Network Working Group                                        L. Andersson
Request for Comments: 3036                           Nortel Networks Inc.
Category: Standards Track                                       P. Doolan
                                                       Ennovate Networks
                                                              N. Feldman
                                                                IBM Corp
                                                             A. Fredette
                                                           PhotonEx Corp
                                                               B. Thomas
                                                     Cisco Systems, Inc.
                                                            January 2001


                          LDP Specification

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2001).  All Rights Reserved.

Abstract

  The architecture for Multi Protocol Label Switching (MPLS) is
  described in RFC 3031.  A fundamental concept in MPLS is that two
  Label Switching Routers (LSRs) must agree on the meaning of the
  labels used to forward traffic between and through them.  This common
  understanding is achieved by using a set of procedures, called a
  label distribution protocol, by which one LSR informs another of
  label bindings it has made.  This document defines a set of such
  procedures called LDP (for Label Distribution Protocol) by which LSRs
  distribute labels to support MPLS forwarding along normally routed
  paths.












Andersson, et al.           Standards Track                     [Page 1]

RFC 3036                   LDP Specification                January 2001


Table of Contents

  1          LDP Overview  .......................................   5
  1.1        LDP Peers  ..........................................   6
  1.2        LDP Message Exchange  ...............................   6
  1.3        LDP Message Structure  ..............................   7
  1.4        LDP Error Handling  .................................   7
  1.5        LDP Extensibility and Future Compatibility  .........   7
  1.6        Specification Language  .............................   7
  2          LDP Operation  ......................................   8
  2.1        FECs  ...............................................   8
  2.2        Label Spaces, Identifiers, Sessions and Transport  ..   9
  2.2.1      Label Spaces  .......................................   9
  2.2.2      LDP Identifiers  ....................................  10
  2.2.3      LDP Sessions  .......................................  10
  2.2.4      LDP Transport  ......................................  11
  2.3        LDP Sessions between non-Directly Connected LSRs  ...  11
  2.4        LDP Discovery   .....................................  11
  2.4.1      Basic Discovery Mechanism  ..........................  12
  2.4.2      Extended Discovery Mechanism  .......................  12
  2.5        Establishing and Maintaining LDP Sessions  ..........  13
  2.5.1      LDP Session Establishment  ..........................  13
  2.5.2      Transport Connection Establishment  .................  13
  2.5.3      Session Initialization  .............................  14
  2.5.4      Initialization State Machine  .......................  17
  2.5.5      Maintaining Hello Adjacencies  ......................  20
  2.5.6      Maintaining LDP Sessions  ...........................  20
  2.6        Label Distribution and Management  ..................  21
  2.6.1      Label Distribution Control Mode  ....................  21
  2.6.1.1    Independent Label Distribution Control  .............  21
  2.6.1.2    Ordered Label Distribution Control  .................  21
  2.6.2      Label Retention Mode  ...............................  22
  2.6.2.1    Conservative Label Retention Mode  ..................  22
  2.6.2.2    Liberal Label Retention Mode  .......................  22
  2.6.3      Label Advertisement Mode  ...........................  23
  2.7        LDP Identifiers and Next Hop Addresses  .............  23
  2.8        Loop Detection  .....................................  24
  2.8.1      Label Request Message  ..............................  24
  2.8.2      Label Mapping Message  ..............................  26
  2.8.3      Discussion  .........................................  27
  2.9        Authenticity and Integrity of LDP Messages  .........  28
  2.9.1      TCP MD5 Signature Option  ...........................  28
  2.9.2      LDP Use of TCP MD5 Signature Option  ................  30
  2.10       Label Distribution for Explicitly Routed LSPs  ......  30
  3          Protocol Specification  .............................  31
  3.1        LDP PDUs  ...........................................  31
  3.2        LDP Procedures  .....................................  32
  3.3        Type-Length-Value Encoding  .........................  32



Andersson, et al.           Standards Track                     [Page 2]

RFC 3036                   LDP Specification                January 2001


  3.4        TLV Encodings for Commonly Used Parameters  .........  34
  3.4.1      FEC TLV  ............................................  34
  3.4.1.1    FEC Procedures  .....................................  37
  3.4.2      Label TLVs  .........................................  37
  3.4.2.1    Generic Label TLV  ..................................  37
  3.4.2.2    ATM Label TLV  ......................................  38
  3.4.2.3    Frame Relay Label TLV  ..............................  38
  3.4.3      Address List TLV  ...................................  39
  3.4.4      Hop Count TLV  ......................................  40
  3.4.4.1    Hop Count Procedures  ...............................  40
  3.4.5      Path Vector TLV  ....................................  41
  3.4.5.1    Path Vector Procedures  .............................  42
  3.4.5.1.1  Label Request Path Vector  ..........................  42
  3.4.5.1.2  Label Mapping Path Vector  ..........................  43
  3.4.6      Status TLV  .........................................  43
  3.5        LDP Messages  .......................................  45
  3.5.1      Notification Message  ...............................  47
  3.5.1.1    Notification Message Procedures  ....................  48
  3.5.1.2    Events Signaled by Notification Messages  ...........  49
  3.5.1.2.1  Malformed PDU or Message  ...........................  49
  3.5.1.2.2  Unknown or Malformed TLV  ...........................  50
  3.5.1.2.3  Session KeepAlive Timer Expiration  .................  50
  3.5.1.2.4  Unilateral Session Shutdown  ........................  51
  3.5.1.2.5  Initialization Message Events  ......................  51
  3.5.1.2.6  Events Resulting From Other Messages  ...............  51
  3.5.1.2.7  Internal Errors  ....................................  51
  3.5.1.2.8  Miscellaneous Events  ...............................  51
  3.5.2      Hello Message  ......................................  51
  3.5.2.1    Hello Message Procedures  ...........................  54
  3.5.3      Initialization Message  .............................  55
  3.5.3.1    Initialization Message Procedures  ..................  63
  3.5.4      KeepAlive Message  ..................................  63
  3.5.4.1    KeepAlive Message Procedures  .......................  63
  3.5.5      Address Message  ....................................  64
  3.5.5.1    Address Message Procedures  .........................  64
  3.5.6      Address Withdraw Message  ...........................  65
  3.5.6.1    Address Withdraw Message Procedures  ................  66
  3.5.7      Label Mapping Message  ..............................  66
  3.5.7.1    Label Mapping Message Procedures  ...................  67
  3.5.7.1.1  Independent Control Mapping  ........................  67
  3.5.7.1.2  Ordered Control Mapping  ............................  68
  3.5.7.1.3  Downstream on Demand Label Advertisement  ...........  68
  3.5.7.1.4  Downstream Unsolicited Label Advertisement  .........  69
  3.5.8      Label Request Message  ..............................  69
  3.5.8.1    Label Request Message Procedures  ...................  70
  3.5.9      Label Abort Request Message  ........................  72
  3.5.9.1    Label Abort Request Message Procedures  .............  73
  3.5.10     Label Withdraw Message  .............................  74



