Network Working Group                                       M. Wildgrube
Request for Comments: 3072                                    March 2001
Category: Informational


                Structured Data Exchange Format (SDXF)

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2001).  All Rights Reserved.

IESG Note

  This document specifies a data exchange format and, partially, an API
  that can be used for creating and parsing such a format.  The IESG
  notes that the same problem space can be addressed using formats that
  the IETF normally uses including ASN.1 and XML.  The document reader
  is strongly encouraged to carefully read section 13 before choosing
  SDXF over ASN.1 or XML.  Further, when storing text in SDXF, the user
  is encourage to use the datatype for UTF-8, specified in section 2.5.

Abstract

  This specification describes an all-purpose interchange format for
  use as a file format or for net-working.  Data is organized in chunks
  which can be ordered in hierarchical structures.  This format is
  self-describing and CPU-independent.

Table of Contents

  1.  Introduction ................................................. 2
  2.  Description of the SDXF data format .......................... 3
  3.  Introduction to the SDXF functions ........................... 5
  3.1 General remarks .............................................. 5
  3.2 Writing a SDXF buffer ........................................ 5
  3.3 Reading a SDXF buffer ........................................ 6
  3.4 Example ...................................................... 6
  4.  Platform independence ........................................ 8
  5.  Compression .................................................. 9
  6.  Encryption ...................................................11
  7.  Arrays........................................................11
  8.  Description of the SDXF functions ............................12



Wildgrube                    Informational                      [Page 1]

RFC 3072            Structured Data Exchange Format           March 2001


  8.1 Introduction .................................................12
  8.2 Basic definitions ............................................13
  8.3 Definitions for C++ ..........................................15
  8.4 Common Definitions ...........................................16
  8.5 Special functions ............................................17
  9.  'Support' of UTF-8 ...........................................19
  10.  Security Considerations .....................................19
  11.  Some general hints ..........................................20
  12.  IANA Considerations .........................................20
  13.  Discussion ..................................................21
  13.1 SDXF vs. ASN.1 ..............................................21
  13.2 SDXF vs. XML ................................................22
  14.  Author's Address ............................................24
  15.  Acknowledgements ............................................24
  16.  References ..................................................24
  17.  Full Copyright Statement ....................................26

1. Introduction

  The purpose of the Structured Data eXchange Format (SDXF) is to
  permit the interchange of an arbitrary structured data block with
  different kinds of data (numerical, text, bitstrings).  Because data
  is normalized to an abstract computer architecture independent
  "network format", SDXF is usable as a network interchange data
  format.

  This data format is not limited to any application, the demand for
  this format is that it is usable as a text format for word-
  processing, as a picture format, a sound format, for remote procedure
  calls with complex parameters, suitable for document formats, for
  interchanging business data, etc.

  SDXF is self-describing, every program can unpack every SDXF-data
  without knowing the meaning of the individual data elements.

  Together with the description of the data format a set of functions
  will be introduced.  With the help of these functions one can create
  and access the data elements of SDXF.  The idea is that a programmer
  should only use these functions instead of maintaining the structure
  by himself on the level of bits and bytes.  (In the speech of
  object-oriented programming these functions are methods of an object
  which works as a handle for a given SDXF data block.)

  SDXF is not limited to a specific platform, along with a correct
  preparation of the SDXF functions the SDXF data can be interchanged
  (via network or data carrier) across the boundaries of different
  architectures (specified by the character code like ASCII, ANSI or
  EBCDIC and the byte order for binary data).



Wildgrube                    Informational                      [Page 2]

RFC 3072            Structured Data Exchange Format           March 2001


  SDXF is also prepared to compress and encrypt parts or the whole
  block of SDXF data.

2. Description of SDXF data format.

2.1 First we introduce the term "chunk".  A chunk is a data structure
   with a fixed set of components.  A chunk may be "elementary" or
   "structured".  The latter one contains itself one or more other
   chunks.

  A chunk consists of a header and the data body (content):

  +----------+-----+-------+-----------------------------------+
  | Name     | Pos.| Length| Description                       |
  +----------+-----+-------+-----------------------------------+
  | chunk-ID |  1  |   2   | ID of the chunk (unsigned short)  |
  | flags    |  3  |   1   | type and properties of this chunk |
  | length   |  4  |   3   | length  of the following data     |
  | content  |  7  |   *)  | net data or a list of of chunks   |
  +----------+-----+-------+-----------------------------------+

  (* as stated in "length". total length of chunk is length+6.  The
  chunk ID is a non-zero positive number.

  or more visually:

  +----+----+----+----+----+----+----+----+----+-...
  | chunkID | fl | length       |  content
  +----+----+----+----+----+----+----+----+----+-...

  or in ASN.1 syntax:

  chunk  ::=  SEQUENCE
  {
    chunkID INTEGER (1..65535),
    flags   BIT STRING,
    length  OCTET STRING SIZE 3, -- or: INTEGER (0..16777215)
    content OCTET STRING
  }

2.2 Structured chunk.

  A structured chunk is marked as such by the flag byte (see 2.5).
  Opposed to an elementary chunk its content consists of a list of
  chunks (elementary or structured):






Wildgrube                    Informational                      [Page 3]

RFC 3072            Structured Data Exchange Format           March 2001


  +----+-+---+-------+-------+-------+-----+-------+
  | id |f|len| chunk | chunk | chunk | ... | chunk |
  +----+-+---+-------+-------+-------+-----+-------+

  With the help of this concept you can reproduce every hierarchically
  structured data into a SDXF chunk.

