Network Working Group                                         S. Shimizu
Request for Comments: 3186                                     T. Kawano
Category: Informational                                      K. Murakami
                                           NTT Network Innovation Labs.
                                                               E. Beier
                                                             DeTeSystem
                                                          December 2001


                       MAPOS/PPP Tunneling mode

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2001).  All Rights Reserved.

IESG Note

  This memo documents a way of tunneling PPP over Sonet over MAPOS
  networks.  This document is NOT the product of an IETF working group
  nor is it a standards track document.  It has not necessarily
  benefited from the widespread and in depth community review that
  standards track documents receive.

Abstract

  This document specifies tunneling configuration over MAPOS (Multiple
  Access Protocol over SONET/SDH) networks.  Using this mode, a MAPOS
  network can provide transparent point-to-point link for PPP over
  SONET/SDH (Packet over SONET/SDH, POS) without any additional
  overhead.

1. Introduction

  MAPOS [1][2] frame is designed to be similar to PPP over SONET/SDH
  (Packet over SONET/SDH, POS)[3][4] frame (Figure 1).










Shimizu, et al.              Informational                      [Page 1]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001


     a) MAPOS frame header (version 1)
        +-----------+-----------+-----------+-----------+
        | Address   | Control   | Protocol              |
        |  8 bits   | fixed,0x03| 16 bits               |
        +-----------+-----------+-----------+-----------+

     b) MAPOS frame header (MAPOS 16)
        +-----------+-----------+-----------+-----------+
        | Address               | Protocol              |
        |   16bits              | 16 bits               |
        +-----------+-----------+-----------+-----------+

     c) PPP frame header
        +-----------+-----------+-----------+-----------+
        | Address   | Control   | Protocol              |
        | fixed,0xFF| fixed,0x03| 16 bits               |
        +-----------+-----------+-----------+-----------+

     Figure 1. Header similarity of MAPOS frame and POS frame

  This means that a MAPOS network can easily carry POS frames with no
  additional header overhead by rewriting only 1 or 2 octets.  PPP
  tunneling configuration over MAPOS networks (MAPOS/PPP tunneling
  mode) provides for efficient L2 multiplexing by which users can share
  the cost of high speed long-haul links.

  This document specifies MAPOS/PPP tunneling mode.  In this mode, a
  MAPOS network provides a point-to-point link for those who intend to
  connect POS equipment.  Such link is established within a MAPOS
  switch, or between a pair of MAPOS switches that converts between POS
  header and MAPOS header for each L2 frame.

  Chapter 2 describes the specification in two parts.  First part is
  user network interface (UNI) specification and the second part is
  operation, administration, management and provisioning (OAM&P)
  description.  Other issues such as congestion avoidance, end-to-end
  fairness control are out of scope of this document.

  Implementation issues are discussed in Chapter 3.  Security
  considerations are noted in Chapter 4.











Shimizu, et al.              Informational                      [Page 2]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001


2. MAPOS/PPP tunneling mode

2.1 Overview

  MAPOS/PPP tunneling mode is based on header rewriting.  Figure 2.
  shows an example of MAPOS/PPP tunneling mode.  The MAPOS network uses
  MAPOS 16 [2] in this example.  Consider a tunneling path between
  customer premise equipment (CPE) A and CPE B which are industry
  standard POS equipment.  The ingress/egress MAPOS switches A/B
  assigns unique MAPOS addresses (0x0203 and 0x0403) to the CPEs.
  These MAPOS addresses are used in the MAPOS network, for frame
  forwarding between CPE A and CPE B.  NSP [5] will not be running
  between the CPEs and the switches in this case.

  MAPOS switch A rewrites the first 2 octets of every frame from CPE A,
  which are fixed as 0xFF and 0x03, to the MAPOS address of its peer,
  which is 0x0403.  Frames are forwarded by the MAPOS network and
  arrives at the egress MAPOS switch B which rewrites the first 2
  octets to their original values.  If MAPOS v1 [1] is used in the
  MAPOS network, only the first octet is rewritten.

   +-----+ POS/0x0203 +--------+                  +--------+
   |CPE A|<---------->|MAPOS   |     MAPOS        |MAPOS   |<---
   +-----+        --->|switch A|------------------|switch  |<---
                      +--------+\__  Network  __/ +--------+
                                   \__     __/
                      +--------+    +-|-----|-+ POS/0x0403 +-----+
                  --->|MAPOS   |----|MAPOS    |<---------->|CPE B|
                  --->|switch  |    |switch B |<---        +-----+
                      +--------+    +---------+

                   Figure 2. MAPOS/PPP tunneling mode

  The tunneling path between the two CPEs is managed by the
  ingress/egress MAPOS switches.

