Network Working Group                                       R. Finlayson
Request for Comments: 3119                                      LIVE.COM
Category: Standards Track                                      June 2001


        A More Loss-Tolerant RTP Payload Format for MP3 Audio

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2001).  All Rights Reserved.

Abstract

  This document describes a RTP (Real-Time Protocol) payload format for
  transporting MPEG (Moving Picture Experts Group) 1 or 2, layer III
  audio (commonly known as "MP3").  This format is an alternative to
  that described in RFC 2250, and performs better if there is packet
  loss.

1. Introduction

  While the RTP payload format defined in RFC 2250 [2] is generally
  applicable to all forms of MPEG audio or video, it is sub-optimal for
  MPEG 1 or 2, layer III audio (commonly known as "MP3").  The reason
  for this is that an MP3 frame is not a true "Application Data Unit" -
  it contains a back-pointer to data in earlier frames, and so cannot
  be decoded independently of these earlier frames.  Because RFC 2250
  defines that packet boundaries coincide with frame boundaries, it
  handles packet loss inefficiently when carrying MP3 data.  The loss
  of an MP3 frame will render some data in previous (or future) frames
  useless, even if they are received without loss.

  In this document we define an alternative RTP payload format for MP3
  audio.  This format uses a data-preserving rearrangement of the
  original MPEG frames, so that packet boundaries now coincide with
  true MP3 "Application Data Units", which can also (optionally) be
  rearranged in an interleaving pattern.  This new format is therefore
  more data-efficient than RFC 2250 in the face of packet loss.





Finlayson                   Standards Track                     [Page 1]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


2. The Structure of MP3 Frames

  In this section we give a brief overview of the structure of a MP3
  frame.  (For more detailed description, see the MPEG 1 audio [3] and
  MPEG 2 audio [4] specifications.)

  Each MPEG audio frame begins with a 4-byte header.  Information
  defined by this header includes:

  -  Whether the audio is MPEG 1 or MPEG 2.
  -  Whether the audio is layer I, II, or III.
     (The remainder of this document assumes layer III, i.e., "MP3"
     frames)
  -  Whether the audio is mono or stereo.
  -  Whether or not there is a 2-byte CRC field following the header.
  -  (indirectly) The size of the frame.

  The following structures appear after the header:

  -  (optionally) A 2-byte CRC field
  -  A "side info" structure.  This has the following length:
     -  32 bytes for MPEG 1 stereo
     -  17 bytes for MPEG 1 mono, or for MPEG 2 stereo
     -  9 bytes for MPEG 2 mono
  -  Encoded audio data, plus optional ancillary data (filling out the
     rest of the frame)

  For the purpose of this document, the "side info" structure is the
  most important, because it defines the location and size of the
  "Application Data Unit" (ADU) that an MP3 decoder will process.  In
  particular, the "side info" structure defines:

  -  "main_data_begin": This is a back-pointer (in bytes) to the start
     of the ADU.  The back-pointer is counted from the beginning of the
     frame, and counts only encoded audio data and any ancillary data
     (i.e., ignoring any header, CRC, or "side info" fields).

  An MP3 decoder processes each ADU independently.  The ADUs will
  generally vary in length, but their average length will, of course,
  be that of the of the MP3 frames (minus the length of the header,
  CRC, and "side info" fields).  (In MPEG literature, this ADU is
  sometimes referred to as a "bit reservoir".)









Finlayson                   Standards Track                     [Page 2]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


3. A New Payload Format

  As noted in [5], a payload format should be designed so that packet
  boundaries coincide with "codec frame boundaries" - i.e., with ADUs.
  In the RFC 2250 payload format for MPEG audio [2], each RTP packet
  payload contains MP3 frames.  In this new payload format for MP3
  audio, however, each RTP packet payload contains "ADU frames", each
  preceded by an "ADU descriptor".

