Network Working Group                                            W. Polk
Request for Comments: 3279                                          NIST
Obsoletes: 2528                                               R. Housley
Category: Standards Track                               RSA Laboratories
                                                             L. Bassham
                                                                   NIST
                                                             April 2002

                  Algorithms and Identifiers for the
               Internet X.509 Public Key Infrastructure
      Certificate and Certificate Revocation List (CRL) Profile

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

  This document specifies algorithm identifiers and ASN.1 encoding
  formats for digital signatures and subject public keys used in the
  Internet X.509 Public Key Infrastructure (PKI).  Digital signatures
  are used to sign certificates and certificate revocation list (CRLs).
  Certificates include the public key of the named subject.

Table of Contents

  1  Introduction  . . . . . . . . . . . . . . . . . . . . . .   2
  2  Algorithm Support . . . . . . . . . . . . . . . . . . . .   3
  2.1  One-Way Hash Functions  . . . . . . . . . . . . . . . .   3
  2.1.1  MD2 One-Way Hash Functions  . . . . . . . . . . . . .   3
  2.1.2  MD5 One-Way Hash Functions  . . . . . . . . . . . . .   4
  2.1.3  SHA-1 One-Way Hash Functions  . . . . . . . . . . . .   4
  2.2  Signature Algorithms  . . . . . . . . . . . . . . . . .   4
  2.2.1  RSA Signature Algorithm . . . . . . . . . . . . . . .   5
  2.2.2  DSA Signature Algorithm . . . . . . . . . . . . . . .   6
  2.2.3  Elliptic Curve Digital Signature Algorithm  . . . . .   7
  2.3  Subject Public Key Algorithms . . . . . . . . . . . . .   7
  2.3.1  RSA Keys  . . . . . . . . . . . . . . . . . . . . . .   8
  2.3.2  DSA Signature Keys  . . . . . . . . . . . . . . . . .   9
  2.3.3  Diffie-Hellman Key Exchange Keys  . . . . . . . . . .  10



Polk, et al.                Standards Track                     [Page 1]

RFC 3279               Algorithms and Identifiers             April 2002


  2.3.4  KEA Public Keys . . . . . . . . . . . . . . . . . . .  11
  2.3.5  ECDSA and ECDH Public Keys  . . . . . . . . . . . . .  13
  3  ASN.1 Module  . . . . . . . . . . . . . . . . . . . . . .  18
  4  References  . . . . . . . . . . . . . . . . . . . . . . .  24
  5  Security Considerations . . . . . . . . . . . . . . . . .  25
  6  Intellectual Property Rights  . . . . . . . . . . . . . .  26
  7  Author Addresses  . . . . . . . . . . . . . . . . . . . .  26
  8  Full Copyright Statement  . . . . . . . . . . . . . . . .  27

1  Introduction

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC 2119].

  This document specifies algorithm identifiers and ASN.1 [X.660]
  encoding formats for digital signatures and subject public keys used
  in the Internet X.509 Public Key Infrastructure (PKI).  This
  specification supplements [RFC 3280], "Internet X.509 Public Key
  Infrastructure:  Certificate and Certificate Revocation List (CRL)
  Profile."  Implementations of this specification MUST also conform to
  RFC 3280.

  This specification defines the contents of the signatureAlgorithm,
  signatureValue, signature, and subjectPublicKeyInfo fields within
  Internet X.509 certificates and CRLs.

  This document identifies one-way hash functions for use in the
  generation of digital signatures.  These algorithms are used in
  conjunction with digital signature algorithms.

  This specification describes the encoding of digital signatures
  generated with the following cryptographic algorithms:

     * Rivest-Shamir-Adelman (RSA);
     * Digital Signature Algorithm (DSA); and
     * Elliptic Curve Digital Signature Algorithm (ECDSA).

  This document specifies the contents of the subjectPublicKeyInfo
  field in Internet X.509 certificates.  For each algorithm, the
  appropriate alternatives for the the keyUsage extension are provided.
  This specification describes encoding formats for public keys used
  with the following cryptographic algorithms:

     * Rivest-Shamir-Adelman (RSA);
     * Digital Signature Algorithm (DSA);
     * Diffie-Hellman (DH);
     * Key Encryption Algorithm (KEA);



Polk, et al.                Standards Track                     [Page 2]

RFC 3279               Algorithms and Identifiers             April 2002


     * Elliptic Curve Digital Signature Algorithm (ECDSA); and
     * Elliptic Curve Diffie-Hellman (ECDH).

2  Algorithm Support

  This section describes cryptographic algorithms which may be used
  with the Internet X.509 certificate and CRL profile [RFC 3280].  This
  section describes one-way hash functions and digital signature
  algorithms which may be used to sign certificates and CRLs, and
  identifies object identifiers (OIDs) for public keys contained in a
  certificate.

  Conforming CAs and applications MUST, at a minimum, support digital
  signatures and public keys for one of the specified algorithms.  When
  using any of the algorithms identified in this specification,
  conforming CAs and applications MUST support them as described.

2.1  One-way Hash Functions

  This section identifies one-way hash functions for use in the
  Internet X.509 PKI.  One-way hash functions are also called message
  digest algorithms.  SHA-1 is the preferred one-way hash function for
  the Internet X.509 PKI.  However, PEM uses MD2 for certificates [RFC
  1422] [RFC 1423] and MD5 is used in other legacy applications.  For
  these reasons, MD2 and MD5 are included in this profile.  The data
  that is hashed for certificate and CRL signing is fully described in
  [RFC 3280].

2.1.1  MD2 One-way Hash Function

  MD2 was developed by Ron Rivest for RSA Security.  RSA Security has
  recently placed the MD2 algorithm in the public domain.  Previously,
  RSA Data Security had granted license for use of MD2 for non-
  commercial Internet Privacy-Enhanced Mail (PEM).  MD2 may continue to
  be used with PEM certificates, but SHA-1 is preferred.  MD2 produces
  a 128-bit "hash" of the input.  MD2 is fully described in [RFC 1319].