2.2 User-Network Interface(UNI)

2.2.1 Physical Layer

  For transport media between border MAPOS switch and CPE, SONET/SDH
  signal is utilized.  Signal speed, path signal label, light power
  budget and all physical requirements are the same as those of PPP
  over SONET/SDH [3].







Shimizu, et al.              Informational                      [Page 3]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001


  SONET/SDH overheads are terminated at the ingress/egress switches.
  SONET/SDH performance monitors and alarms are used for the link
  management between a CPE and the switch.  Inter-switch links are
  similarly managed by SONET/SDH monitors and alarms.

  A CPE should synchronize to the clock of the border MAPOS switch.
  The corresponding port of the MAPOS switch uses its internal clock.
  When the CPE is connected to the MAPOS switch through SONET/SDH
  transmission equipment, both should synchronize to the clock of the
  SONET/SDH transmission equipment.

2.2.2 Link layer

  Link layer framing between CPE and MAPOS switch also follows the
  specification of PPP over SONET/SDH [3].

  HDLC operation including byte stuffing, scrambling, FCS generation is
  terminated at the ingress/egress switch.  In a MAPOS switch, HDLC
  frame [4] is picked up from a SONET/SDH payload and the first octet
  (HDLC address) for MAPOS v1 [1], or the first two octets (HDLC
  address and control field) for MAPOS 16 [2] are rewritten.  The
  operation inside the border switch is as follows:

   From CPE (Ingress Switch receiving):

     SONET/SDH framing
        -> X^43+1 De-scrambling -> HDLC Byte de-stuffing
        -> HDLC FCS detection (if error, silently discard)
        -> L2 HDLC address/control rewriting
            (0xFF   -> MAPOS v1 destination address, or
             0xFF03 -> MAPOS 16 destination address)
        -> MAPOS-FCS generation
        -> HDLC Byte stuffing -> X^43+1 Scrambling -> SONET/SDH framing

   To CPE (Egress Switch transmitting):

     SONET/SDH framing
        -> X^43+1 De-scrambling -> HDLC Byte de-stuffing
        -> MAPOS-FCS detection (if error, silently discard)
        -> L2 HDLC address/control rewriting
            (MAPOS v1 address -> 0xFF, or
             MAPOS 16 address -> 0xFF03)
        -> HDLC FCS generation
        -> HDLC Byte stuffing -> X^43+1 Scrambling -> SONET/SDH framing







Shimizu, et al.              Informational                      [Page 4]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001


  For STS-3c-SPE/VC-4, non-scrambled frame can be used for
  compatibility with RFC 1619.  However, the use of 32bit-CRC and
  X^43+1 scrambling is recommended in RFC2615 [3] and for MAPOS
  networks.

  Maximum transmission unit (MTU) of the link must not be negotiated
  larger than MAPOS-MTU which is 65280 octets.

  Figure 3 shows a CPE-side L2 frame and the converted frame in the
  ingress/egress MAPOS switches.  Note that the MAPOS/PPP tunneling
  mode is not a piggy-back encapsulation, but it is a transparent link
  with no additional header overhead.

  <--- Transmission
       +----------+----------+----------+----------+
       |   Flag   | Address  | Control  | Protocol |
       | 01111110 | 11111111 | 00000011 | 16 bits  |
       +----------+----------+----------+----------+
       +-------------+---------+----------+----------+-----------------
       | Information | Padding |HDLC FCS  |   Flag   | Inter-frame Fill
       |      *      |    *    |16/32 bits| 01111110 | or next Address
       +-------------+---------+----------+----------+-----------------

          (a) HDLC frame from/to CPE

  <--- Transmission
       +----------+----------+----------+----------+
       |   Flag   | MAPOS Destination   | Protocol |
       | 01111110 | 0xxxxxx0 | xxxxxxx1 | 16 bits  |
       +----------+----------+----------+----------+
       +-------------+---------+----------+----------+-----------------
       | Information | Padding |MAPOS FCS |   Flag   | Inter-frame Fill
       |      *      |    *    |16/32 bits| 01111110 | or next Address
       +-------------+---------+----------+----------+-----------------

          (b) Converted MAPOS 16 frame, forwarded in MAPOS networks

           Figure 3. HDLC frame from/to CPE and its conversion

2.3 Operation, Administration, Management and Provisioning (OAM&P)

2.3.1 MAPOS/PPP mode transition

  When a port of MAPOS switch is configured to PPP tunneling mode, at
  least the following operations are performed in the switch.