2.3 Some Remarks about the internal representation of the chunk's
   elements:

  Binary values are always in high-order-first (big endian) format,
  like the binary values in the IP header (network format).  A length
  of 300 (=256 + 32 + 12) is stored as

  +----+----+----+----+----+----+----+----+----+--
  |         |    | 00   01   2C |  content
  +----+----+----+----+----+----+----+----+----+--

  in hexadecimal notation.

  This is also valid for the chunk-ID.

2.4 Character values in the content portion are also an object of
   adaptation: see chapter 4.

2.5 Meaning of the flag-bits: Let us represent the flag byte in this
   manner:

    +-+-+-+-+-+-+-+-+
    |0|1|2|3|4|5|6|7|
    +-+-+-+-+-+-+-+-+
     | | | | | | | |
     | | | | | | | +-- reserved
     | | | | | | +---- array
     | | | | | +------ short chunk
     | | | | +-------- encrypted chunk
     | | | +---------- compressed chunk
     | | |
     +-+-+------------ data type (0..7)

  data types are:

  0 -- pending structure (chunk is inconsistent, see also 11.1)
  1 -- structure
  2 -- bit string
  3 -- numeric
  4 -- character
  5 -- float (ANSI/IEEE 754-1985)



Wildgrube                    Informational                      [Page 4]

RFC 3072            Structured Data Exchange Format           March 2001


  6 -- UTF-8
  7 -- reserved

2.6 A short chunk has no data body.  The 3 byte Length field is used as
  data bytes instead.  This is used in order to save space when there
  are many small chunks.

2.7 Compressed and encrypted chunks are explained in chapter 5 and 6.

2.8 Arrays are explained in chapter 7.

2.9 Handling of UTF-8 is explained in chapter 9.

2.10 Not all combinations of bits are allowed or reasonable:

  -  the flags 'array' and 'short' are mutually exclusive.
  -  'short' is not applicable for data type 'structure' and 'float'.
  -  'array' is not applicable for data type 'structure'.

3. Introduction to the SDXF functions

3.1 General remarks

  The functionality of the SDXF concept is not bounded to any
  programming language, but of course the functions themselves must be
  coded in a particular language.  I discuss these functions in C and
  C++, because in the meanwhile these languages are available on almost
  all platforms.

  All these functions for reading and writing SDXF chunks uses only one
  parameter, a parameter structure.  In C++ this parameter structure is
  part of the "SDXF class" and the SDXF functions are methods of this
  class.

  An exact description of the interface is given in chapter 8.

3.2 Writing a SDXF buffer

  For to write SDXF chunks, there are following functions:

  init    -- initialize the parameter structure
  create  -- create a new chunk
  leave   -- "close" a structured chunk








Wildgrube                    Informational                      [Page 5]

RFC 3072            Structured Data Exchange Format           March 2001


3.3 Reading a SDXF buffer

  For to read SDXF chunks, there are following functions:

  init    -- initialize the parameter structure
  enter   -- "go into" a structured chunk
  next    -- "go to" the next chunk inside a structured chunk
  extract -- extract the content of an elementary chunk into
             user's data area
  leave   -- "go out" off a structured chunk

3.4 Example:

3.4.1 Writing:

  For demonstration we use a reduced (outlined) C++ Form of these
  functions with polymorph definitions:

  void create (short chunkID); // opens a new structure,
  void create (short chunkID, char *string);
       // creates a new chunk with dataType character, etc.)

  The sequence:

  SDXF x(new); // create the SDXF object "x" for a new chunk
               // includes the "init"
  x.create (3301);   // opens a new structure
  x.create (3302, "first chunk");
  x.create (3303, "second chunk");
  x.create (3304);   // opens a new structure
  x.create (3305, "chunk in a structure");
  x.create (3306, "next chunk in a structure");
  x.leave ();        // closes the inner structure
  x.create (3307, "third chunk");
  x.leave ();        // closes the outer structure
















Wildgrube                    Informational                      [Page 6]

RFC 3072            Structured Data Exchange Format           March 2001


  creates a chunk which we can show graphically like:

  3301
   |
   +--- 3302 = "first chunk"
   |
   +--- 3303 = "second chunk"
   |
   +--- 3304
   |      |
   |      +--- 3305 = "chunk in a structure"
   |      |
   |      +--- 3306 = "next chunk in a structure"
   |
   +--- 3307 = "last chunk"

3.4.2 Reading

  A typically access to a structured SDXF chunk is a selection inside
  a loop:

  SDXF x(old); // defines a SDXF object "x" for an old chunk
  x.enter ();  // enters the structure

  while (x.rc == 0) // 0 == ok, rc will set by the SDXF functions
  {
    switch (x.chunkID)
    {
      case 3302:
        x.extract (data1, maxLength1);
                  // extr. 1st chunk into data1
        break;

      case 3303:
        x.extract (data2, maxLength2);
                  // extr. 2nd chunk into data2
        break;

      case 3304:  // we know this is a structure
        x.enter (); // enters the inner structure

        while (x.rc == 0) // inner loop
        {
          switch (x.chunkID)
          {
            case 3305:
              x.extract (data3, maxLength3);
                        // extr. the chunk inside struct.



