Network Working Group                                          D. Pinkas
Request for Comments: 3126                                      Integris
Category: Informational                                          J. Ross
                                                                N. Pope
                                                   Security & Standards
                                                         September 2001


                     Electronic Signature Formats
                 for long term electronic signatures

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2001).  All Rights Reserved.

Abstract

  This document defines the format of an electronic signature that can
  remain valid over long periods.  This includes evidence as to its
  validity even if the signer or verifying party later attempts to deny
  (i.e., repudiates the validity of the signature).

  The format can be considered as an extension to RFC 2630 and RFC
  2634, where, when appropriate additional signed and unsigned
  attributes have been defined.

  The contents of this Informational RFC is technically equivalent to
  ETSI TS 101 733 V.1.2.2. The ETSI TS is under the ETSI Copyright (C).
  Individual copies of this ETSI deliverable can be downloaded from
  http://www.etsi.org















Pinkas, et al.               Informational                      [Page 1]

RFC 3126              Electronic Signature Formats        September 2001


Table of Contents

  1.  Introduction                                                    4
  2  Overview                                                         5
  2.1  Aim                                                            5
  2.2  Basis of Present Document                                      5
  2.3  Major Parties                                                  6
  2.4  Electronic Signatures and Validation Data                      7
  2.5  Forms of Validation Data                                       8
  2.6  Extended Forms of Validation Data                             11
  2.7  Archive Validation Data                                       13
  2.8  Arbitration                                                   15
  2.9  Validation Process                                            15
  2.10  Example Validation Sequence                                  16
  2.11  Additional optional features                                 21
  3. Data structure of an Electronic Signature                       22
  3.1  General Syntax                                                22
  3.2  Data Content Type                                             22
  3.3  Signed-data Content Type                                      22
  3.4  SignedData Type                                               22
  3.5  EncapsulatedContentInfo Type                                  23
  3.6  SignerInfo Type                                               23
  3.6.1  Message Digest Calculation Process                          23
  3.6.2  Message Signature Generation Process                        24
  3.6.3  Message Signature Verification Process                      24
  3.7  CMS Imported Mandatory Present Attributes                     24
  3.7.1  Content Type                                                24
  3.7.2  Message Digest                                              24
  3.7.3  Signing Time                                                24
  3.8  Alternative Signing Certificate Attributes                    24
  3.8.1  ESS Signing Certificate Attribute Definition                25
  3.8.2  Other Signing Certificate Attribute Definition              25
  3.9  Additional Mandatory Attributes                               26
  3.9.1  Signature policy Identifier                                 26
  3.10  CMS Imported Optional Attributes                             28
  3.10.1  Countersignature                                           29
  3.11  ESS Imported Optional Attributes                             29
  3.11.1  Content Reference Attribute                                29
  3.11.2  Content Identifier Attribute                               29
  3.11.3  Content Hints Attribute                                    29
  3.12   Additional Optional Attributes                              30
  3.12.1  Commitment Type Indication Attribute                       30
  3.12.2  Signer Location attribute                                  32
  3.12.3  Signer Attributes attribute                                33
  3.12.4  Content Time-Stamp attribute                               34
  3.13  Support for Multiple Signatures                              34
  3.13.1  Independent Signatures                                     34
  3.13.2  Embedded Signatures                                        34



Pinkas, et al.               Informational                      [Page 2]

RFC 3126              Electronic Signature Formats        September 2001


  4.  Validation Data                                                35
  4.1  Electronic Signature Time-Stamp                               36
  4.1.1  Signature Time-Stamp Attribute Definition                   36
  4.2  Complete Validation Data                                      37
  4.2.1  Complete Certificate Refs Attribute Definition              38
  4.2.2  Complete Revocation Refs Attribute Definition               38
  4.3  Extended Validation Data                                      40
  4.3.1  Certificate Values Attribute Definition                     40
  4.3.2  Revocation Values Attribute Definition                      41
  4.3.3  ES-C Time-Stamp Attribute Definition                        42
  4.3.4  Time-Stamped Certificates and CRLs Attribute Definition     42
  4.4  Archive Validation Data                                       43
  4.4.1  Archive Time-Stamp Attribute Definition                     43
  5.  Security Considerations                                        44
  5.1  Protection of Private Key                                     44
  5.2  Choice of Algorithms                                          44
  6.  Conformance Requirements                                       45
  6.1  Signer                                                        45
  6.2  Verifier using time-stamping                                  46
  6.3  Verifier using secure records                                 46
  7. References                                                      47
  8. Authors' Addresses                                              48
  Annex A (normative): ASN.1 Definitions                             49
  A.1  Definitions Using X.208 (1988) ASN.1 Syntax                   49
  A.2  Definitions Using X.680 1997 ASN.1 Syntax                     57
  Annex B (informative): General Description                         66
  B.1  The Signature Policy                                          66
  B.2  Signed Information                                            67
  B.3  Components of an Electronic Signature                         68
  B.3.1  Reference to the Signature Policy                           68
  B.3.2  Commitment Type Indication                                  69
  B.3.3  Certificate Identifier from the Signer                      69
  B.3.4.  Role Attributes                                            70
  B.3.4.1  Claimed Role                                              71
  B.3.4.2  Certified Role                                            71
  B.3.5  Signer Location                                             72
  B.3.6  Signing Time                                                72
  B.3.7  Content Format                                              73
  B.4  Components of Validation Data                                 73
  B.4.1  Revocation Status Information                               73
  B.4.2  CRL Information                                             74
  B.4.3  OCSP Information                                            74
  B.4.4  Certification Path                                          75
  B.4.5  Time-Stamping for Long Life of Signature                    76
  B.4.6  Time-Stamping before CA Key Compromises                     77
  B.4.6.1  Time-Stamping the ES with Complete validation data        77
  B.4.6.2  Time-Stamping Certificates and Revocation Information     78
  B.4.7  Time-Stamping for Long Life of Signature                    79



Pinkas, et al.               Informational                      [Page 3]

RFC 3126              Electronic Signature Formats        September 2001


  B.4.8  Reference to Additional Data                                80
  B.4.9  Time-Stamping for Mutual Recognition                        80
  B.4.10  TSA Key Compromise                                         81
  B.5  Multiple Signatures                                           81
  Annex C (informative):  Identifiers and roles                      82
  C.1  Signer Name Forms                                             82
  C.2  TSP Name Forms                                                82
  C.3  Roles and Signer Attributes                                   83
  Full Copyright Statement                                           84

1.  Introduction

  This document is intended to cover electronic signatures for various
  types of transactions, including business transactions (e.g.,
  purchase requisition, contract, and invoice applications) where long
  term validity of such signatures is important.  This includes
  evidence as to its validity even if the signer or verifying party
  later attempts to deny (i.e., repudiates, see [ISONR]) the validity
  of the signature).

  Electronic signatures can be used for any transaction between an
  individual and a company, between two companies, between an
  individual and a governmental body, etc.  This document is
  independent of any environment.  It can be applied to any environment
  e.g., smart cards, GSM SIM cards, special programs for electronic
  signatures etc.

  An electronic signature produced in accordance with this document
  provides evidence that can be processed to get confidence that some
  commitment has been explicitly endorsed under a signature policy, at
  a given time, by a signer under an identifier, e.g., a name or a
  pseudonym, and optionally a role.

  The European Directive on a community framework for Electronic
  Signatures defines an electronic signature as: "data in electronic
  form which is attached to or logically associated with other
  electronic data and which serves as a method of authentication".  An
  electronic signature as used in the current document is a form of
  advanced electronic signature as defined in the Directive.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
  "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in uppercase,
  as shown) are to be interpreted as described in [RFC2119].








Pinkas, et al.               Informational                      [Page 4]

RFC 3126              Electronic Signature Formats        September 2001


2  Overview

2.1  Aim

  The aim of this document is to define an Electronic Signature (ES)
  that remains valid over long periods.  This includes evidence as to
  its validity even if the signer or verifying party later attempts to
  deny (repudiates) the validity of the signature.

  This document specifies the use of trusted service providers (e.g.,
  Time-Stamping Authorities (TSA)), and the data that needs to be
  archived (e.g., cross certificates and revocation lists) to meet the
  requirements of long term electronic signatures.  An electronic
  signature defined by this document can be used for arbitration in
  case of a dispute between the signer and verifier, which may occur at
  some later time, even years later.  This document uses a signature
  policy, referenced by the signer, as the basis for establishing the
  validity of an electronic signature.

2.2  Basis of Present Document

  This document is based on the use of public key cryptography to
  produce digital signatures, supported by public key certificates.

  A Public key certificate is a public keys of a user, together with
  some other information, rendered unforgeable by encipherment with the
  private key of the Certification Authority (CA) which issued it
  (ITU-T Recommendation X.509 [1]).

  This document also specifies the uses of time-stamping services to
  prove the validity of a signature long after the normal lifetime of
  critical elements of an electronic signature and to support non-
  repudiation.  It also, as an option, defines the use of additional
  time-stamps to provide very long-term protection against key
  compromise or weakened algorithms.

  This document builds on existing standards that are widely adopted.
  This includes:

     *  RFC 2459 [RFC2459] Internet X.509 Public Key Infrastructure
        Certificate and CRL Profile (PKIX);
     *  RFC 2630 [CMS] Crytographic Message Syntax (CMS);
     *  RFC 2634 [ESS] Enhanced Security Services (ESS);
     *  RFC 2439 [OCSP] One-line Certificate Status Protocol (OCSP);
     *  ITU-T Recommendation X.509 [1] Authentication framework;
     *  RFC (to be published) [TSP] PKIX Time Stamping protocol (TSP).

  NOTE:  See clause 8 for a full set of references.



Pinkas, et al.               Informational                      [Page 5]

RFC 3126              Electronic Signature Formats        September 2001


2.3  Major Parties

  The following are the major parties involved in a business
  transaction supported by electronic signatures as defined in this
  document:

     *  the Signer;
     *  the Verifier;
     *  the Arbitrator;
     *  Trusted Service Providers (TSP).

  A Signer is an entity that initially creates the electronic
  signature. When the signer digitally signs over data using the
  prescribed format, this represents a commitment on behalf of the
  signing entity to the data being signed.

  A verifier is an entity that verifies an evidence.  (ISO/IEC 13888-1
  [13]).  Within the context of this document this is an entity that
  validates an electronic signature.
  An arbitrator, is an entity which arbitrates disputes between a
  signer and a verifier when there is a disagreement on the validity of
  a digital signature.

  Trusted Service Providers (TSPs) are one or more entities that help
  to build trust relationships between the signer and verifier.  Use of
  some specific TSP services MAY be mandated by signature policy.  TSP
  supporting services may provide the following information: user
  certificates, cross-certificates, time-stamping tokens, CRLs, ARLs,
  OCSP responses.

  The following TSPs are used to support the validation or the
  verification of electronic signatures:

     *  Certification Authorities;
     *  Registration Authorities;
     *  Repository Authorities (e.g., a Directory);
     *  Time-Stamping Authorities;
     *  One-line Certificate Status Protocol responders;
     *  Attribute Authorities;
     *  Signature Policy Issuers.

  Certification Authorities provide users with public key certificates.

  Registration Authorities allows the registration of entities before a
  CA generates certificates.






Pinkas, et al.               Informational                      [Page 6]

RFC 3126              Electronic Signature Formats        September 2001


  Repository Authorities publish CRLs issued by CAs, cross-certificates
  (i.e., CA certificates) issued by CAs, signature policies issued by
  Signature Policy Issuers and optionally public key certificates
  (i.e., leaf certificates) issued by CAs.

  Time-Stamping Authorities attest that some data was formed before a
  given trusted time.

  One-line Certificate Status Protocol responders (OSCP responders)
  provide information about the status (i.e., revoked, not revoked,
  unknown) of a particular certificate.

  A Signature Policy Issuer issues signatures policies that define the
  technical and procedural requirements for electronic signature
  creation, validation and verification, in order to meet a particular
  business need.

  Attributes Authorities provide users with attributes linked to public
  key certificates

2.4  Electronic Signatures and Validation Data

  Validation of an electronic signature in accordance with this
  document requires:

     *  The electronic signature; this includes:

        -  the signature policy;
        -  the signed user data;
        -  the digital signature;
        -  other signed attributes provided by the signer;
        -  other unsigned attributes provided by the signer.

  Validation data which is the additional data needed to validate the
  electronic signature; this includes:

        -  certificates references;
        -  certificates;
        -  revocation status information references;
        -  revocation status information;
        -  time-stamps from Time Stamping Authorities (TSAs).

     *  The signature policy specifies the technical requirements on
        signature creation and validation in order to meet a particular
        business need.  A given legal/contractual context may recognize
        a particular signature policy as meeting its requirements.





Pinkas, et al.               Informational                      [Page 7]

RFC 3126              Electronic Signature Formats        September 2001


  For example: a specific signature policy may be recognized by court
  of law as meeting the requirements of the European Directive for
  electronic commerce.  A signature policy may be written using a
  formal notation like ASN.1 or in an informal free text form provided
  the rules of the policy are clearly identified.  However, for a given
  signature policy there shall be one definitive form which has a
  unique binary encoded value.

  Signed user data is the user's data that is signed.

  The Digital Signature is the digital signature applied over the
  following attributes provided by the signer:

     *  hash of the user data (message digest);
     *  signature Policy Identifier;
     *  other signed attributes

  The other signed attributes include any additional information which
  must be signed to conform to the signature policy or this document
  (e.g., signing time).

  According to the requirements of a specific signature policy in use,
  various Validation Data shall be collected and attached to or
  associated with the signature structure by the signer and/or the
  verifier.  The validation data includes CA certificates as well as
  revocation status information in the form of certificate revocation
  lists (CRLs) or certificate status information provided by an on-line
  service.  Additional data also includes time-stamps and other time
  related data used to provide evidence of the timing of given events.
  It is required, as a minimum, that either the signer or verifier
  obtains a time-stamp over the signer's signature or a secure time
  record of the electronic signature must be maintained.  Such secure
  records must not be undetectably modified and must record the time
  close to when the signature was first validated.

2.5  Forms of Validation Data

  An electronic signature may exist in many forms including:

     *  the Electronic Signature (ES), which includes the digital
        signature and other basic information provided by the signer;

     *  the ES with Time-Stamp (ES-T), which adds a time-stamp to the
        Electronic Signature, to take initial steps towards providing
        long term validity;






Pinkas, et al.               Informational                      [Page 8]

RFC 3126              Electronic Signature Formats        September 2001


     *  the ES with Complete validation data (ES-C), which adds to the
        ES-T references to the complete set of data supporting the
        validity of the electronic signature (i.e., revocation status
        information).

  The signer must provide at least the ES form, but in some cases may
  decide to provide the ES-T form and in the extreme case could provide
  the ES-C form.  If the signer does not provide ES-T, the verifier
  must either create the ES-T on first receipt of an electronic
  signature or shall keep a secure time record of the ES.  Either of
  these two approaches provide independent evidence of the existence of
  the signature at the time it was first verified which should be near
  the time it was created, and so protects against later repudiation of
  the existence of the signature.  If the signer does not provide ES-C
  the verifier must create the ES-C when the complete set of revocation
  and other validation data is available.

  The ES satisfies the legal requirements for electronic signatures as
  defined in the European Directive on electronic signatures, see Annex
  C for further discussion on relationship of this document to the
  Directive.  It provides basic authentication and integrity protection
  and can be created without accessing on-line (time-stamping)
  services. However, without the addition of a time-stamp or a secure
  time record the electronic signature does not protect against the
  threat that the signer later denies having created the electronic
  signature (i.e., does not provide non-repudiation of its existence).

  The ES-T time-stamp or time record should be created close to the
  time that ES was created to provide protection against repudiation.
  At this time all the data needed to complete the validation may not
  be available but what information is readily available may be used to
  carry out some of the initial checks.  For example, only part of the
  revocation information may be available for verification at that
  point in time.  Generally, the ES-C form cannot be created at the
  same time as the ES, as it is necessary to allow time for any
  revocation information to be captured.  Also, if a certificate is
  found to be temporarily suspended, it will be necessary to wait until
  the end of the suspension period.

  The signer should only create the ES-C in situations where it was
  prepared to wait for a sufficient length of time after creating the
  ES form before dispatching the ES-C.  This, however, has the
  advantage that the verifier can be presented with the complete set of
  data supporting the validity of the ES.

  Support for ES-C by the verifier is mandated (see clause 6 for
  specific conformance requirements).




Pinkas, et al.               Informational                      [Page 9]

RFC 3126              Electronic Signature Formats        September 2001


  An Electronic Signature (ES), with the additional validation data
  forming the ES-T and ES-C is illustrated in Figure 1:

+------------------------------------------------------------ES-C-----+
|+--------------------------------------------ES-T-----+              |
||+------Elect.Signature (ES)----------+ +------------+| +-----------+|
|||+---------+ +----------+ +---------+| |Time-Stamp  || |Complete   ||
||||Signature| |  Other   | | Digital || |over digital|| |certificate||
||||Policy ID| |  Signed  | |Signature|| |signature   || |and        ||
||||         | |Attributes| |         || +------------+| |revocation ||
|||+---------+ +----------+ +---------+|               | |references ||
||+------------------------------------+               | +-----------+|
|+-----------------------------------------------------+              |
+---------------------------------------------------------------------+

        Figure 1: Illustration of an ES, ES-T and ES-C

  The verifiers conformance requirements of an ES with a time-stamp of
  the digital signature is defined in subclause 6.2.

  The ES on its own satisfies the legal requirements for electronic
  signatures as defined in the European Directive on electronic
  signatures.  The signers conformance requirements of an ES are
  defined in subclause 6.1, and are met using a structure as indicated
  in figure 2:

              +------Elect.Signature (ES)-----------|
              |+---------+ +----------+ +---------+ |
              ||Signature| |  Other   | | Digital | |
              ||Policy ID| |  Signed  | |Signature| |
              ||         | |Attributes| |         | |
              |+---------+ +----------+ +---------+ |
              |+-----------------------------------+|

                 Figure 2: Illustration of an ES
















Pinkas, et al.               Informational                     [Page 10]

RFC 3126              Electronic Signature Formats        September 2001


  Where there are requirements for long term signatures without time-
  stamping the digital signature, then a secure record is needed of the
  time of verification in association with the electronic signature
  (i.e., both must be securely recorded).  In addition the certificates
  and revocation information used at the time of verification should to
  be recorded as indicated in figure 3 as an ES-C(bis).