3.1 ADU frames

  An "ADU frame" is defined as:

     -  The 4-byte MPEG header
        (the same as the original MP3 frame, except that the first 11
        bits are (optionally) replaced by an "Interleaving Sequence
        Number", as described in section 6 below)
     -  The optional 2-byte CRC field
        (the same as the original MP3 frame)
     -  The "side info" structure
        (the same as the original MP3 frame)
     -  The complete sequence of encoded audio data (and any ancillary
        data) for the ADU (i.e., running from the start of this MP3
        frame's "main_data_begin" back-pointer, up to the start of the
        next MP3 frame's back-pointer)

3.2 ADU descriptors

  Within each RTP packet payload, each "ADU frame" is preceded by a 1
  or 2-byte "ADU descriptor", which gives the size of the ADU, and
  indicates whether or not this packet's data is a continuation of the
  previous packet's data.  (This occurs only when a single "ADU
  descriptor"+"ADU frame" is too large to fit within a RTP packet.)

  An ADU descriptor consists of the following fields

  -  "C": Continuation flag (1 bit):  1 if the data following the ADU
          descriptor is a continuation of an ADU frame that was too
          large to fit within a single RTP packet; 0 otherwise.
  -  "T": Descriptor Type flag (1 bit):
          0 if this is a 1-byte ADU descriptor;
          1 if this is a 2-byte ADU descriptor.
  -  "ADU size" (6 or 14 bits):
          The size (in bytes) of the ADU frame that will follow this
          ADU descriptor (i.e., NOT including the size of the
          descriptor itself).  A 2-byte ADU descriptor (with a 14-bit
          "ADU size" field) is used for ADU frames sizes of 64 bytes or
          more.  For smaller ADU frame sizes, senders MAY alternatively



Finlayson                   Standards Track                     [Page 3]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


          use a 1-byte ADU descriptor (with a 6-bit "ADU size" field).
          Receivers MUST be able to accept an ADU descriptor of either
          size.

  Thus, a 1-byte ADU descriptor is formatted as follows:

         0 1 2 3 4 5 6 7
        +-+-+-+-+-+-+-+-+
        |C|0|  ADU size |
        +-+-+-+-+-+-+-+-+

  and a 2-byte ADU descriptor is formatted as follows:

         0                   1
         0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |C|1|     ADU size (14 bits)    |
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.3 Packing rules

  Each RTP packet payload begins with a "ADU descriptor", followed by
  "ADU frame" data.  Normally, this "ADU descriptor"+"ADU frame" will
  fit completely within the RTP packet.  In this case, more than one
  successive "ADU descriptor"+"ADU frame" MAY be packed into a single
  RTP packet, provided that they all fit completely.

  If, however, a single "ADU descriptor"+"ADU frame" is too large to
  fit within an RTP packet, then the "ADU frame" is split across two or
  more successive RTP packets.  Each such packet begins with an ADU
  descriptor.  The first packet's descriptor has a "C" (continuation)
  flag of 0; the following packets' descriptors each have a "C" flag of
  1.  Each descriptor, in this case, has the same "ADU size" value: the
  size of the entire "ADU frame" (not just the portion that will fit
  within a single RTP packet).  Each such packet (even the last one)
  contains only one "ADU descriptor".

3.4 RTP header fields

     Payload Type: The (static) payload type 14 that was defined for
        MPEG audio [6] MUST NOT be used.  Instead, a different, dynamic
        payload type MUST be used - i.e., one in the range [96,127].

     M bit: This payload format defines no use for this bit.  Senders
        SHOULD set this bit to zero in each outgoing packet.

     Timestamp: This is a 32-bit 90 kHz timestamp, representing the
        presentation time of the first ADU packed within the packet.



Finlayson                   Standards Track                     [Page 4]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


3.5 Handling received data

  Note that no information is lost by converting a sequence of MP3
  frames to a corresponding sequence of "ADU frames", so a receiving
  RTP implementation can either feed the ADU frames directly to an
  appropriately modified MP3 decoder, or convert them back into a
  sequence of MP3 frames, as described in appendix A.2 below.