Wildgrube                    Informational                      [Page 7]

RFC 3072            Structured Data Exchange Format           March 2001


              break;
            case 3306:
              x.extract (data4, maxLength4);
                        // extr. 2nd chunk inside struct.
              break;
          }
          x.next (); // returns x.rc == 1 at end of structure
        } // end-while
        break;

      case 3307:
        x.extract (data5, maxLength5);
                  // extract last chunk into data
        break;
      // default: none - ignore unknown chunks !!!

    } // end-switch
    x.next (); // returns x.rc = 1 at end of structure
  } // end-while

4. Platform independence

  The very most of the computer platforms today have a 8-Bits-in-a-Byte
  architecture, which enables data exchange between these platforms.
  But there are two significant points in which platforms may be
  different:

  a) The representation of binary numerical (the short and long int and
     floats).

  b) The representation of characters (ASCII/ANSI vs. EBCDIC)

  Point (a) is the phenomenon of "byte swapping": How is a short int
  value 259 = 0x0103 = X'0103' be stored at address 4402?

  The two flavours are:

  4402 4403
  01   03    the big-endian, and
  03   01    the little-endian.

  Point (b) is represented by a table of the assignment of the 256
  possible values of a Byte to printable or control characters.  (In
  ASCII the letter "A" is assigned to value (or position) 0x41 = 65, in
  EBCDIC it is 0xC1 = 193.)






Wildgrube                    Informational                      [Page 8]

RFC 3072            Structured Data Exchange Format           March 2001


  The solution of these problems is to normalize the data:

  We fix:

  (a) The internal representation of binary numerals are 2-complements
      in big-endian order.

  (b) The internal representation of characters is ISO 8859-1 (also
      known as Latin 1).

  The fixing of point (b) should be regarded as a first strike.  In
  some environment 8859-1 seems not to be the best choice, in a greek
  or russian environment 8859-5 or 8859-7 are appropriate.

  Nevertheless, in a specific group (or world) of applications, that is
  to say all the applications which wants to interchange data with a
  defined protocol (via networking or diskette or something else), this
  internal character table must be unique.

  So a possibility to define a translation table (and his inversion)
  should be given.

  Important: You construct a SDXF chunk not for a specific addressee,
  but you adapt your data into a normalized format (or network format).

  This adaption is not done by the programmer, it will be done by the
  create and extract function.  An administrator has take care of
  defining the correct translation tables.

5. Compression

  As stated in 2.5 there is a flag bit which declares that the
  following data (elementary or structured) are compressed.  This data
  is not further interpretable until it is decompressed.  Compression
  is transparently done by the SDXF functions: "create" does the
  compression for elementary chunks, "leave" for structured chunks,
  "extract" does the decompression for elementary chunks, "enter" for
  structured chunks.

  Transparently means that the programmer has only to tell the SDXF
  functions that he want compress the following chunk(s).

  For choosing between different compression methods and for
  controlling the decompressed (original) length, there is an
  additional definition:






Wildgrube                    Informational                      [Page 9]

RFC 3072            Structured Data Exchange Format           March 2001


  After the chunk header for a compressed chunk, a compression header
  is following:

  +-----------------------+---------------+---------------->
  |      chunk header     | compr. header | compressed data
  +---+---+---+---+---+---+---+---+---+---+---------------->
  |chunkID|flg|   length  |md | orglength |
  +---+---+---+---+---+---+---+---+---+---+---------------->

  -  'orglength' is the original (decompressed) length of the data.

  -  'md' is the "compression method": Two methods are described here:

     #  method 01 for a simple (fast but not very effective)
        "Run Length 1" or "Byte Run 1" algorithm.  (More then two
        consecutive identical characters are replaced by the number of
        these characters and the character itself.)

        more precisely:

        The compressed data consists of several sections of various
        length.  Every section starts with a "counter" byte, a signed
        "tiny" (8 bit) integer, which contains a length information.

        If this byte contains the value "n",
        with n >= 0 (and n <128), the next n+1 bytes will be taken
        unchanged;
        with n < 0 (and n > -128), the next byte will be replicated
        -n+1 times;
        n = -128 will be ignored.

        Appending blanks will be cutted in general.  If these are
        necessary, they can be reconstructed while "extract"ing with
        the parameter field "filler" (see 8.2.1) set to space
        character.

