Network Working Group               B. Jamoussi, Editor, Nortel Networks
Request for Comments: 3212                       L. Andersson, Utfors AB
Category: Standards Track                    R. Callon, Juniper Networks
                                          R. Dantu, Netrake Corporation
                                                   L. Wu, Cisco Systems
                                        P. Doolan, OTB Consulting Corp.
                                                             T. Worster
                                                  N. Feldman, IBM Corp.
                                            A. Fredette, ANF Consulting
                                               M. Girish, Atoga Systems
                                                     E. Gray, Sandburst
                                       J. Heinanen, Song Networks, Inc.
                                     T. Kilty, Newbridge Networks, Inc.
                                              A. Malis, Vivace Networks
                                                           January 2002


                Constraint-Based LSP Setup using LDP

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

  This document specifies mechanisms and TLVs (Type/Length/Value) for
  support of CR-LSPs (constraint-based routed Label Switched Path)
  using LDP (Label Distribution Protocol).

  This specification proposes an end-to-end setup mechanism of a CR-LSP
  initiated by the ingress LSR (Label Switching Router).  We also
  specify mechanisms to provide means for reservation of resources
  using LDP.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [6].






Jamoussi, et al.            Standards Track                     [Page 1]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


Table of Contents

  1. Introduction....................................................3
  2. Constraint-based Routing Overview...............................4
  2.1 Strict and Loose Explicit Routes...............................5
  2.2 Traffic Characteristics........................................5
  2.3 Preemption.....................................................5
  2.4 Route Pinning..................................................6
  2.5 Resource Class.................................................6
  3. Solution Overview...............................................6
  3.1 Required Messages and TLVs.....................................7
  3.2 Label Request Message..........................................7
  3.3 Label Mapping Message..........................................9
  3.4 Notification Message..........................................10
  3.5 Release , Withdraw, and Abort Messages........................11
  4. Protocol Specification.........................................11
  4.1 Explicit Route TLV (ER-TLV)...................................11
  4.2 Explicit Route Hop TLV (ER-Hop TLV)...........................12
  4.3 Traffic Parameters TLV........................................13
  4.3.1 Semantics...................................................15
  4.3.1.1 Frequency.................................................15
  4.3.1.2 Peak Rate.................................................16
  4.3.1.3 Committed Rate............................................16
  4.3.1.4 Excess Burst Size.........................................16
  4.3.1.5 Peak Rate Token Bucket....................................16
  4.3.1.6 Committed Data Rate Token Bucket..........................17
  4.3.1.7 Weight....................................................18
  4.3.2 Procedures..................................................18
  4.3.2.1 Label Request Message.....................................18
  4.3.2.2 Label Mapping Message.....................................18
  4.3.2.3 Notification Message......................................19
  4.4 Preemption TLV................................................19
  4.5 LSPID TLV.....................................................20
  4.6 Resource Class (Color) TLV....................................21
  4.7 ER-Hop semantics..............................................22
  4.7.1. ER-Hop 1: The IPv4 prefix..................................22
  4.7.2. ER-Hop 2: The IPv6 address.................................23
  4.7.3. ER-Hop 3:  The autonomous system number....................24
  4.7.4. ER-Hop 4: LSPID............................................24
  4.8. Processing of the Explicit Route TLV.........................26
  4.8.1. Selection of the next hop..................................26
  4.8.2. Adding ER-Hops to the explicit route TLV...................27
  4.9 Route Pinning TLV.............................................28
  4.10 CR-LSP FEC Element...........................................28
  5. IANA Considerations............................................29
  5.1 TLV Type Name Space...........................................29
  5.2 FEC Type Name Space...........................................30
  5.3 Status Code Space.............................................30



Jamoussi, et al.            Standards Track                     [Page 2]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  6. Security Considerations........................................31
  7. Acknowledgments................................................31
  8. Intellectual Property Consideration............................31
  9. References.....................................................32
  Appendix A: CR-LSP Establishment Examples.........................33
  A.1 Strict Explicit Route Example.................................33
  A.2 Node Groups and Specific Nodes Example........................34
  Appendix B. QoS Service Examples..................................36
  B.1 Service Examples..............................................36
  B.2 Establishing CR-LSP Supporting Real-Time Applications.........38
  B.3 Establishing CR-LSP Supporting Delay Insensitive Applications.38
  Author's Addresses................................................39
  Full Copyright Statement..........................................42

1. Introduction

  Label Distribution Protocol (LDP) is defined in [1] for distribution
  of labels inside one MPLS domain.  One of the most important services
  that may be offered using MPLS in general and LDP in particular is
  support for constraint-based routing of traffic across the routed
  network.  Constraint-based routing offers the opportunity to extend
  the information used to setup paths beyond what is available for the
  routing protocol.  For instance, an LSP can be setup based on
  explicit route constraints, QoS constraints, and other constraints.
  Constraint-based routing (CR) is a mechanism used to meet Traffic
  Engineering requirements that have been proposed by, [2] and [3].
  These requirements may be met by extending LDP for support of
  constraint-based routed label switched paths (CR-LSPs).  Other uses
  for CR-LSPs include MPLS-based VPNs [4].  More information about the
  applicability of CR-LDP can be found in [5].

  The need for constraint-based routing (CR) in MPLS has been explored
  elsewhere [2], and [3].  Explicit routing is a subset of the more
  general constraint-based routing function.  At the MPLS WG meeting
  held during the Washington IETF (December 1997) there was consensus
  that LDP should support explicit routing of LSPs with provision for
  indication of associated (forwarding) priority.  In the Chicago
  meeting (August 1998), a decision was made that support for explicit
  path setup in LDP will be moved to a separate document.  This
  document provides that support and it has been accepted as a working
  document in the Orlando meeting (December 1998).










Jamoussi, et al.            Standards Track                     [Page 3]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  This specification proposes an end-to-end setup mechanism of a
  constraint-based routed LSP (CR-LSP) initiated by the ingress LSR. We
  also specify mechanisms to provide means for reservation of resources
  using LDP.

  This document introduce TLVs and procedures that provide support for:

        -  Strict and Loose Explicit Routing
        -  Specification of Traffic Parameters
        -  Route Pinning
        -  CR-LSP Preemption though setup/holding priorities
        -  Handling Failures
        -  LSPID
        -  Resource Class

  Section 2 introduces the various constraints defined in this
  specification.  Section 3 outlines the CR-LDP solution.  Section 4
  defines the TLVs and procedures used to setup constraint-based routed
  label switched paths.  Appendix A provides several examples of CR-LSP
  path setup.  Appendix B provides Service Definition Examples.

2. Constraint-based Routing Overview

  Constraint-based routing is a mechanism that supports the Traffic
  Engineering requirements defined in [3].  Explicit Routing is a
  subset of the more general constraint-based routing where the
  constraint is the explicit route (ER).  Other constraints are defined
  to provide a network operator with control over the path taken by an
  LSP.  This section is an overview of the various constraints
  supported by this specification.

  Like any other LSP a CR-LSP is a path through an MPLS network.  The
  difference is that while other paths are setup solely based on
  information in routing tables or from a management system, the
  constraint-based route is calculated at one point at the edge of
  network based on criteria, including but not limited to routing
  information.  The intention is that this functionality shall give
  desired special characteristics to the LSP in order to better support
  the traffic sent over the LSP.  The reason for setting up CR-LSPs
  might be that one wants to assign certain bandwidth or other Service
  Class characteristics to the LSP, or that one wants to make sure that
  alternative routes use physically separate paths through the network.









Jamoussi, et al.            Standards Track                     [Page 4]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


2.1 Strict and Loose Explicit Routes

  An explicit route is represented in a Label Request Message as a list
  of nodes or groups of nodes along the constraint-based route. When
  the CR-LSP is established, all or a subset of the nodes in a group
  may be traversed by the LSP.  Certain operations to be performed
  along the path can also be encoded in the constraint-based route.