Andersson, et al.           Standards Track                     [Page 3]

RFC 3036                   LDP Specification                January 2001


  3.5.10.1   Label Withdraw Message Procedures  ..................  75
  3.5.11     Label Release Message  ..............................  76
  3.5.11.1   Label Release Message Procedures  ...................  77
  3.6        Messages and TLVs for Extensibility  ................  78
  3.6.1      LDP Vendor-private Extensions  ......................  78
  3.6.1.1    LDP Vendor-private TLVs  ............................  78
  3.6.1.2    LDP Vendor-private Messages  ........................  80
  3.6.2      LDP Experimental Extensions  ........................  81
  3.7        Message Summary  ....................................  81
  3.8        TLV Summary  ........................................  82
  3.9        Status Code Summary  ................................  83
  3.10       Well-known Numbers  .................................  84
  3.10.1     UDP and TCP Ports  ..................................  84
  3.10.2     Implicit NULL Label  ................................  84
  4          IANA Considerations  ................................  84
  4.1        Message Type Name Space  ............................  84
  4.2        TLV Type Name Space  ................................  85
  4.3        FEC Type Name Space  ................................  85
  4.4        Status Code Name Space  .............................  86
  4.5        Experiment ID Name Space  ...........................  86
  5          Security Considerations  ............................  86
  5.1        Spoofing  ...........................................  86
  5.2        Privacy  ............................................  87
  5.3        Denial of Service  ..................................  87
  6          Areas for Future Study  .............................  89
  7          Intellectual Property Considerations  ...............  89
  8          Acknowledgments  ....................................  89
  9          References  .........................................  89
  10         Authors' Addresses  .................................  92
  Appendix A LDP Label Distribution Procedures  ..................  93
  A.1        Handling Label Distribution Events  .................  95
  A.1.1      Receive Label Request  ..............................  96
  A.1.2      Receive Label Mapping  ..............................  99
  A.1.3      Receive Label Abort Request  ........................ 105
  A.1.4      Receive Label Release  .............................. 107
  A.1.5      Receive Label Withdraw  ............................. 109
  A.1.6      Recognize New FEC  .................................. 110
  A.1.7      Detect Change in FEC Next Hop  ...................... 113
  A.1.8      Receive Notification / Label Request Aborted  ....... 116
  A.1.9      Receive Notification / No Label Resources  .......... 116
  A.1.10     Receive Notification / No Route  .................... 117
  A.1.11     Receive Notification / Loop Detected  ............... 118
  A.1.12     Receive Notification / Label Resources Available  ... 118
  A.1.13     Detect local label resources have become available  . 119
  A.1.14     LSR decides to no longer label switch a FEC  ........ 120
  A.1.15     Timeout of deferred label request  .................. 121
  A.2        Common Label Distribution Procedures  ............... 121
  A.2.1      Send_Label  ......................................... 121



Andersson, et al.           Standards Track                     [Page 4]

RFC 3036                   LDP Specification                January 2001


  A.2.2      Send_Label_Request  ................................. 123
  A.2.3      Send_Label_Withdraw  ................................ 124
  A.2.4      Send_Notification  .................................. 125
  A.2.5      Send_Message  ....................................... 125
  A.2.6      Check_Received_Attributes  .......................... 126
  A.2.7      Prepare_Label_Request_Attributes  ................... 127
  A.2.8      Prepare_Label_Mapping_Attributes  ................... 129
  Full Copyright Statement  ...................................... 132

1. LDP Overview

  The MPLS architecture [RFC3031] defines a label distribution protocol
  as a set of procedures by which one Label Switched Router (LSR)
  informs another of the meaning of labels used to forward traffic
  between and through them.

  The MPLS architecture does not assume a single label distribution
  protocol.  In fact, a number of different label distribution
  protocols are being standardized.  Existing protocols have been
  extended so that label distribution can be piggybacked on them.  New
  protocols have also been defined for the explicit purpose of
  distributing labels.  The MPLS architecture discusses some of the
  considerations when choosing a label distribution protocol for use in
  particular MPLS applications such as Traffic Engineering [RFC2702].

  The Label Distribution Protocol (LDP) defined in this document is a
  new protocol defined for distributing labels.  It is the set of
  procedures and messages by which Label Switched Routers (LSRs)
  establish Label Switched Paths (LSPs) through a network by mapping
  network-layer routing information directly to data-link layer
  switched paths.  These LSPs may have an endpoint at a directly
  attached neighbor (comparable to IP hop-by-hop forwarding), or may
  have an endpoint at a network egress node, enabling switching via all
  intermediary nodes.

  LDP associates a Forwarding Equivalence Class (FEC) [RFC3031] with
  each LSP it creates.  The FEC associated with an LSP specifies which
  packets are "mapped" to that LSP.  LSPs are extended through a
  network as each LSR "splices" incoming labels for a FEC to the
  outgoing label assigned to the next hop for the given FEC.

  More information about the applicability of LDP can be found in
  [RFC3037].

  This document assumes familiarity with the MPLS architecture
  [RFC3031].  Note that [RFC3031] includes a glossary of MPLS
  terminology, such as ingress, label switched path, etc.