  At the Selected Areas in Cryptography '95 conference in May 1995,
  Rogier and Chauvaud presented an attack on MD2 that can nearly find
  collisions [RC95].  Collisions occur when one can find two different
  messages that generate the same message digest.  A checksum operation
  in MD2 is the only remaining obstacle to the success of the attack.
  For this reason, the use of MD2 for new applications is discouraged.
  It is still reasonable to use MD2 to verify existing signatures, as
  the ability to find collisions in MD2 does not enable an attacker to
  find new messages having a previously computed hash value.





Polk, et al.                Standards Track                     [Page 3]

RFC 3279               Algorithms and Identifiers             April 2002


2.1.2  MD5 One-way Hash Function

  MD5 was developed by Ron Rivest for RSA Security.  RSA Security has
  placed the MD5 algorithm in the public domain.  MD5 produces a 128-
  bit "hash" of the input.  MD5 is fully described in [RFC 1321].

  Den Boer and Bosselaers [DB94] have found pseudo-collisions for MD5,
  but there are no other known cryptanalytic results.  The use of MD5
  for new applications is discouraged.  It is still reasonable to use
  MD5 to verify existing signatures.

2.1.3  SHA-1 One-way Hash Function

  SHA-1 was developed by the U.S. Government.  SHA-1 produces a 160-bit
  "hash" of the input.  SHA-1 is fully described in [FIPS 180-1].  RFC
  3174 [RFC 3174] also describes SHA-1, and it provides an
  implementation of the algorithm.

2.2  Signature Algorithms

  Certificates and CRLs conforming to [RFC 3280] may be signed with any
  public key signature algorithm.  The certificate or CRL indicates the
  algorithm through an algorithm identifier which appears in the
  signatureAlgorithm field within the Certificate or CertificateList.
  This algorithm identifier is an OID and has optionally associated
  parameters.  This section identifies algorithm identifiers and
  parameters that MUST be used in the signatureAlgorithm field in a
  Certificate or CertificateList.

  Signature algorithms are always used in conjunction with a one-way
  hash function.

  This section identifies OIDS for RSA, DSA, and ECDSA.  The contents
  of the parameters component for each algorithm vary; details are
  provided for each algorithm.

  The data to be signed (e.g., the one-way hash function output value)
  is formatted for the signature algorithm to be used.  Then, a private
  key operation (e.g., RSA encryption) is performed to generate the
  signature value.  This signature value is then ASN.1 encoded as a BIT
  STRING and included in the Certificate or CertificateList in the
  signature field.









Polk, et al.                Standards Track                     [Page 4]

RFC 3279               Algorithms and Identifiers             April 2002


2.2.1  RSA Signature Algorithm

  The RSA algorithm is named for its inventors: Rivest, Shamir, and
  Adleman.  This profile includes three signature algorithms based on
  the RSA asymmetric encryption algorithm.  The signature algorithms
  combine RSA with either the MD2, MD5, or the SHA-1 one-way hash
  functions.

  The signature algorithm with SHA-1 and the RSA encryption algorithm
  is implemented using the padding and encoding conventions described
  in PKCS #1 [RFC 2313].  The message digest is computed using the
  SHA-1 hash algorithm.

  The RSA signature algorithm, as specified in PKCS #1 [RFC 2313]
  includes a data encoding step.  In this step, the message digest and
  the OID for the one-way hash function used to compute the digest are
  combined.  When performing the data encoding step, the md2, md5, and
  id-sha1 OIDs MUST be used to specify the MD2, MD5, and SHA-1 one-way
  hash functions, respectively:

     md2  OBJECT IDENTIFIER ::= {
          iso(1) member-body(2) US(840) rsadsi(113549)
          digestAlgorithm(2) 2 }

     md5  OBJECT IDENTIFIER ::= {
          iso(1) member-body(2) US(840) rsadsi(113549)
          digestAlgorithm(2) 5 }

     id-sha1  OBJECT IDENTIFIER ::= {
          iso(1) identified-organization(3) oiw(14) secsig(3)
          algorithms(2) 26 }

  The signature algorithm with MD2 and the RSA encryption algorithm is
  defined in PKCS #1 [RFC 2313].  As defined in PKCS #1 [RFC 2313], the
  ASN.1 OID used to identify this signature algorithm is:

     md2WithRSAEncryption OBJECT IDENTIFIER  ::=  {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
         pkcs-1(1) 2  }

  The signature algorithm with MD5 and the RSA encryption algorithm is
  defined in PKCS #1 [RFC 2313].  As defined in PKCS #1 [RFC 2313], the
  ASN.1 OID used to identify this signature algorithm is:

     md5WithRSAEncryption OBJECT IDENTIFIER  ::=  {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
         pkcs-1(1) 4  }




Polk, et al.                Standards Track                     [Page 5]

RFC 3279               Algorithms and Identifiers             April 2002


  The ASN.1 object identifier used to identify this signature algorithm
  is:

     sha-1WithRSAEncryption OBJECT IDENTIFIER  ::=  {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
         pkcs-1(1) 5  }

  When any of these three OIDs appears within the ASN.1 type
  AlgorithmIdentifier, the parameters component of that type SHALL be
  the ASN.1 type NULL.

  The RSA signature generation process and the encoding of the result
  is described in detail in PKCS #1 [RFC 2313].

2.2.2  DSA Signature Algorithm

  The Digital Signature Algorithm (DSA) is defined in the Digital
  Signature Standard (DSS).  DSA was developed by the U.S. Government,
  and DSA is used in conjunction with the SHA-1 one-way hash function.
  DSA is fully described in [FIPS 186].  The ASN.1 OID used to identify
  this signature algorithm is:

     id-dsa-with-sha1 OBJECT IDENTIFIER ::=  {
          iso(1) member-body(2) us(840) x9-57 (10040)
          x9cm(4) 3 }

  When the id-dsa-with-sha1 algorithm identifier appears as the
  algorithm field in an AlgorithmIdentifier, the encoding SHALL omit
  the parameters field.  That is, the AlgorithmIdentifier SHALL be a
  SEQUENCE of one component: the OBJECT IDENTIFIER id-dsa-with-sha1.