  +-------------------------------------------------------ES-C-----+
  |                                                                |
  | +------Elect.Signature (ES)----------+|           +-----------+|
  | |+---------+ +----------+ +---------+||           |Complete   ||
  | ||Signature| |  Other   | | Digital |||           |certificate||
  | ||Policy ID| |  Signed  | |Signature|||           |and        ||
  | ||         | |Attributes| |         |||           |revocation ||
  | |+---------+ +----------+ +---------+||           |references ||
  | +------------------------------------+|           +-----------+|
  |                                                                |
  +----------------------------------------------------------------+

               Figure 3: Illustration of an ES-C(bis)

  The verifiers conformance requirements of an ES-C(bis) is defined in
  subclause 6.3.

  Note: A time-stamp attached to the electronic signature or a secure
  time record helps to protect the validity of the signature even if
  some of the verification data associated with the signature become
  compromised AFTER the signature was generated.  The time-stamp or a
  secure time record provides evidence that the signature was generated
  BEFORE the event of compromise; hence the signature will maintain its
  validity status.

2.6  Extended Forms of Validation Data

  The complete validation data (ES-C) described above may be extended
  to form an ES with eXtended validation data (ES-X) to meet following
  additional requirements.

  Firstly, when the verifier does not has access to,

     *  the signer's certificate,
     *  all the CA certificates that make up the full certification
        path,
     *  all the associated revocation status information, as referenced
        in the ES-C.






Pinkas, et al.               Informational                     [Page 11]

RFC 3126              Electronic Signature Formats        September 2001


  then the values of these certificates and revocation information may
  be added to the ES-C.  This form of extended validation data is
  called a X-Long.

  Secondly, if there is a risk that any CA keys used in the certificate
  chain may be compromised, then it is necessary to additionally time-
  stamp the validation data by either:

     *  time-stamping all the validation data as held with the ES(ES-
        C), this eXtended validation data is called a Type 1 X-Time-
        Stamp; or
     *  time-stamping individual reference data as used for complete
        validation.

  This form of eXtended validation data is called a Type 2 X-Time-
  Stamp.

  NOTE:  The advantages/drawbacks for Type 1 and Type 2 X-Time-Stamp
  are discussed in this document (see clause B.4.6.)

  If all the above conditions occur then a combination of the two
  formats above may be used.  This form of eXtended validation data is
  called a X-Long-Time-Stamped.

  Support for the extended forms of validation data is optional.

  An Electronic Signature (ES) , with the additional validation data
  forming the ES-X long is illustrated in Figure 4:

 +-------------------------------------------------------- ES-X Long--+
 |+---------------------------------------- EC-C --------+            |
 ||+---- Elect.Signature (ES)----+             +--------+| +--------+ |
 |||+-------+-+-------+-+-------+| +----------+|Complete|| |Complete| |
 ||||Signa- | |Other  | |Digital|| |Time-Stamp||certi-  || |certi-  | |
 ||||ture   | |Signed | |Signa- || |over      ||ficate  || |ficate  | |
 ||||Policy | |Attri- | |ture   || |digital   ||and     || |and     | |
 ||||ID     | |butes  | |       || |signature ||revoc.  || |revoc.  | |
 |||+-------+ +-------+ +-------+| +----------+|refs    || |data    | |
 ||+-----------------------------+             +--------+| +--------+ |
 |+------------------------------------------------------+            |
 +--------------------------------------------------------------------+

         Figure 4: Illustration of an ES and ES-X long.








Pinkas, et al.               Informational                     [Page 12]

RFC 3126              Electronic Signature Formats        September 2001


  An Electronic Signature (ES) , with the additional validation data
  forming the eXtended Validation Data - Type 1 is illustrated in
  Figure 5:

 +----------------------------------------------------------- ES-X 1 -+
 |+----------------------------------------- EC-C --------+           |
 || +---- Elect.Signature (ES)----+             +--------+| +-------+ |
 || |+-------+ +-------+ +-------+| +----------+|Complete|| |       | |
 || ||Signa- | |Other  | |Digital|| |Time-Stamp||certifi-|| | Time- | |
 || ||ture   | |Signed | |Signa- || |over      ||cate and|| | stamp | |
 || ||Policy | |Attri- | |ture   || |digital   ||revoc.  || | over  | |
 || ||ID     | |butes  | |       || |signature ||refs    || | CES   | |
 || |+-------+ +-------+ +-------+| +----------+|        || |       | |
 || +-----------------------------+             +--------+| +-------+ |
 |+-------------------------------------------------------+           |
 +--------------------------------------------------------------------+

         Figure 5: Illustration of ES with ES-X Type 1

  An Electronic Signature (ES) , with the additional validation data
  forming the eXtended Validation Data - Type 2 is illustrated in
  Figure 6:

 +--------------------------------------------------------- ES-X 2 ---+
 |+---------------------------------------- EC-C --------+            |
 ||+---- Elect.Signature (ES)----+             +--------+| +--------+ |
 |||+-------+ +-------+ +-------+| +----------+|Complete|| |Times   | |
 ||||Signa- | |Other  | |Digital|| |Time-Stamp||certs   || |Stamp   | |
 ||||ture   | |Signed | |Signa- || |over      ||and     || |over    | |
 ||||Policy | |Attri- | |ture   || |digital   ||revoc.  || |Complete| |
 ||||ID     | |butes  | |       || |signature ||refs    || |certs   | |
 |||+-------+ +-------+ +-------+| +----------+|        || |and     | |
 ||+-----------------------------+             +--------+| |revoc.  | |
 ||                                                      | |refs    | |
 |+------------------------------------------------------+ +--------+ |
 +--------------------------------------------------------------------+

         Figure 6: Illustration of ES with ES-X Type 2

2.7  Archive Validation Data

  Before the algorithms, keys and other cryptographic data used at the
  time the ES-C was built become weak and the cryptographic functions
  become vulnerable, or the certificates supporting previous time-
  stamps expires, the signed data, the ES-C and any additional
  information (ES-X) should be time-stamped.  If possible this should
  use stronger algorithms (or longer key lengths) than in the original
  time-stamp.



Pinkas, et al.               Informational                     [Page 13]

RFC 3126              Electronic Signature Formats        September 2001


  This additional data and time-stamp is called Archive Validation Data
  (ES-A).  The Time-Stamping process may be repeated every time the
  protection used to time-stamp a previous ES-A become weak.  An ES-A
  may thus bear multiple embedded time stamps.

  An example of an Electronic Signature (ES), with the additional
  validation data for the ES-C and ES-X forming the ES-A is illustrated
  in Figure 7.

        +-------------------------------- ES-A --------- ----------+
        |  +-------------------- ES-A -----------------+           |
        |  |  +--------- ES-X -------------- +         |           |
        |  |  |..............................| +-----+ |  +-----+  |
        |  |  |..............................| |Time | |  |Time |  |
        |  |  |..............................| |Stamp| |  |Stamp|  |
        |  |  |                              | +-----+ |  +-----+  |
        |  |  +----------------------------- +         |           |
        |  +-------------------------------------------+           |
        +----------------------------------------------------------+

                     Figure 7: Illustration of ES -A

  Support for ES-A is optional.




























Pinkas, et al.               Informational                     [Page 14]

RFC 3126              Electronic Signature Formats        September 2001


2.8  Arbitration

  The ES-C may be used for arbitration should there be a dispute
  between the signer and verifier, provided that:

     *  a copy of the signature policy referenced by the signer is
        available;

     *  the arbitrator knows where to retrieve the signer's certificate
        (if not already present), all the cross-certificates and the
        required CRLs and/or OCSPs responses referenced in the ES-C;

     *  none of the issuing key from the certificate chain have ever
        been compromised;

     *  the cryptography used at the time the ES-C was built has not
        been broken at the time the arbitration is performed.

  When the second condition is not met, then the plaintiff must provide
  an ES-X Long.

  When it is known by some external means that the third condition is
  not met, then the plaintiff must provide an ES-X Time-Stamped.

  When the two previous conditions are not met, the plaintiff must
  provide the two above information (i.e., an ES-X Time-Stamped and
  Long).

  When the last condition is not met, the plaintiff must provide an
  ES-A.

  It should be noticed that a verifier may need to get two time stamps
  at two different instants of time: one soon after the generation of
  the ES and one soon after some grace period allowing any entity from
  the certification chain to declare a key compromise.

2.9  Validation Process

  The Validation Process validates an electronic signature in
  accordance with the requirements of the signature policy.  The output
  status of the validation process can be:

     *  valid;
     *  invalid;
     *  incomplete verification.

  A Valid response indicates that the signature has passed verification
  and it complies with the signature validation policy.



Pinkas, et al.               Informational                     [Page 15]

RFC 3126              Electronic Signature Formats        September 2001


  A signature validation policy is a part of the signature policy which
  specifies the technical requirements on the signer in creating a
  signature and verifier when validating a signature.

  An Invalid response indicates that either the signature format is
  incorrect or that the digital signature value fails verification
  (e.g., the integrity checks on the digital signature value fails or
  any of the certificates on which the digital signature verification
  depends is known to be invalid or revoked).

  An Incomplete Validation response indicates that the format and
  digital signature verifications have not failed but there is
  insufficient information to determine if the electronic signature is
  valid under the signature policy.  This can include situations where
  additional information, which does not effect the validity of the
  digital signature value, may be available but is invalid.

  In the case of Incomplete Validation, it may be possible to request
  that the electronic signature be checked again at a later date when
  additional validation information might become available.  Also, in
  the case of incomplete validation, additional information may be made
  available to the application or user, thus allowing the application
  or user to decide what to do with partially correct electronic
  signatures.

  The validation process may also output validation data:

     *  a signature time-stamp;
     *  the complete validation data;
     *  the archive validation data.

2.10  Example Validation Sequence

  Figure 8, and subsequent description, describes how the validation
  process may build up a complete electronic signature over time.

  Soon after receiving the electronic signature (ES) from the signer
  (1), the digital signature value may be checked,  the validation
  process must at least add a time-stamp (2), unless the signer has
  provided one which is trusted by the verifier.  The validation
  process may also validate the electronic signature, as required under
  the identified signature policy, using additional data (e.g.,
  certificates, CRL, etc.) provided by trusted service providers.  If
  the validation process is not complete then the output from this
  stage is the ES-T.






Pinkas, et al.               Informational                     [Page 16]

RFC 3126              Electronic Signature Formats        September 2001


  When all the additional data (e.g., the complete certificate and
  revocation information) necessary to validate the electronic
  signature first becomes available, then the validation process:

     *  obtains all the necessary additional certificate and revocation
        status information;

     *  completes all the validation checks on the ES, using the
        complete certificate and revocation information  (if a time-
        stamp is not already present, this may be added at the same
        stage combining ES-T and ES-C process);

     *  records the complete certificate and revocation references (3);

     *  indicates the validity status to the user (4).

        +----------------------------------------- ES-C ----------+
        |+----------------------------- ES-T --------+            |
        ||+--- Elect.Signature (ES) ----+            | +--------+ |
        |||+-------+ +-------+ +-------+|+----------+| |Complete| |
        ||||Signa- | |Other  | |Digital|||Time-Stamp|| |certifi-| |
        ||||ture   | |Signed | |Signa- |||over      || |cate and| |
        ||||Policy | |Attri- | |ture   |||digital   || |revoca- | |
        ||||ID     | |butes  | |       |||signature || |tion    | |
        |||+-------+ +-------+ +-------+|+----------+| |referen-| |
        ||+------------\----------------+    ^       | |ces     | |
        ||              \                    |       | +--------+ |
        ||               \ 1                /        |      ^     |
        |+----------------\----------------/---------+      |     |
        +------------------\--------------/--------------- /------+
                            \            /2    ----3------/
         +----------+        |          /     /
         | Signed   |\       v         /     |
         |User data | \     +--------------------+     +------------+
         +----------+  \--->| Validation Process |---> |- Valid     |
                            +---|--^-------|--^--+ 4   |- Invalid   |
                                |  |       |  |        |- Validation|
                                v  |       v  |        |  Incomplete|
                            +---------+ +--------+     +------------+
                            |Signature| |Trusted |
                            | Policy  | |Service |
                            | Issuer  | |Provider|
                            +---------+ +--------+

  Figure 8: Illustration of an ES with Complete validation data (ES-C)






Pinkas, et al.               Informational                     [Page 17]

RFC 3126              Electronic Signature Formats        September 2001


  At the same time as the validation process creates the ES-C, the
  validation process may provide and/or record the values of
  certificates and revocation status information used in ES-C, called
  the ES-X Long (5).  This is illustrated in figure 9:

 +----------------------------------------------------- ES-X ---------+
 |+---------------------------------------- ES-C --------+ +--------+ |
 ||+--- Elect.Signature (ES) ----+            +--------+ | |Complete| |
 |||+-------+ +-------+ +-------+|+----------+|Complete| | |certifi-| |
 ||||Signa- | |Other  | |Digital|||Time-Stamp||certifi-| | |cate    | |
 ||||ture   | |Signed | |Signa- |||over      ||cate and| | |and     | |
 ||||Policy | |Attri- | |ture   |||digital   ||revoca- | | |revoca- | |
 ||||ID     | |butes  | |       |||signature ||tion    | | |tion    | |
 |||+-------+ +---|---+ +-------+|+----------+|referen-| | |Data    | |
 ||+--------------\--------------+    ^       |ces     | | +--------+ |
 ||                \                  |       +--------+ |      ^     |
 ||                 \ 1             2/           ^       |      |     |
 |+------------------\--------------/------------|-------+     /      |
 +--------------------\------------/------------/-------------/-------+
                       \          /    ---3----/             /
  +----------+          |        /    /   ------------5-----/
  | Signed   |\         v       |     |  /
  |User data | \     +--------------------+     +-----------+
  +----------+  \--->| Validation Process |---> | - Valid   |
                     +---|--^-------|--^--+ 4   | - Invalid |
                         |  |       |  |        +-----------+
                         v  |       v  |
                     +---------+ +--------+
                     |Signature| |Trusted |
                     | Policy  | |Service |
                     | Issuer  | |Provider|
                     +---------+ +--------+

   Figure 9: Illustration ES with eXtended validation data (Long)

  When the validation process creates the ES-C it may also create
  extended forms of validation data.  A first alternative is to time-
  stamp all data forming the Type 1 X-Time-Stamp (6).  This is
  illustrated in figure 10:












Pinkas, et al.               Informational                     [Page 18]

RFC 3126              Electronic Signature Formats        September 2001


  +----------------------------------------------------- ES-X -------+
  |+---------------------------------------- ES-C --------+ +------+ |
  ||+--- Elect.Signature (ES) ----+            +--------+ | |Time- | |
  |||+-------+ +-------+ +-------+|+----------+|Complete| | |Stamp | |
  ||||Signa- | |Other  | |Digital|||Time-Stamp||certifi-| | |over  | |
  ||||ture   | |Signed | |Signa- |||over      ||cate and| | |CES   | |
  ||||Policy | |Attri- | |ture   |||digital   ||revoca- | | +------+ |
  ||||ID     | |butes  | |       |||signature ||tion    | |     ^    |
  |||+-------+ +--|----+ +-------+|+----------+|referen-| |     |    |
  ||+-------------|---------------+     ^      |ces     | |     |    |
  ||              |                     |      +--------+ |     |    |
  ||               \ 1                 2/         ^       |     |    |
  |+----------------\------------------/----------|-------+     |    |
  +------------------\----------------/-----------/-------------/----+
                      \              /   ----3---/             /
   +----------+        |            /   /  ---------------6---/
   | Signed   |\       v           |   |  /
   |User data | \     +--------------------+     +-----------+
   +----------+  \--->| Validation Process |---> | - Valid   |
                      +---|--^-------|--^--+ 4   | - Invalid |
                          |  |       |  |        +-----------+
                          v  |       v  |
                      +---------+ +--------+
                      |Signature| |Trusted |
                      | Policy  | |Service |
                      | Issuer  | |Provider|
                      +---------+ +--------+

     Figure 10: Illustration of ES with eXtended validation data -
                Type 1 X-Time-Stamp





















Pinkas, et al.               Informational                     [Page 19]

RFC 3126              Electronic Signature Formats        September 2001


  Another alternative is to time-stamp the certificate and revocation
  information references used to validate the electronic signature (but
  not the signature) (6'); this is called Type 2 X-Time-Stamped.  This
  is illustrated in figure 11:

 +----------------------------------------------------- ES-X -----------+
 |+---------------------------------------- ES-C --------+ +----------+ |
 ||+--- Elect.Signature (ES) ----+            +--------+ | |Time-Stamp| |
 |||+-------+ +-------+ +-------+|+----------+|Complete| | |over      | |
 ||||Signa- | |Other  | |Digital|||Time-Stamp||certifi-| | |Complete  | |
 ||||ture   | |Signed | |Signa- |||over      ||cate and| | |Certifi-  | |
 ||||Policy | |Attri- | |ture   |||digital   ||revoc.  | | |cate and  | |
 ||||ID     | |butes  | |       |||signature ||refs    | | |revoc.    | |
 |||+-------+ +---^---+ +-------+|+----^-----++---^----+ | |refs      | |
 ||+--------------\--------------+     |          |      | +----------+ |
 |+----------------\------------------/-----------|------+      ^       |
 +----------------1-\----------------/-----------/--------------|-------+
                     \              /  -----3---/               |
  +----------+        |           2/  /   ---------------6'-----/
  | Signed   |\       v           |  |   /
  |User data | \     +--------------------+     +-----------+
  +----------+  \--->| Validation Process |---> | - Valid   |
                     +---|--^-------|--^--+ 4   | - Invalid |
                         |  |       |  |        +-----------+
                         v  |       v  |
                     +---------+ +--------+
                     |Signature| |Trusted |
                     | Policy  | |Service |
                     | Issuer  | |Provider|
                     +---------+ +--------+