4. Handling Multiple MPEG Audio Layers

  The RTP payload format described here is intended only for MPEG 1 or
  2, layer III audio ("MP3").  In contrast, layer I and layer II frames
  are self-contained, without a back-pointer to earlier frames.
  However, it is possible (although unusual) for a sequence of audio
  frames to consist of a mixture of layer III frames and layer I or II
  frames.  When such a sequence is transmitted, only layer III frames
  are converted to ADUs; layer I or II frames are sent 'as is' (except
  for the prepending of an "ADU descriptor").  Similarly, the receiver
  of a sequence of frames - using this payload format - leaves layer I
  and II frames untouched (after removing the prepended "ADU
  descriptor), but converts layer III frames from "ADU frames" to
  regular MP3 frames.  (Recall that each frame's layer is identified
  from its 4-byte MPEG header.)

  If you are transmitting a stream consists *only* of layer I or layer
  II frames (i.e., without any MP3 data), then there is no benefit to
  using this payload format, *unless* you are using the interleaving
  mechanism.

5. Frame Packetizing and Depacketizing

  The transmission of a sequence of MP3 frames takes the following
  steps:

        MP3 frames
                -1-> ADU frames
                    -2-> interleaved ADU frames
                          -3-> RTP packets

  Step 1, the conversion of a sequence of MP3 frames to a corresponding
  sequence of ADU frames, takes place as described in sections 2 and
  3.1 above.  (Note also the pseudo-code in appendix A.1.)

  Step 2 is the reordering of the sequence of ADU frames in an
  (optional) interleaving pattern, prior to packetization, as described
  in section 6 below.  (Note also the pseudo-code in appendix B.1.)
  Interleaving helps reduce the effect of packet loss, by distributing
  consecutive ADU frames over non-consecutive packets.  (Note that



Finlayson                   Standards Track                     [Page 5]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


  because of the back-pointer in MP3 frames, interleaving can be
  applied - in general - only to ADU frames.  Thus, interleaving was
  not possible for RFC 2250.)

  Step 3 is the packetizing of a sequence of (interleaved) ADU frames
  into RTP packets - as described in section 3.3 above.  Each packet's
  RTP timestamp is the presentation time of the first ADU that is
  packed within it.  Note that, if interleaving was done in step 2, the
  RTP timestamps on outgoing packets will not necessarily be
  monotonically nondecreasing.

  Similarly, a sequence of received RTP packets is handled as follows:

        RTP packets
              -4-> RTP packets ordered by RTP sequence number
                    -5-> interleaved ADU frames
                          -6-> ADU frames
                                -7-> MP3 frames

  Step 4 is the usual sorting of incoming RTP packets using the RTP
  sequence number.

  Step 5 is the depacketizing of ADU frames from RTP packets - i.e.,
  the reverse of step 3.  As part of this process, a receiver uses the
  "C" (continuation) flag in the ADU descriptor to notice when an ADU
  frame is split over more than one packet (and to discard the ADU
  frame entirely if one of these packets is lost).

  Step 6 is the rearranging of the sequence of ADU frames back to its
  original order (except for ADU frames missing due to packet loss), as
  described in section 6 below.  (Note also the pseudo-code in appendix
  B.2.)

  Step 7 is the conversion of the sequence of ADU frames into a
  corresponding sequence of MP3 frames - i.e., the reverse of step 1.
  (Note also the pseudo-code in appendix A.2.)  With an appropriately
  modified MP3 decoder, an implementation may omit this step; instead,
  it could feed ADU frames directly to the (modified) MP3 decoder.

6. ADU Frame Interleaving

  In MPEG audio frames (MPEG 1 or 2; all layers) the high-order 11 bits
  of the 4-byte MPEG header ('syncword') are always all-one (i.e.,
  0xFFE).  When reordering a sequence of ADU frames for transmission,
  we reuse these 11 bits as an "Interleaving Sequence Number" (ISN).
  (Upon reception, they are replaced with 0xFFE once again.)





