. Weiss, "An Architecture for Differentiated
                Service", RFC 2475, December 1998.

  [DSFIELD]     Nichols, K., Blake, S., Baker, F. and D. Black,
                "Definition of the Differentiated Services Field (DS
                Field) in the IPv4 and IPv6 Headers", RFC 2474,
                December 1998.






Baker, et. al.              Standards Track                   [Page 113]

RFC 3289              Differentiated Services MIB               May 2002


  [DSPIB]       Fine, M., McCloghrie, K., Seligson, J., Chan, K., Hahn,
                S. and A. Smith, "Differentiated Services Quality of
                Service Policy Information Base", Work in Progress.

  [DSTERMS]     Grossman, D., "New Terminology for Differentiated
                Services", RFC 3260, April 2002.

  [EF-PHB]      Jacobson, V., Nichols, K. and K. Poduri, "An Expedited
                Forwarding PHB", RFC 3246, March 2002.

  [IF-MIB]      McCloghrie, K. and F. Kastenholz, "The Interfaces Group
                MIB using SMIv2", RFC 2863, June 2000.

  [INETADDRESS] Daniele, M., Haberman, B., Routhier, S. and J.
                Schoenwaelder, "Textual Conventions for Internet
                Network Addresses.", RFC 3291, May 2002.

  [INTSERVMIB]  Baker, F., Krawczyk, J. and A. Sastry, "Integrated
                Services Management Information Base using SMIv2", RFC
                2213, September 1997.

  [MODEL]       Bernet, Y., Blake, S., Smith, A. and D. Grossman, "An
                Informal Management Model for Differentiated Services
                Routers", Work in Progress.

  [RED93]       "Random Early Detection", 1993.

  [srTCM]       Heinanen, J. and R. Guerin, "A Single Rate Three Color
                Marker", RFC 2697, September 1999.

  [trTCM]       Heinanen, J. and R. Guerin, "A Two Rate Three Color
                Marker", RFC 2698, September 1999.

  [TSWTCM]      Fang, W., Seddigh, N. and  B. Nandy, "A Time Sliding
                Window Three Color Marker (TSWTCM)", RFC 2859, June
                2000.

  [SHAPER]      Bonaventure, O. and S. De Cnodder, "A Rate Adaptive
                Shaper for Differentiated Services", RFC 2963, October
                2000.











Baker, et. al.              Standards Track                   [Page 114]

RFC 3289              Differentiated Services MIB               May 2002


11.  Authors' Addresses

  Fred Baker
  Cisco Systems
  1121 Via Del Rey
  Santa Barbara, California 93117

  EMail: [email protected]


  Kwok Ho Chan
  Nortel Networks
  600 Technology Park Drive
  Billerica, MA 01821

  EMail: [email protected]


  Andrew Smith
  Harbour Networks
  Jiuling Building
  21 North Xisanhuan Ave.
  Beijing, 100089, PRC

  EMail: [email protected]


























Baker, et. al.              Standards Track                   [Page 115]

RFC 3289              Differentiated Services MIB               May 2002


12.  Full Copyright Statement

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Baker, et. al.              Standards Track                   [Page 116]