   Figure 11: Illustration of ES with eXtended validation data -
              Type 2 X-Time-Stamp

  Before the algorithms used in any of electronic signatures become or
  are likely, to be compromised or rendered vulnerable in the future,
  it is necessary to time-stamp the entire electronic signature,
  including all the values of the validation and user data as an ES
  with Archive validation data (ES-A)












Pinkas, et al.               Informational                     [Page 20]

RFC 3126              Electronic Signature Formats        September 2001


  An ES-A is illustrated in figure 12:

-------------------------------------------- ES-A --------------------+
----------------------------------------------------------------+     |
+------------------------------- EC-C --------++-----+          |     |
|                                             ||Time-|          |     |
|+-- Elect.Signature (ES) -+        +--------+||Stamp|  +-------+     |
||+------++-------++-------|+------+|Complete|||over |  Complete|     |
|||Signa-||Other  ||Digital||Time- ||certifi-|||CES  |  |certi- |+----|
|||ture  ||Signed ||Signa- ||Stamp ||cate and||+-----+  |ficate |Arch-|
|||Policy||Attri- ||ture   ||over  ||revoca- ||+------+ |and    |ive  |
|||ID    ||butes  ||       ||digit.||tion    |||Time- | |revoca-|Time |
||+------++---|---++-------||signa-||referen-|||Stamp-| |tion   |stamp|
|+------------|------------+|ture  ||ces     |||over  | |data   |+----|
|             |             +------++--------+|Complete\+-------+  ^  |
|             |                ^         ^    ||cert.  |        |  |  |
+-------------|----------------|---------|----+|and rev|        |  |  |
              \               |         /     |refs.  |        |  |  |
               \              |        /      +-------+        |  |  |
-----------------\-------------|-------/------------------------+  |  |
+----------+      \            |      /                            /  |
| Signed   |       \2          |3    /     /--------------7-------/   |
|User data |        \          |    |     /                           |
+-------\--+         \         |    |    /                            |
---------\------------|--------|----|---/-----------------------------+
         \           v        |    |   |
         1\        +--------------------+     +-----------+
           \------>| Validation Process |---> | - Valid   |
                   +---|--^-------|--^--+ 4   | - Invalid |
                       |  |       |  |        +-----------+
                       v  |       v  |
                   +---------+ +--------+
                   |Signature| |Trusted |
                   | Policy  | |Service |
                   | Issuer  | |Provider|
                   +---------+ +--------+

  Figure 12: Illustration of an ES with Archive validation data (ES-A)

2.11  Additional optional features of an ES

  This document also defines additional optional features of an
  electronic signature to:

     *  indicate a commitment type being made by the signer;
     *  indicate the role under which a signature was created;
     *  support multiple signatures.




Pinkas, et al.               Informational                     [Page 21]

RFC 3126              Electronic Signature Formats        September 2001


3. Data structure of an Electronic Signature

  This clause uses and builds upon the Cryptographic Message Syntax
  (CMS), as defined in RFC 2630 [CMS], and Enhanced Security Services
  (ESS), as defined in RFC 2634 [ESS].  The overall structure of
  Electronic Signature is as defined in [CMS].  The Electronic
  Signature (ES) uses attributes defined in [CMS], [ESS] and this
  document.  This document defines in full the ES attributes which it
  uses and are not defined elsewhere.

  The mandated set of attributes and the digital signature value is
  defined as the minimum Electronic Signature (ES) required by this
  document.  A signature policy MAY mandate other signed attributes to
  be present.

3.1  General Syntax

  The general syntax of the ES is as defined in [CMS].

3.2  Data Content Type

  The data content type of the ES is as defined in [CMS].

  The data content type is intended to refer to arbitrary octet
  strings, such as ASCII text files; the interpretation is left to the
  application.  Such strings need not have any internal structure
  (although they could have their own ASN.1 definition or other
  structure).

3.3  Signed-data Content Type

  The Signed-data content type of the ES is as defined in [CMS].

  The signed-data content type consists of a content of any type and
  zero or more signature values.  Any number of signers in parallel can
  sign any type of content.  The typical application of the signed-data
  content type represents one signer's digital signature on content of
  the data content type.

  To make sure that the verifier uses the right certificate, this
  document mandates that the hash of the signers certificate is always
  included in the Signing Certificate signed attribute.

3.4  SignedData Type

  The syntax of the SignedData type of the ES is as defined in [CMS].





Pinkas, et al.               Informational                     [Page 22]

RFC 3126              Electronic Signature Formats        September 2001


  The fields of type SignedData have the meanings defined [CMS] except
  that:

     *  version is the syntax version number.  The value of version
        must be 3.

     *  The identification of signer's certificate used to create the
        signature is always present as a signed attribute.

     *  The degenerate case where there are no signers is not valid in
        this document.

3.5  EncapsulatedContentInfo Type

  The syntax of the EncapsulatedContentInfo a type of the ES is as
  defined in [CMS].

  For the purpose of long term validation as defined by this document,
  it is advisable that either the eContent is present, or the data
  which is signed is archived in such as way as to preserve the any
  data encoding. It is important that the OCTET STRING used to generate
  the signature remains the same every time either the verifier or an
  arbitrator validates the signature.

  The degenerate case where there are no signers is not valid in this
  document.

3.6  SignerInfo Type

  The syntax of the SignerInfo a type of the ES is as defined in [CMS].

  Per-signer information is represented in the type SignerInfo.  In the
  case of multiple independent signatures, there is an instance of this
  field for each signer.

  The fields of type SignerInfo have the meanings defined in [CMS]
  except that signedAttributes must, as a minimum, contain the
  following attributes:

     *  ContentType as defined in clause 3.7.1.
     *  MessageDigest as defined in clause 3.7.2.
     *  SigningTime as defined in clause 3.7.3.
     *  SigningCertificate as defined in clause 3.8.1.
     *  SignaturePolicyId as defined in clause 3.9.1.

3.6.1  Message Digest Calculation Process

  The message digest calculation process is as defined in [CMS].



Pinkas, et al.               Informational                     [Page 23]

RFC 3126              Electronic Signature Formats        September 2001


3.6.2  Message Signature Generation Process

  The input to the digital signature generation process is as defined
  in [CMS].

3.6.3  Message Signature Verification Process

  The procedures for CMS signed data validation are as defined in [CMS]
  and enhanced in this document.

  The input to the signature verification process includes the signer's
  public key verified as correct using either the ESS Signing
  Certificate attribute or the Other Signing Certificate attribute.

3.7  CMS Imported Mandatory Present Attributes

  The following attributes MUST be present with the signed-data defined
  by this document.  The attributes are defined in [CMS].

3.7.1  Content Type

  The syntax of the content-type attribute type of the ES is as defined
  in [CMS].

3.7.2  Message Digest

  The syntax of the message-digest attribute type of the ES is as
  defined in [CMS].

3.7.3  Signing Time

  The syntax of the message-digest attribute type of the ES is as
  defined in [CMS] and further qualified by this document.

  The signing-time attribute type specifies the time at which the
  signer claims to have performed the signing process.

  This present document recommends the use of GeneralizedTime.

3.8  Alternative Signing Certificate Attributes

  One, and only one, of the following two alternative attributes MUST
  be present with the signed-data defined by this document to identify
  the signing certificate.  Both attributes include an identifier and a
  hash of the signing certificate.  The first, which is adopted in
  existing standards, may be only used with the SHA-1 hashing
  algorithm.  The other shall be used when other hashing algorithms are
  to be supported.



Pinkas, et al.               Informational                     [Page 24]

RFC 3126              Electronic Signature Formats        September 2001


  The signing certificate attribute is designed to prevent the simple
  substitution and re-issue attacks, and to allow for a restricted set
  of authorization certificates to be used in verifying a signature.

3.8.1  ESS Signing Certificate Attribute Definition

  The syntax of the signing certificate attribute type of the ES is as
  defined in [ESS], and further qualified and profile in this document.

  The ESS signing certificate attribute must be a signed attribute.

  This document mandates the presence of this attribute as a signed CMS
  attribute, and the sequence must not be empty.  The certificate used
  to verify the signature must be identified in the sequence, the
  Signature Validation Policy may mandate other certificate references
  to be present, that may include all the certificates up to the point
  of trust.  The encoding of the ESSCertID for this certificate must
  include the issuerSerial field.

  The issuerAndSerialNumber present in the SignerInfo must be
  consistent with issuerSerial field.  The certificate identified must
  be used during the signature verification process.  If the hash of
  the certificate does not match the certificate used to verify the
  signature, the signature must be considered invalid.

  The sequence of policy information field is not used in this
  document.

  NOTE: Where an attribute certificate is used by the signer to
  associate a role, or other attributes of the signer, with the
  electronic signature this is placed in the Signer Attribute attribute
  as defined in clause 3.12.3.

3.8.2  Other Signing Certificate Attribute Definition

  The following attribute is identical to the ESS SigningCertificate
  defined above except that this attribute can be used with hashing
  algorithms other than SHA-1.

  This attribute must be used in the same manner as defined above for
  the ESS SigningCertificate attribute.

  The following object identifier identifies the signing certificate
  attribute:

  id-aa-ets-otherSigCert OBJECT IDENTIFIER ::= { iso(1)
      member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
      smime(16) id-aa(2) 19 }



Pinkas, et al.               Informational                     [Page 25]

RFC 3126              Electronic Signature Formats        September 2001


  The signing certificate attribute value has the ASN.1 syntax
  OtherSigningCertificate

  OtherSigningCertificate ::=  SEQUENCE {
      certs        SEQUENCE OF OtherCertID,
      policies     SEQUENCE OF PolicyInformation OPTIONAL
                   -- NOT USED IN THIS DOCUMENT
  }

  OtherCertID ::= SEQUENCE {
       otherCertHash            OtherHash,
       issuerSerial             IssuerSerial OPTIONAL
  }

  OtherHash ::= CHOICE {
      sha1Hash OtherHashValue,  -- This contains a SHA-1 hash
      otherHash OtherHashAlgAndValue
  }

  OtherHashValue ::= OCTET STRING

  OtherHashAlgAndValue ::= SEQUENCE {
    hashAlgorithm  AlgorithmIdentifier,
    hashValue      OtherHashValue
  }

3.9  Additional Mandatory Attributes

3.9.1  Signature policy Identifier

  This document mandates that a reference to the signature policy, is
  included in the signedData, this reference is either explicitly
  identified or implied by the semantics of the signed content and
  other external data.  A signature policy defines the rules for
  creation and validation of an electronic signature, is included as a
  signed attribute with every signature.  The signature policy
  identifier must be a signed attribute.

  The following object identifier identifies the signature policy
  identifier attribute:

  id-aa-ets-sigPolicyId OBJECT IDENTIFIER ::= { iso(1)
      member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
      smime(16) id-aa(2) 15 }

  Signature-policy-identifier attribute values have ASN.1 type
  SignaturePolicyIdentifier.




Pinkas, et al.               Informational                     [Page 26]

RFC 3126              Electronic Signature Formats        September 2001


  SignaturePolicyIdentifier ::= CHOICE{
           SignaturePolicyId          SignaturePolicyId,
           SignaturePolicyImplied     SignaturePolicyImplied }


  SignaturePolicyId ::= SEQUENCE {
          sigPolicyIdentifier   SigPolicyId,
          sigPolicyHash         SigPolicyHash,
          sigPolicyQualifiers   SEQUENCE SIZE (1..MAX) OF
                                SigPolicyQualifierInfo      OPTIONAL
                                                                   }

  SignaturePolicyImplied ::= NULL

  The presence of the NULL type indicates that the signature policy is
  implied by the semantics of the signed data and other external data.

  The sigPolicyId field contains an object-identifier which uniquely
  identifies a specific version of the signature policy.  The syntax of
  this field is as follows:

     SigPolicyId ::= OBJECT IDENTIFIER

  The sigPolicyHash field contains the identifier of the hash algorithm
  and the hash of the value of the signature policy.

  If the signature policy is defined using a computer processable
  notation like ASN.1, then the hash is calculated on the value without
  the outer type and length fields and the hashing algorithm must be as
  specified in the field signPolicyHshAlg.

  If the signature policy is defined using another structure, the type
  of structure and the hashing algorithm must be either specified as
  part of the signature policy, or indicated using a signature policy
  qualifier.

     SigPolicyHash ::= OtherHashAlgAndValue

  A signature policy identifier may be qualified with other information
  about the qualifier.  The semantics and syntax of the qualifier is as
  associated with the object-identifier in the sigPolicyQualifierId
  field.  The general syntax of this qualifier is as follows:

     SigPolicyQualifierInfo ::= SEQUENCE {
          sigPolicyQualifierId  SigPolicyQualifierId,
          sigQualifier          ANY DEFINED BY sigPolicyQualifierId
  }




Pinkas, et al.               Informational                     [Page 27]

RFC 3126              Electronic Signature Formats        September 2001


  This document specifies the following qualifiers:

     *  spuri: This contains the web URI or URL reference to the
        signature policy

     *  spUserNotice: This contains a user notice which should be
        displayed whenever the signature is validated.

  -- sigpolicyQualifierIds defined in this document

  SigPolicyQualifierId ::=  OBJECT IDENTIFIER

      id-spq-ets-uri OBJECT IDENTIFIER ::= { iso(1)
      member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
      smime(16) id-spq(5) 1 }

     SPuri ::= IA5String

      id-spq-ets-unotice OBJECT IDENTIFIER ::= { iso(1)
      member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
      smime(16) id-spq(5) 2 }

     SPUserNotice ::= SEQUENCE {
          noticeRef        NoticeReference OPTIONAL,
          explicitText     DisplayText OPTIONAL
  }

     NoticeReference ::= SEQUENCE {
          organization     DisplayText,
          noticeNumbers    SEQUENCE OF INTEGER
  }

     DisplayText ::= CHOICE {
          visibleString    VisibleString  (SIZE (1..200)),
          bmpString        BMPString      (SIZE (1..200)),
          utf8String       UTF8String     (SIZE (1..200))
  }

3.10  CMS Imported Optional Attributes

  The following attributes MAY be present with the signed-data defined
  by this document.  The attributes are defined in ref [CMS] and are
  imported into this specification and were appropriate qualified and
  profiling by this document.







Pinkas, et al.               Informational                     [Page 28]

RFC 3126              Electronic Signature Formats        September 2001


3.10.1  Countersignature

  The syntax of the countersignature attribute type of the ES is as
  defined in [CMS].  The countersignature attribute must be an unsigned
  attribute.

3.11  ESS Imported Optional Attributes

  The following attributes MAY be present with the signed-data defined
  by this document.  The attributes are defined in ref [ESS] and are
  imported into this specification and were appropriate qualified and
  profiling by this document.

3.11.1 Content Reference Attribute

  The content reference attribute is a link from one SignedData to
  another.  It may be used to link a reply to the original message to
  which it refers, or to incorporate by reference one SignedData into
  another.

  The content reference attribute MUST be used as defined in [ESS].
  The content reference MUST be a signed attribute.

  The syntax of the content reference attribute type of the ES is as
  defined in [ESS].

3.11.2  Content Identifier Attribute

  The content identifier attribute provides an identifier for the
  signed content for use when reference may be later required to that
  content, for example in the content reference attribute in other
  signed data sent later.

  The content identifier must be a signed attribute.

  The syntax of the content identifier attribute type of the ES is as
  defined in [ESS].

  The minimal signedContentIdentifier should contain a concatenation of
  user-specific identification information (such as a user name or
  public keying material identification information), a GeneralizedTime
  string, and a random number.

3.11.3  Content Hints Attribute

  The content hints attribute provides information that describes the
  format of the signed content.  It may be used by the signer to
  indicate to a verifier the precise format that MUST be used to



Pinkas, et al.               Informational                     [Page 29]

RFC 3126              Electronic Signature Formats        September 2001


  present the data (e.g., text, voice, video) to a verifier.  This
  attribute MUST be present when it is mandatory to present the signed
  data to human users on verification.

  The syntax of the content hints attribute type of the ES is as
  defined in ESS (RFC 2634, section 2.9 [9]).

  When used to indicate the precise format of the data to be presented
  to the user the following rules apply:

  The contentType (defined in RFC 2630 [8]) indicates the type of the
  associated content.  It is an object identifier (i.e., a unique
  string of integers) assigned by an authority that defines the content
  type.

  The UTF8String shall define the presentation format.  The format may
  be defined by MIME types as indicated below.

  Note 1: The contentType can be id-data defined in CMS (RFC 2630 [8]).
  The UTF8String can be used to indicate the encoding of the data, like
  MIME type.  RFC 2045 [25] provides a common structure for encoding a
  range of electronic documents and other multi-media types, see annex
  B for further information, a system supporting verification of
  electronic signature may present information to users in the form
  identified by the MIME type.

  id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
  rsadsi(113549) pkcs(1) pkcs7(7) 1 }

3.12   Additional Optional Attributes

3.12.1  Commitment Type Indication Attribute

  There may be situation were a signer wants to explicitly indicate to
  a verifier that by signing the data, it illustrates a type of
  commitment on behalf of the signer.  The commitmentTypeIndication
  attribute conveys such information.

  The commitmentTypeIndication attribute must be a signed attribute.

  The commitment type may be:

     *  defined as part of the signature policy, in which case the
        commitment type has precise semantics that is defined as part
        of the signature policy.






Pinkas, et al.               Informational                     [Page 30]

RFC 3126              Electronic Signature Formats        September 2001


     *  be a registered type, in which case the commitment type has
        precise semantics defined by registration, under the rules of
        the registration authority.  Such a registration authority may
        be a trading association or a legislative authority.

  The signature policy specifies a set of attributes that it
  "recognizes".  This "recognized" set includes all those commitment
  types defined as part of the signature policy as well as any
  externally defined commitment types that the policy may choose to
  recognize.  Only recognized commitment types are allowed in this
  field.