  The DSA parameters in the subjectPublicKeyInfo field of the
  certificate of the issuer SHALL apply to the verification of the
  signature.

  When signing, the DSA algorithm generates two values.  These values
  are commonly referred to as r and s.  To easily transfer these two
  values as one signature, they SHALL be ASN.1 encoded using the
  following ASN.1 structure:

     Dss-Sig-Value  ::=  SEQUENCE  {
             r       INTEGER,
             s       INTEGER  }








Polk, et al.                Standards Track                     [Page 6]

RFC 3279               Algorithms and Identifiers             April 2002


2.2.3 ECDSA Signature Algorithm

  The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in
  [X9.62].  The ASN.1 object identifiers used to identify ECDSA are
  defined in the following arc:

     ansi-X9-62  OBJECT IDENTIFIER ::= {
          iso(1) member-body(2) us(840) 10045 }

     id-ecSigType OBJECT IDENTIFIER  ::=  {
          ansi-X9-62 signatures(4) }

  ECDSA is used in conjunction with the SHA-1 one-way hash function.
  The ASN.1 object identifier used to identify ECDSA with SHA-1 is:

     ecdsa-with-SHA1  OBJECT IDENTIFIER ::= {
          id-ecSigType 1 }

  When the ecdsa-with-SHA1 algorithm identifier appears as the
  algorithm field in an AlgorithmIdentifier, the encoding MUST omit the
  parameters field.  That is, the AlgorithmIdentifier SHALL be a
  SEQUENCE of one component: the OBJECT IDENTIFIER ecdsa-with-SHA1.

  The elliptic curve parameters in the subjectPublicKeyInfo field of
  the certificate of the issuer SHALL apply to the verification of the
  signature.

  When signing, the ECDSA algorithm generates two values.  These values
  are commonly referred to as r and s.  To easily transfer these two
  values as one signature, they MUST be ASN.1 encoded using the
  following ASN.1 structure:

     Ecdsa-Sig-Value  ::=  SEQUENCE  {
          r     INTEGER,
          s     INTEGER  }

2.3  Subject Public Key Algorithms

  Certificates conforming to [RFC 3280] may convey a public key for any
  public key algorithm.  The certificate indicates the algorithm
  through an algorithm identifier.  This algorithm identifier is an OID
  and optionally associated parameters.

  This section identifies preferred OIDs and parameters for the RSA,
  DSA, Diffie-Hellman, KEA, ECDSA, and ECDH algorithms.  Conforming CAs
  MUST use the identified OIDs when issuing certificates containing





Polk, et al.                Standards Track                     [Page 7]

RFC 3279               Algorithms and Identifiers             April 2002


  public keys for these algorithms.  Conforming applications supporting
  any of these algorithms MUST, at a minimum, recognize the OID
  identified in this section.

2.3.1  RSA Keys

  The OID rsaEncryption identifies RSA public keys.

     pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
                    rsadsi(113549) pkcs(1) 1 }

     rsaEncryption OBJECT IDENTIFIER ::=  { pkcs-1 1}

  The rsaEncryption OID is intended to be used in the algorithm field
  of a value of type AlgorithmIdentifier.  The parameters field MUST
  have ASN.1 type NULL for this algorithm identifier.

  The RSA public key MUST be encoded using the ASN.1 type RSAPublicKey:

     RSAPublicKey ::= SEQUENCE {
        modulus            INTEGER,    -- n
        publicExponent     INTEGER  }  -- e

  where modulus is the modulus n, and publicExponent is the public
  exponent e.  The DER encoded RSAPublicKey is the value of the BIT
  STRING subjectPublicKey.

  This OID is used in public key certificates for both RSA signature
  keys and RSA encryption keys.  The intended application for the key
  MAY be indicated in the key usage field (see [RFC 3280]).  The use of
  a single key for both signature and encryption purposes is not
  recommended, but is not forbidden.

  If the keyUsage extension is present in an end entity certificate
  which conveys an RSA public key, any combination of the following
  values MAY be present:

     digitalSignature;
     nonRepudiation;
     keyEncipherment; and
     dataEncipherment.

  If the keyUsage extension is present in a CA or CRL issuer
  certificate which conveys an RSA public key, any combination of the
  following values MAY be present:

     digitalSignature;
     nonRepudiation;



Polk, et al.                Standards Track                     [Page 8]

RFC 3279               Algorithms and Identifiers             April 2002


     keyEncipherment;
     dataEncipherment;
     keyCertSign; and
     cRLSign.

  However, this specification RECOMMENDS that if keyCertSign or cRLSign
  is present, both keyEncipherment and dataEncipherment SHOULD NOT be
  present.

2.3.2  DSA Signature Keys

  The Digital Signature Algorithm (DSA) is defined in the Digital
  Signature Standard (DSS) [FIPS 186].  The DSA OID supported by this
  profile is:

     id-dsa OBJECT IDENTIFIER ::= {
          iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }

  The id-dsa algorithm syntax includes optional domain parameters.
  These parameters are commonly referred to as p, q, and g.  When
  omitted, the parameters component MUST be omitted entirely.  That is,
  the AlgorithmIdentifier MUST be a SEQUENCE of one component: the
  OBJECT IDENTIFIER id-dsa.

  If the DSA domain parameters are present in the subjectPublicKeyInfo
  AlgorithmIdentifier, the parameters are included using the following
  ASN.1 structure:

     Dss-Parms  ::=  SEQUENCE  {
         p             INTEGER,
         q             INTEGER,
         g             INTEGER  }

  The AlgorithmIdentifier within subjectPublicKeyInfo is the only place
  within a certificate where the parameters may be used.  If the DSA
  algorithm parameters are omitted from the subjectPublicKeyInfo
  AlgorithmIdentifier and the CA signed the subject certificate using
  DSA, then the certificate issuer's DSA parameters apply to the
  subject's DSA key.  If the DSA domain parameters are omitted from the
  SubjectPublicKeyInfo AlgorithmIdentifier and the CA signed the
  subject certificate using a signature algorithm other than DSA, then
  the subject's DSA domain parameters are distributed by other means.
  If the subjectPublicKeyInfo AlgorithmIdentifier field omits the
  parameters component, the CA signed the subject with a signature
  algorithm other than DSA, and the subject's DSA parameters are not
  available through other means, then clients MUST reject the
  certificate.