  The capability to specify, in addition to specified nodes, groups of
  nodes, of which a subset will be traversed by the CR-LSP, allows the
  system a significant amount of local flexibility in fulfilling a
  request for a constraint-based route.  This allows the generator of
  the constraint-based route to have some degree of imperfect
  information about the details of the path.

  The constraint-based route is encoded as a series of ER-Hops
  contained in a constraint-based route TLV.  Each ER-Hop may identify
  a group of nodes in the constraint-based route.  A constraint-based
  route is then a path including all of the identified groups of nodes
  in the order in which they appear in the TLV.

  To simplify the discussion, we call each group of nodes an "abstract
  node".  Thus, we can also say that a constraint-based route is a path
  including all of the abstract nodes, with the specified operations
  occurring along that path.

2.2 Traffic Characteristics

  The traffic characteristics of a path are described in the Traffic
  Parameters TLV in terms of a peak rate, committed rate, and service
  granularity.  The peak and committed rates describe the bandwidth
  constraints of a path while the service granularity can be used to
  specify a constraint on the delay variation that the CR-LDP MPLS
  domain may introduce to a path's traffic.

2.3 Preemption

  CR-LDP signals the resources required by a path on each hop of the
  route.  If a route with sufficient resources can not be found,
  existing paths may be rerouted to reallocate resources to the new
  path.  This is the process of path preemption.  Setup and holding
  priorities are used to rank existing paths (holding priority) and the
  new path (setup priority) to determine if the new path can preempt an
  existing path.

  The setupPriority of a new CR-LSP and the holdingPriority attributes
  of the existing CR-LSP are used to specify priorities.  Signaling a
  higher holding priority express that the path, once it has been



Jamoussi, et al.            Standards Track                     [Page 5]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  established, should have a lower chance of being preempted. Signaling
  a higher setup priority expresses the expectation that, in the case
  that resource are unavailable, the path is more likely to preempt
  other paths.  The exact rules determining bumping are an aspect of
  network policy.

  The allocation of setup and holding priority values to paths is an
  aspect of network policy.

  The setup and holding priority values range from zero (0) to seven
  (7).  The value zero (0) is the priority assigned to the most
  important path.  It is referred to as the highest priority.  Seven
  (7) is the priority for the least important path.  The use of default
  priority values is an aspect of network policy.  The recommended
  default value is (4).

  The setupPriority of a CR-LSP should not be higher (numerically less)
  than its holdingPriority since it might bump an LSP and be bumped by
  the next "equivalent" request.

2.4 Route Pinning

  Route pinning is applicable to segments of an LSP that are loosely
  routed - i.e. those segments which are specified with a next hop with
  the "L" bit set or where the next hop is an abstract node.  A CR-LSP
  may be setup using route pinning if it is undesirable to change the
  path used by an LSP even when a better next hop becomes available at
  some LSR along the loosely routed portion of the LSP.

2.5 Resource Class

  The network operator may classify network resources in various ways.
  These classes are also known as "colors" or "administrative groups".
  When a CR-LSP is being established, it's necessary to indicate which
  resource classes the CR-LSP can draw from.

3. Solution Overview

  CR-LSP over LDP Specification is designed with the following goals:

     1. Meet the requirements outlined in [3] for performing traffic
        engineering and provide a solid foundation for performing more
        general constraint-based routing.

     2. Build on already specified functionality that meets the
        requirements whenever possible.  Hence, this specification is
        based on [1].




Jamoussi, et al.            Standards Track                     [Page 6]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


     3. Keep the solution simple.

  In this document, support for unidirectional point-to-point CR-LSPs
  is specified.  Support for point-to-multipoint, multipoint-to-point,
  is for further study (FFS).

  Support for constraint-based routed LSPs in this specification
  depends on the following minimal LDP behaviors as specified in [1]:

     -  Use of Basic and/or Extended Discovery Mechanisms.
     -  Use of the Label Request Message defined in [1] in downstream
        on demand label advertisement mode with ordered control.
     -  Use of the Label Mapping Message defined in [1] in downstream
        on demand mode with ordered control.
     -  Use of the Notification Message defined in [1].
     -  Use of the Withdraw and Release Messages defined in [1].
     -  Use of the Loop Detection (in the case of loosely routed
        segments of a CR-LSP) mechanisms defined in [1].

  In addition, the following functionality is added to what's defined
  in [1]:

     -  The Label Request Message used to setup a CR-LSP includes one
        or more CR-TLVs defined in Section 4.  For instance, the Label
        Request Message may include the ER-TLV.

     -  An LSR implicitly infers ordered control from the existence of
        one or more CR-TLVs in the Label Request Message.  This means
        that the LSR can still be configured for independent control
        for LSPs established as a result of dynamic routing.  However,
        when a Label Request Message includes one or more of the CR-
        TLVs, then ordered control is used to setup the CR-LSP.  Note
        that this is also true for the loosely routed parts of a CR-
        LSP.

     -  New status codes are defined to handle error notification for
        failure of established paths specified in the CR-TLVs.  All of
        the new status codes require that the F bit be set.

  Optional TLVs MUST be implemented to be compliant with the protocol.
  However, they are optionally carried in the CR-LDP messages to signal
  certain characteristics of the CR-LSP being established or modified.

  Examples of CR-LSP establishment are given in Appendix A to
  illustrate how the mechanisms described in this document work.






Jamoussi, et al.            Standards Track                     [Page 7]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


3.1 Required Messages and TLVs

  Any Messages, TLVs, and procedures not defined explicitly in this
  document are defined in the LDP Specification [1].  The reader can
  use [7] as an informational document about the state transitions,
  which relate to CR-LDP messages.

  The following subsections are meant as a cross-reference to the [1]
  document and indication of additional functionality beyond what's
  defined in [1] where necessary.

  Note that use of the Status TLV is not limited to Notification
  messages as specified in Section 3.4.6 of [1].  A message other than
  a Notification message may carry a Status TLV as an Optional
  Parameter.  When a message other than a Notification carries a Status
  TLV the U-bit of the Status TLV should be set to 1 to indicate that
  the receiver should silently discard the TLV if unprepared to handle
  it.

3.2 Label Request Message

  The Label Request Message is as defined in 3.5.8 of [1] with the
  following modifications (required only if any of the CR-TLVs is
  included in the Label Request Message):

     -  The Label Request Message MUST include a single FEC-TLV
        element. The CR-LSP FEC TLV element SHOULD be used.  However,
        the other FEC- TLVs defined in [1] MAY be used instead for
        certain applications.

     -  The Optional Parameters TLV includes the definition of any of
        the Constraint-based TLVs specified in Section 4.

     -  The Procedures to handle the Label Request Message are
        augmented by the procedures for processing of the CR-TLVs as
        defined in Section 4.















Jamoussi, et al.            Standards Track                     [Page 8]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  The encoding for the CR-LDP Label Request Message is as follows:

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   Label Request (0x0401)   |      Message Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     FEC TLV                                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     LSPID TLV            (CR-LDP, mandatory)  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     ER-TLV               (CR-LDP, optional)   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Traffic  TLV         (CR-LDP, optional)   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Pinning TLV          (CR-LDP, optional)   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Resource Class TLV (CR-LDP, optional)     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Preemption  TLV      (CR-LDP, optional)   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.3 Label Mapping Message

  The Label Mapping Message is as defined in 3.5.7 of [1] with the
  following modifications:

     -  The Label Mapping Message MUST include a single Label-TLV.

     -  The Label Mapping Message Procedures are limited to downstream
        on demand ordered control mode.

  A Mapping message is transmitted by a downstream LSR to an upstream
  LSR under one of the following conditions:

     1. The LSR is the egress end of the CR-LSP and an upstream mapping
        has been requested.

     2. The LSR received a mapping from its downstream next hop LSR for
        an CR-LSP for which an upstream request is still pending.