  The following object identifier identifies the commitment type
  indication attribute:

id-aa-ets-commitmentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 16}

Commitment-Type-Indication attribute values have ASN.1 type
CommitmentTypeIndication.

CommitmentTypeIndication ::= SEQUENCE {
  commitmentTypeId            CommitmentTypeIdentifier,
  commitmentTypeQualifier     SEQUENCE SIZE (1..MAX) OF
                              CommitmentTypeQualifier      OPTIONAL
}

CommitmentTypeIdentifier ::= OBJECT IDENTIFIER

CommitmentTypeQualifier ::= SEQUENCE {
   commitmentTypeIdentifier   CommitmentTypeIdentifier,
   qualifier                  ANY DEFINED BY
                              commitmentTypeIdentifier
}

  The use of any qualifiers to the commitment type is outside the scope
  of this document.

  The following generic commitment types are defined in this document:

     id-cti-ets-proofOfOrigin OBJECT IDENTIFIER ::= { iso(1) member-
     body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
     cti(6) 1}

     id-cti-ets-proofOfReceipt OBJECT IDENTIFIER ::= { iso(1) member-
     body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
     cti(6) 2}




Pinkas, et al.               Informational                     [Page 31]

RFC 3126              Electronic Signature Formats        September 2001


     id-cti-ets-proofOfDelivery OBJECT IDENTIFIER ::= { iso(1)
     member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
     smime(16) cti(6) 3}

     id-cti-ets-proofOfSender OBJECT IDENTIFIER ::= { iso(1) member-
     body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
     cti(6) 4}

     id-cti-ets-proofOfApproval OBJECT IDENTIFIER ::= { iso(1)
     member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
     smime(16) cti(6) 5}

     id-cti-ets-proofOfCreation OBJECT IDENTIFIER ::= { iso(1)
     member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
     smime(16) cti(6) 6}

  These generic commitment types have the following meaning:

  Proof of origin indicates that the signer recognizes to have created,
  approved and sent the message.

  Proof of receipt indicates that signer recognizes to have received
  the content of the message.

  Proof of delivery indicates that the TSP providing that indication
  has delivered a message in a local store accessible to the recipient
  of the message.

  Proof of sender indicates that the entity providing that indication
  has sent the message (but not necessarily created it).

  Proof of approval indicates that the signer has approved the content
  of the message.

  Proof of creation indicates that the signer has created the message
  (but not necessarily approved, nor sent it).

3.12.2  Signer Location attribute

  The signer-location attribute is an attribute which specifies a
  mnemonic for an address associated with the signer at a particular
  geographical (e.g., city) location.  The mnemonic is registered in
  the country in which the signer is located and is used in the
  provision of the Public Telegram Service (according to ITU-T
  Recommendation F.1 [PTS]).

  The signer-location attribute must be a signed attribute.




Pinkas, et al.               Informational                     [Page 32]

RFC 3126              Electronic Signature Formats        September 2001


  The following object identifier identifies the signer-location
  attribute:

id-aa-ets-signerLocation OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 17}

Signer-location attribute values have ASN.1 type SignerLocation.

  SignerLocation ::= SEQUENCE {
       -- at least one of the following must be present
     countryName          [0] DirectoryString      OPTIONAL,
       -- as used to name a Country in X.500
     localityName         [1] DirectoryString      OPTIONAL,
        -- as used to name a locality in X.500
     postalAdddress       [2] PostalAddress        OPTIONAL
}

  PostalAddress ::= SEQUENCE SIZE(1..6) OF DirectoryString

3.12.3  Signer Attributes attribute

  The signer-attributes attribute is an attribute which specifies
  additional attributes of the signer (e.g., role).

  It may be either:

     *  claimed attributes of the signer; or
     *  certified attributes of the signer;

  The signer-attributes attribute must be a signed attribute.

  The following object identifier identifies the signer-attribute
  attribute:

  id-aa-ets-signerAttr OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 18}

  signer-attribute attribute values have ASN.1 type SignerAttribute.

     SignerAttribute ::= SEQUENCE OF CHOICE {
        claimedAttributes      [0]  ClaimedAttributes,
        certifiedAttributes    [1]  CertifiedAttributes
  }

  ClaimedAttributes ::= SEQUENCE OF Attribute

  CertifiedAttributes ::= AttributeCertificate
           -- as defined in X.509 : see section 10.3



Pinkas, et al.               Informational                     [Page 33]

RFC 3126              Electronic Signature Formats        September 2001


  NOTE:  The claimed and certified attribute are imported from ITU-T
  Recommendations X.501 [16] and ITU-T Recommendation X.509:Draft
  Amendment on Certificate Extensions, October 1999.

3.12.4  Content Time-Stamp attribute

  The content time-stamp attribute is an attribute which is the time-
  stamp of the signed data content before it is signed.

  The content time-stamp attribute must be a signed attribute.

  The following object identifier identifies the signer-attribute
  attribute:

     id-aa-ets-contentTimestamp OBJECT IDENTIFIER ::= { iso(1)
     member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
     smime(16) id-aa(2) 20}

  Content time-stamp attribute values have ASN.1 type ContentTimestamp:
  ContentTimestamp::= TimeStampToken

  The value of messageImprint field within TimeStampToken must be a
  hash of the value of eContent field within encapContentInfo within
  the signedData.

  For further information and definition of TimeStampToken see [TSP].

3.13  Support for Multiple Signatures

3.13.1  Independent Signatures

  Multiple independent signatures are supported by independent
  SignerInfo from each signer.

  Each SignerInfo must include all the attributes required under this
  document and must be processed independently by the verifier.

3.13.2  Embedded Signatures

  Multiple embedded signatures are supported using the counter-
  signature unsigned attribute (see clause 3.10.1).  Each counter
  signature is carried in Countersignature held as an unsigned
  attribute to the SignerInfo to which the counter-signature is
  applied.







Pinkas, et al.               Informational                     [Page 34]

RFC 3126              Electronic Signature Formats        September 2001


4.  Validation Data

  This clause specifies the validation data structures which builds on
  the electronic signature specified in clause 3.  This includes:

     *  Time-Stamp applied to the electronic signature value.

     *  Complete validation data which comprises the time-stamp of the
        signature value, plus references to all the certificates and
        revocation information used for full validation of the
        electronic signature.

  The following optional eXtended forms of validation data are also
  defined:

     *  X-timestamp: There are two types of time-stamp used in extended
        validation data defined by this document.

        -  Type 1 -Time-Stamp which comprises a time-stamp over the ES
           with Complete validation data (ES-C).

        -  Type 2 X-Time-Stamp which comprises of a time-stamp over the
           certification path references and the revocation information
           references used to support the ES-C.

           *  X-Long: This comprises a  Complete validation data plus
              the actual values of all the certificates and revocation
              information used in the ES-C.

           *  X-Long-Time-Stamp: This comprises a Type 1 or Type 2 X-
              Timestamp plus the actual values of all the certificates
              and revocation information used in the ES-C.

  This clause also specifies the data structures used in Archive
  validation data:

     *  Archive validation data comprises a  Complete validation data,
        the certificate and revocation values (as in a X-Long
        validation data), any other existing X-timestamps, plus the
        Signed User data and an additional archive time-stamp over all
        that data.  An archive time-stamp may be repeatedly applied
        after long periods to maintain validity when electronic
        signature and timestamping algorithms weaken.

  The additional data required to create the forms of electronic
  signature identified above is carried as unsigned attributes
  associated with an individual signature by being placed in the




Pinkas, et al.               Informational                     [Page 35]

RFC 3126              Electronic Signature Formats        September 2001


  unsignedAttrs field of SignerInfo.  Thus all the attributes defined
  in clause 4 are unsigned attributes.

  NOTE:  Where multiple signatures are to be supported, as described in
  clause 3.13, each signature has a separate SignerInfo.  Thus, each
  signature requires its own unsigned attribute values to create ES-T,
  ES-C etc.

4.1  Electronic Signature Timestamp

  An Electronic Signature with Timestamp is an Electronic Signature for
  which part, but not all, of the additional data required for
  validation is available (e.g., some certificates and revocation
  information is available but not all).

  The minimum structure Timestamp validation data is the Signature
  Timestamp Attribute as defined in clause 4.1.1 over the ES signature
  value.

4.1.1  Signature Timestamp Attribute Definition

  The Signature Timestamp attribute is timestamp of the signature
  value. It is an unsigned attribute.  Several instances of this
  attribute from different TSAs may occur with an electronic signature.

  The Signature Validation Policy specifies, in the
  signatureTimestampDelay field of TimestampTrustConditions, a maximum
  acceptable time difference which is allowed between the time
  indicated in the signing time attribute and the time indicated by the
  Signature Timestamp attribute.  If this delay is exceeded then the
  electronic signature must be considered as invalid.

  The following object identifier identifies the Signature Timestamp
  attribute:

     id-aa-signatureTimeStampToken OBJECT IDENTIFIER ::= { iso(1)
     member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
     id-aa(2) 14}

  The Signature timestamp attribute value has ASN.1 type
  SignatureTimeStampToken.

  SignatureTimeStampToken ::= TimeStampToken

  The value of messageImprint field within TimeStampToken must be a
  hash of the value of signature field within SignerInfo for the
  signedData being timestamped.




Pinkas, et al.               Informational                     [Page 36]

RFC 3126              Electronic Signature Formats        September 2001


  For further information and definition of TimeStampToken see [TSP].

4.2  Complete Validation Data

  An electronic signature with complete validation data is an
  Electronic Signature for which all the additional data required for
  validation (i.e., all certificates and revocation information) is
  available. Complete validation data (ES-C) build on the electronic
  signature Time-Stamp as defined above.

  The minimum structure of a Complete validation data is:

     *  the Signature Time-Stamp Attribute, as defined in clause 4.1.1;
     *  Complete Certificate Refs, as defined in clause 4.2.1;
     *  Complete Revocation Refs, as defined in clause 4.2.2.

  The Complete validation data MAY also include the following
  additional information, forming a X-Long validation data, for use if
  later validation processes may not have access to this information:

     *  Complete Certificate Values, as defined in clause 4.2.3;
     *  Complete Revocation Values, as defined in clause 4.2.4.

  The  Complete validation data MAY also include one of the following
  additional attributes, forming a X-Time-Stamp validation data, to
  provide additional protection against later CA compromise and provide
  integrity of the validation data used:

     *  ES-C Time-Stamp, as defined in clause 4.2.5; or
     *  Time-Stamped Certificates and CRLs references, as defined in
          clause 4.2.6.

  NOTE 1: As long as the CA's are trusted such that these keys cannot
  be compromised or the cryptography used broken, the ES-C provides
  long term proof of a valid electronic signature.

  A valid electronic signature is an electronic signature which passes
  validation according to a signature validation policy.

  NOTE 2: The ES-C provides the following important property for long
  standing signatures; that is having been found once to be valid, must
  continue to be so months or years later.  Long after the validity
  period of the certificates have expired, or after the user key has
  been compromised.







Pinkas, et al.               Informational                     [Page 37]

RFC 3126              Electronic Signature Formats        September 2001


4.2.1  Complete Certificate Refs Attribute Definition

  The Complete Certificate Refs attribute is an unsigned attribute.  It
  references the full set of CA certificates that have been used to
  validate a ES with Complete validation data (ES-C) up to (but not
  including) the signer's certificate.  Only a single instance of this
  attribute must occur with an electronic signature.

  Note: The signer's certified is referenced in the signing certificate
  attribute (see clause 3.1).

id-aa-ets-certificateRefs OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 21}

  The complete certificate refs attribute value has the ASN.1 syntax
  CompleteCertificateRefs.

  CompleteCertificateRefs ::=  SEQUENCE OF OTHERCertID

  OTHERCertID is defined in clause 3.8.2.

  The IssuerSerial that must be present in OTHERCertID.  The certHash
  must match the hash of the certificate referenced.

  NOTE:  Copies of the certificate values may be held using the
  Certificate Values attribute defined in clause 4.3.1.

4.2.2  Complete Revocation Refs Attribute Definition

  The Complete Revocation Refs attribute is an unsigned attribute.
  Only a single instance of this attribute must occur with an
  electronic signature.  It references the full set of the CRL or OCSP
  responses that have been used in the validation of the signer and CA
  certificates used in ES with Complete validation data.

  The following object identifier identifies the CompleteRevocationRefs
  attribute:

id-aa-ets-revocationRefs OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 22}

  The complete revocation refs attribute value has the ASN.1 syntax
  CompleteRevocationRefs.

  CompleteRevocationRefs ::=  SEQUENCE OF CrlOcspRef






Pinkas, et al.               Informational                     [Page 38]

RFC 3126              Electronic Signature Formats        September 2001


  CrlOcspRef ::= SEQUENCE {
      crlids           [0] CRLListID        OPTIONAL,
      ocspids          [1] OcspListID       OPTIONAL,
      otherRev         [2] OtherRevRefs     OPTIONAL
  }

  CompleteRevocationRefs must contain one CrlOcspRef for the signing
  certificate, followed by one for each OTHERCertID in the
  CompleteCertificateRefs attribute.  The second and subsequent
  CrlOcspRef fields must be in the same order as the OTHERCertID to
  which they relate.  At least one of CRLListID or OcspListID or
  OtherRevRefs should be present for all but the "trusted" CA of the
  certificate path.

  CRLListID ::=  SEQUENCE {
      crls        SEQUENCE OF CrlValidatedID}

  CrlValidatedID ::=  SEQUENCE {
       crlHash                   OtherHash,
       crlIdentifier             CrlIdentifier OPTIONAL}

  CrlIdentifier ::= SEQUENCE {
      crlissuer                 Name,
      crlIssuedTime             UTCTime,
      crlNumber                 INTEGER OPTIONAL
                                              }

  OcspListID ::=  SEQUENCE {
      ocspResponses        SEQUENCE OF OcspResponsesID}

  OcspResponsesID ::=  SEQUENCE {
      ocspIdentifier              OcspIdentifier,
      ocspRepHash                 OtherHash    OPTIONAL
                                              }

  OcspIdentifier ::= SEQUENCE {
       ocspResponderID    ResponderID,
                         -- As in OCSP response data
       producedAt      GeneralizedTime
                         -- As in OCSP response data
                                               }

  When creating an crlValidatedID, the crlHash is computed over the
  entire DER encoded CRL including the signature.  The crlIdentifier
  would normally be present unless the CRL can be inferred from other
  information.





Pinkas, et al.               Informational                     [Page 39]

RFC 3126              Electronic Signature Formats        September 2001


  The crlIdentifier is to identify the CRL using the issuer name and
  the CRL issued time which must correspond to the time "thisUpdate"
  contained in the issued CRL.  The crlListID attribute is an unsigned
  attribute.  In the case that the identified CRL is a Delta CRL then
  references to the set of CRLs to provide a complete revocation list
  must be included.

  The OcspIdentifier is to identify the OSCP response using the issuer
  name and the time of issue of the OCSP response which must correspond
  to the time "producedAt" contained in the issued OCSP response.
  Since it may be needed to make the difference between two OCSP
  responses received within the same second, then the hash of the
  response contained in the OcspResponsesID may be needed to solve the
  ambiguity.

  NOTE: Copies of the CRL and OCSP responses values may be held using
  the Revocation Values attribute defined in clause 4.3.2.

  OtherRevRefs ::= SEQUENCE {
     otherRevRefType      OtherRevRefType,
     otherRevRefs         ANY DEFINED BY otherRevRefType
  }

  OtherRevRefType ::= OBJECT IDENTIFIER

  The syntax and semantics of other revocation references is outside
  the scope of this document.  The definition of the syntax of the
  other form of revocation information is as identified by
  OtherRevRefType.

4.3  Extended Validation Data

4.3.1  Certificate Values Attribute Definition

  The Certificate Values attribute is an unsigned attribute.  Only a
  single instance of this attribute must occur with an electronic
  signature.  It holds the values of certificates referenced in the
  CompleteCertificateRefs attribute.

  Note: If an Attribute Certificate is used, it is not provided in this
  structure but must be provided by the signer as a signer-attributes
  attribute (see clause 12.3).

  The following object identifier identifies the CertificateValues
  attribute:

  id-aa-ets-certValues OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 23}



Pinkas, et al.               Informational                     [Page 40]

RFC 3126              Electronic Signature Formats        September 2001


  The certificate values attribute value has the ASN.1 syntax
  CertificateValues.

  CertificateValues ::=  SEQUENCE OF Certificate

  Certificate is defined in RFC2459 and ITU-T Recommendation X.509 [1])

4.3.2  Revocation Values Attribute Definition

  The Revocation Values attribute is an unsigned attribute.  Only a
  single instance of this attribute must occur with an electronic
  signature.  It holds the values of CRLs and OCSP referenced in the
  CompleteRevocationRefs attribute.

  The following object identifier identifies the Revocation Values
  attribute:

     id-aa-ets-revocationValues OBJECT IDENTIFIER ::= { iso(1) member-
     body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
     id-aa(2) 24}

  The revocation values attribute value has the ASN.1 syntax
  RevocationValues.

  RevocationValues ::=  SEQUENCE {
     crlVals           [0] SEQUENCE OF CertificateList     OPTIONAL,
     ocspVals          [1] SEQUENCE OF BasicOCSPResponse   OPTIONAL,
     otherRevVals      [2] OtherRevVals
  }

  OtherRevVals ::= SEQUENCE {
     otherRevValType       OtherRevValType,
     otherRevVals          ANY DEFINED BY otherRevValType
  }

  OtherRevValType ::= OBJECT IDENTIFIER

  The syntax and semantics of the other revocation values is outside
  the scope of this document.  The definition of the syntax of the
  other form of revocation information is as identified by
  OtherRevRefType.

  CertificateList is defined in RFC 2459 [RFC2459] and in ITU-T
  Recommendation X.509 [X509]).

  BasicOCSPResponse is defined in RFC 2560 [OCSP].