Polk, et al.                Standards Track                     [Page 9]

RFC 3279               Algorithms and Identifiers             April 2002


  The DSA public key MUST be ASN.1 DER encoded as an INTEGER; this
  encoding shall be used as the contents (i.e., the value) of the
  subjectPublicKey component (a BIT STRING) of the SubjectPublicKeyInfo
  data element.

     DSAPublicKey ::= INTEGER -- public key, Y

  If the keyUsage extension is present in an end entity certificate
  which conveys a DSA public key, any combination of the following
  values MAY be present:

     digitalSignature;
     nonRepudiation;

  If the keyUsage extension is present in a CA or CRL issuer
  certificate which conveys a DSA public key, any combination of the
  following values MAY be present:

     digitalSignature;
     nonRepudiation;
     keyCertSign; and
     cRLSign.

2.3.3  Diffie-Hellman Key Exchange Keys

  The Diffie-Hellman OID supported by this profile is defined in
  [X9.42].

     dhpublicnumber OBJECT IDENTIFIER ::= { iso(1) member-body(2)
               us(840) ansi-x942(10046) number-type(2) 1 }

  The dhpublicnumber OID is intended to be used in the algorithm field
  of a value of type AlgorithmIdentifier.  The parameters field of that
  type, which has the algorithm-specific syntax ANY DEFINED BY
  algorithm, have the ASN.1 type DomainParameters for this algorithm.

     DomainParameters ::= SEQUENCE {
           p       INTEGER, -- odd prime, p=jq +1
           g       INTEGER, -- generator, g
           q       INTEGER, -- factor of p-1
           j       INTEGER OPTIONAL, -- subgroup factor
           validationParms  ValidationParms OPTIONAL }

     ValidationParms ::= SEQUENCE {
           seed             BIT STRING,
           pgenCounter      INTEGER }





Polk, et al.                Standards Track                    [Page 10]

RFC 3279               Algorithms and Identifiers             April 2002


  The fields of type DomainParameters have the following meanings:

     p identifies the prime p defining the Galois field;

     g specifies the generator of the multiplicative subgroup of order
     g;

     q specifies the prime factor of p-1;

     j optionally specifies the value that satisfies the equation
     p=jq+1 to support the optional verification of group parameters;

     seed optionally specifies the bit string parameter used as the
     seed for the domain parameter generation process; and

     pgenCounter optionally specifies the integer value output as part
     of the of the domain parameter prime generation process.

  If either of the domain parameter generation components (pgenCounter
  or seed) is provided, the other MUST be present as well.

  The Diffie-Hellman public key MUST be ASN.1 encoded as an INTEGER;
  this encoding shall be used as the contents (i.e., the value) of the
  subjectPublicKey component (a BIT STRING) of the SubjectPublicKeyInfo
  data element.

     DHPublicKey ::= INTEGER -- public key, y = g^x mod p

  If the keyUsage extension is present in a certificate which conveys a
  DH public key, the following values may be present:

     keyAgreement;
     encipherOnly; and
     decipherOnly.

  If present, the keyUsage extension MUST assert keyAgreement and MAY
  assert either encipherOnly and decipherOnly.  The keyUsage extension
  MUST NOT assert both encipherOnly and decipherOnly.

2.3.4 KEA Public Keys

  This section identifies the preferred OID and parameters for the
  inclusion of a KEA public key in a certificate.  The Key Exchange
  Algorithm (KEA) is a key agreement algorithm.  Two parties may
  generate a "pairwise key" if and only if they share the same KEA
  parameters.  The KEA parameters are not included in a certificate;
  instead a domain identifier is supplied in the parameters field.




Polk, et al.                Standards Track                    [Page 11]

RFC 3279               Algorithms and Identifiers             April 2002


  When the SubjectPublicKeyInfo field contains a KEA key, the algorithm
  identifier and parameters SHALL be as defined in [SDN.701r]:

     id-keyExchangeAlgorithm  OBJECT IDENTIFIER   ::=
            { 2 16 840 1 101 2 1 1 22 }

     KEA-Parms-Id     ::= OCTET STRING

  CAs MUST populate the parameters field of the AlgorithmIdentifier
  within the SubjectPublicKeyInfo field of each certificate containing
  a KEA public key with an 80-bit parameter identifier (OCTET STRING),
  also known as the domain identifier.  The domain identifier is
  computed in three steps:

     (1) the KEA domain parameters (p, q, and g) are DER encoded using
     the Dss-Parms structure;

     (2) a 160-bit SHA-1 hash is generated from the parameters; and

     (3) the 160-bit hash is reduced to 80-bits by performing an
     "exclusive or" of the 80 high order bits with the 80 low order
     bits.

  The resulting value is encoded such that the most significant byte of
  the 80-bit value is the first octet in the octet string.  The Dss-
  Parms is provided above in Section 2.3.2.

  A KEA public key, y, is conveyed in the subjectPublicKey BIT STRING
  such that the most significant bit (MSB) of y becomes the MSB of the
  BIT STRING value field and the least significant bit (LSB) of y
  becomes the LSB of the BIT STRING value field.  This results in the
  following encoding:

     BIT STRING tag;
     BIT STRING length;
     0 (indicating that there are zero unused bits in the final octet
     of y); and
     BIT STRING value field including y.

  The key usage extension may optionally appear in a KEA certificate.
  If a KEA certificate includes the keyUsage extension, only the
  following values may be asserted:

     keyAgreement;
     encipherOnly; and
     decipherOnly.





Polk, et al.                Standards Track                    [Page 12]

RFC 3279               Algorithms and Identifiers             April 2002


  If present, the keyUsage extension MUST assert keyAgreement and MAY
  assert either encipherOnly and decipherOnly.  The keyUsage extension
  MUST NOT assert both encipherOnly and decipherOnly.