     a) Disable NSP [5] and SSP [6] (for the port, same below)
     b) Disable MAPOS broadcast and multicast forwarding



Shimizu, et al.              Informational                      [Page 5]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001


     c) Reset the Path Signal Label (C2) to 0x16 if X^43+1 scrambling
        is used.  The value 0xCF is used for non-scrambled OC3c signal.
     d) Enable header rewriting function to specified destination
        address

  When the port is configured back to MAPOS mode, reverse order of the
  operations above are performed.  That means;

     a) Disable header rewriting function (for the port, same below)
     b) Reset the Path Signal Label (C2) to MAPOS default (0x8d)
     c) Enable MAPOS broadcast and multicast forwarding
     d) Enable NSP and SSP

  SONET/SDH alarms (B1/B2/B3 error exceeding, SLOF, SLOS, etc.) should
  not affect this transition.  Figure 4 shows mode transition described
  above.

    [MAPOS mode]  <----------------------------+
         |                                     |
  (Disable NSP)                          (Enable NSP)
  (Disable SSP)                          (Enable SSP)
  (Disable Broadcast/                    (Enable Broadcast/
   Multicast forwarding)                  Multicast forwarding)
  (C2-byte setting to 0x16 or 0xcf)      (C2-byte setting to 0x8d)
  (Enable Header Rewriting function)     (Disable Header Rewriting
         |                                     |         function)
         v                                     |
    [PPP mode] --------------------------------+

       Figure 4. MAPOS/PPP tunneling mode state transition diagram

2.3.2 Path Establishment

  A MAPOS/PPP tunneling path is established by following steps.

     a) Choose MAPOS address pair on both ingress/egress switches and
        configure their ports to PPP tunneling mode (see 2.3.1).

     b) When the routes for both directions become stable, the
        tunneling path is established.  The link between the CPEs may
        be set up at that moment; PPP LCP controls are transparently
        exchanged by the CPEs.

  To add a new path, operators should pick unused MAPOS address-pair.
  They may be determined simply by choosing switches and ports for each
  CPE, because there is one-to-one correspondence between MAPOS
  addresses and switch ports.




Shimizu, et al.              Informational                      [Page 6]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001


  Then, those ports should be configured to MAPOS/PPP tunneling mode on
  both of the switches.  Frame reachability is provided by SSP [6] in
  the MAPOS network.  When the frame forwarding for each direction are
  stable, the path is established and frame forwarding is started.
  Until then, the link between border switches and CPE should be down.

  A MAPOS/PPP tunneling path should be managed by the pair of MAPOS
  addresses.  It should be carefully handled to avoid misconfiguration
  such as path duplication.  For convenient management, path database
  can be used to keep information about pairs of MAPOS addresses.  Note
  that the path database is not used for frame forwarding.  It is for
  OAM&P use only.

2.3.3 Failure detection and indication

  When any link or node failure is detected, it should be indicated to
  each peer of the path.  This is done by PPP [7] keep-alive (LCP Echo
  request/reply) for end-to-end detection.

  Consideration is required to handle SONET/SDH alarms.  When a link
  between CPE and the MAPOS switch fails, it is detected by both the
  MAPOS switch and the CPE seeing SONET/SDH alarms.  However, far-side
  link remains up and no SONET/SDH error is found;  SONET/SDH alarms
  are not transferred to the far end because each optical path is
  terminated in MAPOS network.  In this case, the far end will see
  'link up, line protocol down' status due to keep-alive expiration.

  For example, Figure 5 shows a tunneling path.  When link 1 goes down,
  MAPOS sw A and CPE A detects SONET/SDH alarms but MAPOS sw B and CPE
  A' do not see this failure.  When PPP keep-alive expires, CPE A'
  detects the failure and stops the packet transmission.  The same
  mechanism is used for failure within the MAPOS cloud (link 2).  When
  a MAPOS switch is down, SSP handles it as a topology change.

             1                       2                       3
     CPE A <-x-> MAPOS sw A ---(MAPOS cloud)--- MAPOS sw B <---> CPE A'

                         Figure 5. Link failure

  2.3.4 Path removal

  A MAPOS/PPP tunneling path is removed by following steps.

     a) Choose the path to remove, configure MAPOS switches on both
        ends of the path to disable the ports connected to the CPEs.

     b) Path database may be updated that the path is removed.




Shimizu, et al.              Informational                      [Page 7]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001


     c) When CPE is detached, port may be reset to MAPOS default
        configurations.