Pinkas, et al.               Informational                     [Page 41]

RFC 3126              Electronic Signature Formats        September 2001


4.3.3  ES-C Time-Stamp Attribute Definition

  This attribute is used for the Type 1 X-Time-Stamped validation data.
  The ES-C Time-Stamp attribute is an unsigned attribute.  It is time-
  stamp of a hash of the electronic signature and the complete
  validation data (ES-C).  It is a special purpose TimeStampToken
  Attribute which time-stamps the ES-C.  Several instances instance of
  this attribute may occur with an electronic signature from different
  TSAs.

  The following object identifier identifies the ES-C Time-Stamp
  attribute:

     id-aa-ets-escTimeStamp OBJECT IDENTIFIER ::= { iso(1) member-
     body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
     id-aa(2) 25}

  The ES-C time-stamp attribute value has the ASN.1 syntax
  ESCTimeStampToken.

  ESCTimeStampToken ::= TimeStampToken

  The value of messageImprint field within TimeStampToken must be a
  hash of the concatenated values (without the type or length encoding
  for that value) of the following data objects as present in the ES
  with Complete validation data (ES-C):

  *  signature field within SignerInfo;

  *  SignatureTimeStampToken attribute;

  *  CompleteCertificateRefs attribute;

  *  CompleteRevocationRefs attribute.

  For further information and definition of the Time Stamp Token see
  [TSP].

4.3.4  Time-Stamped Certificates and CRLs Attribute Definition

  This attribute is used for the Type 2 X-Time-Stamp validation data.
  A TimestampedCertsCRLsRef attribute is an unsigned attribute.  It is
  a list of referenced certificates and OCSP responses/CRLs which are
  been time-stamped to protect against certain CA compromises.  Its
  syntax is as follows:

  The following object identifier identifies the
  TimestampedCertsCRLsRef attribute:



Pinkas, et al.               Informational                     [Page 42]

RFC 3126              Electronic Signature Formats        September 2001


     id-aa-ets-certCRLTimestamp OBJECT IDENTIFIER ::= { iso(1) member-
     body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
     id-aa(2) 26}

  The attribute value has the ASN.1 syntax TimestampedCertsCRLs.

  TimestampedCertsCRLs ::= TimeStampToken

  The value of messageImprint field within TimeStampToken must be a
  hash of the concatenated values (without the type or length encoding
  for that value) of the following data objects as present in the ES
  with Complete validation data (ES-C):

     *  CompleteCertificateRefs attribute;
     *  CompleteRevocationRefs attribute.

4.4  Archive Validation Data

  Where an electronic signature is required to last for a very long
  time, and a the time-stamp on an electronic signature is in danger of
  being invalidated due to algorithm weakness or limits in the validity
  period of the TSA certificate, then it may be required to time-stamp
  the electronic signature several times.  When this is required an
  archive time-stamp attribute may be required.  This time-stamp may be
  repeatedly applied over a period of time.

4.4.1  Archive Time-Stamp Attribute Definition

  The Archive Time-Stamp attribute is time-stamp of the user data and
  the entire electronic signature.  If the Certificate values and
  Revocation Values attributes are not present these attributes must be
  added to the electronic signature prior to the time-stamp.  The
  Archive Time-Stamp attribute is an unsigned attribute.  Several
  instances of this attribute may occur with on electronic signature
  both over time and from different TSAs.

  The following object identifier identifies the Nested Archive Time-
  Stamp attribute:

     id-aa-ets-archiveTimestamp OBJECT IDENTIFIER ::= { iso(1) member-
     body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
     id-aa(2) 27}

  Archive time-stamp attribute values have the ASN.1 syntax
  ArchiveTimeStampToken

  ArchiveTimeStampToken ::= TimeStampToken




Pinkas, et al.               Informational                     [Page 43]

RFC 3126              Electronic Signature Formats        September 2001


  The value of messageImprint field within Time-StampToken must be a
  hash of the concatenated values (without the type or length encoding
  for that value) of the following data objects as present in the
  electronic signature:

     *  encapContentInfo eContent OCTET STRING;
     *  signedAttributes;
     *  signature field within SignerInfo;
     *  SignatureTimeStampToken attribute;
     *  CompleteCertificateRefs attribute;
     *  CompleteRevocationData attribute;
     * CertificateValues attribute
        (If not already present this information must be included in
        the ES-A);
     *  RevocationValues attribute
        (If not already present this information must be included in
        the ES-A);
     *  ESCTimeStampToken attribute if present;
     *  TimestampedCertsCRLs attribute if present;
     *  any previous ArchiveTimeStampToken attributes.

  For further information and definition of TimeStampToken see [TSP]

  The time-stamp should be created using stronger algorithms (or longer
  key lengths) than in the original electronic signatures.

5.  Security Considerations

5.1  Protection of Private Key

  The security of the electronic signature mechanism defined in this
  document depends on the privacy of the signer's private key.
  Implementations must take steps to ensure that private keys cannot be
  compromised.

5.2  Choice of Algorithms

  Implementers should be aware that cryptographic algorithms become
  weaker with time.  As new cryptoanalysis techniques are developed and
  computing performance improves, the work factor to break a particular
  cryptographic algorithm will reduce.  Therefore, cryptographic
  algorithm implementations should be modular allowing new algorithms
  to be readily inserted.  That is, implementers should be prepared for
  the set of mandatory to implement algorithms to change over time.







Pinkas, et al.               Informational                     [Page 44]

RFC 3126              Electronic Signature Formats        September 2001


6.  Conformance Requirements

  This document only defines conformance requirements up to a ES with
  Complete validation data (ES-C).  This means that none of the
  extended and archive forms of Electronic Signature (ES-X, ES-A) need
  to be implemented to get conformance to this standard.

  This document mandates support for elements of the signature policy.

6.1  Signer

  A system supporting signers according to this document must, at a
  minimum, support generation of an electronic signature consisting of
  the following components:

     *  The general CMS syntax and content type as defined in RFC 2630
        (see clauses 4.1 and 4.2).

     *  CMS SignedData as defined in RFC 2630 with version set to 3 and
        at least one SignerInfo must be present (see clauses 4.3, 4.4,
        4.5, 4.6).

     *  The following CMS Attributes as defined in RFC 2630:

        -  ContentType; This must always be present
           (see clause 3.7.1);

        -  MessageDigest; This must always be present
           (see clause 3.7.2);

        -  SigningTime; This must always be present
           (see clause 3.7.3).

     *  The following ESS Attributes as defined in RFC 2634:

        -  SigningCertificate: This must be set as defined in clauses
           3.8.1 and 3.8.2.

     *  The following Attributes as defined in clause 3.9:

        -  SignaturePolicyIdentifier; This must always be present.

     *  Public Key Certificates as defined in ITU-T Recommendation
        X.509 [1] and profiled in RFC 2459 [7] (see clause 9.1).







Pinkas, et al.               Informational                     [Page 45]

RFC 3126              Electronic Signature Formats        September 2001


6.2  Verifier using time-stamping

  A system supporting verifiers according to this document with time-
  stamping facilities must, at a minimum, support:

     *  Verification of the mandated components of an electronic
        signature, as defined in clause 5.1.

     *  Signature Time-Stamp attribute, as defined in clause 4.1.1.

     *  Complete Certificate Refs attribute, as defined in clause
        4.2.1.

     *  Complete Revocation Refs Attribute, as defined in clause
        4.2.2.

     *  Public Key Certificates, as defined in ITU-T Recommendation
        X.509 and profiled in RFC 2459.

     *  Either of:

        -  Certificate Revocation Lists, as defined in ITU-T
           Recommendation X.509 [1] and profiled in RFC 2459 [7]; or

        -  On-line Certificate Status Protocol responses, as defined in
           RFC 2560.

6.3     Verifier using secure records

  A system supporting verifiers according to the present document
  shall, at a minimum, support:

     *  Verification of the mandated components of an electronic
        signature, as defined in subclause 5.1.

     *  Complete Certificate Refs attribute, as defined in subclause
        4.2.1.

     *  Complete Revocation Refs Attribute, as defined in subclause
        9.2.2.

     *  A record shall be maintained, which cannot be undetectably
        modified, of the electronic signature and the time when the
        signature was first validated using the referenced certificates
        and revocation information.

     *  Public Key Certificates, as defined in ITU-T Recommendation
        X.509 [1] and profiled in RFC 2459 [7] (see subclause 10.1).



Pinkas, et al.               Informational                     [Page 46]

RFC 3126              Electronic Signature Formats        September 2001


     *  Either of:

        -  Certificate Revocation Lists, as defined in ITU-T
           Recommendation X.509 [1] and profiled in RFC 2459 [7] Or

        -  On-line Certificate Status Protocol, as defined in RFC 2560
           [8] (see subclause 10.3).

7. References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [ESS]      Hoffman, P., "Enhanced Security Services for S/MIME", RFC
             2634, June 1999.

  [CMS]      Housley, R., "Cryptographic Message Syntax", RFC 2630,
             June 1999.

  [OCSP]     Myers, M., Ankney, R., Malpani, A., Galperin, S. and C.
             Adams, "On-line Status Certificate Protocol", RFC 2560,
             June 1999.

  [TSP]      Adams, C., Cain, P., Pinkas, D. and R. Zuccherato,
             "Internet X.509 Public Key Infrastructure Time-Stamp
             Protocol (TSP)", RFC 3161, August 2001.

  [PTS]      Public Telegram Service. ITU-T Recommendation F1.

  [RFC2459]  Housley, R., Ford, W., Polk, W. and D. Solo, "Internet
             X.509 Public Key Infrastructure, Certificate and CRL
             Profile", RFC 2459, January 1999.

  [PKCS9]    RSA Laboratories, "The Public-Key Cryptography Standards
             (PKCS)", RSA Data Security Inc., Redwood City, California,
             November 1993 Release.

  [ISONR]    ISO/IEC 10181-5:  Security Frameworks in Open Systems.
             Non-Repudiation Framework. April 1997.

  [TS101733] ETSI Standard TS 101 733 V.1.2.2 (2000-12) Electronic
             Signature Formats.  Note: copies of ETSI TS 101 733 can be
             freely downloaded from the ETSI web site www.etsi.org.








Pinkas, et al.               Informational                     [Page 47]

RFC 3126              Electronic Signature Formats        September 2001


8. Authors' Addresses

  This Informational RFC has been produced in ETSI TC-SEC.

     ETSI
     F-06921 Sophia Antipolis, Cedex - FRANCE
     650 Route des Lucioles - Sophia Antipolis
     Valbonne - France
     Tel: +33 4 92 94 42 00  Fax: +33 4 93 65 47 16
     [email protected]
     http://www.etsi.org

  Contact Point

     Harri Rasilainen
     ETSI
     650 Route des Lucioles
     F-06921 Sophia Antipolis, Cedex
     FRANCE

     EMail: [email protected]

     Denis Pinkas
     Integris
     68, Route de Versailles
     78434 Louveciennes CEDEX
     FRANCE

     EMail: [email protected]

     John Ross
     Security & Standards
     192 Moulsham Street
     Chelmsford, Essex
     CM2 0LG
     United Kingdom

     EMail: [email protected]

     Nick Pope
     Security & Standards
     192 Moulsham Street
     Chelmsford, Essex
     CM2 0LG
     United Kingdom

     EMail: [email protected]




Pinkas, et al.               Informational                     [Page 48]

RFC 3126              Electronic Signature Formats        September 2001


Annex A (normative): ASN.1 Definitions

  This annex provides a summary of all the ASN.1 syntax definitions for
  new syntax defined in this document.

A.1  Definitions Using X.208 (1988) ASN.1 Syntax

  NOTE:  The ASN.1 module defined in clause A.1 has precedence over
  that defined in Annex A-2 in the case of any conflict.

     ETS-ElectronicSignatureFormats-88syntax { iso(1) member-body(2)
     us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-mod(0) 5}

DEFINITIONS EXPLICIT TAGS ::=

BEGIN

-- EXPORTS All -

IMPORTS

-- Crypographic Message Syntax (CMS): RFC 2630

 ContentInfo, ContentType, id-data, id-signedData, SignedData,
 EncapsulatedContentInfo, SignerInfo, id-contentType,
 id-messageDigest, MessageDigest, id-signingTime, SigningTime,
 id-countersignature, Countersignature

 FROM CryptographicMessageSyntax
   { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
     smime(16) modules(0) cms(1) }

-- ESS Defined attributes: RFC 2634
-- (Enhanced Security Services for S/MIME)

 id-aa-signingCertificate, SigningCertificate, IssuerSerial,
 id-aa-contentReference, ContentReference,
 id-aa-contentIdentifier, ContentIdentifier

 FROM ExtendedSecurityServices
    { iso(1) member-body(2) us(840) rsadsi(113549)
      pkcs(1) pkcs-9(9) smime(16) modules(0) ess(2) }

-- Internet X.509 Public Key Infrastructure
-- Certificate and CRL Profile: RFC 2459

 Certificate, AlgorithmIdentifier, CertificateList, Name,
 GeneralNames, GeneralName, DirectoryString,Attribute,



Pinkas, et al.               Informational                     [Page 49]

RFC 3126              Electronic Signature Formats        September 2001


 AttributeTypeAndValue, AttributeType, AttributeValue,
 PolicyInformation, BMPString, UTF8String

 FROM PKIX1Explicit88
 {iso(1) identified-organization(3) dod(6) internet(1)
  security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-explicit-
  88(1)}

-- X.509 '97 Authentication Framework

AttributeCertificate

 FROM AuthenticationFramework
 {joint-iso-ccitt ds(5) module(1) authenticationFramework(7) 3}

-- The imported AttributeCertificate is defined using the X.680 1997
-- ASN.1 Syntax,
-- an equivalent using the 88 ASN.1 syntax may be used.


-- OCSP 2560

BasicOCSPResponse, ResponderID

 FROM OCSP {-- OID not assigned -- }

-- Time Stamp Protocol Work in Progress

TimeStampToken

 FROM PKIXTSP
 {iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-tsp(13)}

-- S/MIME Object Identifier arcs used in this document
-- ===================================================

-- S/MIME  OID arc used in this document
-- id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
--             us(840) rsadsi(113549) pkcs(1) pkcs-9(9) 16 }

-- S/MIME Arcs
-- id-mod  OBJECT IDENTIFIER ::= { id-smime 0 }
-- modules
-- id-ct   OBJECT IDENTIFIER ::= { id-smime 1 }
-- content types
-- id-aa   OBJECT IDENTIFIER ::= { id-smime 2 }
-- attributes



Pinkas, et al.               Informational                     [Page 50]

RFC 3126              Electronic Signature Formats        September 2001


-- id-spq  OBJECT IDENTIFIER ::= { id-smime 5 }
-- signature policy qualifier
-- id-cti  OBJECT IDENTIFIER ::= { id-smime 6 }
-- commitment type identifier

-- Definitions of Object Identifier arcs used in this document
-- ===========================================================

-- The allocation of OIDs to specific objects are given below with the
-- associated ASN.1 syntax definition

-- OID used referencing electronic signature mechanisms based on this
-- standard for use with the IDUP API (see annex D)

id-etsi-es-IDUP-Mechanism-v1 OBJECT IDENTIFIER ::=
 { itu-t(0) identified-organization(4) etsi(0)
    electronic-signature-standard (1733) part1 (1)
        idupMechanism (4)etsiESv1(1) }

-- CMS Attributes Defined in this document
-- =======================================

-- Mandatory Electronic Signature Attributes

-- OtherSigningCertificate

   id-aa-ets-otherSigCert OBJECT IDENTIFIER ::= { iso(1)
   member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
   smime(16) id-aa(2) 19 }

OtherSigningCertificate ::=  SEQUENCE {
   certs        SEQUENCE OF OtherCertID,
   policies     SEQUENCE OF PolicyInformation OPTIONAL
                -- NOT USED IN THIS DOCUMENT
}

OtherCertID ::= SEQUENCE {
    otherCertHash            OtherHash,
    issuerSerial             IssuerSerial OPTIONAL
}

OtherHash ::= CHOICE {
   sha1Hash     OtherHashValue,  -- This contains a SHA-1 hash
   otherHash    OtherHashAlgAndValue
}

OtherHashValue ::= OCTET STRING




Pinkas, et al.               Informational                     [Page 51]

RFC 3126              Electronic Signature Formats        September 2001


OtherHashAlgAndValue ::= SEQUENCE {
 hashAlgorithm    AlgorithmIdentifier,
 hashValue        OtherHashValue
}

-- Signature Policy Identifier

   id-aa-ets-sigPolicyId OBJECT IDENTIFIER ::= { iso(1)
   member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
   smime(16) id-aa(2) 15 }

"SignaturePolicy CHOICE {
        SignaturePolicyId          SignaturePolicyId,
        SignaturePolicyImplied     SignaturePolicyImplied
}

SignaturePolicyId ::= SEQUENCE {
       sigPolicyIdentifier   SigPolicyId,
       sigPolicyHash         SigPolicyHash,
       sigPolicyQualifiers   SEQUENCE SIZE (1..MAX) OF
                             SigPolicyQualifierInfo OPTIONAL
}

SignaturePolicyImplied ::= NULL

SigPolicyId ::= OBJECT IDENTIFIER

SigPolicyHash ::= OtherHashAlgAndValue

SigPolicyQualifierInfo ::= SEQUENCE {
       sigPolicyQualifierId  SigPolicyQualifierId,
       sigQualifier          ANY DEFINED BY sigPolicyQualifierId
}

SigPolicyQualifierId ::=
       OBJECT IDENTIFIER

   id-spq-ets-uri OBJECT IDENTIFIER ::= { iso(1)
   member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
   smime(16) id-spq(5) 1 }

  SPuri ::= IA5String

   id-spq-ets-unotice OBJECT IDENTIFIER ::= { iso(1)
   member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
   smime(16) id-spq(5) 2 }

  SPUserNotice ::= SEQUENCE {



Pinkas, et al.               Informational                     [Page 52]

RFC 3126              Electronic Signature Formats        September 2001


       noticeRef        NoticeReference   OPTIONAL,
       explicitText     DisplayText       OPTIONAL
}