2.3.5 ECDSA and ECDH Keys

  This section identifies the preferred OID and parameter encoding for
  the inclusion of an ECDSA or ECDH public key in a certificate.  The
  Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in
  [X9.62].  ECDSA is the elliptic curve mathematical analog of the
  Digital Signature Algorithm [FIPS 186].  The Elliptic Curve Diffie
  Hellman (ECDH) algorithm is a key agreement algorithm defined in
  [X9.63].

  ECDH is the elliptic curve mathematical analog of the Diffie-Hellman
  key agreement algorithm as specified in [X9.42].  The ECDSA and ECDH
  specifications use the same OIDs and parameter encodings.  The ASN.1
  object identifiers used to identify these public keys are defined in
  the following arc:

  ansi-X9-62 OBJECT IDENTIFIER ::=
                            { iso(1) member-body(2) us(840) 10045 }

  When certificates contain an ECDSA or ECDH public key, the
  id-ecPublicKey algorithm identifier MUST be used. The id-ecPublicKey
  algorithm identifier is defined as follows:

    id-public-key-type OBJECT IDENTIFIER  ::= { ansi-X9.62 2 }

    id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }

  This OID is used in public key certificates for both ECDSA signature
  keys and ECDH encryption keys.  The intended application for the key
  may be indicated in the key usage field (see [RFC 3280]).  The use of
  a single key for both signature and encryption purposes is not
  recommended, but is not forbidden.

  ECDSA and ECDH require use of certain parameters with the public key.
  The parameters may be inherited from the issuer, implicitly included
  through reference to a "named curve," or explicitly included in the
  certificate.

     EcpkParameters ::= CHOICE {
       ecParameters  ECParameters,
       namedCurve    OBJECT IDENTIFIER,
       implicitlyCA  NULL }





Polk, et al.                Standards Track                    [Page 13]

RFC 3279               Algorithms and Identifiers             April 2002


  When the parameters are inherited, the parameters field SHALL contain
  implictlyCA, which is the ASN.1 value NULL.  When parameters are
  specified by reference, the parameters field SHALL contain the
  named-Curve choice, which is an object identifier.  When the
  parameters are explicitly included, they SHALL be encoded in the
  ASN.1 structure ECParameters:

     ECParameters ::= SEQUENCE {
        version   ECPVer,          -- version is always 1
        fieldID   FieldID,         -- identifies the finite field over
                                   -- which the curve is defined
        curve     Curve,           -- coefficients a and b of the
                                   -- elliptic curve
        base      ECPoint,         -- specifies the base point P
                                   -- on the elliptic curve
        order     INTEGER,         -- the order n of the base point
        cofactor  INTEGER OPTIONAL -- The integer h = #E(Fq)/n
        }

     ECPVer ::= INTEGER {ecpVer1(1)}

     Curve ::= SEQUENCE {
        a         FieldElement,
        b         FieldElement,
        seed      BIT STRING OPTIONAL }

     FieldElement ::= OCTET STRING

     ECPoint ::= OCTET STRING

  The value of FieldElement SHALL be the octet string representation of
  a field element following the conversion routine in [X9.62], Section
  4.3.3.  The value of ECPoint SHALL be the octet string representation
  of an elliptic curve point following the conversion routine in
  [X9.62], Section 4.3.6.  Note that this octet string may represent an
  elliptic curve point in compressed or uncompressed form.

  Implementations that support elliptic curve according to this
  specification MUST support the uncompressed form and MAY support the
  compressed form.

  The components of type ECParameters have the following meanings:

     version specifies the version number of the elliptic curve
     parameters.  It MUST have the value 1 (ecpVer1).






Polk, et al.                Standards Track                    [Page 14]

RFC 3279               Algorithms and Identifiers             April 2002


     fieldID identifies the finite field over which the elliptic curve
     is defined.  Finite fields are represented by values of the
     parameterized type FieldID, constrained to the values of the
     objects defined in the information object set FieldTypes.
     Additional detail regarding fieldID is provided below.

     curve specifies the coefficients a and b of the elliptic curve E.
     Each coefficient is represented as a value of type FieldElement,
     an OCTET STRING. seed is an optional parameter used to derive the
     coefficients of a randomly generated elliptic curve.

     base specifies the base point P on the elliptic curve.  The base
     point is represented as a value of type ECPoint, an OCTET STRING.

     order specifies the order n of the base point.

     cofactor is the integer h = #E(Fq)/n.  This parameter is specified
     as OPTIONAL.  However, the cofactor MUST be included in ECDH
     public key parameters.  The cofactor is not required to support
     ECDSA, except in parameter validation.  The cofactor MAY be
     included to support parameter validation for ECDSA keys.
     Parameter validation is not required by this specification.

  The AlgorithmIdentifier within SubjectPublicKeyInfo is the only place
  within a certificate where the parameters may be used.  If the
  elliptic curve parameters are specified as implicitlyCA in the
  SubjectPublicKeyInfo AlgorithmIdentifier and the CA signed the
  subject certificate using ECDSA, then the certificate issuer's ECDSA
  parameters apply to the subject's ECDSA key.  If the elliptic curve
  parameters are specified as implicitlyCA in the SubjectPublicKeyInfo
  AlgorithmIdentifier and the CA signed the certificate using a
  signature algorithm other than ECDSA, then clients MUST not make use
  of the elliptic curve public key.

     FieldID ::= SEQUENCE {
        fieldType   OBJECT IDENTIFIER,
        parameters  ANY DEFINED BY fieldType }

  FieldID is a SEQUENCE of two components, fieldType and parameters.
  The fieldType contains an object identifier value that uniquely
  identifies the type contained in the parameters.