Jamoussi, et al.            Standards Track                     [Page 9]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  The encoding for the CR-LDP Label Mapping Message is as follows:

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   Label Mapping (0x0400)   |      Message Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     FEC TLV                                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Label TLV                                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Label Request Message ID TLV                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     LSPID TLV            (CR-LDP, optional)   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Traffic  TLV         (CR-LDP, optional)   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.4 Notification Message

  The Notification Message is as defined in Section 3.5.1 of [1] and
  the Status TLV encoding is as defined in Section 3.4.6 of [1].
  Establishment of an CR-LSP may fail for a variety of reasons.  All
  such failures are considered advisory conditions and they are
  signaled by the Notification Message.

  Notification Messages carry Status TLVs to specify events being
  signaled.  New status codes are defined in Section 4.11 to signal
  error notifications associated with the establishment of a CR-LSP and
  the processing of the CR-TLV.  All of the new status codes require
  that the F bit be set.

  The Notification Message MAY carry the LSPID TLV of the corresponding
  CR-LSP.

  Notification Messages MUST be forwarded toward the LSR originating
  the Label Request at each hop and at any time that procedures in this
  specification - or in [1] - specify sending of a Notification Message
  in response to a Label Request Message.










Jamoussi, et al.            Standards Track                    [Page 10]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  The encoding of the notification message is as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   Notification (0x0001)     |      Message Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Status (TLV)                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Optional Parameters                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.5 Release , Withdraw, and Abort Messages

  The Label Release , Label Withdraw, and Label Abort Request Messages
  are used as specified in [1].  These messages MAY also carry the
  LSPID TLV.

4. Protocol Specification

  The Label Request Message defined in [1] MUST carry the LSPID TLV and
  MAY carry one or more of the optional Constraint-based Routing TLVs
  (CR-TLVs) defined in this section.  If needed, other constraints can
  be supported later through the definition of new TLVs.  In this
  specification, the following TLVs are defined:

     -  Explicit Route TLV
     -  Explicit Route Hop TLV
     -  Traffic Parameters TLV
     -  Preemption TLV
     -  LSPID TLV
     -  Route Pinning TLV
     -  Resource Class TLV
     -  CR-LSP FEC TLV

4.1 Explicit Route TLV (ER-TLV)

  The ER-TLV is an object that specifies the path to be taken by the
  LSP being established.  It is composed of one or more Explicit Route
  Hop TLVs (ER-Hop TLVs) defined in Section 4.2.









Jamoussi, et al.            Standards Track                    [Page 11]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|         Type = 0x0800     |      Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          ER-Hop TLV 1                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          ER-Hop TLV 2                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                          ............                         ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          ER-Hop TLV n                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type
        A fourteen-bit field carrying the value of the ER-TLV
        Type = 0x0800.

  Length
        Specifies the length of the value field in bytes.

  ER-Hop TLVs
        One or more ER-Hop TLVs defined in Section 4.2.

4.2 Explicit Route Hop TLV (ER-Hop TLV)

  The contents of an ER-TLV are a series of variable length ER-Hop
  TLVs.

  A node receiving a label request message including an ER-Hop type
  that is not supported MUST not progress the label request message to
  the downstream LSR and MUST send back a "No Route" Notification
  Message.

  Each ER-Hop TLV has the form:

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|                 Type      |      Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |L|                                  Content //                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+








Jamoussi, et al.            Standards Track                    [Page 12]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  ER-Hop Type
        A fourteen-bit field carrying the type of the ER-Hop contents.
        Currently defined values are:

        Value  Type
        ------ ------------------------
        0x0801 IPv4 prefix
        0x0802 IPv6 prefix
        0x0803 Autonomous system number
        0x0804 LSPID

  Length
        Specifies the length of the value field in bytes.

  L bit
        The L bit in the ER-Hop is a one-bit attribute.  If the L bit
        is set, then the value of the attribute is "loose."  Otherwise,
        the value of the attribute is "strict."  For brevity, we say
        that if the value of the ER-Hop attribute is loose then it is a
        "loose ER-Hop."  Otherwise, it's a "strict ER-Hop."  Further,
        we say that the abstract node of a strict or loose ER-Hop is a
        strict or a loose node, respectively.  Loose and strict nodes
        are always interpreted relative to their prior abstract nodes.
        The path between a strict node and its prior node MUST include
        only network nodes from the strict node and its prior abstract
        node.

        The path between a loose node and its prior node MAY include
        other network nodes, which are not part of the strict node or
        its prior abstract node.

  Contents
        A variable length field containing a node or abstract node
        which is one of the consecutive nodes that make up the
        explicitly routed LSP.

4.3 Traffic Parameters TLV

  The following sections describe the CR-LSP Traffic Parameters.  The
  required characteristics of a CR-LSP are expressed by the Traffic
  Parameter values.

  A Traffic Parameters TLV, is used to signal the Traffic Parameter
  values.  The Traffic Parameters are defined in the subsequent
  sections.






Jamoussi, et al.            Standards Track                    [Page 13]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  The Traffic Parameters TLV contains a Flags field, a Frequency, a
  Weight, and the five Traffic Parameters PDR, PBS, CDR, CBS, EBS.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|        Type = 0x0810      |      Length = 24              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Flags     |    Frequency  |     Reserved  |    Weight     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Peak Data Rate (PDR)                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Peak Burst Size (PBS)                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Committed Data Rate (CDR)                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Committed Burst Size (CBS)                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Excess Burst Size (EBS)                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type
        A fourteen-bit field carrying the value of the Traffic
        Parameters TLV Type = 0x0810.

  Length
        Specifies the length of the value field in bytes = 24.

  Flags
        The Flags field is shown below:

        +--+--+--+--+--+--+--+--+
        | Res |F6|F5|F4|F3|F2|F1|
        +--+--+--+--+--+--+--+--+

        Res - These bits are reserved.
        Zero on transmission.
        Ignored on receipt.
        F1 - Corresponds to the PDR.
        F2 - Corresponds to the PBS.
        F3 - Corresponds to the CDR.
        F4 - Corresponds to the CBS.
        F5 - Corresponds to the EBS.
        F6 - Corresponds to the Weight.







Jamoussi, et al.            Standards Track                    [Page 14]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


        Each flag Fi is a Negotiable Flag corresponding to a Traffic
        Parameter.  The Negotiable Flag value zero denotes
        NotNegotiable and value one denotes Negotiable.

  Frequency
        The Frequency field is coded as an 8 bit unsigned integer with
        the following code points defined:

        0- Unspecified
        1- Frequent
        2- VeryFrequent
        3-255  - Reserved
        Reserved - Zero on transmission.  Ignored on receipt.

  Weight
        An 8 bit unsigned integer indicating the weight of the CR-LSP.
        Valid weight values are from 1 to 255.  The value 0 means that
        weight is not applicable for the CR-LSP.

  Traffic Parameters
        Each Traffic Parameter is encoded as a 32-bit IEEE single-
        precision floating-point number.  A value of positive infinity
        is represented as an IEEE single-precision floating-point
        number with an exponent of all ones (255) and a sign and
        mantissa of all zeros.  The values PDR and CDR are in units of
        bytes per second.  The values PBS, CBS and EBS are in units of
        bytes.

        The value of PDR MUST be greater than or equal to the value of
        CDR in a correctly encoded Traffic Parameters TLV.

4.3.1 Semantics

4.3.1.1 Frequency

  The Frequency specifies at what granularity the CDR allocated to the
  CR-LSP is made available.  The value VeryFrequent means that the
  available rate should average at least the CDR when measured over any
  time interval equal to or longer than the shortest packet time at the
  CDR.  The value Frequent means that the available rate should average
  at least the CDR when measured over any time interval equal to or
  longer than a small number of shortest packet times at the CDR.

  The value Unspecified means that the CDR MAY be provided at any
  granularity.






Jamoussi, et al.            Standards Track                    [Page 15]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


4.3.1.2 Peak Rate

  The Peak Rate defines the maximum rate at which traffic SHOULD be
  sent to the CR-LSP.  The Peak Rate is useful for the purpose of
  resource allocation.  If resource allocation within the MPLS domain
  depends on the Peak Rate value then it should be enforced at the
  ingress to the MPLS domain.

  The Peak Rate is defined in terms of the two Traffic Parameters PDR
  and PBS, see section 4.3.1.5 below.