Finlayson                   Standards Track                     [Page 6]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


  The structure of the ISN is (a,b), where:

        - a == bits 0-7:      8-bit Interleave Index (within Cycle)
        - b == bits 8-10:     3-bit Interleave Cycle Count

  I.e., the 4-byte MPEG header is reused as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Interleave Idx |CycCt|   The rest of the original MPEG header  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Example: Consider the following interleave cycle (of size 8):
           1,3,5,7,0,2,4,6
  (This particular pattern has the property that any loss of up to four
  consecutive ADUs in the interleaved stream will lead to a
  deinterleaved stream with no gaps greater than one [7].)  This
  produces the following sequence of ISNs:

  (1,0) (3,0) (5,0) (7,0) (0,0) (2,0) (4,0) (6,0) (1,1) (3,1)
  (5,1) etc.

  So, in this example, a sequence of ADU frames

  f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 (etc.)

  would get reordered, in step 2, into:

  (1,0)f1 (3,0)f3 (5,0)f5 (7,0)f7 (0,0)f0 (2,0)f2 (4,0)f4 (6,0)f6
  (1,1)f9 (3,1)f11 (5,1)f13 (etc.)

  and the reverse reordering (along with replacement of the 0xFFE)
  would occur upon reception.

  The reason for breaking the ISN into "Interleave Cycle Count" and
  "Interleave Index" (rather than just treating it as a single 11-bit
  counter) is to give receivers a way of knowing when an ADU frame
  should be 'released' to the ADU->MP3 conversion process (step 7
  above), rather than waiting for more interleaved ADU frames to
  arrive.  E.g., in the example above, when the receiver sees a frame
  with ISN (<something>,1), it knows that it can release all
  previously-seen frames with ISN (<something>,0), even if some other
  (<something>,0) frames remain missing due to packet loss.  A 8-bit
  Interleave Index allows interleave cycles of size up to 256.






Finlayson                   Standards Track                     [Page 7]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


  The choice of an interleaving order can be made independently of RTP
  packetization.  Thus, a simple implementation could choose an
  interleaving order first, reorder the ADU frames accordingly (step
  2), then simply pack them sequentially into RTP packets (step 3).
  However, the size of ADU frames - and thus the number of ADU frames
  that will fit in each RTP packet - will typically vary in size, so a
  more optimal implementation would combine steps 2 and 3, by choosing
  an interleaving order that better reflected the number of ADU frames
  packed within each RTP packet.

  Each receiving implementation of this payload format MUST recognize
  the ISN and be able to perform deinterleaving of incoming ADU frames
  (step 6).  However, a sending implementation of this payload format
  MAY choose not to perform interleaving - i.e., by omitting step 2.
  In this case, the high-order 11 bits in each 4-byte MPEG header would
  remain at 0xFFE.  Receiving implementations would thus see a sequence
  of identical ISNs (all 0xFFE).  They would handle this in the same
  way as if the Interleave Cycle Count changed with each ADU frame, by
  simply releasing the sequence of incoming ADU frames sequentially to
  the ADU->MP3 conversion process (step 7), without reordering.  (Note
  also the pseudo-code in appendix B.2.)

7. MIME registration

     MIME media type name: audio

     MIME subtype: mpa-robust

     Required parameters: none

     Optional parameters: none

     Encoding considerations:
        This type is defined only for transfer via RTP as specified in
        "RFC 3119".

     Security considerations:
        See the "Security Considerations" section of
        "RFC 3119".

     Interoperability considerations:
        This encoding is incompatible with both the "audio/mpa"
        and "audio/mpeg" mime types.

     Published specification:
        The ISO/IEC MPEG-1 [3] and MPEG-2 [4] audio specifications,
        and "RFC 3119".