Andersson, et al.           Standards Track                     [Page 5]

RFC 3036                   LDP Specification                January 2001


1.1. LDP Peers

  Two LSRs which use LDP to exchange label/FEC mapping information are
  known as "LDP Peers" with respect to that information and we speak of
  there being an "LDP Session" between them.  A single LDP session
  allows each peer to learn the other's label mappings; i.e., the
  protocol is bi-directional.

1.2. LDP Message Exchange

  There are four categories of LDP messages:

     1. Discovery messages, used to announce and maintain the presence
        of an LSR in a network.

     2. Session messages, used to establish, maintain, and terminate
        sessions between LDP peers.

     3. Advertisement messages, used to create, change, and delete
        label mappings for FECs.

     4. Notification messages, used to provide advisory information and
        to signal error information.

  Discovery messages provide a mechanism whereby LSRs indicate their
  presence in a network by sending a Hello message periodically.  This
  is transmitted as a UDP packet to the LDP port at the `all routers on
  this subnet' group multicast address.  When an LSR chooses to
  establish a session with another LSR learned via the Hello message,
  it uses the LDP initialization procedure over TCP transport.  Upon
  successful completion of the initialization procedure, the two LSRs
  are LDP peers, and may exchange advertisement messages.

  When to request a label or advertise a label mapping to a peer is
  largely a local decision made by an LSR.  In general, the LSR
  requests a label mapping from a neighboring LSR when it needs one,
  and advertises a label mapping to a neighboring LSR when it wishes
  the neighbor to use a label.

  Correct operation of LDP requires reliable and in order delivery of
  messages.  To satisfy these requirements LDP uses the TCP transport
  for session, advertisement and notification messages; i.e., for
  everything but the UDP-based discovery mechanism.








Andersson, et al.           Standards Track                     [Page 6]

RFC 3036                   LDP Specification                January 2001


1.3. LDP Message Structure

  All LDP messages have a common structure that uses a Type-Length-
  Value (TLV) encoding scheme; see Section "Type-Length-Value"
  encoding.  The Value part of a TLV-encoded object, or TLV for short,
  may itself contain one or more TLVs.

1.4. LDP Error Handling

  LDP errors and other events of interest are signaled to an LDP peer
  by notification messages.

  There are two kinds of LDP notification messages:

     1. Error notifications, used to signal fatal errors.  If an LSR
        receives an error notification from a peer for an LDP session,
        it terminates the LDP session by closing the TCP transport
        connection for the session and discarding all label mappings
        learned via the session.

     2. Advisory notifications, used to pass an LSR information about
        the LDP session or the status of some previous message received
        from the peer.

1.5. LDP Extensibility and Future Compatibility

  Functionality may be added to LDP in the future.  It is likely that
  future functionality will utilize new messages and object types
  (TLVs).  It may be desirable to employ such new messages and TLVs
  within a network using older implementations that do not recognize
  them.  While it is not possible to make every future enhancement
  backwards compatible, some prior planning can ease the introduction
  of new capabilities.  This specification defines rules for handling
  unknown message types and unknown TLVs for this purpose.

1.6. Specification Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].











Andersson, et al.           Standards Track                     [Page 7]

RFC 3036                   LDP Specification                January 2001


2. LDP Operation

2.1. FECs

  It is necessary to precisely specify which packets may be mapped to
  each LSP.  This is done by providing a FEC specification for each
  LSP.  The FEC identifies the set of IP packets which may be mapped to
  that LSP.

  Each FEC is specified as a set of one or more FEC elements.  Each FEC
  element identifies a set of packets which may be mapped to the
  corresponding LSP.  When an LSP is shared by multiple FEC elements,
  that LSP is terminated at (or before) the node where the FEC elements
  can no longer share the same path.

  Following are the currently defined types of FEC elements.  New
  element types may be added as needed:

     1. Address Prefix.  This element is an address prefix of any
        length from 0 to a full address, inclusive.

     2. Host Address.  This element is a full host address.

  (We will see below that an Address Prefix FEC element which is a full
  address has a different effect than a Host Address FEC element which
  has the same address.)

  We say that a particular address "matches" a particular address
  prefix if and only if that address begins with that prefix.  We also
  say that a particular packet matches a particular LSP if and only if
  that LSP has an Address Prefix FEC element which matches the packet's
  destination address.  With respect to a particular packet and a
  particular LSP, we refer to any Address Prefix FEC element which
  matches the packet as the "matching prefix".

  The procedure for mapping a particular packet to a particular LSP
  uses the following rules.  Each rule is applied in turn until the
  packet can be mapped to an LSP.

     -  If there is exactly one LSP which has a Host Address FEC
        element that is identical to the packet's destination address,
        then the packet is mapped to that LSP.

     -  If there are multiple LSPs, each containing a Host Address FEC
        element that is identical to the packet's destination address,
        then the packet is mapped to one of those LSPs.  The procedure
        for selecting one of those LSPs is beyond the scope of this
        document.



Andersson, et al.           Standards Track                     [Page 8]

RFC 3036                   LDP Specification                January 2001


     -  If a packet matches exactly one LSP, the packet is mapped to
        that LSP.

     -  If a packet matches multiple LSPs, it is mapped to the LSP
        whose matching prefix is the longest.  If there is no one LSP
        whose matching prefix is longest, the packet is mapped to one
        from the set of LSPs whose matching prefix is longer than the
        others.  The procedure for selecting one of those LSPs is
        beyond the scope of this document.

     -  If it is known that a packet must traverse a particular egress
        router, and there is an LSP which has an Address Prefix FEC
        element which is an address of that router, then the packet is
        mapped to that LSP.  The procedure for obtaining this knowledge
        is beyond the scope of this document.

  The procedure for determining that a packet must traverse a
  particular egress router is beyond the scope of this document.  (As
  an example, if one is running a link state routing algorithm, it may
  be possible to obtain this information from the link state data base.
  As another example, if one is running BGP, it may be possible to
  obtain this information from the BGP next hop attribute of the
  packet's route.)