4.3.1.3 Committed Rate

  The Committed Rate defines the rate that the MPLS domain commits to
  be available to the CR-LSP.

  The Committed Rate is defined in terms of the two Traffic Parameters
  CDR and CBS, see section 4.3.1.6 below.

4.3.1.4 Excess Burst Size

  The Excess Burst Size may be used at the edge of an MPLS domain for
  the purpose of traffic conditioning.  The EBS MAY be used to measure
  the extent by which the traffic sent on a CR-LSP exceeds the
  committed rate.

  The possible traffic conditioning actions, such as passing, marking
  or dropping, are specific to the MPLS domain.

  The Excess Burst Size is defined together with the Committed Rate,
  see section 4.3.1.6 below.

4.3.1.5 Peak Rate Token Bucket

  The Peak Rate of a CR-LSP is specified in terms of a token bucket P
  with token rate PDR and maximum token bucket size PBS.

  The token bucket P is initially (at time 0) full, i.e., the token
  count Tp(0) = PBS.  Thereafter, the token count Tp, if less than PBS,
  is incremented by one PDR times per second.  When a packet of size B
  bytes arrives at time t, the following happens:

     -  If Tp(t)-B >= 0, the packet is not in excess of the peak  rate
        and Tp is decremented by B down to the minimum value of 0, else

     -  the packet is in excess of the peak rate and Tp is not
        decremented.




Jamoussi, et al.            Standards Track                    [Page 16]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  Note that according to the above definition, a positive infinite
  value of either PDR or PBS implies that arriving packets are never in
  excess of the peak rate.

  The actual implementation of an LSR doesn't need to be modeled
  according to the above formal token bucket specification.

4.3.1.6 Committed Data Rate Token Bucket

  The committed rate of a CR-LSP is specified in terms of a token
  bucket C with rate CDR.  The extent by which the offered rate exceeds
  the committed rate MAY be measured in terms of another token bucket
  E, which also operates at rate CDR.  The maximum size of the token
  bucket C is CBS and the maximum size of the token bucket E is EBS.

  The token buckets C and E are initially (at time 0) full, i.e., the
  token count Tc(0) = CBS and the token count Te(0) = EBS.

  Thereafter, the token counts Tc and Te are updated CDR times per
  second as follows:

     -  If Tc is less than CBS, Tc is incremented by one, else
     -  if Te is less then EBS, Te is incremented by one, else neither
        Tc nor Te is incremented.

  When a packet of size B bytes arrives at time t, the following
  happens:

     -  If Tc(t)-B >= 0, the packet is not in excess of the Committed
        Rate and Tc is decremented by B down to the minimum value of 0,
        else

     -  if Te(t)-B >= 0, the packet is in excess of the Committed rate
        but is not in excess of the EBS and Te is decremented by B down
        to the minimum value of 0, else

     -  the packet is in excess of both the Committed Rate and the EBS
        and neither Tc nor Te is decremented.

  Note that according to the above specification, a CDR value of
  positive infinity implies that arriving packets are never in excess
  of either the Committed Rate or EBS.  A positive infinite value of
  either CBS or EBS implies that the respective limit cannot be
  exceeded.

  The actual implementation of an LSR doesn't need to be modeled
  according to the above formal specification.




Jamoussi, et al.            Standards Track                    [Page 17]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


4.3.1.7 Weight

  The weight determines the CR-LSP's relative share of the possible
  excess bandwidth above its committed rate.  The definition of
  "relative share" is MPLS domain specific.

4.3.2 Procedures

4.3.2.1 Label Request Message

  If an LSR receives an incorrectly encoded Traffic Parameters TLV in
  which the value of PDR is less than the value of CDR then it MUST
  send a Notification Message including the Status code "Traffic
  Parameters Unavailable" to the upstream LSR from which it received
  the erroneous message.

  If a Traffic Parameter is indicated as Negotiable in the Label
  Request Message by the corresponding Negotiable Flag then an LSR MAY
  replace the Traffic Parameter value with a smaller value.

  If the Weight is indicated as Negotiable in the Label Request Message
  by the corresponding Negotiable Flag then an LSR may replace the
  Weight value with a lower value (down to 0).

  If, after possible Traffic Parameter negotiation, an LSR can support
  the CR-LSP Traffic Parameters then the LSR MUST reserve the
  corresponding resources for the CR-LSP.

  If, after possible Traffic Parameter negotiation, an LSR cannot
  support the CR-LSP Traffic Parameters then the LSR MUST send a
  Notification Message that contains the "Resource Unavailable" status
  code.

4.3.2.2 Label Mapping Message

  If an LSR receives an incorrectly encoded Traffic Parameters TLV in
  which the value of PDR is less than the value of CDR then it MUST
  send a Label Release message containing the Status code "Traffic
  Parameters Unavailable" to the LSR from which it received the
  erroneous message.  In addition, the LSP should send a Notification
  Message upstream with the status code 'Label Request Aborted'.

  If the negotiation flag was set in the label request message, the
  egress LSR MUST include the (possibly negotiated) Traffic Parameters
  and Weight in the Label Mapping message.

  The Traffic Parameters and the Weight in a Label Mapping message MUST
  be forwarded unchanged.



Jamoussi, et al.            Standards Track                    [Page 18]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  An LSR SHOULD adjust the resources that it reserved for a CR-LSP when
  it receives a Label Mapping Message if the Traffic Parameters differ
  from those in the corresponding Label Request Message.

4.3.2.3 Notification Message

  If an LSR receives a Notification Message for a CR-LSP, it SHOULD
  release any resources that it possibly had reserved for the CR-LSP.
  In addition, on receiving a Notification Message from a Downstream
  LSR that is associated with a Label Request from an upstream LSR, the
  local LSR MUST propagate the Notification message using the
  procedures in [1].  Further the F bit MUST be set.

4.4 Preemption TLV

  The default value of the setup and holding priorities should be in
  the middle of the range (e.g., 4) so that this feature can be turned
  on gradually in an operational network by increasing or decreasing
  the priority starting at the middle of the range.

  Since the Preemption TLV is an optional TLV, LSPs that are setup
  without an explicitly signaled preemption TLV SHOULD be treated as
  LSPs with the default setup and holding priorities (e.g., 4).

  When an established LSP is preempted, the LSR that initiates the
  preemption sends a Withdraw Message upstream and a Release Message
  downstream.

  When an LSP in the process of being established (outstanding Label
  Request without getting a Label Mapping back) is preempted, the LSR
  that initiates the preemption, sends a Notification Message upstream
  and an Abort Message downstream.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|     Type = 0x0820         |      Length = 4               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  SetPrio      | HoldPrio      |      Reserved                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type
        A fourteen-bit field carrying the value of the Preemption-TLV
        Type = 0x0820.

  Length
        Specifies the length of the value field in bytes = 4.




Jamoussi, et al.            Standards Track                    [Page 19]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  Reserved
        Zero on transmission.  Ignored on receipt.

  SetPrio
        A SetupPriority of value zero (0) is the priority assigned to
        the most important path.  It is referred to as the highest
        priority.  Seven (7) is the priority for the least important
        path.  The higher the setup priority, the more paths CR-LDP can
        bump to set up the path.  The default value should be 4.

  HoldPrio
        A HoldingPriority of value zero (0) is the priority assigned to
        the most important path.  It is referred to as the highest
        priority.  Seven (7) is the priority for the least important
        path.  The default value should be 4.
        The higher the holding priority, the less likely it is for CR-
        LDP to reallocate its bandwidth to a new path.

4.5 LSPID TLV

  LSPID is a unique identifier of a CR-LSP within an MPLS network.

  The LSPID is composed of the ingress LSR Router ID (or any of its
  own Ipv4 addresses) and a Locally unique CR-LSP ID to that LSR.

  The LSPID is useful in network management, in CR-LSP repair, and in
  using an already established CR-LSP as a hop in an ER-TLV.

  An "action indicator flag" is carried in the LSPID TLV.  This "action
  indicator flag" indicates explicitly the action that should be taken
  if the LSP already exists on the LSR receiving the message.