  Frames arriving after the destination port was disabled should be
  silently discarded and should not be forwarded to the port.

2.3.5 Provisioning and Design Consideration

  Because MAPOS does not have any QoS control at its protocol level,
  and POS does not have flow-control feature, it is difficult to
  guarantee end-end throughput.  Sufficient bandwidth for inter-switch
  link should be prepared to support all paths on the link.

  Switches are recommended to ensure per-port fairness using any
  appropriate queuing algorithm.  This is especially important for
  over-subscribed configuration, for example to have more than 16 OC12c
  paths on one OC192c inter-switch link.

  Although MAPOS v1 can be applied to the MAPOS/PPP tunneling mode,
  MAPOS 16 is recommended for ease of address management.

  Automatic switch address negotiation mechanism is not suitable for
  the MAPOS/PPP tunneling mode, because the path management mechanism
  becomes much more complex.

3. Implementation

3.1 Service example

  Figure 6 shows an example of MAPOS network with four switches.
  Inter-switch links are provided at OC192c and OC48c rate, customer
  links are either OC3c or OC12c rate.  Some links are optically
  protected.  Path database is used for path management.

  Using MAPOS-netmask with 8 bits, this topology can be extended up to
  64 MAPOS switches, each equipped with up to 127 CPE ports.  Switch
  addresses are fixed to pre-assigned values.

  The cost of optical protection (< 50ms) can be shared among paths.
  Unprotected link can also be coupled for more redundancy in case of
  link failure.  SSP provides restoration path within few seconds.










Shimizu, et al.              Informational                      [Page 8]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001


     0x2003+---------+                       +---------+ 0x2203
    A----->| MAPOS   |   OC192c(protected)   | MAPOS   |<-------A'
     0x2005| Switch 1|=======================| Switch 2| 0x2205
    B----->| 0x2000/8|              _________| 0x2200/8|<-------C'
           +---------+             /         +---------+
          OC192c|                 /
                |                / OC48c(backup)
           +---------+          /            +---------+ 0x2603
           | MAPOS   |_________/             | MAPOS   |<-------B'
     0x2405| Switch 3|=======================| Switch 4|
    C----->| 0x2400/8|   OC192c(protected)   | 0x2600/8|
           +---------+                       +---------+

      Path database entries:
      -----------------------------------------------------------
       User : Speed : Mode            : Address pair  : Status
      -----------------------------------------------------------
       A-A' : OC3c  : CRC32, scramble : 0x2003-0x2203 : Up and running
       B-B' : OC12c : CRC32, scramble : 0x2005-0x2603 : B Down
       C-C' : OC3c  : CRC16, no-scram : 0x2405-0x2205 : C' Down
      -----------------------------------------------------------

           Figure 6.  Example Topology and its Path Management

3.2 Evaluation of latency of reference implementation

  Figure 7 shows evaluation platforms in terms of latency measurement
  of MAPOS/PPP tunneling mode.























Shimizu, et al.              Informational                      [Page 9]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001


    Case 1: Base latency measurement

        Measurement
        Equipment
        +---------+   POS Unidirectional Flow, OC12c 30%, FCS 32bits,
        | IXIA 400|   payload-scrambling on (same for all cases)
        | POS-LM  |<--+
        | OC12c x2|---+ Loopback
        +---------+
        (Using IxSoftware v3.1.148/SP1d)

    Case 2: Router latency measurement

        Measurement                      Device Under Test
        +---------+  POS                 +------------+
        | IXIA 400|  Unidirectional Flow | Cisco GSR  |
        | POS-LM  |<---------------------| 12008/1port|
        | OC12c x2|--------------------->| OC12cLC x2 |
        +---------+                      +------------+
                                    (Using IOS 12.0(15)S1)

    Case 3: MAPOS/PPP tunneling switch latency measurement

        Measurement                      Device Under Test
        +---------+  POS                 +-------------+
        | IXIA 400|  Unidirectional Flow | CSR MAPOS   |
        | POS-LM  |<---------------------| CORESwitch80|
        | OC12c x2|--------------------->| OC12c x2    |
        +---------+                      +-------------+

  Figure 7.  Latency measurement of reference platform for MAPOS/PPP
  tunneling mode

  There is a PPP connection between port 1 and 2 of the measurement
  equipment.  Traffic comes from measurement equipment (IXIA 400) and
  forwarded by a device under test back to the equipment.  Timestamping
  and latency calculation are performed by IXIA 400 automatically.
  Traffic Load is set to 30% of OC12c for offloading router.