     #  method 02 for the wonderful "deflate" algorithm which comes
        from the "zip"-people.
        The authors are:
        Jean-loup Gailly (deflate routine),
        Mark Adler (inflate routine), and others.

        The deflate format is described in [DEFLATE].

     The values for the compression method number are maintained by
     IANA, see chap. 12.1.





Wildgrube                    Informational                     [Page 10]

RFC 3072            Structured Data Exchange Format           March 2001


6. Encryption

  As stated in 2.5 there is a flag bit which declares that the
  following data (elementary or structured) is encrypted.  This data is
  not interpretable until it is decrypted.  En/Decryption is
  transparently done by the SDXF functions, "create" does the
  encryption for elementary chunks, "leave" for structured chunks,
  "extract" does the decryption for elementary chunks, "enter" for
  structured chunks.  (Yes it sounds very similar to chapter 5.)  More
  then one encryption method for a given range of applications is not
  very reasonable. Some encryption algorithms work with block ciphering
  algorithms. That means that the length of the data to encrypt must be
  rounded up to the next multiple of this block length. This blocksize
  (zero means non-blocking) is reported by the encryption interface
  routine (addressed by the option field *encryptProc, see chapter 8.5)
  with mode=3. If blocking is used, at least one byte is added, the
  last byte of the lengthening data contains the number of added bytes
  minus one. With this the decryption interface routine can calculate
  the real data length.

  If an application (or network connect handshaking protocol) needs to
  negotiate an encryption method it should be used a method number
  maintained by IANA, see chap. 12.2.

  Even the en/decryption is done transparently, an encryption key
  (password) must be given to the SDXF functions.  Encryption is done
  after translating character data into, decryption is done before
  translation from the internal ("network-") format.

  If both, encryption and compression are applied on the same chunk,
  compression is done first - compression on good encrypted data (same
  strings appears as different after encryption) tends to zero
  compression rates.

7. Arrays

  An array is a sequence of chunks with identical chunk-ID, length and
  data type.

  At first a hint: in principle a special definition in SDXF for such
  an array is not really necessary:

  It is not forbidden that there are more than one chunk with equal
  chunk-ID within the same structured chunk.

  Therefore with a sequence of SDX_next / SDX_extract calls one can
  fill the destination array step by step.




Wildgrube                    Informational                     [Page 11]

RFC 3072            Structured Data Exchange Format           March 2001


  If there are many occurrences of chunks with the same chunk-ID (and a
  comparative small length), the overhead of the chunk-packages may be
  significant.

  Therefore the array flag is introduced.  An array chunk has only one
  chunk header for the complete sequence of elementary chunks.  After
  the chunk header for an array chunk, an array header is following:

  This is a short integer (big endian!) which contains the number of
  the array elements (CT).  Every element has a fixed length (EL), so
  the chunklength (CL) is CL = EL * CT + 2.

  The data elements follows immediately after the array header.

  The complete array will be constructed by SDX_create, the complete
  array will be read by SDX_extract.

  The parameter fields (see 8.2.1) 'dataLength' and 'count' are used
  for the SDXF functions 'extract' and 'create':

  Field 'dataLength' is the common length of the array elements,
  'count' is the actual dimension of the array for 'create' (input).

  For the 'extract' function 'count' acts both as an input and output
  parameter:

  Input : the maximum dimension
  output: the actual array dimension.

  (If output count is greater than input count, the 'data cutted'
  warning will be responded and the destination array is filled up to
  the maximum dimension.)

8. Description of the SDXF functions

8.1 Introduction

  Following the principles of Object Oriented Programming, not only the
  description of the data is necessary, but also the functions which
  manipulate data - the "methods".

  For the programmer knowing the methods is more important than knowing
  the data structure, the methods has to know the exact specifications
  of the data and guarantees the consistence of the data while creating
  them.






Wildgrube                    Informational                     [Page 12]

RFC 3072            Structured Data Exchange Format           March 2001


  A SDXF object is an instance of a parameter structure which acts as a
  programming interface.  Especially it points to an actual SDXF data
  chunk, and, while processing on this data, there is a pointer to the
  actual inner chunk which will be the focus for the next operation.

  The benefit of an exact interface description is the same as using
  for example the standard C library functions: By using standard
  interfaces your code remains platform independent.