  NoticeReference ::= SEQUENCE {
       organization     DisplayText,
       noticeNumbers    SEQUENCE OF INTEGER
}

  DisplayText ::= CHOICE {
       visibleString    VisibleString  (SIZE (1..200)),
       bmpString        BMPString      (SIZE (1..200)),
       utf8String       UTF8String     (SIZE (1..200))
}

-- Optional Electronic Signature Attributes

-- Commitment Type

id-aa-ets-commitmentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 16}

CommitmentTypeIndication ::= SEQUENCE {
 commitmentTypeId                 CommitmentTypeIdentifier,
 commitmentTypeQualifier          SEQUENCE SIZE (1..MAX) OF
                                  CommitmentTypeQualifier   OPTIONAL
}

CommitmentTypeIdentifier ::= OBJECT IDENTIFIER

CommitmentTypeQualifier ::= SEQUENCE {
   commitmentTypeIdentifier   CommitmentTypeIdentifier,
   qualifier                  ANY DEFINED BY commitmentTypeIdentifier
}

   id-cti-ets-proofOfOrigin OBJECT IDENTIFIER ::= { iso(1) member-
   body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
   cti(6) 1}

   id-cti-ets-proofOfReceipt OBJECT IDENTIFIER ::= { iso(1) member-
   body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
   cti(6) 2}

   id-cti-ets-proofOfDelivery OBJECT IDENTIFIER ::= { iso(1) member-
   body(2)  us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
   cti(6) 3}

   id-cti-ets-proofOfSender OBJECT IDENTIFIER ::= { iso(1) member-



Pinkas, et al.               Informational                     [Page 53]

RFC 3126              Electronic Signature Formats        September 2001


   body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
  cti(6) 4}

   id-cti-ets-proofOfApproval OBJECT IDENTIFIER ::= { iso(1) member-
   body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
   cti(6) 5}

   id-cti-ets-proofOfCreation OBJECT IDENTIFIER ::= { iso(1) member-
   body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
   cti(6) 6}

-- Signer Location

  id-aa-ets-signerLocation OBJECT IDENTIFIER ::= { iso(1) member-
  body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
  id-aa(2) 17}

SignerLocation ::= SEQUENCE {
      -- at least one of the following must be present
     countryName      [0]  DirectoryString    OPTIONAL,
      -- as used to name a Country in X.500
     localityName     [1]  DirectoryString    OPTIONAL,
      -- as used to name a locality in X.500
     postalAdddress   [2]  PostalAddress      OPTIONAL
}

 PostalAddress ::= SEQUENCE SIZE(1..6) OF DirectoryString

-- Signer Attributes

   id-aa-ets-signerAttr OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 18}

SignerAttribute ::= SEQUENCE OF CHOICE {
     claimedAttributes     [0] ClaimedAttributes,
     certifiedAttributes   [1] CertifiedAttributes
}

ClaimedAttributes ::= SEQUENCE OF Attribute

CertifiedAttributes ::= AttributeCertificate  -- as defined in X.509 :
see section 10.3

-- Content Time-Stamp

   id-aa-ets-contentTimestamp OBJECT IDENTIFIER ::= { iso(1) member-
   body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
   id-aa(2) 20}



Pinkas, et al.               Informational                     [Page 54]

RFC 3126              Electronic Signature Formats        September 2001


ContentTimestamp::= TimeStampToken

-- Validation Data

-- Signature Time-Stamp

   id-aa-signatureTimeStampToken OBJECT IDENTIFIER ::= { iso(1)
   member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
   id-aa(2) 14}

SignatureTimeStampToken ::= TimeStampToken

-- Complete Certificate Refs.

id-aa-ets-certificateRefs OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 21}

CompleteCertificateRefs ::=  SEQUENCE OF OTHERCertID

-- Complete Revocation Refs

  id-aa-ets-revocationRefs OBJECT IDENTIFIER ::= { iso(1) member-
  body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
  id-aa(2) 22}

CompleteRevocationRefs ::=  SEQUENCE OF CrlOcspRef

CrlOcspRef ::= SEQUENCE {
   crlids           [0] CRLListID      OPTIONAL,
   ocspids          [1] OcspListID     OPTIONAL,
   otherRev         [2] OtherRevRefs   OPTIONAL
}

CRLListID ::=  SEQUENCE {
   crls        SEQUENCE OF CrlValidatedID}

CrlValidatedID ::=  SEQUENCE {
    crlHash                   OtherHash,
    crlIdentifier             CrlIdentifier OPTIONAL
}

CrlIdentifier ::= SEQUENCE {
   crlissuer                 Name,
   crlIssuedTime             UTCTime,
   crlNumber                 INTEGER OPTIONAL
}

OcspListID ::=  SEQUENCE {



Pinkas, et al.               Informational                     [Page 55]

RFC 3126              Electronic Signature Formats        September 2001


   ocspResponses        SEQUENCE OF OcspResponsesID}

OcspResponsesID ::=  SEQUENCE {
   ocspIdentifier              OcspIdentifier,
   ocspRepHash                 OtherHash    OPTIONAL
}

OcspIdentifier ::= SEQUENCE {
 ocspResponderID    ResponderID,
                   -- as in OCSP response data
 producedAt      GeneralizedTime
                   -- as in OCSP response data
}

OtherRevRefs ::= SEQUENCE {
  otherRevRefType         OtherRevRefType,
  otherRevRefs            ANY DEFINED BY otherRevRefType
}

OtherRevRefType ::= OBJECT IDENTIFIER

-- Certificate Values

id-aa-ets-certValues OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 23}

CertificateValues ::=  SEQUENCE OF Certificate

-- Certificate Revocation Values

id-aa-ets-revocationValues OBJECT IDENTIFIER ::= { iso(1) member-
   body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
   id-aa(2) 24}

RevocationValues ::=  SEQUENCE {
  crlVals          [0] SEQUENCE OF CertificateList     OPTIONAL,
  ocspVals         [1] SEQUENCE OF BasicOCSPResponse   OPTIONAL,
  otherRevVals     [2] OtherRevVals
}

OtherRevVals ::= SEQUENCE {
  otherRevValType  OtherRevValType,
 otherRevVals      ANY DEFINED BY otherRevValType
}

OtherRevValType ::= OBJECT IDENTIFIER

-- ES-C Time-Stamp



Pinkas, et al.               Informational                     [Page 56]

RFC 3126              Electronic Signature Formats        September 2001


id-aa-ets-escTimeStamp OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 25}

ESCTimeStampToken ::= TimeStampToken

-- Time-Stamped Certificates and CRLs

id-aa-ets-certCRLTimestamp OBJECT IDENTIFIER ::= { iso(1) member-
   body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
   id-aa(2) 26}

TimestampedCertsCRLs ::= TimeStampToken

-- Archive Time-Stamp

id-aa-ets-archiveTimestamp OBJECT IDENTIFIER ::= { iso(1) member-
   body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
   id-aa(2) 27}

ArchiveTimeStampToken ::= TimeStampToken

END -- ETS-ElectronicSignatureFormats-88syntax --

A.2  Definitions Using X.680 1997 ASN.1 Syntax

NOTE:  The ASN.1 module defined in clause A.1 has precedence over that
defined in clause A.2 in the case of any conflict.

     ETS-ElectronicSignatureFormats-97Syntax { iso(1) member-body(2)
     us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-mod(0) 6}

DEFINITIONS EXPLICIT TAGS ::=

BEGIN

-- EXPORTS All -

IMPORTS

-- Cryptographic Message Syntax (CMS): RFC 2630

 ContentInfo, ContentType, id-data, id-signedData, SignedData,
 EncapsulatedContentInfo, SignerInfo, id-contentType,
 id-messageDigest, MessageDigest, id-signingTime,
 SigningTime, id-countersignature, Countersignature

  FROM CryptographicMessageSyntax
   { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)



Pinkas, et al.               Informational                     [Page 57]

RFC 3126              Electronic Signature Formats        September 2001


   smime(16) modules(0) cms(1) }


-- ESS Defined attributes: RFC 2634 (Enhanced Security Services
-- for S/MIME)

  id-aa-signingCertificate, SigningCertificate, IssuerSerial,
  id-aa-contentReference, ContentReference,
  id-aa-contentIdentifier, ContentIdentifier

 FROM ExtendedSecurityServices
   { iso(1) member-body(2) us(840) rsadsi(113549)
      pkcs(1) pkcs-9(9) smime(16) modules(0) ess(2) }

-- Internet X.509 Public Key Infrastructure
- - Certificate and CRL Profile:RFC 2459

  Certificate, AlgorithmIdentifier, CertificateList, Name,
  GeneralNames, GeneralName, DirectoryString, Attribute,
  AttributeTypeAndValue, AttributeType, AttributeValue,
  PolicyInformation.


 FROM PKIX1Explicit93
   {iso(1) identified-organization(3) dod(6) internet(1)
    security(5) mechanisms(5) pkix(7) id-mod(0)
    id-pkix1-explicit-88(1)}

-- X.509 '97 Authentication Framework

       AttributeCertificate

       FROM AuthenticationFramework
       {joint-iso-ccitt ds(5) module(1) authenticationFramework(7) 3}

-- OCSP 2560

     BasicOCSPResponse, ResponderID

 FROM OCSP

--  { OID not assigned }

-- Time Stamp Protocol Work in Progress TimeStampToken

 FROM PKIXTSP
 {iso(1) identified-organization(3) dod(6) internet(1)
  security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-tsp(13)}



Pinkas, et al.               Informational                     [Page 58]

RFC 3126              Electronic Signature Formats        September 2001


-- S/MIME Object Identifier arcs used in this document
-- ===================================================

-- S/MIME  OID arc used in this document
-- id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
--             us(840) rsadsi(113549) pkcs(1) pkcs-9(9) 16 }

-- S/MIME Arcs
-- id-mod  OBJECT IDENTIFIER ::= { id-smime 0 }
-- modules
-- id-ct   OBJECT IDENTIFIER ::= { id-smime 1 }
-- content types
-- id-aa   OBJECT IDENTIFIER ::= { id-smime 2 }
-- attributes
-- id-spq  OBJECT IDENTIFIER ::= { id-smime 5 }
-- signature policy qualifier
-- id-cti  OBJECT IDENTIFIER ::= { id-smime 6 }
-- commitment type identifier

-- Definitions of Object Identifier arcs used in this document
-- ===========================================================

-- The allocation of OIDs to specific objects are given below with the
-- associated ASN.1 syntax definition

-- OID used referencing electronic signature mechanisms based on this
-- standard for use with the IDUP API (see annex D)

id-etsi-es-IDUP-Mechanism-v1 OBJECT IDENTIFIER ::=
 { itu-t(0) identified-organization(4) etsi(0)
  electronic-signature-standard (1733) part1 (1)
  idupMechanism (4)etsiESv1(1) }

-- CMS Attributes Defined in this document
-- =======================================

-- Mandatory Electronic Signature Attributes
-- OtherSigningCertificate

id-aa-ets-otherSigCert OBJECT IDENTIFIER ::= { iso(1)
   member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
   smime(16) id-aa(2) 19 }

OtherSigningCertificate ::=  SEQUENCE {
   certs        SEQUENCE OF OtherCertID,
   policies     SEQUENCE OF PolicyInformation OPTIONAL
                -- NOT USED IN THIS DOCUMENT
}



Pinkas, et al.               Informational                     [Page 59]

RFC 3126              Electronic Signature Formats        September 2001


OtherCertID ::= SEQUENCE {
    otherCertHash            OtherHash,
    issuerSerial             IssuerSerial OPTIONAL
}

OtherHash ::= CHOICE {
   sha1Hash OtherHashValue,  -- This contains a SHA-1 hash
   otherHash OtherHashAlgAndValue
}

OtherHashValue ::= OCTET STRING

OtherHashAlgAndValue ::= SEQUENCE {
 hashAlgorithm  AlgorithmIdentifier,
 hashValue    OtherHashValue
}

-- Signature Policy Identifier

id-aa-ets-sigPolicyId OBJECT IDENTIFIER ::= { iso(1)
   member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
   smime(16) id-aa(2) 15 }

"SignaturePolicy CHOICE {
        SignaturePolicyId          SignaturePolicyId,
        SignaturePolicyImplied     SignaturePolicyImplied
}

SignaturePolicyId ::= SEQUENCE {
       sigPolicyIdentifier   SigPolicyId,
       sigPolicyHash         SigPolicyHash,
       sigPolicyQualifiers   SEQUENCE SIZE (1..MAX) OF
                               SigPolicyQualifierInfo OPTIONAL
}

SignaturePolicyImplied ::= NULL

SigPolicyId ::= OBJECT IDENTIFIER

SigPolicyHash ::= OtherHashAlgAndValue

SigPolicyQualifierInfo ::= SEQUENCE {
       sigPolicyQualifierId    SIG-POLICY-QUALIFIER.&id
                                ({SupportedSigPolicyQualifiers}),
       qualifier               SIG-POLICY-QUALIFIER.&Qualifier
                               ({SupportedSigPolicyQualifiers}
                                {@sigPolicyQualifierId})OPTIONAL }




Pinkas, et al.               Informational                     [Page 60]

RFC 3126              Electronic Signature Formats        September 2001


SupportedSigPolicyQualifiers SIG-POLICY-QUALIFIER ::=
                          { noticeToUser | pointerToSigPolSpec }

SIG-POLICY-QUALIFIER ::= CLASS {
       &id             OBJECT IDENTIFIER UNIQUE,
       &Qualifier      OPTIONAL }

WITH SYNTAX {
       SIG-POLICY-QUALIFIER-ID     &id
       [SIG-QUALIFIER-TYPE &Qualifier] }

noticeToUser SIG-POLICY-QUALIFIER ::= {
     SIG-POLICY-QUALIFIER-ID id-sqt-unotice SIG-QUALIFIER-TYPE
                                           SPUserNotice
                                                       }

pointerToSigPolSpec SIG-POLICY-QUALIFIER ::= {
     SIG-POLICY-QUALIFIER-ID id-sqt-uri SIG-QUALIFIER-TYPE SPuri }

   id-spq-ets-uri OBJECT IDENTIFIER ::= { iso(1)
   member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
   smime(16) id-spq(5) 1 }

  SPuri ::= IA5String

 id-spq-ets-unotice OBJECT IDENTIFIER ::= { iso(1)
   member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
   smime(16) id-spq(5) 2 }

  SPUserNotice ::= SEQUENCE {
       noticeRef        NoticeReference OPTIONAL,
       explicitText     DisplayText OPTIONAL
}

  NoticeReference ::= SEQUENCE {
       organization     DisplayText,
       noticeNumbers    SEQUENCE OF INTEGER
}

  DisplayText ::= CHOICE {
       visibleString    VisibleString  (SIZE (1..200)),
       bmpString        BMPString      (SIZE (1..200)),
       utf8String       UTF8String     (SIZE (1..200))
}

-- Optional Electronic Signature Attributes

-- Commitment Type



Pinkas, et al.               Informational                     [Page 61]

RFC 3126              Electronic Signature Formats        September 2001


id-aa-ets-commitmentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 16}

CommitmentTypeIndication ::= SEQUENCE {
 commitmentTypeId CommitmentTypeIdentifier,
 commitmentTypeQualifier SEQUENCE SIZE (1..MAX) OF
                                          CommitmentTypeQualifier
                                          OPTIONAL}

CommitmentTypeIdentifier ::= OBJECT IDENTIFIER

CommitmentTypeQualifier ::= SEQUENCE {
       commitmentQualifierId       COMMITMENT-QUALIFIER.&id,
       qualifier                   COMMITMENT-QUALIFIER.&Qualifier
                                                 OPTIONAL }

COMMITMENT-QUALIFIER ::= CLASS {
                   &id             OBJECT IDENTIFIER UNIQUE,
                   &Qualifier      OPTIONAL }
WITH SYNTAX {
        COMMITMENT-QUALIFIER-ID     &id
                       [COMMITMENT-TYPE &Qualifier] }

 id-cti-ets-proofOfOrigin OBJECT IDENTIFIER ::= { iso(1)
     member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
     smime(16) cti(6) 1}

 id-cti-ets-proofOfReceipt OBJECT IDENTIFIER ::= { iso(1)
     member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
     smime(16) cti(6) 2}

 id-cti-ets-proofOfDelivery OBJECT IDENTIFIER ::= { iso(1)
     member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
     smime(16) cti(6) 3}

 id-cti-ets-proofOfSender OBJECT IDENTIFIER ::= { iso(1)
     member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
     smime(16) cti(6) 4}

 id-cti-ets-proofOfApproval OBJECT IDENTIFIER ::= { iso(1)
     member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
     smime(16) cti(6) 5}

 id-cti-ets-proofOfCreation OBJECT IDENTIFIER ::= { iso(1)
     member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
     smime(16) cti(6) 6}

-- Signer Location



Pinkas, et al.               Informational                     [Page 62]

RFC 3126              Electronic Signature Formats        September 2001


id-aa-ets-signerLocation OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 17}

SignerLocation ::= SEQUENCE {
                      -- at least one of the following must be present
     countryName [0] DirectoryString OPTIONAL,
       -- As used to name a Country in X.500
     localityName [1] DirectoryString OPTIONAL,
        -- As used to name a locality in X.500
     postalAdddress [2] PostalAddress OPTIONAL }

 PostalAddress ::= SEQUENCE SIZE(1..6) OF DirectoryString

-- Signer Attributes

id-aa-ets-signerAttr OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 18}

SignerAttribute ::= SEQUENCE OF CHOICE {
     claimedAttributes  [0] ClaimedAttributes,
     certifiedAttributes [1] CertifiedAttributes }

ClaimedAttributes ::= SEQUENCE OF Attribute

CertifiedAttributes ::= AttributeCertificate
-- As defined in X.509 : see section 10.3

-- Content Time-Stamp

id-aa-ets-contentTimestamp OBJECT IDENTIFIER ::= { iso(1)
     member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
     smime(16) id-aa(2) 20}