  After a CR-LSP is set up, its bandwidth reservation may need to be
  changed by the network operator, due to the new requirements for the
  traffic carried on that CR-LSP.  The "action indicator flag" is used
  indicate the need to modify the bandwidth and possibly other
  parameters of an established CR-LSP without service interruption.
  This feature has application in dynamic network resources management
  where traffic of different priorities and service classes is
  involved.

  The procedure for the code point "modify" is defined in [8].  The
  procedures for other flags are FFS.








Jamoussi, et al.            Standards Track                    [Page 20]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|       Type = 0x0821       |      Length = 4               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Reserved        |ActFlg |      Local CR-LSP ID          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Ingress LSR Router ID                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type
        A fourteen-bit field carrying the value of the LSPID-TLV
        Type = 0x0821.

  Length
        Specifies the length of the value field in bytes = 4.

  ActFlg
        Action Indicator Flag: A 4-bit field that indicates explicitly
        the action that should be taken if the LSP already exists on
        the LSR receiving the message.  A set of indicator code points
        is proposed as follows:

              0000: indicates initial LSP setup
              0001: indicates modify LSP

  Reserved
        Zero on transmission.  Ignored on receipt.

  Local CR-LSP ID
        The Local LSP ID is an identifier of the CR-LSP locally unique
        within the Ingress LSR originating the CR-LSP.

  Ingress LSR Router ID
        An LSR may use any of its own IPv4 addresses in this field.

4.6 Resource Class (Color) TLV

  The Resource Class as defined in [3] is used to specify which links
  are acceptable by this CR-LSP.  This information allows for the
  network's topology to be pruned.










Jamoussi, et al.            Standards Track                    [Page 21]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|         Type = 0x0822     |      Length = 4               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             RsCls                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type
        A fourteen-bit field carrying the value of the ResCls-TLV
        Type = 0x0822.

  Length
        Specifies the length of the value field in bytes = 4.

  RsCls
        The Resource Class bit mask indicating which of the 32
        "administrative groups" or "colors" of links the CR-LSP can
        traverse.

4.7 ER-Hop semantics

4.7.1. ER-Hop 1: The IPv4 prefix

  The abstract node represented by this ER-Hop is the set of nodes,
  which have an IP address, which lies within this prefix.  Note that a
  prefix length of 32 indicates a single IPv4 node.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|         Type = 0x0801     |      Length = 8               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |L|      Reserved                               |    PreLen     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    IPv4 Address (4 bytes)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type
        A fourteen-bit field carrying the value of the ER-Hop 1, IPv4
        Address, Type = 0x0801

  Length
        Specifies the length of the value field in bytes = 8.

  L Bit
        Set to indicate Loose hop.
        Cleared to indicate a strict hop.



Jamoussi, et al.            Standards Track                    [Page 22]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  Reserved
        Zero on transmission.  Ignored on receipt.

  PreLen
        Prefix Length 1-32

  IP Address
        A four-byte field indicating the IP Address.

4.7.2. ER-Hop 2: The IPv6 address

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|          0x0802           |      Length = 20              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |L|             Reserved                        |    PreLen     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  IPV6 address                                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  IPV6 address (continued)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  IPV6 address (continued)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  IPV6 address (continued)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type
        A fourteen-bit field carrying the value of the ER-Hop 2, IPv6
        Address, Type = 0x0802

  Length
        Specifies the length of the value field in bytes = 20.

  L Bit
        Set to indicate Loose hop.
        Cleared to indicate a strict hop.

  Reserved
        Zero on transmission.  Ignored on receipt.

  PreLen
        Prefix Length 1-128

  IPv6 address
        A 128-bit unicast host address.





Jamoussi, et al.            Standards Track                    [Page 23]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


4.7.3. ER-Hop 3:  The autonomous system number

  The abstract node represented by this ER-Hop is the set of nodes
  belonging to the autonomous system.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|          0x0803           |      Length = 4               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |L|          Reserved           |                AS Number      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type
        A fourteen-bit field carrying the value of the ER-Hop 3, AS
        Number, Type = 0x0803

  Length
        Specifies the length of the value field in bytes = 4.

  L Bit
        Set to indicate Loose hop.
        Cleared to indicate a strict hop.

  Reserved
        Zero on transmission.  Ignored on receipt.

  AS Number
        Autonomous System number

4.7.4. ER-Hop 4: LSPID

  The LSPID is used to identify the tunnel ingress point as the next
  hop in the ER.  This ER-Hop allows for stacking new CR-LSPs within an
  already established CR-LSP.  It also allows for splicing the CR-LSP
  being established with an existing CR-LSP.

  If an LSPID Hop is the last ER-Hop in an ER-TLV, than the LSR may
  splice the CR-LSP of the incoming Label Request to the CR-LSP that
  currently exists with this LSPID.  This is useful, for example, at
  the point at which a Label Request used for local repair arrives at
  the next ER-Hop after the loosely specified CR-LSP segment.  Use of
  the LSPID Hop in this scenario eliminates the need for ER-Hops to
  keep the entire remaining ER-TLV at each LSR that is at either
  (upstream or downstream) end of a loosely specified CR-LSP segment as
  part of its state information.  This is due to the fact that the





Jamoussi, et al.            Standards Track                    [Page 24]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  upstream LSR needs only to keep the next ER-Hop and the LSPID and the
  downstream LSR needs only to keep the LSPID in order for each end to
  be able to recognize that the same LSP is being identified.

  If the LSPID Hop is not the last hop in an ER-TLV, the LSR must
  remove the LSP-ID Hop and forward the remaining ER-TLV in a Label
  Request message using an LDP session established with the LSR that is
  the specified CR-LSP's egress.  That LSR will continue processing of
  the CR-LSP Label Request Message.  The result is a tunneled, or
  stacked, CR-LSP.

  To support labels negotiated for tunneled CR-LSP segments, an LDP
  session is required [1] between tunnel end points - possibly using
  the existing CR-LSP.  Use of the existence of the CR-LSP in lieu of a
  session, or other possible session-less approaches, is FFS.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|          0x0804           |      Length = 8               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |L|          Reserved           |               Local LSPID     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Ingress LSR Router ID                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type
        A fourteen-bit field carrying the value of the ER-Hop 4, LSPID,
        Type = 0x0804

  Length
        Specifies the length of the value field in bytes = 8.

  L Bit
        Set to indicate Loose hop.
        Cleared to indicate a strict hop.

  Reserved
        Zero on transmission.  Ignored on receipt.

  Local LSPID
        A 2 byte field indicating the LSPID which is unique with
        reference to its Ingress LSR.

  Ingress LSR Router ID
        An LSR may use any of its own IPv4 addresses in this field.





Jamoussi, et al.            Standards Track                    [Page 25]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


4.8. Processing of the Explicit Route TLV

4.8.1. Selection of the next hop

  A Label Request Message containing an explicit route TLV must
  determine the next hop for this path.  Selection of this next hop may
  involve a selection from a set of possible alternatives.  The
  mechanism for making a selection from this set is implementation
  dependent and is outside of the scope of this specification.
  Selection of particular paths is also outside of the scope of this
  specification, but it is assumed that each node will make a best
  effort attempt to determine a loop-free path.  Note that such best
  efforts may be overridden by local policy.

  To determine the next hop for the path, a node performs the following
  steps:

     1. The node receiving the Label Request Message must first
        evaluate the first ER-Hop.  If the L bit is not set in the
        first ER-Hop and if the node is not part of the abstract node
        described by the first ER-Hop, it has received the message in
        error, and should return a "Bad Initial ER-Hop Error" status.
        If the L bit is set and the local node is not part of the
        abstract node described by the first ER-Hop, the node selects a
        next hop that is along the path to the abstract node described
        by the first ER-Hop.  If there is no first ER-Hop, the message
        is also in error and the system should return a "Bad Explicit
        Routing TLV Error" status using a Notification Message sent
        upstream.