Finlayson                   Standards Track                     [Page 8]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


     Applications which use this media type:
        Audio streaming tools (transmitting and receiving)

     Additional information: none

     Person & email address to contact for further information:
        Ross Finlayson
        [email protected]

     Intended usage: COMMON

     Author/Change controller:
        Author: Ross Finlayson
        Change controller: IETF AVT Working Group

8. SDP usage

  When conveying information by SDP [8], the encoding name SHALL be
  "mp3" (the same as the MIME subtype).  An example of the media
  representation in SDP is:

        m=audio 49000 RTP/AVP 121
        a=rtpmap:121 mpa-robust/90000

9. Security Considerations

  If a session using this payload format is being encrypted, and
  interleaving is being used, then the sender SHOULD ensure that any
  change of encryption key coincides with a start of a new interleave
  cycle.  Apart from this, the security considerations for this payload
  format are identical to those noted for RFC 2250 [2].

10. Acknowledgements

  The suggestion of adding an interleaving option (using the first bits
  of the MPEG 'syncword' - which would otherwise be all-ones - as an
  interleaving index) is due to Dave Singer and Stefan Gewinner.  In
  addition, Dave Singer provided valuable feedback that helped clarify
  and improve the description of this payload format.  Feedback from
  Chris Sloan led to the addition of an "ADU descriptor" preceding each
  ADU frame in the RTP packet.










Finlayson                   Standards Track                     [Page 9]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


11. References

  [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
      Levels", BCP 14, RFC 2119, March 1997.

  [2] Hoffman, D., Fernando, G., Goyal, V. and M. Civanlar, "RTP
      Payload Format for MPEG1/MPEG2 Video", RFC 2250, January 1998.

  [3] ISO/IEC International Standard 11172-3; "Coding of moving
      pictures and associated audio for digital storage media up to
      about 1,5 Mbits/s - Part 3: Audio", 1993.

  [4] ISO/IEC International Standard 13818-3; "Generic coding of moving
      pictures and associated audio information - Part 3: Audio", 1998.

  [5] Handley, M., "Guidelines for Writers of RTP Payload Format
      Specifications", BCP 36, RFC 2736, December 1999.

  [6] Schulzrinne, H., "RTP Profile for Audio and Video Conferences
      with Minimal Control", RFC 1890, January 1996.

  [7] Marshall Eubanks, personal communication, December 2000.

  [8] Handley, M. and V. Jacobson, "SDP: Session Description Protocol",
      RFC 2327, April 1998.

11. Author's Address

  Ross Finlayson,
  Live Networks, Inc. (LIVE.COM)

  EMail: [email protected]
  WWW: http://www.live.com/


















Finlayson                   Standards Track                    [Page 10]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


Appendix A. Translating Between "MP3 Frames" and "ADU Frames"

  The following 'pseudo code' describes how a sender using this payload
  format can translate a sequence of regular "MP3 Frames" to "ADU
  Frames", and how a receiver can perform the reverse translation: from
  "ADU Frames" to "MP3 Frames".

  We first define the following abstract data structures:

  -  "Segment": A record that represents either a "MP3 Frame" or an
     "ADU Frame".  It consists of the following fields:
     -  "header": the 4-byte MPEG header
     -  "headerSize": a constant (== 4)
     -  "sideInfo": the 'side info' structure, *including* the optional
        2-byte CRC field, if present
     -  "sideInfoSize": the size (in bytes) of the above structure
     -  "frameData": the remaining data in this frame
     -  "frameDataSize": the size (in bytes) of the above data
     -  "backpointer": the size (in bytes) of the backpointer for this
        frame
     -  "aduDataSize": the size (in bytes) of the ADU associated with
        this frame.  (If the frame is already an "ADU Frame", then
        aduDataSize == frameDataSize)
     -  "mp3FrameSize": the total size (in bytes) that this frame would
        have if it were a regular "MP3 Frame".  (If it is already a
        "MP3 Frame", then mp3FrameSize == headerSize + sideInfoSize +
        frameDataSize) Note that this size can be derived completely
        from "header".