  The object identifier id-fieldType specifies an arc containing the
  object identifiers of each field type.  It has the following value:

     id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1) }





Polk, et al.                Standards Track                    [Page 15]

RFC 3279               Algorithms and Identifiers             April 2002


  The object identifiers prime-field and characteristic-two-field name
  the two kinds of fields defined in this Standard.  They have the
  following values:

     prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }

     Prime-p ::= INTEGER    -- Field size p (p in bits)

     characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }

     Characteristic-two ::= SEQUENCE {
        m           INTEGER,                      -- Field size 2^m
        basis       OBJECT IDENTIFIER,
        parameters  ANY DEFINED BY basis }

  The object identifier id-characteristic-two-basis specifies an arc
  containing the object identifiers for each type of basis for the
  characteristic-two finite fields.  It has the following value:

     id-characteristic-two-basis OBJECT IDENTIFIER ::= {
          characteristic-two-field basisType(1) }

  The object identifiers gnBasis, tpBasis and ppBasis name the three
  kinds of basis for characteristic-two finite fields defined by
  [X9.62].  They have the following values:

     gnBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }

     -- for gnBasis, the value of the parameters field is NULL

     tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }

     -- type of parameters field for tpBasis is Trinomial

     Trinomial ::= INTEGER

     ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }

     -- type of parameters field for ppBasis is Pentanomial

     Pentanomial ::= SEQUENCE {
        k1  INTEGER,
        k2  INTEGER,
        k3  INTEGER }







Polk, et al.                Standards Track                    [Page 16]

RFC 3279               Algorithms and Identifiers             April 2002


  The elliptic curve public key (an ECPoint which is an OCTET STRING)
  is mapped to a subjectPublicKey (a BIT STRING) as follows:  the most
  significant bit of the OCTET STRING becomes the most significant bit
  of the BIT STRING, and the least significant bit of the OCTET STRING
  becomes the least significant bit of the BIT STRING.  Note that this
  octet string may represent an elliptic curve point in compressed or
  uncompressed form.  Implementations that support elliptic curve
  according to this specification MUST support the uncompressed form
  and MAY support the compressed form.

  If the keyUsage extension is present in a CA or CRL issuer
  certificate which conveys an elliptic curve public key, any
  combination of the following values MAY be present:

     digitalSignature;
     nonRepudiation; and
     keyAgreement.

  If the keyAgreement value is present, either of the following values
  MAY be present:

     encipherOnly; and
     decipherOnly.

  The keyUsage extension MUST NOT assert both encipherOnly and
  decipherOnly.

  If the keyUsage extension is present in a CA certificate which
  conveys an elliptic curve public key, any combination of the
  following values MAY be present:

     digitalSignature;
     nonRepudiation;
     keyAgreement;
     keyCertSign; and
     cRLSign.

  As above, if the keyUsage extension asserts keyAgreement then it MAY
  assert either encipherOnly and decipherOnly.  However, this
  specification RECOMMENDS that if keyCertSign or cRLSign is present,
  keyAgreement, encipherOnly, and decipherOnly SHOULD NOT be present.










Polk, et al.                Standards Track                    [Page 17]

RFC 3279               Algorithms and Identifiers             April 2002


3  ASN.1 Module

  PKIX1Algorithms88 { iso(1) identified-organization(3) dod(6)
  internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
  id-mod-pkix1-algorithms(17) }

  DEFINITIONS EXPLICIT TAGS ::= BEGIN

  -- EXPORTS All;

  -- IMPORTS NONE;

  --
  --   One-way Hash Functions
  --

  md2  OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) rsadsi(113549)
    digestAlgorithm(2) 2 }

  md5  OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) rsadsi(113549)
    digestAlgorithm(2) 5 }

  id-sha1  OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) oiw(14) secsig(3)
    algorithms(2) 26 }

  --
  --   DSA Keys and Signatures
  --

  -- OID for DSA public key

  id-dsa OBJECT IDENTIFIER ::= {
       iso(1) member-body(2) us(840) x9-57(10040) x9algorithm(4) 1 }

  -- encoding for DSA public key

  DSAPublicKey ::= INTEGER  -- public key, y

  Dss-Parms  ::=  SEQUENCE  {
     p             INTEGER,
     q             INTEGER,
     g             INTEGER  }






Polk, et al.                Standards Track                    [Page 18]

RFC 3279               Algorithms and Identifiers             April 2002


  -- OID for DSA signature generated with SHA-1 hash

  id-dsa-with-sha1 OBJECT IDENTIFIER ::=  {
       iso(1) member-body(2) us(840) x9-57 (10040) x9algorithm(4) 3 }

  -- encoding for DSA signature generated with SHA-1 hash

  Dss-Sig-Value  ::=  SEQUENCE  {
     r       INTEGER,
     s       INTEGER  }

  --
  --   RSA Keys and Signatures
  --

  -- arc for RSA public key and RSA signature OIDs

  pkcs-1 OBJECT IDENTIFIER ::= {
        iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }

  -- OID for RSA public keys

  rsaEncryption OBJECT IDENTIFIER ::=  { pkcs-1 1 }

  -- OID for RSA signature generated with MD2 hash

  md2WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 2 }

  -- OID for RSA signature generated with MD5 hash

  md5WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 4 }

  -- OID for RSA signature generated with SHA-1 hash

  sha1WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 5 }

  -- encoding for RSA public key

  RSAPublicKey ::= SEQUENCE {
     modulus            INTEGER,    -- n
     publicExponent     INTEGER  }  -- e










Polk, et al.                Standards Track                    [Page 19]

RFC 3279               Algorithms and Identifiers             April 2002


  --
  --   Diffie-Hellman Keys
  --

  dhpublicnumber OBJECT IDENTIFIER ::= {
       iso(1) member-body(2) us(840) ansi-x942(10046)
       number-type(2) 1 }

  -- encoding for DSA public key

  DHPublicKey ::= INTEGER  -- public key, y = g^x mod p

  DomainParameters ::= SEQUENCE {
     p       INTEGER,           -- odd prime, p=jq +1
     g       INTEGER,           -- generator, g
     q       INTEGER,           -- factor of p-1
     j       INTEGER OPTIONAL,  -- subgroup factor, j>= 2
     validationParms  ValidationParms OPTIONAL }

  ValidationParms ::= SEQUENCE {
     seed             BIT STRING,
     pgenCounter      INTEGER }

  --
  --   KEA Keys
  --

  id-keyExchangeAlgorithm  OBJECT IDENTIFIER  ::=
       { 2 16 840 1 101 2 1 1 22 }