     2. If there is no second ER-Hop, this indicates the end of the
        explicit route.  The explicit route TLV should be removed from
        the Label Request Message.  This node may or may not be the end
        of the LSP.  Processing continues with section 4.8.2, where a
        new explicit route TLV may be added to the Label Request
        Message.

     3. If the node is also a part of the abstract node described by
        the second ER-Hop, then the node deletes the first ER-Hop and
        continues processing with step 2, above.  Note that this makes
        the second ER-Hop into the first ER-Hop of the next iteration.

     4. The node determines if it is topologically adjacent to the
        abstract node described by the second ER-Hop.  If so, the node
        selects a particular next hop which is a member of the abstract
        node.  The node then deletes the first ER-Hop and continues
        processing with section 4.8.2.




Jamoussi, et al.            Standards Track                    [Page 26]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


     5. Next, the node selects a next hop within the abstract node of
        the first ER-Hop that is along the path to the abstract node of
        the second ER-Hop.  If no such path exists then there are two
        cases:

        5.a If the second ER-Hop is a strict ER-Hop, then there is an
            error and the node should return a "Bad Strict Node Error"
            status.

        5.b Otherwise, if the second ER-Hop is a loose ER-Hop, then the
            node selects any next hop that is along the path to the
            next abstract node.  If no path exists within the MPLS
            domain, then there is an error, and the node should return
            a "Bad Loose Node Error" status.

     6. Finally, the node replaces the first ER-Hop with any ER-Hop
        that denotes an abstract node containing the next hop.  This is
        necessary so that when the explicit route is received by the
        next hop, it will be accepted.

     7. Progress the Label Request Message to the next hop.

4.8.2. Adding ER-Hops to the explicit route TLV

  After selecting a next hop, the node may alter the explicit route in
  the following ways.

  If, as part of executing the algorithm in section 4.8.1, the explicit
  route TLV is removed, the node may add a new explicit route TLV.

  Otherwise, if the node is a member of the abstract node for the first
  ER-Hop, then a series of ER-Hops may be inserted before the first
  ER-Hop or may replace the first ER-Hop.  Each ER-Hop in this series
  must denote an abstract node that is a subset of the current abstract
  node.

  Alternately, if the first ER-Hop is a loose ER-Hop, an arbitrary
  series of ER-Hops may be inserted prior to the first ER-Hop.













Jamoussi, et al.            Standards Track                    [Page 27]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


4.9 Route Pinning TLV

  Section 2.4 describes the use of route pinning. The encoding of the
  Route Pinning TLV is as follows:

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|          Type = 0x0823    |      Length = 4               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |P|                        Reserved                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type
        A fourteen-bit field carrying the value of the Pinning-TLV
        Type = 0x0823

  Length
        Specifies the length of the value field in bytes = 4.

  P Bit
        The P bit is set to 1 to indicate that route pinning is
        requested.
        The P bit is set to 0 to indicate that route pinning is not
        requested

  Reserved
        Zero on transmission.  Ignored on receipt.

4.10 CR-LSP FEC Element

  A new FEC element is introduced in this specification to support CR-
  LSPs.  A FEC TLV containing a FEC of Element type CR-LSP (0x04) is a
  CR-LSP FEC TLV.  The CR-LSP FEC Element is an opaque FEC to be used
  only in Messages of CR-LSPs.

  A single FEC element MUST be included in the Label Request Message.
  The FEC Element SHOULD be the CR-LSP FEC Element.  However, one of
  the other FEC elements (Type=0x01, 0x02, 0x03) defined in [1] MAY be
  in CR-LDP messages instead of the CR-LSP FEC Element for certain
  applications.  A FEC TLV containing a FEC of Element type CR-LSP
  (0x04) is a CR-LSP FEC TLV.

        FEC Element     Type    Value
        Type name

        CR-LSP         0x04    No value; i.e., 0 value octets;




Jamoussi, et al.            Standards Track                    [Page 28]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  The CR-LSP FEC TLV encoding is as follows:

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0|          Type = 0x0100    |      Length = 1               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | CR-LSP (4)    |
  +-+-+-+-+-+-+-+-+

  Type
        A fourteen-bit field carrying the value of the FEC TLV
        Type = 0x0100

  Length
        Specifies the length of the value field in bytes = 1.

  CR-LSP FEC Element Type

        0x04

5. IANA Considerations

  CR-LDP defines the following name spaces, which require management:

        -  TLV types.
        -  FEC types.
        -  Status codes.

  The following sections provide guidelines for managing these name
  spaces.

5.1 TLV Type Name Space

  RFC 3036 [1] defines the LDP TLV name space.  This document further
  subdivides the range of RFC 3036 from that TLV space for TLVs
  associated with the CR-LDP in the range 0x0800 - 0x08FF.

  Following the policies outlined in [IANA], TLV types in this range
  are allocated through an IETF Consensus action.











Jamoussi, et al.            Standards Track                    [Page 29]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  Initial values for this range are specified in the following table:

        TLV                                               Type
        --------------------------------------         ----------
        Explicit Route TLV                              0x0800
        Ipv4 Prefix ER-Hop TLV                          0x0801
        Ipv6 Prefix ER-Hop TLV                          0x0802
        Autonomous System Number ER-Hop TLV             0x0803
        LSP-ID ER-Hop TLV                               0x0804
        Traffic Parameters TLV                          0x0810
        Preemption TLV                                  0x0820
        LSPID TLV                                       0x0821
        Resource Class TLV                              0x0822
        Route Pinning TLV                               0x0823

5.2 FEC Type Name Space

  RFC 3036 defines the FEC Type name space.  Further, RFC 3036 has
  assigned values 0x00 through 0x03.  FEC types 0 through 127 are
  available for assignment through IETF consensus action.  This
  specification makes the following additional assignment, using the
  policies outlined in [IANA]:

        FEC Element                                       Type
        --------------------------------------         ----------
        CR-LSP FEC Element                                0x04

5.3 Status Code Space

  RFC 3036 defines the Status Code name space.  This document further
  subdivides the range of RFC 3036 from that TLV space for TLVs
  associated with the CR-LDP in the range 0x04000000 - 0x040000FF.

  Following the policies outlined in [IANA], TLV types in this range
  are allocated through an IETF Consensus action.
















Jamoussi, et al.            Standards Track                    [Page 30]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  Initial values for this range are specified in the following table:

        Status Code                                       Type
        --------------------------------------         ----------

        Bad Explicit Routing TLV Error                 0x04000001
        Bad Strict Node Error                          0x04000002
        Bad Loose  Node Error                          0x04000003
        Bad Initial ER-Hop Error                       0x04000004
        Resource Unavailable                           0x04000005
        Traffic Parameters Unavailable                 0x04000006
        LSP Preempted                                  0x04000007
        Modify Request Not Supported                   0x04000008

6. Security Considerations

  CR-LDP inherits the same security mechanism described in Section 4.0
  of [1] to protect against the introduction of spoofed TCP segments
  into LDP session connection streams.

7. Acknowledgments

  The messages used to signal the CR-LSP setup are based on the work
  done by the LDP [1] design team.

  The list of authors provided with this document is a reduction of the
  original list.  Currently listed authors wish to acknowledge that a
  substantial amount was also contributed to this work by:

     Osama Aboul-Magd, Peter Ashwood-Smith, Joel Halpern,
     Fiffi Hellstrand, Kenneth Sundell and Pasi Vaananen.

  The authors would also like to acknowledge the careful review and
  comments of Ken Hayward, Greg Wright, Geetha Brown, Brian Williams,
  Paul Beaubien, Matthew Yuen, Liam Casey, Ankur Anand and Adrian
  Farrel.

8. Intellectual Property Consideration

  The IETF has been notified of intellectual property rights claimed in
  regard to some or all of the specification contained in this
  document.  For more information consult the online list of claimed
  rights.








Jamoussi, et al.            Standards Track                    [Page 31]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


9. References

  [1] Andersson, L., Doolan, P., Feldman, N., Fredette, A. and B.
      Thomas, "Label Distribution Protocol Specification", RFC 3036,
      January 2001.