8.2 Basic definitions

8.2.1 The SDXF Parameter structure

  All SDXF access functions need only one parameter, a pointer to the
  SDXF parameter structure:

  First 3 prerequisite definitions:

  typedef short int      ChunkID;
  typedef unsigned char  Byte;

  typedef struct Chunk
  {
    ChunkID    chunkID;
    Byte       flags;
    char       length [3];
    Byte       data;
  } Chunk;

  And now the parameter structure:

  typedef struct
  {
    ChunkID  chunkID;       // name (ID) of Chunk
    Byte    *container;     // pointer to the whole Chunk
    long     bufferSize;    // size of container
    Chunk   *currChunk;     // pointer to actual Chunk
    long     dataLength;    // length of data in Chunk
    long     maxLength;     // max. length of Chunk for SDX_extract
    long     remainingSize; // rem. size in cont. after SDX_create
    long     value;         // for data type numeric
    double   fvalue;        // for data type float
    char    *function;      // name of the executed SDXF function
    Byte    *data;          // pointer to Data
    Byte    *cryptkey;      // pointer to Crypt Key
    short    count;         // (max.) number of elements in an array
    short    dataType;      // Chunk data type / init open type
    short    ec;            // extended return-code



Wildgrube                    Informational                     [Page 13]

RFC 3072            Structured Data Exchange Format           March 2001


    short    rc;            // return-code
    short    level;         // level of hierarchy
    char     filler;        // filler char for SDX_extract
    Byte     encrypt;       // Indication if data to encrypt (0 / 1)
    Byte     compression;   // compression method
                            //   (00=none, 01=RL1, 02=zip/deflate)
  } SDX_obj, *SDX_handle;

  Only the "public" fields of the parameter structure which acts as
  input and output for the SDXF functions is described here.  A given
  implementation may add some "private" fields to this structure.

8.2.2 Basic Functions

  All these functions works with a SDX_handle as the only formal
  parameter.  Every function returns as output ec and rc as a report of
  success.  For the values for ec, rc and dataType see chap. 8.4.

   1. SDX_init : Initialize the parameter structure.

        input : container, dataType, bufferSize (for dataType =
                SDX_NEW only)
        output: currChunk, dataLength (for dataType = SDX_OLD only),
                ec, rc,
                the other fields of the parameter structure will be
                initialized.

   2. SDX_enter : Enter a structured chunk.
      You can access the first chunk inside this structured chunk.
        input : none
        output: currChunk, chunkID, dataLength, level, dataType,
                ec, rc

   3. SDX_leave : Leave the actual entered structured chunk.
        input : none
        output: currChunk, chunkID, dataLength, level, dataType,
                ec, rc

   4. SDX_next : Go to the next chunk inside a structured chunk.
        input : none
        output: currChunk, chunkID, dataLength, dataType, count, ec, rc

       At the end of a structured chunk SDX_next returns rc =
       SDX_RC_failed and ec = SDX_EC_eoc (end of chunk)
       The actual structured chunk is SDX_leave'd automatically.






Wildgrube                    Informational                     [Page 14]

RFC 3072            Structured Data Exchange Format           March 2001


   5. SDX_extract : Extract data of the actual chunk.
      (If actual chunk is structured, only a copy is done, elsewhere
      the data is converted to host format.)
      input / output depends on the dataType:

      if dataType is structured, binary or char:
        input : data, maxLength, count, filler
        output: dataLength, count, ec, rc

      if dataType is numeric (float resp.):
        input : none
        output: value (fvalue resp.), ec, rc

   6. SDX_select : Go to the (next) chunk with a given chunkID.
        input : chunkID
        output: currChunk, dataLength, dataType, ec, rc

   7. SDX_create : Creating a new chunk (at the end of the actual
      structured chunk).
        input : chunkID, dataLength, data, (f)value, dataType,
                compression, encrypt, count
        update: remainingSize, level
        output: currChunk, dataLength, ec, rc

   8. SDX_append : Append a complete chunk at the end of the actual
      structured chunk).
        input : data, maxLength, currChunk
        update: remainingSize, level
        output: chunkID, chunkLength, maxLength, dataType, ec, rc

8.3 Definitions for C++

  This is the specification of the SDXF class in C++: (The type 'Byte'
  is defined as "unsigned char" for bitstrings, opposed to "signed
  char" for character strings)

  class C_SDXF
  {
    public:

    // constructors and destructor:
    C_SDXF  ();                          // dummy
    C_SDXF  (Byte *cont);                // old container
    C_SDXF  (Byte *cont, long size);     // new container
    C_SDXF  (long size);                 // new container
    ~C_SDXF ();
    // methods:




Wildgrube                    Informational                     [Page 15]

RFC 3072            Structured Data Exchange Format           March 2001


    void init  (void);                   // old container
    void init  (Byte *cont);             // old container
    void init  (Byte *cont, long size);  // new container
    void init  (long size);              // new container

    void enter   (void);
    void leave   (void);
    void next    (void);
    long extract (Byte *data, long length);    // chars, bits
    long extract (void);                       // numeric data
    void create  (ChunkID);                    // structured
    void create  (ChunkID, long value);        // numeric
    void create  (ChunkID, double fvalue);     // float
    void create  (ChunkID, Byte *data, long length);// binary
    void create  (ChunkID, char *data);             // chars
    void set_compression (Byte compression_method);
    void set_encryption  (Byte *encryption_key);

    // interface:

    ChunkID  id;        // see 8.4.1
    short    dataType;  // see 8.4.2
    long     length;    // length of data or chunk

    long     value;
    double   fvalue;
    short    rc;  // the raw return code       see 8.4.3
    short    ec;  // the extended return code  see 8.4.4

    protected:
    // implementation dependent ...