ContentTimestamp::= TimeStampToken

-- Validation Data

-- Signature Time-Stamp

id-aa-signatureTimeStampToken OBJECT IDENTIFIER ::= { iso(1)
    member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
    smime(16) id-aa(2) 14}

SignatureTimeStampToken ::= TimeStampToken

-- Complete Certificate Refs.

id-aa-ets-certificateRefs OBJECT IDENTIFIER ::= { iso(1) member-body(2)



Pinkas, et al.               Informational                     [Page 63]

RFC 3126              Electronic Signature Formats        September 2001


   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 21}

CompleteCertificateRefs ::=  SEQUENCE OF OTHERCertID

-- Complete Revocation Refs

id-aa-ets-revocationRefs OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 22}

CompleteRevocationRefs ::=  SEQUENCE OF CrlOcspRef

CrlOcspRef ::= SEQUENCE {
   crlids           [0] CRLListID   OPTIONAL,
   ocspids          [1] OcspListID  OPTIONAL,
 otherRev     [2] OtherRevRefs OPTIONAL
                                         }

CRLListID ::=  SEQUENCE {
   crls        SEQUENCE OF CrlValidatedID}

CrlValidatedID ::=  SEQUENCE {
    crlHash                   OtherHash,
    crlIdentifier             CrlIdentifier OPTIONAL}

CrlIdentifier ::= SEQUENCE {
   crlissuer                 Name,
   crlIssuedTime             UTCTime,
   crlNumber                 INTEGER OPTIONAL
                                           }

OcspListID ::=  SEQUENCE {
   ocspResponses        SEQUENCE OF OcspResponsesID}

OcspResponsesID ::=  SEQUENCE {
   ocspIdentifier              OcspIdentifier,
   ocspRepHash                 OtherHash    OPTIONAL
                                           }

OcspIdentifier ::= SEQUENCE {
 ocspResponderID    ResponderID,
                       -- As in OCSP response data
 producedAt      GeneralizedTime
                       -- As in OCSP response data
                                            }

OtherRevRefs ::= SEQUENCE {
  otherRevRefType  OTHER-REVOCATION-REF.&id,
 otherRevRefs  OTHER-REVOCATION-REF.&Type



Pinkas, et al.               Informational                     [Page 64]

RFC 3126              Electronic Signature Formats        September 2001


                                             }

OTHER-REVOCATION-REF ::= CLASS {
   &Type,
   &id  OBJECT IDENTIFIER UNIQUE }
 WITH SYNTAX {
   &Type ID &id }

-- Certificate Values

id-aa-ets-certValues OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 23}

CertificateValues ::=  SEQUENCE OF Certificate

-- Certificate Revocation Values

id-aa-ets-revocationValues OBJECT IDENTIFIER ::= { iso(1)
    member-body(2)us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
    smime(16) id-aa(2) 24}

RevocationValues ::=  SEQUENCE {
  crlVals          [0] SEQUENCE OF CertificateList OPTIONAL,
  ocspVals         [1] SEQUENCE OF BasicOCSPResponse OPTIONAL,
  otherRevVals      [2] OtherRevVals }

OtherRevVals ::= SEQUENCE {
  otherRevValType  OTHER-REVOCATION-VAL.&id,
 otherRevVals  OTHER-REVOCATION-VAL.&Type
                                              }

OTHER-REVOCATION-VAL ::= CLASS {
   &Type,
   &id  OBJECT IDENTIFIER UNIQUE }
 WITH SYNTAX {
   &Type ID &id }

-- ES-C Time-Stamp

id-aa-ets-escTimeStamp OBJECT IDENTIFIER ::= { iso(1)
    member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
    smime(16) id-aa(2) 25}

ESCTimeStampToken ::= TimeStampToken

-- Time-Stamped Certificates and CRLs

id-aa-ets-certCRLTimestamp OBJECT IDENTIFIER ::= { iso(1)



Pinkas, et al.               Informational                     [Page 65]

RFC 3126              Electronic Signature Formats        September 2001


   member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
   smime(16) id-aa(2) 26}

TimestampedCertsCRLs ::= TimeStampToken

-- Archive Time-Stamp

id-aa-ets-archiveTimestamp OBJECT IDENTIFIER ::= { iso(1)
  member-body(2)us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
  smime(16) id-aa(2) 27}

ArchiveTimeStampToken ::= TimeStampToken

END                -- ETS-ElectronicSignatureFormats-97Syntax

Annex B (informative): General Description

  This annex captures the concepts that apply to this document and the
  rational for the elements of the specification defined using ASN.1 in
  the main text of this document.

  The specification below includes a description why the component is
  needed, with a brief description of the vulnerabilities and threats
  and the manner by which they are countered.

B.1  The Signature Policy

  The signature policy is a set of rules for the creation and
  validation of an electronic signature, under which the signature can
  be determined to be valid.  A given legal/contractual context may
  recognize a particular signature policy as meeting its requirements.
  A signature policy may be issued, for example, by a party relying on
  the electronic signatures and selected by the signer for use with
  that relying party.  Alternatively, a signature policy may be
  established through an electronic trading association for use amongst
  its members. Both the signer and verifier use the same signature
  policy.

  The signature policy may be explicitly identified or may be implied
  by the semantics of the data being signed and other external data
  like a contract being referenced which itself refers to a signature
  policy.

  An explicit signature policy has a globally unique reference, which
  is bound to an electronic signature by the signer as part of the
  signature calculation.





Pinkas, et al.               Informational                     [Page 66]

RFC 3126              Electronic Signature Formats        September 2001


  The signature policy needs to be available in human readable form so
  that it can be assessed to meet the requirements of the legal and
  contractual context in which it is being applied.  To facilitate the
  automatic processing of an electronic signature the parts of the
  signature policy which specify the electronic rules for the creation
  and validation of the electronic signature also needs to be in a
  computer processable form.

  The signature policy thus includes the following:

     *  Information about the signature policy that can be displayed to
        the signer or the verifiers.
     *  Rules, which apply to functionality, covered by this document
        (referred to as the Signature Validation Policy).
     *  Rules which may be implied through adoption of Certificate
        Policies that apply to the electronic signature (e.g., rules
        for ensuring the secrecy of the private signing key).
     *  Rules, which relate to the environment used by the signer,
        e.g., the use of an agreed CAD (Card Accepting Device) used in
        conjunction with a smart card.

  An explicit Signature Validation Policy may be structured so that it
  can be computer processable.  Any format of the signature validation
  policy is allowed by this document.  However, for a given explicit
  signature policy there must be one definitive form that has a unique
  binary encoded value.

  The Signature Validation Policy includes rules regarding use of TSPs
  (CA, Attribute Authorities, Time Stamping Authorities) as well as
  rules defining the components of the electronic signature that must
  be provided by the signer with data required by the verifier to
  provide long term proof.

B.2  Signed Information

  The information being signed may be defined as a MIME-encapsulated
  message which can be used to signal the format of the content in
  order to select the right display or application.  It can be composed
  of formatted text (e.g., EDIFACT), free text or of fields from an
  electronic form (e-form).  For example, the Adobe(tm) format "pdf"
  may be used or the eXtensible Mark up Language (XML).










Pinkas, et al.               Informational                     [Page 67]

RFC 3126              Electronic Signature Formats        September 2001


B.3  Components of an Electronic Signature

B.3.1  Reference to the Signature Policy

  The definition of electronic signature includes: "a commitment has
  been explicitly endorsed under a "Signature policy", at a given time,
  by a signer under an identifier, e.g., a name or a pseudonym, and
  optionally a role".

  When two independent parties want to evaluate an electronic
  signature, it is fundamental that they get the same result.  To meet
  this requirement same signature policy must be used by the signer and
  verifier.

  The signature policy may be explicitly identified or may be implied
  by the semantics of the data being signed and other external data
  which designate the signature policy to be used.

  By signing over the signature policy identifier the signer explicitly
  indicates that he or she has applied the signature policy in creating
  the signature.  Thus, undertakes any explicit or implied commitments.

  In order to unambiguously identify an explicit signature policy that
  is to be used to verify the signature an identifier and hash of the
  "Signature policy" shall be part of the signed data.  Additional
  information about the explicit policy (e.g., web reference to the
  document) may be carried as "qualifiers" to the signature policy
  identifier.

  When the signature policy not explicitly identified, but is implied
  by the semantics of the data being signed, then the signature will
  include a signature policy identifier that indicates that the
  signature policy is implied.  In this case the verification rules
  must be determined by using other external data which will designate
  the signature policy to be used.  If it may be determined from the
  context that all the documents to be verified refer to the same
  signature policy, then that policy may be predetermined or fixed
  within the application.

  In order to identify unambiguously the "Signature Validation Policy"
  to be used to verify the signature an identifier and hash of the
  "Signature policy" must be part of the signed data.  Additional
  information about the policy (e.g., web reference to the document)
  may be carried as "qualifiers" to the signature policy identifier.







Pinkas, et al.               Informational                     [Page 68]

RFC 3126              Electronic Signature Formats        September 2001


B.3.2  Commitment Type Indication

  The definition of electronic signature includes: "a commitment has
  been explicitly endorsed under a signature policy, at a given time,
  by a signer under an identifier, e.g., a name or a pseudonym, and
  optionally a role".

  The commitment type can be indicated in the electronic signature
  either:

     *  explicitly using a "commitment type indication" in the
        electronic signature;

     *  implicitly or explicitly from the semantics of the signed data.

  If the indicated commitment type is explicit using a "commitment type
  indication" in the electronic signature, acceptance of a verified
  signature implies acceptance of the semantics of that commitment
  type. The semantics of explicit commitment types indications must be
  specified either as part of the signature policy or may be registered
  for generic use across multiple policies.

  If a signature includes a commitment type indication other than one
  of those recognized under the signature policy the signature must be
  treated as invalid.

  How commitment is indicated using the semantics of the data being
  signed is outside the scope of this document.

  NOTE:  Examples of commitment indicated through the semantics of the
  data being signed, are:

     *  An explicit commitment made by the signer indicated by the type
        of data being signed over.  Thus, the data structure being
        signed can have an explicit commitment within the context of
        the application (e.g., EDIFACT purchase order).

     *  An implicit commitment which is a commitment made by the signer
        because the data being signed over has specific semantics
        (meaning) which is only interpretable by humans, (i.e., free
        text).

B.3.3  Certificate Identifier from the Signer

  The definition of the ETSI electronic signature includes: "a
  commitment has been explicitly endorsed under a signature policy, at
  a given time, by a signer under an identifier, e.g., a name or a
  pseudonym, and optionally a role."



Pinkas, et al.               Informational                     [Page 69]

RFC 3126              Electronic Signature Formats        September 2001


  In many real life environments users will be able to get from
  different CAs or even from the same CA, different certificates
  containing the same public key for different names.  The prime
  advantage is that a user can use the same private key for different
  purposes.  Multiple use of the private key is an advantage when a
  smart card is used to protect the private key, since the storage of a
  smart card is always limited.  When several CAs are involved, each
  different certificate may contain a different identity, e.g., as a
  national or as an employee from a company.  Thus when a private key
  is used for various purposes, the certificate is needed to clarify
  the context in which the private key was used when generating the
  signature.  Where there is the possibility of multiple use of private
  keys it is necessary for the signer to indicate to the verifier the
  precise certificate to be used.

  Many current schemes simply add the certificate after the signed data
  and thus are subject to various substitution attacks.  An example of
  a substitution attack is a "bad" CA that would issue a certificate to
  someone with the public key of someone else.  If the certificate from
  the signer was simply appended to the signature and thus not
  protected by the signature, any one could substitute one certificate
  by another and the message would appear to be signed by some one
  else.

  In order to counter this kind of attack, the identifier of the signer
  has to be protected by the digital signature from the signer.

  Although it does not provide the same advantages as the previous
  technique, another technique to counter that threat has been
  identified.  It requires all CAs to perform a Proof Of Possession of
  the private key at the time of registration.  The problem with that
  technique is that it does not provide any guarantee at the time of
  verification and only some proof "after the event" may be obtained,
  if and only if the CA keeps the Proof Of Possession in audit trail.

  In order to identify unambiguously the certificate to be used for the
  verification of the signature an identifier of the certificate from
  the signer must be part of the signed data.

B.3.4  Role Attributes

  The definition of electronic signature includes: "a commitment has
  been explicitly endorsed under a non repudiation security policy, at
  a given time, by a signer under an identifier, e.g., a name or a
  pseudonym, and optionally a role."






Pinkas, et al.               Informational                     [Page 70]

RFC 3126              Electronic Signature Formats        September 2001


  While the name of the signer is important, the position of the signer
  within a company or an organization can be even more important.  Some
  contracts may only be valid if signed by a user in a particular role,
  e.g., a Sales Director.  In many cases whom the sales Director really
  is, is not that important but being sure that the signer is empowered
  by his company to be the Sales Director is fundamental.

  This document defines two different ways for providing this feature:

     *  by placing a claimed role name in the CMS signed attributes
        field;

     *  by placing a attribute certificate containing a certified role
        name in the CMS signed attributes field.

  NOTE:  Another possible approach would have been to use additional
  attributes containing the roles name(s) in the signer's certificate.
  However, it was decided not to follow this approach as it breaks the
  basic philosophy of the certificate being issued for one primary
  purpose.  Also, by using separate certificates for management of the
  signer's identity certificate and management of additional roles can
  simplify the management, as new identity keys need not be issued if a
  use of role is to be changed.

B.3.4.1  Claimed Role

  The signer may be trusted to state his own role without any
  certificate to corroborate this claim.  In which case the claimed
  role can be added to the signature as a signed attribute.

B.3.4.2  Certified Role

  Unlike public key certificates that bind an identifier to a public
  key, Attribute Certificates bind the identifier of a certificate to
  some attributes, like a role.  An Attribute Certificate is NOT issued
  by a CA but by an Attribute Authority (AA).  The Attribute Authority
  will be most of the time under the control of an organization or a
  company that is best placed to know which attributes are relevant for
  which individual.

  The Attribute Authority may use or point to public key certificates
  issued by any CA, provided that the appropriate trust may be placed
  in that CA.  Attribute Certificates may have various periods of
  validity.  That period may be quite short, e.g., one day.  While this
  requires that a new Attribute Certificate is obtained every day,
  valid for that day, this can be advantageous since revocation of such
  certificates may not be needed.  When signing, the signer will have
  to specify which Attribute Certificate it selects.  In order to do



Pinkas, et al.               Informational                     [Page 71]

RFC 3126              Electronic Signature Formats        September 2001


  so, a reference to the Attribute Certificate will have to be included
  in the signed data in order to be protected by the digital signature
  from the signer.

  In order to identify unambiguously the attribute certificate(s) to be
  used for the verification of the signature an identifier of the
  attribute certificate(s) from the signer must be part of the signed
  data.

B.3.5  Signer Location

  In some transactions the purported location of the signer at the time
  he or she applies his signature may need to be indicated.  For this
  reason an optional location indicator must be able to be included.

  In order to provide indication of the location of the signer at the
  time he or she applied his signature a  location attribute may be
  included in the signature.

B.3.6  Signing Time

  The definition of electronic signature includes: "a commitment has
  been explicitly endorsed under a signature policy, at a given time,
  by a signer under an identifier, e.g., a name or a pseudonym, and
  optionally a role."

  There are several ways to address this problem.  The solution adopted
  in this document is to sign over a time which the signer claims is
  the signing time (i.e., claimed signing time) and to require a
  trusted time stamp to be obtained when building a ES with Time-Stamp.
  When a verifier accepts a signature, the two times must be within
  acceptable limits.

  The solution that is adopted in this document offers the major
  advantage that electronic signatures can be generated without any
  on-line connection to a trusted time source (i.e., they may be
  generated off-line).

  Thus two dates and two signatures are required:

     *  a signing time indicated by the signer and which is part of the
        data signed by the signer (i.e., part of the basic electronic
        signature);

     *  a time indicated by a Time-Stamping Authority (TSA) which is
        signed over the digital signature value of the basic electronic
        signature.  The signer, verifier or both may obtain the TSA
        time-stamp.



Pinkas, et al.               Informational                     [Page 72]

RFC 3126              Electronic Signature Formats        September 2001


  In order for an electronic signature to be valid under a signature
  policy, it must be time-stamped by a TSA where the signing time as
  indicated by the signer and the time of time stamping as indicated by
  a TSA must be "close enough" to meet the requirements of the
  signature validation policy.

  "Close enough" means a few minutes, hours or even days according to
  the "Signature Validation Policy".

  NOTE:  The need for Time-Stamping is further explained in clause
  B.4.5.  A further optional attribute is defined in this document to
  time-stamp the content, to provide proof of the existence of the
  content, at the time indicated by the time-stamp.

  Using this optional attribute a trusted secure time may be obtained
  before the document is signed and included under the digital
  signature.  This solution requires an on-line connection to a trusted
  time-stamping service before generating the signature and may not
  represent the precise signing time, since it can be obtained in
  advance.  However, this optional attribute may be used by the signer
  to prove that the signed object existed before the date included in
  the time-stamp (see 3.12.3, Content Time-Stamp).

  Also, the signing time should be between the time indicated by this
  time-stamp and time indicated by the ES-T time-stamp.

B.3.7  Content Format

  When presenting signed data to a human user it may be important that
  there is no ambiguity as to the presentation of the signed
  information to the relying party.  In order for the appropriate
  representation (text, sound or video) to be selected by the relying
  party a content hint may be indicated by the signer.  If a relying
  party system does not use the format specified in the content hints
  to present the data to the relying party, the electronic signature
  may not be valid.

B.4  Components of Validation Data

B.4.1  Revocation Status Information

  A verifier will have to prove that the certificate of the signer was
  valid at the time of the signature.  This can be done by either:

     *  using Certificate Revocation Lists (CRLs);

     *  using responses from an on-line certificate status server (for
        example; obtained through the OCSP protocol).