  [2] Rosen, E., Viswanathan, A. and R. Callon, "Multiprotocol Label
      Switching Architecture", RFC 3031, January 2001.

  [3] Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M. and J. McManus,
      "Requirements for Traffic Engineering Over MPLS", RFC 2702,
      September 1999.

  [4] Gleeson, B., Lin, A., Heinanen, Armitage, G. and A. Malis, "A
      Framework for IP Based Virtual Private Networks", RFC 2764,
      February 2000.

  [5] Ash, J., Girish, M., Gray, E., Jamoussi, B. and G. Wright,
      "Applicability Statement for CR-LDP", RFC 3213, January 2002.

  [6] Bradner, S., "Key words for use in RFCs to Indicate Requirement
      Levels", BCP 14, RFC 2119, March 1997.

  [7] Boscher, C., Cheval, P., Wu, L. and E. Gray, "LDP State Machine",
      RFC 3215, January 2002.

  [8] Ash, J., Lee, Y., Ashwood-Smith, P., Jamoussi, B., Fedyk, D.,
      Skalecki, D. and L. Li, "LSP Modification Using CR-LDP", RFC
      3214, January 2002.






















Jamoussi, et al.            Standards Track                    [Page 32]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


Appendix A: CR-LSP Establishment Examples

A.1 Strict Explicit Route Example

  This appendix provides an example for the setup of a strictly routed
  CR-LSP.  In this example, a specific node represents each abstract
  node.

  The sample network used here is a four node network with two  edge
  LSRs and two core LSRs as follows:

  abc
  LSR1------LSR2------LSR3------LSR4

  LSR1 generates a Label Request Message as described in Section 3.1 of
  this document and sends it to LSR2.  This message includes the CR-
  TLV.

  A vector of three ER-Hop TLVs <a, b, c> composes the ER-TLV. The ER-
  Hop TLVs used in this example are of type 0x0801 (IPv4 prefix) with a
  prefix length of 32.  Hence, each ER-Hop TLV identifies a specific
  node as opposed to a group of nodes. At LSR2, the following
  processing of the ER-TLV per Section 4.8.1 of this document takes
  place:

     1. The node LSR2 is part of the abstract node described by the
        first hop <a>.  Therefore, the first step passes the test.  Go
        to step 2.

     2. There is a second ER-Hop, <b>.  Go to step 3.

     3. LSR2 is not part of the abstract node described by the second
        ER-Hop <b>.  Go to Step 4.

     4. LSR2 determines that it is topologically adjacent to the
        abstract node described by the second ER-Hop <b>.  LSR2 selects
        a next hop (LSR3) which is the abstract node.  LSR2 deletes the
        first ER-Hop <a> from the ER-TLV, which now becomes <b, c>.
        Processing continues with Section 4.8.2.

  At LSR2, the following processing of Section 4.8.2 takes place:
  Executing algorithm 4.8.1 did not result in the removal of the ER-
  TLV.

  Also, LSR2 is not a member of the abstract node described by the
  first ER-Hop <b>.

  Finally, the first ER-Hop <b> is a strict hop.



Jamoussi, et al.            Standards Track                    [Page 33]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  Therefore, processing section 4.8.2 does not result in the insertion
  of new ER-Hops.  The selection of the next hop has been already done
  is step 4 of Section 4.8.1 and the processing of the ER-TLV is
  completed at LSR2.  In this case, the Label Request Message including
  the ER-TLV <b, c> is progressed by LSR2 to LSR3.

  At LSR3, a similar processing to the ER-TLV takes place except that
  the incoming ER-TLV = <b, c> and the outgoing ER-TLV is <c>.

  At LSR4, the following processing of section 4.8.1 takes place:

     1. The node LSR4 is part of the abstract node described by the
        first hop <c>.  Therefore, the first step passes the test.  Go
        to step 2.

     2. There is no second ER-Hop, this indicates the end of the CR-
        LSP.  The ER-TLV is removed from the Label Request Message.
        Processing continues with Section 4.8.2.

  At LSR4, the following processing of Section 4.8.2 takes place:
  Executing algorithm 4.8.1 resulted in the removal of the ER-TLV. LSR4
  does not add a new ER-TLV.

  Therefore, processing section 4.8.2 does not result in the insertion
  of new ER-Hops.  This indicates the end of the CR-LSP and the
  processing of the ER-TLV is completed at LSR4.

  At LSR4, processing of Section 3.2 is invoked.  The first condition
  is satisfied (LSR4 is the egress end of the CR-LSP and upstream
  mapping has been requested).  Therefore, a Label Mapping Message is
  generated by LSR4 and sent to LSR3.

  At LSR3, the processing of Section 3.2 is invoked.  The second
  condition is satisfied (LSR3 received a mapping from its downstream
  next hop LSR4 for a CR-LSP for which an upstream request is still
  pending).  Therefore, a Label Mapping Message is generated by LSR3
  and sent to LSR2.

  At LSR2, a similar processing to LSR 3 takes place and a Label
  Mapping Message is sent back to LSR1, which completes the end-to-end
  CR-LSP setup.

A.2 Node Groups and Specific Nodes Example

  A request at ingress LSR to setup a CR-LSP might originate from a
  management system or an application, the details are implementation
  specific.




Jamoussi, et al.            Standards Track                    [Page 34]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  The ingress LSR uses information provided by the management system or
  the application and possibly also information from the routing
  database to calculate the explicit route and to create the Label
  Request Message.

  The Label request message carries together with other necessary
  information an ER-TLV defining the explicitly routed path.  In our
  example the list of hops in the ER-Hop TLV is supposed to contain an
  abstract node representing a group of nodes, an abstract node
  representing a specific node, another abstract node representing a
  group of nodes, and an abstract node representing a specific egress
  point.

  In--{Group 1}--{Specific A}--{Group 2}--{Specific Out: B}
  The ER-TLV contains four ER-Hop TLVs:

     1. An ER-Hop TLV that specifies a group of LSR valid for the first
        abstract node representing a group of nodes (Group 1).

     2. An ER-Hop TLV that indicates the specific node (Node A).

     3. An ER-Hop TLV that specifies a group of LSRs valid for the
        second abstract node representing a group of nodes (Group 2).

     4. An ER-Hop TLV that indicates the specific egress point for the
        CR-LSP (Node B).

  All the ER-Hop TLVs are strictly routed nodes.

  The setup procedure for this CR-LSP works as follows:

     1.  The ingress node sends the Label Request Message to a node
         that is a member the group of nodes indicated in the first ER-
         Hop TLV, following normal routing for the specific node (A).

     2.  The node that receives the message identifies itself as part
         of the group indicated in the first ER-Hop TLV, and that it is
         not the specific node (A) in the second.  Further it realizes
         that the specific node (A) is not one of its next hops.

     3.  It keeps the ER-Hop TLVs intact and sends a Label Request
         Message to another node that is part of the group indicated in
         the first ER-Hop TLV (Group 1), following normal routing for
         the specific node (A).







Jamoussi, et al.            Standards Track                    [Page 35]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


     4.  The node that receives the message identifies itself as part
         of the group indicated in the first ER-Hop TLV, and that it is
         not the specific node (A) in the second ER-Hop TLV.  Further
         it realizes that the specific node (A) is one of its next
         hops.

     5.  It removes the first ER-Hop TLVs and sends a Label Request
         Message to the specific node (A).

     6.  The specific node (A) recognizes itself in the first ER-Hop
         TLV.  Removes the specific ER-Hop TLV.

     7.  It sends a Label Request Message to a node that is a member of
         the group (Group 2) indicated in the ER-Hop TLV.

     8.  The node that receives the message identifies itself as part
         of the group indicated in the first ER-Hop TLV, further it
         realizes that the specific egress node (B) is one of its next
         hops.

     9.  It sends a Label Request Message to the specific egress node
         (B).

     10. The specific egress node (B) recognizes itself as the egress
         for the CR-LSP, it returns a Label Mapping Message, that will
         traverse the same path as the Label Request Message in the
         opposite direction.