  };

8.4 Common Definitions:

8.4.1 Definition of ChunkID:

  typedef short ChunkID;

8.4.2 Values for dataType:

  SDX_DT_inconsistent     = 0
  SDX_DT_structured       = 1
  SDX_DT_binary           = 2
  SDX_DT_numeric          = 3
  SDX_DT_char             = 4
  SDX_DT_float            = 5



Wildgrube                    Informational                     [Page 16]

RFC 3072            Structured Data Exchange Format           March 2001


  SDX_DT_UTF8             = 6

   data types for SDX_init:
  SDX_OLD                 = 1
  SDX_NEW                 = 2

8.4.3 Values for rc:

  SDX_RC_ok               = 0
  SDX_RC_failed           = 1
  SDX_RC_warning          = 1
  SDX_RC_illegalOperation = 2
  SDX_RC_dataError        = 3
  SDX_RC_parameterError   = 4
  SDX_RC_programError     = 5
  SDX_RC_noMemory         = 6

8.4.4 Values for ec:

  SDX_EC_ok              =  0
  SDX_EC_eoc             =  1 // end of chunk
  SDX_EC_notFound        =  2
  SDX_EC_dataCutted      =  3
  SDX_EC_overflow        =  4
  SDX_EC_wrongInitType   =  5
  SDX_EC_comprerr        =  6 // compression error
  SDX_EC_forbidden       =  7
  SDX_EC_unknown         =  8
  SDX_EC_levelOvflw      =  9
  SDX_EC_paramMissing    = 10
  SDX_EC_magicError      = 11
  SDX_EC_not_consistent  = 12
  SDX_EC_wrongDataType   = 13
  SDX_EC_noMemory        = 14
  SDX_EC_error           = 99 // rc is sufficiently

8.5 Special functions

  Besides the basic definitions there is a global function
  (SDX_getOptions) which returns a pointer to a global table of
  options.

  With the help of these options you can adapt the behaviour of SDXF.
  Especially you can define an alternative pair of translation tables
  or an alternative function which reads these tables from an external
  resource (p.e. from disk).





Wildgrube                    Informational                     [Page 17]

RFC 3072            Structured Data Exchange Format           March 2001


  Within this table of options there is also a pointer to the function
  which is used for encryption / decryption: You can install your own
  encryption algorithm by setting this pointer.

  The options pointer is received by:

  SDX_TOptions *opt = SDX_getOptions ();

  With:

  typedef struct
  {
   Byte            *toHost;        // Trans tab net -> host
   Byte            *toNet;         // Trans tab host -> net
   int              maxlevel;      // highest possible level
   int              translation;   // translation net <-> host
                                   // is in effect=1 or not=0
   TEncryptProc    *encryptProc;   // alternate encryption routine
   TGetTablesProc  *getTablesProc; // alternate routine defining
                                   // translation Tables
   TcvtUTF8Proc    *convertUTF8;   // routine to convert to/from UTF-8
  }  SDX_TOptions;

  typedef long TencryptProc (
    int   mode,   // 1= to encrypt, 2= to decrypt, 3= encrypted length
    Byte *buffer, // data to en/decrypt
    long  len,    // len: length of buffer
    char *passw); // Password

   // returns length of en/de-crypted data
   // (parameter buffer and passw are ignored for mode=3)
   // returns blocksize for mode=3 and len=0.
   // blocksize is zero for non-blocking algorithms

  typedef int TGetTablesProc (Byte **toNet, Byte **toHost);
   // toNet, toHost: pointer to output params.  Both params
   // points to translation tables of 256 Bytes.
   // returns success: 1 = ok, 0 = error.

  typedef int TcvtUTF8Proc
  ( int   mode,     // 1 = to UTF-8, 2 = from UTF-8
    Byte *target, int *targetlength,  // output
    Byte *source, int sourcelength);  // input
  // targetlength contains maximal size as input param.
  // returns success: 1 = ok, 0 = no conversion






Wildgrube                    Informational                     [Page 18]

RFC 3072            Structured Data Exchange Format           March 2001


9. 'Support' of UTF-8.

  Many systems supports [UTF-8] as a character format for transferred
  data.  The benefit is that no fixing of a specific character set for
  an application is needed because the set of 'all' characters is used,
  represented by the 'Universal Character Set' UCS-2 [UCS], a double
  byte coding for characters.

  SDXF does not really deal with UTF-8 by itself, there are many
  possibilities to interprete an UTF-8 sequence:  The application may:

  -  reconstruct the UCS-2 sequence,
  -  accepts only the pure ASCII character and maps non-ASCII to a
     special 'non-printable' character.
  -  target is pure ASCII, non-ASCII is replaced in a senseful manner
     (French accented vowels replaced by vowels without accents, etc.).
  -  target is a specific ANSI character set, the non-ASCII chars are
     mapped as possible, other replaced to a 'non-printable'.
  -  etc.