  -  "SegmentQueue": A FIFO queue of "Segment"s, with operations
     -  void enqueue(Segment)
     -  Segment dequeue()
     -  Boolean isEmpty()
     -  Segment head()
     -  Segment tail()
     -  Segment previous(Segment):  returns the segment prior to a
        given one
     -  Segment next(Segment): returns the segment after a given one
     -  unsigned totalDataSize(): returns the sum of the
        "frameDataSize" fields of each entry in the queue











Finlayson                   Standards Track                    [Page 11]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


A.1 Converting a sequence of "MP3 Frames" to a sequence of "ADU Frames":

SegmentQueue pendingMP3Frames; // initially empty
while (1) {
       // Enqueue new MP3 Frames, until we have enough data to generate
       // the ADU for a frame:
       do {
               int totalDataSizeBefore
                       = pendingMP3Frames.totalDataSize();

               Segment newFrame = 'the next MP3 Frame';
               pendingMP3Frames.enqueue(newFrame);

               int totalDataSizeAfter
                       = pendingMP3Frames.totalDataSize();
       } while (totalDataSizeBefore < newFrame.backpointer ||
                 totalDataSizeAfter < newFrame.aduDataSize);

       // We now have enough data to generate the ADU for the most
       // recently enqueued frame (i.e., the tail of the queue).
       // (The earlier frames in the queue - if any - must be
       // discarded, as we don't have enough data to generate
       // their ADUs.)
       Segment tailFrame = pendingMP3Frames.tail();

       // Output the header and side info:
       output(tailFrame.header);
       output(tailFrame.sideInfo);

       // Go back to the frame that contains the start of our ADU data:
       int offset = 0;
       Segment curFrame = tailFrame;
       int prevBytes = tailFrame.backpointer;
       while (prevBytes > 0) {
               curFrame = pendingMP3Frames.previous(curFrame);
               int dataHere = curFrame.frameDataSize;
               if (dataHere < prevBytes) {
                       prevBytes -= dataHere;
               } else {
                       offset = dataHere - prevBytes;
                       break;
               }
       }

       // Dequeue any frames that we no longer need:
       while (pendingMP3Frames.head() != curFrame) {
               pendingMP3Frames.dequeue();
       }



Finlayson                   Standards Track                    [Page 12]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


       // Output, from the remaining frames, the ADU data that we want:
       int bytesToUse = tailFrame.aduDataSize;
       while (bytesToUse > 0) {
               int dataHere = curFrame.frameDataSize - offset;
               int bytesUsedHere
                       = dataHere < bytesToUse ? dataHere : bytesToUse;

               output("bytesUsedHere" bytes from curFrame.frameData,
                       starting from "offset");

               bytesToUse -= bytesUsedHere;
               offset = 0;
               curFrame = pendingMP3Frames.next(curFrame);
       }
}

A.2 Converting a sequence of "ADU Frames" to a sequence of "MP3 Frames":

SegmentQueue pendingADUFrames; // initially empty
while (1) {
       while (needToGetAnADU()) {
               Segment newADU = 'the next ADU Frame';
               pendingADUFrames.enqueue(newADU);

               insertDummyADUsIfNecessary();
       }

       generateFrameFromHeadADU();
}

Boolean needToGetAnADU() {
       // Checks whether we need to enqueue one or more new ADUs before
       // we have enough data to generate a frame for the head ADU.
       Boolean needToEnqueue = True;

       if (!pendingADUFrames.isEmpty()) {
               Segment curADU = pendingADUFrames.head();
               int endOfHeadFrame = curADU.mp3FrameSize
                       - curADU.headerSize - curADU.sideInfoSize;
               int frameOffset = 0;

               while (1) {
                       int endOfData = frameOffset
                               - curADU.backpointer +
                                 curADU.aduDataSize;
                       if (endOfData >= endOfHeadFrame) {
                               // We have enough data to generate a
                               // frame.