  It is worth pointing out a few consequences of these rules:

     -  A packet may be sent on the LSP whose Address Prefix FEC
        element is the address of the packet's egress router ONLY if
        there is no LSP matching the packet's destination address.

     -  A packet may match two LSPs, one with a Host Address FEC
        element and one with an Address Prefix FEC element.  In this
        case, the packet is always assigned to the former.

     -  A packet which does not match a particular Host Address FEC
        element may not be sent on the corresponding LSP, even if the
        Host Address FEC element identifies the packet's egress router.

2.2. Label Spaces, Identifiers, Sessions and Transport

2.2.1. Label Spaces

  The notion of "label space" is useful for discussing the assignment
  and distribution of labels.  There are two types of label spaces:







Andersson, et al.           Standards Track                     [Page 9]

RFC 3036                   LDP Specification                January 2001


     -  Per interface label space.  Interface-specific incoming labels
        are used for interfaces that use interface resources for
        labels.  An example of such an interface is a label-controlled
        ATM interface that uses VCIs as labels, or a Frame Relay
        interface that uses DLCIs as labels.

        Note that the use of a per interface label space only makes
        sense when the LDP peers are "directly connected" over an
        interface, and the label is only going to be used for traffic
        sent over that interface.

     -  Per platform label space.  Platform-wide incoming labels are
        used for interfaces that can share the same labels.

2.2.2. LDP Identifiers

  An LDP identifier is a six octet quantity used to identify an LSR
  label space.  The first four octets identify the LSR and must be a
  globally unique value, such as a 32-bit router Id assigned to the
  LSR.  The last two octets identify a specific label space within the
  LSR.  The last two octets of LDP Identifiers for platform-wide label
  spaces are always both zero.  This document uses the following print
  representation for LDP Identifiers:

            <LSR Id> : <label space id>

  e.g., lsr171:0, lsr19:2.

  Note that an LSR that manages and advertises multiple label spaces
  uses a different LDP Identifier for each such label space.

  A situation where an LSR would need to advertise more than one label
  space to a peer and hence use more than one LDP Identifier occurs
  when the LSR has two links to the peer and both are ATM (and use per
  interface labels).  Another situation would be where the LSR had two
  links to the peer, one of which is ethernet (and uses per platform
  labels) and the other of which is ATM.

2.2.3. LDP Sessions

  LDP sessions exist between LSRs to support label exchange between
  them.

     When an LSR uses LDP to advertise more than one label space to
     another LSR it uses a separate LDP session for each label space.






Andersson, et al.           Standards Track                    [Page 10]

RFC 3036                   LDP Specification                January 2001


2.2.4. LDP Transport

  LDP uses TCP as a reliable transport for sessions.

     When multiple LDP sessions are required between two LSRs there is
     one TCP session for each LDP session.

2.3. LDP Sessions between non-Directly Connected LSRs

  LDP sessions between LSRs that are not directly connected at the link
  level may be desirable in some situations.

  For example, consider a "traffic engineering" application where LSRa
  sends traffic matching some criteria via an LSP to non-directly
  connected LSRb rather than forwarding the traffic along its normally
  routed path.

  The path between LSRa and LSRb would include one or more intermediate
  LSRs (LSR1,...LSRn).  An LDP session between LSRa and LSRb would
  enable LSRb to label switch traffic arriving on the LSP from LSRa by
  providing LSRb means to advertise labels for this purpose to LSRa.

  In this situation LSRa would apply two labels to traffic it forwards
  on the LSP to LSRb: a label learned from LSR1 to forward traffic
  along the LSP path from LSRa to LSRb; and a label learned from LSRb
  to enable LSRb to label switch traffic arriving on the LSP.

  LSRa first adds the label learned via its LDP session with LSRb to
  the packet label stack (either by replacing the label on top of the
  packet label stack with it if the packet arrives labeled or by
  pushing it if the packet arrives unlabeled).  Next, it pushes the
  label for the LSP learned from LSR1 onto the label stack.

2.4. LDP Discovery

  LDP discovery is a mechanism that enables an LSR to discover
  potential LDP peers.  Discovery makes it unnecessary to explicitly
  configure an LSR's label switching peers.

  There are two variants of the discovery mechanism:

     -  A basic discovery mechanism used to discover LSR neighbors that
        are directly connected at the link level.

     -  An extended discovery mechanism used to locate LSRs that are
        not directly connected at the link level.





Andersson, et al.           Standards Track                    [Page 11]

RFC 3036                   LDP Specification                January 2001


2.4.1. Basic Discovery Mechanism

  To engage in LDP Basic Discovery on an interface an LSR periodically
  sends LDP Link Hellos out the interface.  LDP Link Hellos are sent as
  UDP packets addressed to the well-known LDP discovery port for the
  "all routers on this subnet" group multicast address.

  An LDP Link Hello sent by an LSR carries the LDP Identifier for the
  label space the LSR intends to use for the interface and possibly
  additional information.

  Receipt of an LDP Link Hello on an interface identifies a "Hello
  adjacency" with a potential LDP peer reachable at the link level on
  the interface as well as the label space the peer intends to use for
  the interface.

2.4.2. Extended Discovery Mechanism

  LDP sessions between non-directly connected LSRs are supported by LDP
  Extended Discovery.

  To engage in LDP Extended Discovery an LSR periodically sends LDP
  Targeted Hellos to a specific address.  LDP Targeted Hellos are sent
  as UDP packets addressed to the well-known LDP discovery port at the
  specific address.

  An LDP Targeted Hello sent by an LSR carries the LDP Identifier for
  the label space the LSR intends to use and possibly additional
  optional information.

  Extended Discovery differs from Basic Discovery in the following
  ways:

     -  A Targeted Hello is sent to a specific address rather than to
        the "all routers" group multicast address for the outgoing
        interface.

     -  Unlike Basic Discovery, which is symmetric, Extended Discovery
        is asymmetric.

        One LSR initiates Extended Discovery with another targeted LSR,
        and the targeted LSR decides whether to respond to or ignore
        the Targeted Hello.  A targeted LSR that chooses to respond
        does so by periodically sending Targeted Hellos to the
        initiating LSR.