  KEA-Parms-Id ::= OCTET STRING

  --
  --   Elliptic Curve Keys, Signatures, and Curves
  --

  ansi-X9-62 OBJECT IDENTIFIER ::= {
       iso(1) member-body(2) us(840) 10045 }

  FieldID ::= SEQUENCE {                    -- Finite field
     fieldType   OBJECT IDENTIFIER,
     parameters  ANY DEFINED BY fieldType }

  -- Arc for ECDSA signature OIDS

  id-ecSigType OBJECT IDENTIFIER ::= { ansi-X9-62 signatures(4) }





Polk, et al.                Standards Track                    [Page 20]

RFC 3279               Algorithms and Identifiers             April 2002


  -- OID for ECDSA signatures with SHA-1

  ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { id-ecSigType 1 }

  -- OID for an elliptic curve signature
  -- format for the value of an ECDSA signature value

  ECDSA-Sig-Value ::= SEQUENCE {
     r     INTEGER,
     s     INTEGER }

  -- recognized field type OIDs are defined in the following arc

  id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1) }

  -- where fieldType is prime-field, the parameters are of type Prime-p

  prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }

  Prime-p ::= INTEGER -- Finite field F(p), where p is an odd prime

  -- where fieldType is characteristic-two-field, the parameters are
  -- of type Characteristic-two

  characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }

  Characteristic-two ::= SEQUENCE {
     m           INTEGER,                   -- Field size 2^m
     basis       OBJECT IDENTIFIER,
     parameters  ANY DEFINED BY basis }

  -- recognized basis type OIDs are defined in the following arc

  id-characteristic-two-basis OBJECT IDENTIFIER ::= {
       characteristic-two-field basisType(3) }

  -- gnbasis is identified by OID gnBasis and indicates
  -- parameters are NULL

  gnBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }

  -- parameters for this basis are NULL

  -- trinomial basis is identified by OID tpBasis and indicates
  -- parameters of type Pentanomial

  tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }




Polk, et al.                Standards Track                    [Page 21]

RFC 3279               Algorithms and Identifiers             April 2002


  -- Trinomial basis representation of F2^m
  -- Integer k for reduction polynomial xm + xk + 1

  Trinomial ::= INTEGER

  -- for pentanomial basis is identified by OID ppBasis and indicates
  -- parameters of type Pentanomial

  ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }

  -- Pentanomial basis representation of F2^m
  -- reduction polynomial integers k1, k2, k3
  -- f(x) = x**m + x**k3 + x**k2 + x**k1 + 1

  Pentanomial ::= SEQUENCE {
     k1  INTEGER,
     k2  INTEGER,
     k3  INTEGER }

  -- The object identifiers gnBasis, tpBasis and ppBasis name
  -- three kinds of basis for characteristic-two finite fields

  FieldElement ::= OCTET STRING             -- Finite field element

  ECPoint  ::= OCTET STRING                 -- Elliptic curve point

  -- Elliptic Curve parameters may be specified explicitly,
  -- specified implicitly through a "named curve", or
  -- inherited from the CA

  EcpkParameters ::= CHOICE {
     ecParameters  ECParameters,
     namedCurve    OBJECT IDENTIFIER,
     implicitlyCA  NULL }

  ECParameters  ::= SEQUENCE {         -- Elliptic curve parameters
     version   ECPVer,
     fieldID   FieldID,
     curve     Curve,
     base      ECPoint,                -- Base point G
     order     INTEGER,                -- Order n of the base point
     cofactor  INTEGER  OPTIONAL }     -- The integer h = #E(Fq)/n

  ECPVer ::= INTEGER {ecpVer1(1)}







Polk, et al.                Standards Track                    [Page 22]

RFC 3279               Algorithms and Identifiers             April 2002


  Curve  ::= SEQUENCE {
     a     FieldElement,            -- Elliptic curve coefficient a
     b     FieldElement,            -- Elliptic curve coefficient b
     seed  BIT STRING  OPTIONAL }

  id-publicKeyType OBJECT IDENTIFIER  ::= { ansi-X9-62 keyType(2) }

  id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }

  -- Named Elliptic Curves in ANSI X9.62.

  ellipticCurve OBJECT IDENTIFIER ::= { ansi-X9-62 curves(3) }

  c-TwoCurve OBJECT IDENTIFIER ::= {
       ellipticCurve characteristicTwo(0) }

  c2pnb163v1  OBJECT IDENTIFIER  ::=  { c-TwoCurve  1 }
  c2pnb163v2  OBJECT IDENTIFIER  ::=  { c-TwoCurve  2 }
  c2pnb163v3  OBJECT IDENTIFIER  ::=  { c-TwoCurve  3 }
  c2pnb176w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve  4 }
  c2tnb191v1  OBJECT IDENTIFIER  ::=  { c-TwoCurve  5 }
  c2tnb191v2  OBJECT IDENTIFIER  ::=  { c-TwoCurve  6 }
  c2tnb191v3  OBJECT IDENTIFIER  ::=  { c-TwoCurve  7 }
  c2onb191v4  OBJECT IDENTIFIER  ::=  { c-TwoCurve  8 }
  c2onb191v5  OBJECT IDENTIFIER  ::=  { c-TwoCurve  9 }
  c2pnb208w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 10 }
  c2tnb239v1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 11 }
  c2tnb239v2  OBJECT IDENTIFIER  ::=  { c-TwoCurve 12 }
  c2tnb239v3  OBJECT IDENTIFIER  ::=  { c-TwoCurve 13 }
  c2onb239v4  OBJECT IDENTIFIER  ::=  { c-TwoCurve 14 }
  c2onb239v5  OBJECT IDENTIFIER  ::=  { c-TwoCurve 15 }
  c2pnb272w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 16 }
  c2pnb304w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 17 }
  c2tnb359v1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 18 }
  c2pnb368w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 19 }
  c2tnb431r1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 20 }

  primeCurve OBJECT IDENTIFIER ::= { ellipticCurve prime(1) }

  prime192v1  OBJECT IDENTIFIER  ::=  { primeCurve  1 }
  prime192v2  OBJECT IDENTIFIER  ::=  { primeCurve  2 }
  prime192v3  OBJECT IDENTIFIER  ::=  { primeCurve  3 }
  prime239v1  OBJECT IDENTIFIER  ::=  { primeCurve  4 }
  prime239v2  OBJECT IDENTIFIER  ::=  { primeCurve  5 }
  prime239v3  OBJECT IDENTIFIER  ::=  { primeCurve  6 }
  prime256v1  OBJECT IDENTIFIER  ::=  { primeCurve  7 }