Finlayson                   Standards Track                    [Page 13]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


                               needToEnqueue = False;
                               break;
                       }

                       frameOffset += curADU.mp3FrameSize
                               - curADU.headerSize
                               - curADU.sideInfoSize;
                       if (curADU == pendingADUFrames.tail()) break;
                       curADU = pendingADUFrames.next(curADU);
               }
       }

   return needToEnqueue;
}

void generateFrameFromHeadADU() {
       Segment curADU = pendingADUFrames.head();

       // Output the header and side info:
       output(curADU.header);
       output(curADU.sideInfo);

       // Begin by zeroing out the rest of the frame, in case the ADU
       // data doesn't fill it in completely:
       int endOfHeadFrame = curADU.mp3FrameSize
               - curADU.headerSize - curADU.sideInfoSize;
       output("endOfHeadFrame" zero bytes);

       // Fill in the frame with appropriate ADU data from this and
       // subsequent ADUs:
       int frameOffset = 0;
       int toOffset = 0;

       while (toOffset < endOfHeadFrame) {
               int startOfData = frameOffset - curADU.backpointer;
               if (startOfData > endOfHeadFrame) {
                       break; // no more ADUs are needed
               }
               int endOfData = startOfData + curADU.aduDataSize;
               if (endOfData > endOfHeadFrame) {
                       endOfData = endOfHeadFrame;
               }

               int fromOffset;
               if (startOfData <= toOffset) {
                       fromOffset = toOffset - startOfData;
                       startOfData = toOffset;
                       if (endOfData < startOfData) {



Finlayson                   Standards Track                    [Page 14]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


                               endOfData = startOfData;
                       }
               } else {
                       fromOffset = 0;

                       // leave some zero bytes beforehand:
                       toOffset = startOfData;
               }

               int bytesUsedHere = endOfData - startOfData;
               output(starting at offset "toOffset, "bytesUsedHere"
                       bytes from "&curADU.frameData[fromOffset]");
               toOffset += bytesUsedHere;

               frameOffset += curADU.mp3FrameSize
                       - curADU.headerSize - curADU.sideInfoSize;
               curADU = pendingADUFrames.next(curADU);
       }

       pendingADUFrames.dequeue();
}

void insertDummyADUsIfNecessary() {
       // The tail segment (ADU) is assumed to have been recently
       // enqueued.  If its backpointer would overlap the data
       // of the previous ADU, then we need to insert one or more
       // empty, 'dummy' ADUs ahead of it.  (This situation should
       // occur only if an intermediate ADU was missing - e.g., due
       // to packet loss.)
       while (1) {
               Segment tailADU = pendingADUFrames.tail();
               int prevADUend; // relative to the start of the tail ADU

               if (pendingADUFrames.head() != tailADU) {
                       // there is a previous ADU
                       Segment prevADU
                               = pendingADUFrames.previous(tailADU);
                       prevADUend
                               = prevADU.mp3FrameSize +
                                 prevADU.backpointer
                                 - prevADU.headerSize
                                 - curADU.sideInfoSize;
                       if (prevADU.aduDataSize > prevADUend) {
                               // this shouldn't happen if the previous
                               // ADU was well-formed
                               prevADUend = 0;
                       } else {
                               prevADUend -= prevADU.aduDataSize;



Finlayson                   Standards Track                    [Page 15]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


                       }
               } else {
                       prevADUend = 0;
               }

               if (tailADU.backpointer > prevADUend) {
                       // Insert a 'dummy' ADU in front of the tail.
                       // This ADU can have the same "header" (and thus
                       // "mp3FrameSize") as the tail ADU, but should
                       // have an "aduDataSize" of zero.  The simplest
                       // way to do this is to copy the "sideInfo" from
                       // the tail ADU, and zero out the
                       // "main_data_begin" and all of the
                       // "part2_3_length" fields.
               } else {
                       break; // no more dummy ADUs need to be inserted
               }
       }
}

Appendix B: Interleaving and Deinterleaving

  The following 'pseudo code' describes how a sender can reorder a
  sequence of "ADU Frames" according to an interleaving pattern (step
  2), and how a receiver can perform the reverse reordering (step 6).