Andersson, et al.           Standards Track                    [Page 12]

RFC 3036                   LDP Specification                January 2001


  Receipt of an LDP Targeted Hello identifies a "Hello adjacency" with
  a potential LDP peer reachable at the network level and the label
  space the peer intends to use.

2.5. Establishing and Maintaining LDP Sessions

2.5.1. LDP Session Establishment

  The exchange of LDP Discovery Hellos between two LSRs triggers LDP
  session establishment.  Session establishment is a two step process:

           -  Transport connection establishment.
           -  Session initialization

  The following describes establishment of an LDP session between LSRs
  LSR1 and LSR2 from LSR1's point of view.  It assumes the exchange of
  Hellos specifying label space LSR1:a for LSR1 and label space LSR2:b
  for LSR2.

2.5.2. Transport Connection Establishment

  The exchange of Hellos results in the creation of a Hello adjacency
  at LSR1 that serves to bind the link (L) and the label spaces LSR1:a
  and LSR2:b.

     1. If LSR1 does not already have an LDP session for the exchange
        of label spaces LSR1:a and LSR2:b it attempts to open a TCP
        connection for a new LDP session with LSR2.

        LSR1 determines the transport addresses to be used at its end
        (A1) and LSR2's end (A2) of the LDP TCP connection.  Address A1
        is determined as follows:

        a. If LSR1 uses the Transport Address optional object (TLV) in
           Hello's it sends to LSR2 to advertise an address, A1 is the
           address LSR1 advertises via the optional object;

        b. If LSR1 does not use the Transport Address optional object,
           A1 is the source address used in Hellos it sends to LSR2.

        Similarly, address A2 is determined as follows:

        a. If LSR2 uses the Transport Address optional object, A2 is
           the address LSR2 advertises via the optional object;

        b. If LSR2 does not use the Transport Address optional object,
           A2 is the source address in Hellos received from LSR2.




Andersson, et al.           Standards Track                    [Page 13]

RFC 3036                   LDP Specification                January 2001


     2. LSR1 determines whether it will play the active or passive role
        in session establishment by comparing addresses A1 and A2 as
        unsigned integers.  If A1 > A2, LSR1 plays the active role;
        otherwise it is passive.

        The procedure for comparing A1 and A2 as unsigned integers is:

        -  If A1 and A2 are not in the same address family, they are
           incomparable, and no session can be established.

        -  Let U1 be the abstract unsigned integer obtained by treating
           A1 as a sequence of bytes, where the byte which appears
           earliest in the message is the most significant byte of the
           integer and the byte which appears latest in the message is
           the least significant byte of the integer.

           Let U2 be the abstract unsigned integer obtained from A2 in
           a similar manner.

        -  Compare U1 with U2.  If U1 > U2, then A1 > A2; if U1 < U2,
           then A1 < A2.

     3. If LSR1 is active, it attempts to establish the LDP TCP
        connection by connecting to the well-known LDP port at address
        A2.  If LSR1 is passive, it waits for LSR2 to establish the LDP
        TCP connection to its well-known LDP port.

  Note that when an LSR sends a Hello it selects the transport address
  for its end of the session connection and uses the Hello to advertise
  the address, either explicitly by including it in an optional
  Transport Address TLV or implicitly by omitting the TLV and using it
  as the Hello source address.

  An LSR MUST advertise the same transport address in all Hellos that
  advertise the same label space.  This requirement ensures that two
  LSRs linked by multiple Hello adjacencies using the same label spaces
  play the same connection establishment role for each adjacency.

2.5.3. Session Initialization

  After LSR1 and LSR2 establish a transport connection they negotiate
  session parameters by exchanging LDP Initialization messages.  The
  parameters negotiated include LDP protocol version, label
  distribution method, timer values, VPI/VCI ranges for label
  controlled ATM, DLCI ranges for label controlled Frame Relay, etc.






Andersson, et al.           Standards Track                    [Page 14]

RFC 3036                   LDP Specification                January 2001


  Successful negotiation completes establishment of an LDP session
  between LSR1 and LSR2 for the advertisement of label spaces LSR1:a
  and LSR2:b.

  The following describes the session initialization from LSR1's point
  of view.

  After the connection is established, if LSR1 is playing the active
  role, it initiates negotiation of session parameters by sending an
  Initialization message to LSR2.  If LSR1 is passive, it waits for
  LSR2 to initiate the parameter negotiation.

  In general when there are multiple links between LSR1 and LSR2 and
  multiple label spaces to be advertised by each, the passive LSR
  cannot know which label space to advertise over a newly established
  TCP connection until it receives the LDP Initialization message on
  the connection.  The Initialization message carries both the LDP
  Identifier for the sender's (active LSR's) label space and the LDP
  Identifier for the receiver's (passive LSR's) label space.

  By waiting for the Initialization message from its peer the passive
  LSR can match the label space to be advertised by the peer (as
  determined from the LDP Identifier in the PDU header for the
  Initialization message) with a Hello adjacency previously created
  when Hellos were exchanged.

     1. When LSR1 plays the passive role:

        a. If LSR1 receives an Initialization message it attempts to
           match the LDP Identifier carried by the message PDU with a
           Hello adjacency.

        b. If there is a matching Hello adjacency, the adjacency
           specifies the local label space for the session.

           Next LSR1 checks whether the session parameters proposed in
           the message are acceptable.  If they are, LSR1 replies with
           an Initialization message of its own to propose the
           parameters it wishes to use and a KeepAlive message to
           signal acceptance of LSR2's parameters.  If the parameters
           are not acceptable, LSR1 responds by sending a Session
           Rejected/Parameters Error Notification message and closing
           the TCP connection.

        c. If LSR1 cannot find a matching Hello adjacency it sends a
           Session Rejected/No Hello Error Notification message and
           closes the TCP connection.