  END



Polk, et al.                Standards Track                    [Page 23]

RFC 3279               Algorithms and Identifiers             April 2002


4  References

  [FIPS 180-1]   Federal Information Processing Standards Publication
                 (FIPS PUB) 180-1, Secure Hash Standard, 17 April 1995.
                 [Supersedes FIPS PUB 180 dated 11 May 1993.]

  [FIPS 186-2]   Federal Information Processing Standards Publication
                 (FIPS PUB) 186, Digital Signature Standard, 27 January
                 2000. [Supersedes FIPS PUB 186-1 dated 15 December
                 1998.]

  [P1363]        IEEE P1363, "Standard Specifications for Public-Key
                 Cryptography", 2001.

  [RC95]         Rogier, N. and Chauvaud, P., "The compression function
                 of MD2 is not collision free," Presented at Selected
                 Areas in Cryptography '95, May 1995.

  [RFC 1034]     Mockapetris, P., "Domain Names - Concepts and
                 Facilities", STD 13, RFC 1034, November 1987.

  [RFC 1319]     Kaliski, B., "The MD2 Message-Digest Algorithm", RFC
                 1319, April 1992.

  [RFC 1321]     Rivest, R., "The MD5 Message-Digest Algorithm", RFC
                 1321, April 1992.

  [RFC 1422]     Kent, S., "Privacy Enhancement for Internet Electronic
                 Mail: Part II: Certificate-Based Key Management", RFC
                 1422, February 1993.

  [RFC 1423]     Balenson, D., "Privacy Enhancement for Internet
                 Electronic Mail: Part III: Algorithms, Modes, and
                 Identifiers", RFC 1423, February 1993.

  [RFC 2119]     Bradner, S., "Key Words for Use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC 2313]     Kaliski, B., "PKCS #1: RSA Encryption Version 1.5",
                 RFC 2313, March 1998.

  [RFC 2459]     Housley, R., Ford, W., Polk, W. and D. Solo "Internet
                 X.509 Public Key Infrastructure: Certificate and CRL
                 Profile", RFC 2459, January, 1999.

  [RFC 3174]     Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
                 (SHA1)", RFC 3174, September 2001.




Polk, et al.                Standards Track                    [Page 24]

RFC 3279               Algorithms and Identifiers             April 2002


  [RFC 3280]     Housley, R., Polk, W., Ford, W. and D. Solo, "Internet
                 X.509 Public Key Infrastructure Certificate and
                 Certificate Revocation List (CRL) Profile", RFC 3280,
                 April 2002.

  [SDN.701r]     SDN.701, "Message Security Protocol 4.0", Revision A
                 1997-02-06.

  [X.208]        CCITT Recommendation X.208: Specification of Abstract
                 Syntax Notation One (ASN.1), 1988.

  [X.660]        ITU-T Recommendation X.660 Information Technology -
                 ASN.1 encoding rules: Specification of Basic Encoding
                 Rules (BER), Canonical Encoding Rules (CER) and
                 Distinguished Encoding Rules (DER), 1997.

  [X9.42]        ANSI X9.42-2000, "Public Key Cryptography for The
                 Financial Services Industry: Agreement of Symmetric
                 Keys Using Discrete Logarithm Cryptography", December,
                 1999.

  [X9.62]        X9.62-1998, "Public Key Cryptography For The Financial
                 Services Industry: The Elliptic Curve Digital
                 Signature Algorithm (ECDSA)", January 7, 1999.

  [X9.63]        ANSI X9.63-2001, "Public Key Cryptography For The
                 Financial Services Industry: Key Agreement and Key
                 Transport Using Elliptic Curve Cryptography", Work in
                 Progress.

5  Security Considerations

  This specification does not constrain the size of public keys or
  their parameters for use in the Internet PKI.  However, the key size
  selected impacts the strength achieved when implementing
  cryptographic services.  Selection of appropriate key sizes is
  critical to implementing appropriate security.

  This specification does not identify particular elliptic curves for
  use in the Internet PKI.  However, the particular curve selected
  impact the strength of the digital signatures.  Some curves are
  cryptographically stronger than others!

  In general, use of "well-known" curves, such as the "named curves"
  from ANSI X9.62, is a sound strategy.  For additional information,
  refer to X9.62 Appendix H.1.3, "Key Length Considerations" and
  Appendix A.1, "Avoiding Cryptographically Weak Keys".




Polk, et al.                Standards Track                    [Page 25]

RFC 3279               Algorithms and Identifiers             April 2002


  This specification supplements RFC 3280.  The security considerations
  section of that document applies to this specification as well.

6  Intellectual Property Rights

  The IETF has been notified of intellectual property rights claimed in
  regard to some or all of the specification contained in this
  document.  For more information consult the online list of claimed
  rights.

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards- related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

7  Author Addresses:

  Tim Polk
  NIST
  100 Bureau Drive, Stop 8930
  Gaithersburg, MD 20899-8930
  USA
  EMail: [email protected]

  Russell Housley
  RSA Laboratories
  918 Spring Knoll Drive
  Herndon, VA 20170
  USA
  EMail: [email protected]

  Larry Bassham
  NIST
  100 Bureau Drive, Stop 8930
  Gaithersburg, MD 20899-8930
  USA
  EMail: [email protected]





Polk, et al.                Standards Track                    [Page 26]

RFC 3279               Algorithms and Identifiers             April 2002


8.  Full Copyright Statement

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Polk, et al.                Standards Track                    [Page 27]