B.1 Interleaving a sequence of "ADU Frames":

  We first define the following abstract data structures:

  -  "interleaveCycleSize": an integer in the range [1,256] -
     "interleaveCycle": an array, of size "interleaveCycleSize",
     containing some permutation of the integers from the set [0 ..
     interleaveCycleSize-1]
     e.g., if "interleaveCycleSize" == 8, "interleaveCycle" might
     contain: 1,3,5,7,0,2,4,6
  -  "inverseInterleaveCycle": an array containing the inverse of the
     permutation in "interleaveCycle" - i.e., such that
     interleaveCycle[inverseInterleaveCycle[i]] == i
  -  "ii": the current Interleave Index (initially 0)
  -  "icc": the current Interleave Cycle Count (initially 0)
  -  "aduFrameBuffer": an array, of size "interleaveCycleSize", of ADU
     Frames that are awaiting packetization

while (1) {
       int positionOfNextFrame = inverseInterleaveCycle[ii];
       aduFrameBuffer[positionOfNextFrame] = the next ADU frame;
       replace the high-order 11 bits of this frame's MPEG header



Finlayson                   Standards Track                    [Page 16]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


           with (ii,icc);
               // Note: Be sure to leave the remaining 21 bits as is
       if (++ii == interleaveCycleSize) {
               // We've finished this cycle, so pass all
               // pending frames to the packetizing step
               for (int i = 0; i < interleaveCycleSize; ++i) {
                       pass aduFrameBuffer[i] to the packetizing step;
               }

               ii = 0;
               icc = (icc+1)%8;
       }
}

B.2 Deinterleaving a sequence of (interleaved) "ADU Frames":

  We first define the following abstract data structures:

  -  "ii": the Interleave Index from the current incoming ADU frame
  -  "icc": the Interleave Cycle Count from the current incoming ADU
     frame
  -  "iiLastSeen": the most recently seen Interleave Index (initially,
     some integer *not* in the range [0,255])
  -  "iccLastSeen": the most recently seen Interleave Cycle Count
     (initially, some integer *not* in the range [0,7])
  -  "aduFrameBuffer": an array, of size 32, of (pointers to) ADU
     Frames that have just been depacketized (initially, all entries
     are NULL)

while (1) {
       aduFrame = the next ADU frame from the depacketizing step;
       (ii,icc) = "the high-order 11 bits of aduFrame's MPEG header";
       "the high-order 11 bits of aduFrame's MPEG header" = 0xFFE;
               // Note: Be sure to leave the remaining 21 bits as is

       if (icc != iccLastSeen || ii == iiLastSeen) {
               // We've started a new interleave cycle
               // (or interleaving was not used).  Release all
               // pending ADU frames to the ADU->MP3 conversion step:
               for (int i = 0; i < 32; ++i) {
                       if (aduFrameBuffer[i] != NULL) {
                               release aduFrameBuffer[i];
                               aduFrameBuffer[i] = NULL;
                       }
               }
       }

       iiLastSeen = ii;



Finlayson                   Standards Track                    [Page 17]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


       iccLastSeen = icc;
       aduFrameBuffer[ii] = aduFrame;
}
















































Finlayson                   Standards Track                    [Page 18]

RFC 3119     Loss-Tolerant RTP Payload Format for MP3 Audio    June 2001


Full Copyright Statement

  Copyright (C) The Internet Society (2001).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Finlayson                   Standards Track                    [Page 19]