Andersson, et al.           Standards Track                    [Page 15]

RFC 3036                   LDP Specification                January 2001


        d. If LSR1 receives a KeepAlive in response to its
           Initialization message, the session is operational from
           LSR1's point of view.

        e. If LSR1 receives an Error Notification message, LSR2 has
           rejected its proposed session and LSR1 closes the TCP
           connection.

     2. When LSR1 plays the active role:

        a. If LSR1 receives an Error Notification message, LSR2 has
           rejected its proposed session and LSR1 closes the TCP
           connection.

        b. If LSR1 receives an Initialization message, it checks
           whether the session parameters are acceptable.  If so, it
           replies with a KeepAlive message.  If the session parameters
           are unacceptable, LSR1 sends a Session Rejected/Parameters
           Error Notification message and closes the connection.

        c. If LSR1 receives a KeepAlive message, LSR2 has accepted its
           proposed session parameters.

        d. When LSR1 has received both an acceptable Initialization
           message and a KeepAlive message the session is operational
           from LSR1's point of view.

     It is possible for a pair of incompatibly configured LSRs that
     disagree on session parameters to engage in an endless sequence of
     messages as each NAKs the other's Initialization messages with
     Error Notification messages.

     An LSR must throttle its session setup retry attempts with an
     exponential backoff in situations where Initialization messages
     are being NAK'd.  It is also recommended that an LSR detecting
     such a situation take action to notify an operator.

     The session establishment setup attempt following a NAK'd
     Initialization message must be delayed no less than 15 seconds,
     and subsequent delays must grow to a maximum delay of no less than
     2 minutes.  The specific session establishment action that must be
     delayed is the attempt to open the session transport connection by
     the LSR playing the active role.








Andersson, et al.           Standards Track                    [Page 16]

RFC 3036                   LDP Specification                January 2001


     The throttled sequence of Initialization NAKs is unlikely to cease
     until operator intervention reconfigures one of the LSRs.  After
     such a configuration action there is no further need to throttle
     subsequent session establishment attempts (until their
     initialization messages are NAK'd).

     Due to the asymmetric nature of session establishment,
     reconfiguration of the passive LSR will go unnoticed by the active
     LSR without some further action.  Section "Hello Message"
     describes an optional mechanism an LSR can use to signal potential
     LDP peers that it has been reconfigured.

2.5.4. Initialization State Machine

  It is convenient to describe LDP session negotiation behavior in
  terms of a state machine.  We define the LDP state machine to have
  five possible states and present the behavior as a state transition
  table and as a state transition diagram.

































Andersson, et al.           Standards Track                    [Page 17]

RFC 3036                   LDP Specification                January 2001


              Session Initialization State Transition Table

     STATE         EVENT                               NEW STATE

     NON EXISTENT  Session TCP connection established  INITIALIZED
                   established

     INITIALIZED   Transmit Initialization msg         OPENSENT
                         (Active Role)

                   Receive acceptable                  OPENREC
                         Initialization msg
                         (Passive Role )
                     Action: Transmit Initialization
                             msg and KeepAlive msg

                   Receive Any other LDP msg           NON EXISTENT
                     Action: Transmit Error Notification msg
                             (NAK) and close transport connection

     OPENREC       Receive KeepAlive msg               OPERATIONAL

                   Receive Any other LDP msg           NON EXISTENT
                     Action: Transmit Error Notification msg
                             (NAK) and close transport connection

     OPENSENT      Receive acceptable                  OPENREC
                         Initialization msg
                     Action: Transmit KeepAlive msg

                   Receive Any other LDP msg           NON EXISTENT
                     Action: Transmit Error Notification msg
                             (NAK) and close transport connection

     OPERATIONAL   Receive Shutdown msg                NON EXISTENT
                     Action: Transmit Shutdown msg and
                             close transport connection

                   Receive other LDP msgs              OPERATIONAL

                   Timeout                             NON EXISTENT
                     Action: Transmit Shutdown msg and
                             close transport connection








Andersson, et al.           Standards Track                    [Page 18]

RFC 3036                   LDP Specification                January 2001


              Session Initialization State Transition Diagram

                                +------------+
                                |            |
                  +------------>|NON EXISTENT|<--------------------+
                  |             |            |                     |
                  |             +------------+                     |
                  | Session        |    ^                          |
                  |   connection   |    |                          |
                  |   established  |    | Rx any LDP msg except    |
                  |                V    |   Init msg or Timeout    |
                  |            +-----------+                       |
     Rx Any other |            |           |                       |
        msg or    |            |INITIALIZED|                       |
        Timeout / |        +---|           |-+                     |
     Tx NAK msg   |        |   +-----------+ |                     |
                  |        | (Passive Role)  | (Active Role)       |
                  |        | Rx Acceptable   | Tx Init msg         |
                  |        |    Init msg /   |                     |
                  |        | Tx Init msg     |                     |
                  |        |    Tx KeepAlive |                     |
                  |        V    msg          V                     |
                  |   +-------+        +--------+                  |
                  |   |       |        |        |                  |
                  +---|OPENREC|        |OPENSENT|----------------->|
                  +---|       |        |        | Rx Any other msg |
                  |   +-------+        +--------+    or Timeout    |
     Rx KeepAlive |        ^                |     Tx NAK msg       |
        msg       |        |                |                      |
                  |        |                | Rx Acceptable        |
                  |        |                |    Init msg /        |
                  |        +----------------+ Tx KeepAlive msg     |
                  |                                                |
                  |      +-----------+                             |
                  +----->|           |                             |
                         |OPERATIONAL|                             |
                         |           |---------------------------->+
                         +-----------+     Rx Shutdown msg
                  All other  |   ^            or Timeout /
                    LDP msgs |   |         Tx Shutdown msg
                             |   |
                             +---+









Andersson, et al.           Standards Track                    [Page 19]

RFC 3036                   LDP Specification                January 2001


2.5.5. Maintaining Hello Adjacencies

  An LDP session with a peer has one or more Hello adjacencies.

  An LDP session has multiple Hello adjacencies when a pair of LSRs is
  connected by multiple links that share the same label space; for
  example, multiple PPP links between a pair of routers.  In this
  situation the Hellos an LSR sends on each such link carry the same
  LDP Identifier.