Pinkas, et al.               Informational                     [Page 73]

RFC 3126              Electronic Signature Formats        September 2001


B.4.2  CRL Information

  When using CRLs to get revocation information, a verifier will have
  to make sure that he or she gets at the time of the first
  verification the appropriate certificate revocation information from
  the signer's CA. This should be done as soon as possible to minimize
  the time delay between the generation and verification of the
  signature.  This involves checking that the signer certificate serial
  number is not included in the CRL.  The signer, the verifier or any
  other third party may obtain either this CRL.  If obtained by the
  signer, then it must be conveyed to the verifier.  It may be
  convenient to archive the CRL for ease of subsequent verification or
  arbitration.

  Alternatively, provided the CRL is archived elsewhere which is
  accessible for the purpose of arbitration, then the serial number of
  the CRL used may be archived together with the verified electronic
  signature.

  It may happen that the certificate serial number appears in the CRL
  but with the status "suspended" (i.e., on hold).  In such a case, the
  electronic signature is not yet valid, since it is not possible to
  know whether the certificate will or will not be revoked at the end
  of the suspension period.  If a decision has to be taken immediately
  then the signature has to be considered as invalid.  If a decision
  can wait until the end of the suspension period, then two cases are
  possible:

     *  the certificate serial number has disappeared from the list and
        thus the certificate can be considered as valid and that CRL
        must be captured and archived either by the verifier or
        elsewhere and be kept accessible for the purpose of
        arbitration.

     *  the certificate serial number has been maintained on the list
        with the status definitively revoked and thus the electronic
        signature must be considered as invalid and discarded.

  At this point the verifier may be convinced that he or she got a
  valid signature, but is not yet in a position to prove at a later
  time that the signature was verified as valid.  Before addressing
  this point, an alternative to CRL is to use OCSP responses.

B.4.3  OCSP Information

  When using OCSP to get revocation information , a verifier will have
  to make sure that he or she gets at the time of the first
  verification an OCSP response that contains the status "valid".  This



Pinkas, et al.               Informational                     [Page 74]

RFC 3126              Electronic Signature Formats        September 2001


  should be done as soon as possible after the generation of the
  signature.  The signer, the verifier or any other third party may
  fetch this OCSP response. Since OSCP responses are transient and thus
  are not archived by any TSP including CA, it is the responsibility of
  every verifier to make sure that it is stored in a safe place.  The
  simplest way is to store them associated with the electronic
  signature.  An alternative would be to store them in some storage so
  that they can then be easily retrieved.

  In the same way as for the case of the CRL, it may happen that the
  certificate is declared as invalid but with the secondary status
  "suspended".

  In such a case, the electronic signature is not yet valid, since it
  is not possible to know whether the certificate will or will not be
  revoked at the end of the suspension period.  If a decision has to be
  taken immediately then the electronic signature has to be considered
  as invalid.  If a decision can wait until the end of the suspension
  period, then two cases are possible:

     *  An OCSP response with a valid status is obtained at a later
        date and thus the certificate can be considered as valid and
        that OCSP response must be captured.

     *  An OCSP response with an invalid status is obtained with a
        secondary status indicating that the certificate is
        definitively revoked and thus the electronic signature must be
        considered as invalid and discarded.

  As in the CRL case, at this point, the verifier may be convinced that
  he or she got a valid signature, but is not yet in a position to
  prove at a later time that the signature was verified as valid.

B.4.4  Certification Path

  A verifier will have to prove that the certification path was valid,
  at the time of the signature, up to a trust point according to the
  naming constraints and the certificate policy constraints from the
  "Signature Validation Policy".  It will be necessary to capture all
  the certificates from the certification path, starting with those
  from the signer and ending up with those of the self-signed
  certificate from one trusted root of the "Signature Validation
  Policy".  In addition, it will be necessary to capture the Authority
  Revocation Lists (ARLs) to prove than none of the CAs from the chain
  was revoked at the time of the signature.






Pinkas, et al.               Informational                     [Page 75]

RFC 3126              Electronic Signature Formats        September 2001


  As in the OCSP case, at this point, the verifier may be convinced
  that he or she got a valid signature, but is not yet in a position to
  prove at a later time that the signature was verified as valid.

B.4.5  Time-Stamping for Long Life of Signature

  An important property for long standing signatures is that a
  signature, having been found once to be valid, must continue to be so
  months or years later.

  A signer, verifier or both may be required to provide on request,
  proof that a digital signature was created or verified during the
  validity period of the all the certificates that make up the
  certificate path.  In this case, the signer, verifier or both will
  also be required to provide proof that all the user and CA
  certificates used were not revoked when the signature was created or
  verified.

  It would be quite unacceptable, to consider a signature as invalid
  even if the keys or certificates were later compromised.  Thus there
  is a need to be able to demonstrate that the signature keys was valid
  around the time that the signature was created to provide long term
  evidence of the validity of a signature.

  It could be the case that a certificate was valid at the time of the
  signature but revoked some time later.  In this event, evidence must
  be provided that the document was signed before the signing key was
  revoked.

  Time-Stamping by a Time Stamping Authority (TSA) can provide such
  evidence.  A time stamp is obtained by sending the hash value of the
  given data to the TSA.  The returned "time-stamp" is a signed
  document that contains the hash value, the identity of the TSA, and
  the time of stamping.  This proves that the given data existed before
  the time of stamping.  Time-Stamping a digital signature (by sending
  a hash of the signature to the TSA) before the revocation of the
  signer's private key, provides evidence that the signature has been
  created before the key was revoked.

  If a recipient wants to hold a valid electronic signature he will
  have to ensure that he has obtained a valid time stamp for it, before
  that key (and any key involved in the validation) is revoked.  The
  sooner the time-stamp is obtained after the signing time, the better.

  It is important to note that signatures may be generated "off-line"
  and time-stamped at a later time by anyone, for example by the signer
  or any recipient interested in the value of the signature.  The time
  stamp can thus be provided by the signer together with the signed



Pinkas, et al.               Informational                     [Page 76]

RFC 3126              Electronic Signature Formats        September 2001


  document, or obtained by the recipient following receipt of the
  signed document.

  The time stamp is NOT a component of the Electronic Signature, but
  the essential component of the ES with Time-Stamp.

  It is required in this document that signer's digital signature value
  is time-stamped by a trusted source, known as a Time-Stamping
  Authority.

  This document requires that the signer's digital signature value is
  time-stamped by a trusted source before the electronic signature can
  become a ES with Complete validation data (ES-C).  The acceptable
  TSAs are specified in the Signature Validation Policy.

  Should both the signer and verifier be required to time-stamp the
  signature value to meet the requirements of the signature policy, the
  signature policy MAY specify a permitted time delay between the two
  time stamps.

B.4.6  Time-Stamping before CA Key Compromises

  Time-Stamped extended electronic signatures are needed when there is
  a requirement to safeguard against the possibility of a CA key in the
  certificate chain ever being compromised.  A verifier may be required
  to provide on request, proof that the certification path and the
  revocation information used a the time of the signature were valid,
  even in the case where one of the issuing keys or OCSP responder keys
  is later compromised.

  The current document defines two ways of using time-stamps to protect
  against this compromise:

     *  Time-Stamp the ES with Complete validation data, when an OCSP
        response is used to get the status of the certificate from the
        signer.

     *  Time-Stamp only the certification path and revocation
        information references when a CRL is used to get the status of
        the certificate from the signer.

  NOTE:  the signer, verifier or both may obtain the time-stamp.

B.4.6.1  Time-Stamping the ES with Complete validation data

  When an OCSP response is used, it is necessary to time stamp in
  particular that response in the case the key from the responder would
  be compromised.  Since the information contained in the OCSP response



Pinkas, et al.               Informational                     [Page 77]

RFC 3126              Electronic Signature Formats        September 2001


  is user specific and time specific, an individual time stamp is
  needed for every signature received.  Instead of placing the time
  stamp only over the certification path references and the revocation
  information references, which include the OCSP response, the time
  stamp is placed on the ES-C.  Since the certification path and
  revocation information references are included in the ES with
  Complete validation data they are also protected.  For the same
  cryptographic price, this provides an integrity mechanism over the ES
  with Complete validation data.  Any modification can be immediately
  detected.  It should be noticed that other means of
  protecting/detecting the integrity of the ES with Complete Validation
  Data exist and could be used.

  Although the technique requires a time stamp for every signature, it
  is well suited for individual users wishing to have an integrity
  protected copy of all the validated signatures they have received.

  By time-stamping the complete electronic signature, including the
  digital signature as well as the references to the certificates and
  revocation status information used to support validation of that
  signature, the time-stamp ensures that there is no ambiguity in the
  means of validating that signature.

  This technique is referred to as ES with eXtended validation data
  (ES-X), type 1 Time-Stamped in this document.

  NOTE:  Trust is achieved in the references by including a hash of the
  data being referenced.

  If it is desired for any reason to keep a copy of the additional data
  being referenced, the additional data may be attached to the
  electronic signature, in which case the electronic signature becomes
  a ES-X Long as defined by this document.

  A ES-X Long Time-Stamped is simply the concatenation of a ES-X Time-
  Stamped with a copy of the additional data being referenced.

B.4.6.2  Time-Stamping Certificates and Revocation Information

  References Time-Stamping each ES with Complete validation data as
  defined above may not be efficient, particularly when the same set of
  CA certificates and CRL information is used to validate many
  signatures.

  Time-Stamping CA certificates will stop any attacker from issuing
  bogus CA certificates that could be claimed to existing before the CA
  key was compromised.  Any bogus time-stamped CA certificates will
  show that the certificate was created after the legitimate CA key was



Pinkas, et al.               Informational                     [Page 78]

RFC 3126              Electronic Signature Formats        September 2001


  compromised.  In the same way, time-stamping CA CRLs, will stop any
  attacker from issuing bogus CA CRLs which could be claimed to
  existing before the CA key was compromised.

  Time-Stamping of commonly used certificates and CRLs can be done
  centrally, e.g., inside a company or by a service provider.  This
  method reduces the amount of data the verifier has to time-stamp, for
  example it could reduce to just one time stamp per day (i.e., in the
  case were all the signers use the same CA and the CRL applies for the
  whole day).  The information that needs to be time stamped is not the
  actual certificates and CRLs but the unambiguous references to those
  certificates and CRLs.

  To comply with extended validation data, type 2 Time-stamped, this
  document requires the following:

     *  All the CA certificates references and revocation information
        references (i.e., CRLs) used in validating the ES-C are covered
        by one or more time-stamp.

  Thus a ES-C with a time-stamp signature value at time T1, can be
  proved valid if all the CA and CRL references are time-stamped at
  time T1+.

B.4.7  Time-Stamping for Long Life of Signature

  Advances in computing increase the probability of being able to break
  algorithms and compromise keys.  There is therefore a requirement to
  be able to protect electronic signatures against this probability.

  Over a period of time weaknesses may occur in the cryptographic
  algorithms used to create an electronic signature (e.g., due to the
  time available for cryptoanalysis, or improvements in
  cryptoanalytical techniques).  Before this such weaknesses become
  likely, a verifier should take extra measures to maintain the
  validity of the electronic signature.  Several techniques could be
  used to achieve this goal depending on the nature of the weakened
  cryptography.  In order to simplify, a single technique, called
  Archive validation data, covering all the cases is being used in this
  document.

  Archive validation data consists of the Complete validation data and
  the complete certificate and revocation data, time stamped together
  with the electronic signature.  The Archive validation data is
  necessary if the hash function and the crypto algorithms that were
  used to create the signature are no longer secure.  Also, if it





Pinkas, et al.               Informational                     [Page 79]

RFC 3126              Electronic Signature Formats        September 2001


  cannot be assumed that the hash function used by the Time Stamping
  Authority is secure, then nested time-stamps of Archived Electronic
  Signature are required.

  The potential for Trusted Service Provider (TSP) key compromise
  should be significantly lower than user keys, because TSP(s) are
  expected to use stronger cryptography and better key protection.  It
  can be expected that new algorithms (or old ones with greater key
  lengths) will be used.  In such a case, a sequence of time-stamps
  will protect against forgery.  Each time-stamp needs to be affixed
  before either the compromise of the signing key or of the cracking of
  the algorithms used by the TSA.  TSAs (Time-Stamping Authorities)
  should have long keys (e.g., which at the time of drafting this
  document was 2048 bits for the signing RSA algorithm) and/or a "good"
  or different algorithm.

  Nested time-stamps will also protect the verifier against key
  compromise or cracking the algorithm on the old electronic
  signatures.

  The process will need to be performed and iterated before the
  cryptographic algorithms used for generating the previous time stamp
  are no longer secure.  Archive validation data may thus bear multiple
  embedded time stamps.

B.4.8  Reference to Additional Data

  Using type 1 or 2 of Time-Stamped extended validation data verifiers
  still needs to keep track of all the components that were used to
  validate the signature, in order to be able to retrieve them again
  later on.  These components may be archived by an external source
  like a trusted service provider, in which case referenced information
  that is provided as part of the ES with Complete validation data
  (ES-C) is adequate.  The actual certificates and CRL information
  reference in the ES-C can be gathered when needed for arbitration.

B.4.9  Time-Stamping for Mutual Recognition

  In some business scenarios both the signer and the verifier need to
  time-stamp their own copy of the signature value.  Ideally the two
  time-stamps should be as close as possible to each other.

  Example: A contract is signed by two parties A and B representing
  their respective organizations, to time-stamp the signer and verifier
  data two approaches are possible:

     *  under the terms of the contract pre-defined common "trusted"
        TSA may be used;



Pinkas, et al.               Informational                     [Page 80]

RFC 3126              Electronic Signature Formats        September 2001


     *  if both organizations run their own time-stamping services, A
        and B can have the transaction time-stamped by these two time-
        stamping services.  In the latter case, the electronic
        signature will only be considered as valid, if both time-stamps
        were obtained in due time (i.e., there should not be a long
        delay between obtaining the two time-stamps).  Thus, neither A
        nor B can repudiate the signing time indicated by their own
        time-stamping service.

  Therefore, A and B do not need to agree on a common "trusted" TSA to
  get a valid transaction.

  It is important to note that signatures may be generated "off-line"
  and time-stamped at a later time by anyone, e.g., by the signer or
  any recipient interested in validating the signature.  The time-stamp
  over the signature from the signer can thus be provided by the signer
  together with the signed document, and /or obtained by the verifier
  following receipt of the signed document.

  The business scenarios may thus dictate that one or more of the
  long-term signature time-stamping methods describe above be used.
  This will need to be part of a mutually agreed the Signature
  Validation Policy with is part of the overall signature policy under
  which digital signature may be used to support the business
  relationship between the two parties.

B.4.10  TSA Key Compromise

  TSA servers should be built in such a way that once the private
  signature key is installed, that there is minimal likelihood of
  compromise over as long as possible period.  Thus the validity period
  for the TSA's keys should be as long as possible.

  Both the ES-T and the ES-C contain at least one time stamp over the
  signer's signature.  In order to protect against the compromise of
  the private signature key used to produce that time-stamp, the
  Archive validation data can be used when a different Time-Stamping
  Authority key is involved to produce the additional time-stamp.  If
  it is believed that the TSA key used in providing an earlier time-
  stamp may ever be compromised (e.g., outside its validity period),
  then the ES-A should be used.  For extremely long periods this may be
  applied repeatedly using new TSA keys.

B.5  Multiple Signatures

  Some electronic signatures may only be valid if they bear more than
  one signature.  This is the case generally when a contract is signed
  between two parties.  The ordering of the signatures may or may not



Pinkas, et al.               Informational                     [Page 81]

RFC 3126              Electronic Signature Formats        September 2001


  be important, i.e., one may or may not need to be applied before the
  other. Several forms of multiple and counter signatures may need to
  be supported, which fall into two basic categories:

     *  independent signatures;
     *  embedded signatures.

  Independent signatures are parallel signatures where the ordering of
  the signatures is not important.  The capability to have more than
  one independent signature over the same data must be provided.

  Embedded signatures are applied one after the other and are used
  where the order the signatures are applied is important.  The
  capability to sign over signed data must be provided.

  These forms are described in clause 3.13.  All other multiple
  signature schemes, e.g., a signed document with a countersignature,
  double countersignatures or multiple signatures, can be reduced to
  one or more occurrence of the above two cases.

Annex C (informative):  Identifiers and roles

C.1  Signer Name Forms

  The name used by the signer, held as the subject in the signer's
  certificate, must uniquely identify the entity.  The name must be
  allocated and verified on registration with the Certification
  Authority, either directly or indirectly through a Registration
  Authority, before being issued with a Certificate.

  This document places no restrictions on the form of the name.  The
  subject's name may be a distinguished name, as defined in [RFC2459],
  held in the subject field of the certificate, or any other name form
  held in the X.509 subjectAltName certificate extension field.  In the
  case that the subject has no distinguished name, the subject name can
  be an empty sequence and the subjectAltName extension must be
  critical.

C.2  TSP Name Forms

  All TSP name forms (Certification Authorities, Attribute Authorities
  and Time-Stamping Authorities) must be in the form of a distinguished
  name held in the subject field of the certificate.

  The TSP name form must include the legal jurisdiction (i.e., country)
  under which it operates and an identification for the organization
  providing the service.




Pinkas, et al.               Informational                     [Page 82]

RFC 3126              Electronic Signature Formats        September 2001


C.3  Roles and Signer Attributes

  Where a signer signs as an individual but wishes to also identify
  him/herself as acting on behalf of an organization, it may be
  necessary to provide two independent forms of identification.  The
  first identity, with is directly associated with the signing key
  identifies him/her as an individual.  The second, which is managed
  independently, identifies that person acting as part of the
  organization, possibly with a given role.

  In this case the first identity is carried in the
  subject/subjectAltName field of the signer's certificate as described
  above.

  This document supports the following means of providing a second form
  of identification:

     *  by placing a secondary name field containing a claimed role in
        the CMS signed attributes field;

     *  by placing an attribute certificate containing a certified role
        in the CMS signed attributes field.





























Pinkas, et al.               Informational                     [Page 83]

RFC 3126              Electronic Signature Formats        September 2001


Full Copyright Statement

  Copyright (C) The Internet Society (2001).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Pinkas, et al.               Informational                     [Page 84]