  Results are shown in Table 1.  Measurements were taken according to
  the RFC2544 requirements [8].  We measured 25 trials of 150 seconds
  duration for each frame size.  Results are averaged and rounded to
  the 20 ns resolution of IXIA.  95% confidence interval (C.I.) value
  are also rounded.







Shimizu, et al.              Informational                     [Page 10]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001


  --------------------------------------------------------------------
  Frame size (bytes)   64    128    256    512    1024    1280    1518
  --------------------------------------------------------------------
  Latency(ns)
  --------------------------------------------------------------------
  Case 1: Baseline   4060   5640   6940   9840   16420   20700   23340
     95% C.I.(+/-)     20     80     60    180      80     100     120
  --------------------------------------------------------------------
  Case 2: Router    26560  28760  33860  44600   68280   80500   91160
     95% C.I.(+/-)    200    100    160    220     100     100     200
  --------------------------------------------------------------------
  Case 3: Switch    11100  13480  16620  22920   36380   43900   49920
     95% C.I.(+/-)    120    120    120    200     100     160     120
  --------------------------------------------------------------------
          Table 1. Results of Latency (ns) - Frame size (bytes)

  This results shows that MAPOS/PPP tunneling mode does not cause any
  performance degradation in terms of latency view.  A POS L2 switch
  was reasonably faster than a L3 router.

4. Security Considerations

  There is no way to control or attack a MAPOS network from CPE side
  under PPP tunneling mode.  It is quite difficult to inject other
  stream because it is completely transparent from the viewpoint of the
  CPE.  However, operators must carefully avoid misconfiguration such
  as path duplication.  Per-path isolation is extremely important;
  switches are recommended to implement this feature (like VLAN
  mechanism).

  In addition, potential vulnerability still exists in a mixed
  environment where PPP tunneling mode and MAPOS native mode coexists
  in the same network.  Use of such environment is not recommended,
  until an isolation feature is implemented in all MAPOS switches in
  the network.  Note that there is no source address field in the MAPOS
  framing, which may make path isolation difficult in a mixed MAPOS/PPP
  environment.














Shimizu, et al.              Informational                     [Page 11]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001


5. References

  [1]   Murakami, K. and M. Maruyama, "MAPOS - Multiple Access Protocol
        over SONET/SDH Version 1", RFC 2171, June 1997.

  [2]   Murakami, K. and M. Maruyama, "MAPOS 16 - Multiple Access
        Protocol over SONET/SDH with 16 Bit Addressing", RFC 2175, June
        1997.

  [3]   Malis, A. and W. Simpson, "PPP over SONET/SDH", RFC 2615, June
        1999.

  [4]   Simpson, W., "PPP in HDLC-like Framing", STD 51, RFC 1662, July
        1994.

  [5]   Murakami, K. and M. Maruyama, "A MAPOS version 1 Extension -
        Node Switch Protocol," RFC 2173, June 1997.

  [6]   Murakami, K. and M. Maruyama,  "A MAPOS version 1 Extension -
        Switch-Switch Protocol", RFC 2174, June 1997.

  [7]   Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51, RFC
        1661, July 1994.

  [8]   Bradner, S. and J. McQuaid, "Benchmarking Methodology for
        Network Interconnect Devices", RFC 2544, March 1999.

6. Acknowledgments

  The authors would like to acknowledge the contributions and
  thoughtful suggestions of Takahiro Sajima.




















Shimizu, et al.              Informational                     [Page 12]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001


7. Author's Address

  Susumu Shimizu
  NTT Network Innovation Laboratories,
  3-9-11, Midori-cho Musashino-shi
  Tokyo  180-8585  Japan

  Phone: +81 422 59 3323
  Fax:   +81 422 59 3765
  EMail: [email protected]


  Tetsuo Kawano
  NTT Network Innovation Laboratories,
  3-9-11, Midori-cho Musashino-shi
  Tokyo  180-8585  Japan

  Phone: +81 422 59 7145
  Fax:   +81 422 59 4584
  EMail: [email protected]


  Ken Murakami
  NTT Network Innovation Laboratories,
  3-9-11, Midori-cho Musashino-shi
  Tokyo  180-8585  Japan

  Phone: +81 422 59 4650
  Fax:   +81 422 59 3765
  EMail: [email protected]


  Eduard Beier
  DeTeSystem GmbH
  Merianstrasse 32
  D-90409 Nuremberg, Germany

  EMail: [email protected]













Shimizu, et al.              Informational                     [Page 13]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001


8.  Full Copyright Statement

  Copyright (C) The Internet Society (2001).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Shimizu, et al.              Informational                     [Page 14]