  LDP includes mechanisms to monitor the necessity of an LDP session
  and its Hello adjacencies.

  LDP uses the regular receipt of LDP Discovery Hellos to indicate a
  peer's intent to use the label space identified by the Hello.  An LSR
  maintains a hold timer with each Hello adjacency which it restarts
  when it receives a Hello that matches the adjacency.  If the timer
  expires without receipt of a matching Hello from the peer, LDP
  concludes that the peer no longer wishes to label switch using that
  label space for that link (or target, in the case of Targeted Hellos)
  or that the peer has failed.  The LSR then deletes the Hello
  adjacency.  When the last Hello adjacency for a LDP session is
  deleted, the LSR terminates the LDP session by sending a Notification
  message and closing the transport connection.

2.5.6. Maintaining LDP Sessions

  LDP includes mechanisms to monitor the integrity of the LDP session.

  LDP uses the regular receipt of LDP PDUs on the session transport
  connection to monitor the integrity of the session.  An LSR maintains
  a KeepAlive timer for each peer session which it resets whenever it
  receives an LDP PDU from the session peer.  If the KeepAlive timer
  expires without receipt of an LDP PDU from the peer the LSR concludes
  that the transport connection is bad or that the peer has failed, and
  it terminates the LDP session by closing the transport connection.

  After an LDP session has been established, an LSR must arrange that
  its peer receive an LDP PDU from it at least every KeepAlive time
  period to ensure the peer restarts the session KeepAlive timer.  The
  LSR may send any protocol message to meet this requirement.  In
  circumstances where an LSR has no other information to communicate to
  its peer, it sends a KeepAlive message.

  An LSR may choose to terminate an LDP session with a peer at any
  time.  Should it choose to do so, it informs the peer with a Shutdown
  message.




Andersson, et al.           Standards Track                    [Page 20]

RFC 3036                   LDP Specification                January 2001


2.6. Label Distribution and Management

  The MPLS architecture [RF3031] allows an LSR to distribute a FEC
  label binding in response to an explicit request from another LSR.
  This is known as Downstream On Demand label distribution.  It also
  allows an LSR to distribute label bindings to LSRs that have not
  explicitly requested them.  [RFC3031] calls this method of label
  distribution Unsolicited Downstream; this document uses the term
  Downstream Unsolicited.

  Both of these label distribution techniques may be used in the same
  network at the same time.  However, for any given LDP session, each
  LSR must be aware of the label distribution method used by its peer
  in order to avoid situations where one peer using Downstream
  Unsolicited label distribution assumes its peer is also.  See Section
  "Downstream on Demand label Advertisement".

2.6.1. Label Distribution Control Mode

  The behavior of the initial setup of LSPs is determined by whether
  the LSR is operating with independent or ordered LSP control.  An LSR
  may support both types of control as a configurable option.

2.6.1.1. Independent Label Distribution Control

  When using independent LSP control, each LSR may advertise label
  mappings to its neighbors at any time it desires.  For example, when
  operating in independent Downstream on Demand mode, an LSR may answer
  requests for label mappings immediately, without waiting for a label
  mapping from the next hop.  When operating in independent Downstream
  Unsolicited mode, an LSR may advertise a label mapping for a FEC to
  its neighbors whenever it is prepared to label-switch that FEC.

  A consequence of using independent mode is that an upstream label can
  be advertised before a downstream label is received.

2.6.1.2. Ordered Label Distribution Control

  When using LSP ordered control, an LSR may initiate the transmission
  of a label mapping only for a FEC for which it has a label mapping
  for the FEC next hop, or for which the LSR is the egress.  For each
  FEC for which the LSR is not the egress and no mapping exists, the
  LSR MUST wait until a label from a downstream LSR is received before
  mapping the FEC and passing corresponding labels to upstream LSRs.
  An LSR may be an egress for some FECs and a non-egress for others.
  An LSR may act as an egress LSR, with respect to a particular FEC,
  under any of the following conditions:




Andersson, et al.           Standards Track                    [Page 21]

RFC 3036                   LDP Specification                January 2001


     1. The FEC refers to the LSR itself (including one of its directly
        attached interfaces).

     2. The next hop router for the FEC is outside of the Label
        Switching Network.

     3. FEC elements are reachable by crossing a routing domain
        boundary, such as another area for OSPF summary networks, or
        another autonomous system for OSPF AS externals and BGP routes
        [RFC2328] [RFC1771].

  Note that whether an LSR is an egress for a given FEC may change over
  time, depending on the state of the network and LSR configuration
  settings.

2.6.2. Label Retention Mode

  The MPLS architecture [RFC3031] introduces the notion of label
  retention mode which specifies whether an LSR maintains a label
  binding for a FEC learned from a neighbor that is not its next hop
  for the FEC.

2.6.2.1. Conservative Label Retention Mode

  In Downstream Unsolicited advertisement mode, label mapping
  advertisements for all routes may be received from all peer LSRs.
  When using conservative label retention, advertised label mappings
  are retained only if they will be used to forward packets (i.e., if
  they are received from a valid next hop according to routing).  If
  operating in Downstream on Demand mode, an LSR will request label
  mappings only from the next hop LSR according to routing.  Since
  Downstream on Demand mode is primarily used when label conservation
  is desired (e.g., an ATM switch with limited cross connect space), it
  is typically used with the conservative label retention mode.

  The main advantage of the conservative mode is that only the labels
  that are required for the forwarding of data are allocated and
  maintained.  This is particularly important in LSRs where the label
  space is inherently limited, such as in an ATM switch.  A
  disadvantage of the conservative mode is that if routing changes the
  next hop for a given destination, a new label must be obtained from
  the new next hop before labeled packets can be forwarded.