  But SDXF offers an interface for the 'extract' and 'create'
  functions:

  A function pointer may be specified in the options table to maintain
  this possibility (see 8.5).  Default for this pointer is NULL: No
  further conversions are done by SDXF, the data are copied 'as is', it
  is treated as a bit string as for data type 'binary'.

  If this function is specified, it is used by the 'create' function
  with the 'toUTF8' mode, and by the 'extract' function with the '
  fromUTF8' mode.  The invoking of these functions is done by SDXF
  transparently.

  If the function returns zero (no conversion) SDXF copies the data
  without conversion.

10. Security Considerations

  Any corruption of data in the chunk headers denounce the complete
  SDXF structure.

  Any corruption of data in a encrypted or compressed SDXF structure
  makes this chunk unusable.  An integrity check after decryption or
  decompression should be done by the "enter" function.

  While using TCP/IP (more precisely: IP) as a transmission medium we
  can trust on his CRC check on the transport layer.




Wildgrube                    Informational                     [Page 19]

RFC 3072            Structured Data Exchange Format           March 2001


11. Some general hints

  1. A consistent construction of a SDXF structure is done if every
     "create" to a structured chunk is closed by a paired "leave".
     While a structured chunk is under construction, his data type is
     set to zero - that means: this chunk is inconsistent.  The
     SDX_leave function sets the datatype to "structured".

  2. While creating an elementary chunk a platform dependent
     transformation to a platform independent format of the data is
     performed - at the end of construction the content of the buffer
     is ready to transport to another site, without any further
     translation.

  3. As you see no data definition in your programming language is
     needed for to construct a specific SDXF structure.  The data is
     created dynamically by function calls.

  4. With SDXF as a base you can define protocols for client / server
     applications.  These protocols may be extended in downward
     compatibility manner by following two rules:

     Rule 1: Ignore unknown chunkIDs.

     Rule 2: The sequence of chunks should not be significant.

12. IANA Considerations

  The compression and encryption algorithms for SDXF is not fixed, SDXF
  is open for various algorithms.  Therefore an agreement is necessary
  to interprete the compression and encryption algorithm method
  numbers.  (Encryption methods are not a semantic part of SDXF, but
  may be used for a connection protocol to negotiate the encryption
  method to use.)

  Following two items are registered by IANA:

12.1 COMPRESSION METHODS FOR SDXF

  The compressed SDXF chunk starts with a "compression header".  This
  header contains the compression method as an unsigned 1-Byte integer
  (1-255).  These numbers are assigned by IANA and listed here:









Wildgrube                    Informational                     [Page 20]

RFC 3072            Structured Data Exchange Format           March 2001


  compression
   method     Description                     Hints
  ---------   ------------------------------- -------------
        01    RUN-LENGTH algorithm            see chap. 5
        02    DEFLATE (ZIP)                   see [DEFLATE]
    03-239    IANA to assign
   240-255    private or application specific

12.2 ENCRYPTION METHODS FOR SDXF

  An unique encryption method is fixed or negotiated by handshaking.
  For the latter one a number for each encryption method is necessary.
  These numbers are unsigned 1-Byte integers (1-255).  These numbers
  are assigned by IANA and listed here:

  encryption
    method    Description
   ---------  ------------------------------
    01-239    IANA to assign
   240-255    private or application specific

12.3 Hints for assigning a number:

  Developers which want to register a compression or encrypt method for
  SDXF should contact IANA for a method number.  The ASSIGNED NUMBERS
  document should be referred to for a current list of METHOD numbers
  and their corresponding protocols, see [IANA].  The new method SHOULD
  be a standard published as a RFC or by a established standardization
  organization (as OSI).

13. Discussion

  There are already some standards for Internet data exchanging, IETF
  prefers ASN.1 and XML therefore.  So the reasons for establish a new
  data format should be discussed.

13.1 SDXF vs. ASN.1

  The demand of ASN.1 (see [ASN.1]) is to serve program language
  independent means to define data structures.  The real data format
  which is used to send the data is not defined by ASN.1 but usually
  BER or PER (or some derivates of them like CER and DER) are used in
  this context, see [BER] and [PER].








Wildgrube                    Informational                     [Page 21]

RFC 3072            Structured Data Exchange Format           March 2001


  The idea behind ASN.1 is: On every platform on which a given
  application is to develop descriptions of the used data structures
  are available in ASN.1 notation.  Out off these notations the real
  language dependent definitions are generated with the help of an
  ASN.1-compiler.

  This compiler generates also transform functions for these data
  structures for to pack and unpack to and from the BER (or other)
  format.

  A direct comparison between ASN.1 and SDXF is somehow inappropriate:
  The data format of SDXF is related rather to BER (and relatives).
  The use of ASN.1 to define data structures is no contradiction to
  SDXF, but: SDXF does not require a complete data structure to build
  the message to send, nor a complete data structure will be generated
  out off the received message.