Appendix B. QoS Service Examples

B.1 Service Examples

  Construction of an end-to-end service is the result of the rules
  enforced at the edge and the treatment that packets receive at the
  network nodes.  The rules define the traffic conditioning actions
  that are implemented at the edge and they include policing with pass,
  mark, and drop capabilities.  The edge rules are expected to be
  defined by the mutual agreements between the service providers and
  their customers and they will constitute an essential part of the
  SLA.  Therefore edge rules are not included in the signaling
  protocol.

  Packet treatment at a network node is usually referred to as the
  local behavior.  Local behavior could be specified in many ways.  One
  example for local behavior specification is the service frequency
  introduced in section 4.3.2.1, together with the resource reservation
  rules implemented at the nodes.




Jamoussi, et al.            Standards Track                    [Page 36]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  Edge rules and local behaviors can be viewed as the main building
  blocks for the end-to-end service construction.  The following table
  illustrates the applicability of the building block approach for
  constructing different services including those defined for ATM.

  Service        PDR  PBS  CDR     CBS   EBS  Service    Conditioning
  Examples                                    Frequency  Action

  DS             S    S    =PDR    =PBS  0    Frequent   drop>PDR

  TS             S    S    S       S     0    Unspecified drop>PDR,PBS
                                                          mark>CDR,CBS

  BE             inf  inf  inf     inf   0    Unspecified      -

  FRS            S    S    CIR     ~B_C  ~B_E Unspecified drop>PDR,PBS
                                                      mark>CDR,CBS,EBS

  ATM-CBR        PCR  CDVT =PCR    =CDVT 0    VeryFrequent    drop>PCR

  ATM-VBR.3(rt)  PCR  CDVT SCR     MBS   0    Frequent        drop>PCR
                                                          mark>SCR,MBS

  ATM-VBR.3(nrt) PCR  CDVT SCR     MBS   0    Unspecified     drop>PCR
                                                          mark>SCR,MBS

  ATM-UBR        PCR  CDVT -       -     0    Unspecified     drop>PCR

  ATM-GFR.1      PCR  CDVT MCR     MBS   0    Unspecified     drop>PCR

  ATM-GFR.2      PCR  CDVT MCR     MBS   0    Unspecified     drop>PCR
                                                          mark>MCR,MFS

  int-serv-CL    p    m    r       b     0    Frequent        drop>p
                                                              drop>r,b

  S= User specified

  In the above table, the DS refers to a delay sensitive service where
  the network commits to deliver with high probability user datagrams
  at a rate of PDR with minimum delay and delay requirements. Datagrams
  in excess of PDR will be discarded.

  The TS refers to a generic throughput sensitive service where the
  network commits to deliver with high probability user datagrams at a
  rate of at least CDR.  The user may transmit at a rate higher than
  CDR but datagrams in excess of CDR would have a lower probability of
  being delivered.



Jamoussi, et al.            Standards Track                    [Page 37]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  The BE is the best effort service and it implies that there are no
  expected service guarantees from the network.

B.2 Establishing CR-LSP Supporting Real-Time Applications

  In this scenario the customer needs to establish an LSP for
  supporting real-time applications such as voice and video.  The
  Delay-sensitive (DS) service is requested in this case.

  The first step is the specification of the traffic parameters in the
  signaling message.  The two parameters of interest to the DS service
  are the PDR and the PBS and the user based on his requirements
  specifies their values.  Since all the traffic parameters are
  included in the signaling message, appropriate values must be
  assigned to all of them.  For DS service, the CDR and the CBS values
  are set equal to the PDR and the PBS respectively.  An indication of
  whether the parameter values are subject to negotiation is flagged.

  The transport characteristics of the DS service require Frequent
  frequency to be requested to reflect the real-time delay requirements
  of the service.

  In addition to the transport characteristics, both the network
  provider and the customer need to agree on the actions enforced at
  the edge.  The specification of those actions is expected to be a
  part of the service level agreement (SLA) negotiation and is not
  included in the signaling protocol.  For DS service, the edge action
  is to drop packets that exceed the PDR and the PBS specifications.
  The signaling message will be sent in the direction of the ER path
  and the LSP is established following the normal LDP procedures.  Each
  LSR applies its admission control rules.  If sufficient resources are
  not available and the parameter values are subject to negotiation,
  then the LSR could negotiate down the PDR, the PBS, or both.

  The new parameter values are echoed back in the Label Mapping
  Message.  LSRs might need to re-adjust their resource reservations
  based on the new traffic parameter values.

B.3 Establishing CR-LSP Supporting Delay Insensitive Applications

  In this example we assume that a throughput sensitive (TS) service is
  requested.  For resource allocation the user assigns values for PDR,
  PBS, CDR, and CBS.  The negotiation flag is set if the traffic
  parameters are subject to negotiation.
  Since the service is delay insensitive by definition, the Unspecified
  frequency is signaled to indicate that the service frequency is not
  an issue.




Jamoussi, et al.            Standards Track                    [Page 38]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  Similar to the previous example, the edge actions are not subject for
  signaling and are specified in the service level agreement between
  the user and the network provider.

  For TS service, the edge rules might include marking to indicate high
  discard precedence values for all packets that exceed CDR and the
  CBS.  The edge rules will also include dropping of packets that
  conform to neither PDR nor PBS.

  Each LSR of the LSP is expected to run its admission control rules
  and negotiate traffic parameters down if sufficient resources do not
  exist.  The new parameter values are echoed back in the Label Mapping
  Message.  LSRs might need to re-adjust their resources based on the
  new traffic parameter values.

10. Author's Addresses

  Loa Andersson
  Utfors Bredband AB
  Rasundavagen 12 169 29
  Solna
  Phone: +46 8 5270 50 38
  EMail: [email protected]

  Ross Callon
  Juniper Networks
  1194 North Mathilda Avenue,
  Sunnyvale, CA  94089
  Phone: 978-692-6724
  EMail: [email protected]

  Ram Dantu
  Netrake Corporation
  3000 Technology Drive, #100
  Plano Texas, 75024
  Phone: 214 291 1111
  EMail: [email protected]

  Paul Doolan
  On The Beach Consulting Corp
  34 Mill Pond Circle
  Milford MA 01757
  Phone 617 513 852
  EMail: [email protected]







Jamoussi, et al.            Standards Track                    [Page 39]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  Nancy Feldman
  IBM Research
  30 Saw Mill River Road
  Hawthorne, NY 10532
  Phone:  914-784-3254
  EMail: [email protected]

  Andre Fredette
  ANF Consulting
  62 Duck Pond Dr.
  Groton, MA  01450
  EMail: [email protected]

  Eric Gray
  600 Federal Drive
  Andover, MA  01810
  Phone: (978) 689-1610
  EMail: [email protected]

  Juha Heinanen
  Song Networks, Inc.
  Hallituskatu 16
  33200 Tampere, Finland
  EMail: [email protected]

  Bilel Jamoussi
  Nortel Networks
  600 Technology Park Drive
  Billerica, MA 01821
  USA
  Phone: +1 978 288-4506
  Mail: [email protected]

  Timothy E. Kilty
  Island Consulting
  Phone: (978) 462 7091
  EMail: [email protected]

  Andrew G. Malis
  Vivace Networks
  2730 Orchard Parkway
  San Jose, CA 95134
  Phone: +1 408 383 7223
  EMail: [email protected]







Jamoussi, et al.            Standards Track                    [Page 40]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


  Muckai K Girish
  Atoga Systems
  49026 Milmont Drive
  Fremont, CA 94538
  EMail: [email protected]

  Tom Worster
  Phone: 617 247 2624
  EMail: [email protected]

  Liwen Wu
  Cisco Systems
  250 Apollo Drive
  Chelmsford, MA. 01824
  Phone: 978-244-3087
  EMail: [email protected]



































Jamoussi, et al.            Standards Track                    [Page 41]

RFC 3212          Constraint-Based LSP Setup using LDP      January 2002


Full Copyright Statement

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Jamoussi, et al.            Standards Track                    [Page 42]