  The main difference lies in the concept of building and
  interpretation of the message, I want to name it the "static" and
  "dynamic" concept:

  o  ASN.1 uses a "static" approach: The whole data structure must
     exists before the message can be created.

  o  SDXF constructs and interpretes the message in a "dynamic" way,
     the message will be packed and unpacked step by step by SDXF
     functions.

  The use of static structures may be appropriate for a series of
  applications, but for complex tasks it is often impossible to define
  the message as a whole.  As an example try to define an ASN.1
  description for a complex structured text document which is presented
  in XML:  There are sections and paragraphs and text elements which
  may recursively consist of sections with specific text attributes.

13.2 SDXF vs. XML

  On the one hand SDXF and XML are similar as they can handle any
  recursive complex data stream.  The main difference is the kind of
  data which are to be maintained:

  o  XML works with pure text data (though it should be noted that the
     character representation is not standardized by XML).  And: a XML
     document with all his tags is readable by human.  Binary data as
     graphic is not included directly but may be referenced by an
     external link as in HTML.





Wildgrube                    Informational                     [Page 22]

RFC 3072            Structured Data Exchange Format           March 2001


     In XML there is no strong separation between informational and
     control data, escape characters (like "<" and "&") and the
     <![CDATA[...]]> construction are used to distinguish between these
     two types of data.

  o  SDXF maintains machine-readable data, it is not designed to be
     readable by human nor to edit SDXF data with a text editor (even
     more if compression and encryption is used).  With the help of the
     SDXF functions you have a quick and easy access to every data
     element.  The standard parser for a SDXF data structure follows
     always a simple template, the "while - switch -case ID -
     enter/extract" pattern as outlined in chap. 3.4.2.

  Because of the complete different philosophy behind XML and SDXF (and
  even ASN.1) a direct comparison may not be very senseful, as XML has
  its own right to exist next to ASN.1 (and even SDXF).

  Nevertheless there is a chance to convert a XML data stream into a
  SDXF structure:  As a first strike, every XML tag becomes a SDXF
  chunk ID.  An elementary sequence <tag>pure text</tag> can be
  transformed into an elementary (non-structured) chunk with data type
  "character".  Tags with attributes and sequences with nested tags are
  transformed into structured chunks.  Because XML allows a tag
  sequence everywhere in a text stream, an artificially "elementary
  text" tag must be introduced:
  If <t> is the tag for text elements, the sequence:

  <t>this is a text <attr value='bold'>with</attr> attributes</t>

  is to be "in thought" replaced by:

  <t><et>this is a text </et><attr value='bold'><et>with</et></attr>
  <et> attributes</et></t>

  (With "et" as the "elementary text" tag)
















Wildgrube                    Informational                     [Page 23]

RFC 3072            Structured Data Exchange Format           March 2001


  This results in following SDXF structure:

  ID_t
  |
  +-- ID_et = " this is a text "
  |
  +-- ID_attr
  |   |
  |   +-- ID_value = "bold"
  |   |
  |   +-- ID_et = "with"
  |
  +-- ID_et = " attributes"

  ID_t and ID_et may be represented by the same chunk ID, only
  distinguished by the data type ("structured" for <t> and "character"
  for <et>)

  Binary data as pictures can be directly imbedded into a SDXF
  structure instead referencing them as an external link like in HTML.

14. Author's Address

  Max Wildgrube
  Schlossstrasse 120
  60486 Frankfurt
  Germany

  EMail: [email protected]

15. Acknowledgements

  I would like to thank Michael J. Slifcak ([email protected]) for the
  supporting discussions.

16. References

  [ASN.1]   Information processing systems - Open Systems
            Interconnection, "Specification of Abstract Syntax Notation
            One (ASN.1)", International Organization for
            Standardization, International Standard 8824, December
            1987.

  [BER]     Information Processing Systems - Open Systems
            Interconnection - "Specification of Basic Encoding Rules
            for Abstract Notation One (ASN.1)", International
            Organization for Standardization, International Standard
            8825-1, December 1987.



Wildgrube                    Informational                     [Page 24]

RFC 3072            Structured Data Exchange Format           March 2001


  [DEFLATE] Deutsch, P., "DEFLATE Compressed Data Format Specification
            version 1.3", RFC 1951, May 1996.

  [IANA]    Internet Assigned Numbers Authority,
            http://www.iana.org/numbers.htm

  [PER]     Information Processing Systems  - Open Systems
            Interconnection -"Specification of Packed Encoding Rules
            for Abstract Syntax Notation One (ASN.1)", International
            Organization for Standardization, International Standard
            8825-2.

  [UCS]     ISO/IEC 10646-1:1993. International Standard -- Information
            technology -- Universal Multiple-Octet Coded Character Set
            (UCS)

  [UTF8]    Yergeau, F., "UTF-8, a transformation format of ISO 10646",
            RFC 2279, January 1998.

































Wildgrube                    Informational                     [Page 25]

RFC 3072            Structured Data Exchange Format           March 2001


17.  Full Copyright Statement

  Copyright (C) The Internet Society (2001).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Wildgrube                    Informational                     [Page 26]