2.6.2.2. Liberal Label Retention Mode

  In Downstream Unsolicited advertisement mode, label mapping
  advertisements for all routes may be received from all LDP peers.
  When using liberal label retention, every label mappings received



Andersson, et al.           Standards Track                    [Page 22]

RFC 3036                   LDP Specification                January 2001


  from a peer LSR is retained regardless of whether the LSR is the next
  hop for the advertised mapping.  When operating in Downstream on
  Demand mode with liberal label retention, an LSR might choose to
  request label mappings for all known prefixes from all peer LSRs.
  Note, however, that Downstream on Demand mode is typically used by
  devices such as ATM switch-based LSRs for which the conservative
  approach is recommended.

  The main advantage of the liberal label retention mode is that
  reaction to routing changes can be quick because labels already
  exist.  The main disadvantage of the liberal mode is that unneeded
  label mappings are distributed and maintained.

2.6.3. Label Advertisement Mode

  Each interface on an LSR is configured to operate in either
  Downstream Unsolicited or Downstream on Demand advertisement mode.
  LSRs exchange advertisement modes during initialization.  The major
  difference between Downstream Unsolicited and Downstream on Demand
  modes is in which LSR takes responsibility for initiating mapping
  requests and mapping advertisements.

2.7. LDP Identifiers and Next Hop Addresses

  An LSR maintains learned labels in a Label Information Base (LIB).
  When operating in Downstream Unsolicited mode, the LIB entry for an
  address prefix associates a collection of (LDP Identifier, label)
  pairs with the prefix, one such pair for each peer advertising a
  label for the prefix.

  When the next hop for a prefix changes the LSR must retrieve the
  label advertised by the new next hop from the LIB for use in
  forwarding.  To retrieve the label the LSR must be able to map the
  next hop address for the prefix to an LDP Identifier.

  Similarly, when the LSR learns a label for a prefix from an LDP peer,
  it must be able to determine whether that peer is currently a next
  hop for the prefix to determine whether it needs to start using the
  newly learned label when forwarding packets that match the prefix.
  To make that decision the LSR must be able to map an LDP Identifier
  to the peer's addresses to check whether any are a next hop for the
  prefix.

  To enable LSRs to map between a peer LDP identifier and the peer's
  addresses, LSRs advertise their addresses using LDP Address and
  Withdraw Address messages.





Andersson, et al.           Standards Track                    [Page 23]

RFC 3036                   LDP Specification                January 2001


  An LSR sends an Address message to advertise its addresses to a peer.
  An LSR sends a Withdraw Address message to withdraw previously
  advertised addresses from a peer

2.8. Loop Detection

  Loop detection is a configurable option which provides a mechanism
  for finding looping LSPs and for preventing Label Request messages
  from looping in the presence of non-merge capable LSRs.

  The mechanism makes use of Path Vector and Hop Count TLVs carried by
  Label Request and Label Mapping messages.  It builds on the following
  basic properties of these TLVs:

     -  A Path Vector TLV contains a list of the LSRs that its
        containing message has traversed.  An LSR is identified in a
        Path Vector list by its unique LSR Identifier (Id), which is
        the first four octets of its LDP Identifier.  When an LSR
        propagates a message containing a Path Vector TLV it adds its
        LSR Id to the Path Vector list.  An LSR that receives a message
        with a Path Vector that contains its LSR Id detects that the
        message has traversed a loop.  LDP supports the notion of a
        maximum allowable Path Vector length; an LSR that detects a
        Path Vector has reached the maximum length behaves as if the
        containing message has traversed a loop.

     -  A Hop Count TLV contains a count of the LSRS that the
        containing message has traversed.  When an LSR propagates a
        message containing a Hop Count TLV it increments the count.  An
        LSR that detects a Hop Count has reached a configured maximum
        value behaves as if the containing message has traversed a
        loop.  By convention a count of 0 is interpreted to mean the
        hop count is unknown.  Incrementing an unknown hop count value
        results in an unknown hop count value (0).

  The following paragraphs describes LDP loop detection procedures.
  For these paragraphs, and only these paragraphs, "MUST" is redefined
  to mean "MUST if configured for loop detection".  The paragraphs
  specify messages that must carry Path Vector and Hop Count TLVs.
  Note that the Hop Count TLV and its procedures are used without the
  Path Vector TLV in situations when loop detection is not configured
  (see [RFC3035] and [RFC3034]).

2.8.1. Label Request Message

  The use of the Path Vector TLV and Hop Count TLV prevent Label
  Request messages from looping in environments that include non-merge
  capable LSRs.



Andersson, et al.           Standards Track                    [Page 24]

RFC 3036                   LDP Specification                January 2001


  The rules that govern use of the Hop Count TLV in Label Request
  messages by LSR R when Loop Detection is enabled are the following:

  -  The Label Request message MUST include a Hop Count TLV.

  -  If R is sending the Label Request because it is a FEC ingress, it
     MUST include a Hop Count TLV with hop count value 1.

  -  If R is sending the Label Request as a result of having received a
     Label Request from an upstream LSR, and if the received Label
     Request contains a Hop Count TLV, R MUST increment the received
     hop count value by 1 and MUST pass the resulting value in a Hop
     Count TLV to its next hop along with the Label Request message;

  The rules that govern use of the Path Vector TLV in Label Request
  messages by LSR R when Loop Detection is enabled are the following:

  -  If R is sending the Label Request because it is a FEC ingress,
     then if R is non-merge capable, it MUST include a Path Vector TLV
     of length 1 containing its own LSR Id.

  -  If R is sending the Label Request as a result of having received a
     Label Request from an upstream LSR, then if the received Label
     Request contains a Path Vector TLV or if R is non-merge capable:

        R MUST add its own LSR Id to the Path Vector, and MUST pass the
        resulting Path Vector to its next hop along with the Label
        Request message.  If the Label Request contains no Path Vector
        TLV, R MUST include a Path Vector TLV of length 1 containing
        its own LSR Id.

  Note that if R receives a Label Request message for a particular FEC,
  and R has previously sent a Label Request message for that FEC to its
  next hop and has not yet received a reply, and if R intends to merge
  the newly received Label Request with the existing outstanding Label
  Request, then R does not propagate the Label Request to the next hop.

  If R receives a Label Request message from its next hop with a Hop
  Count TLV which exceeds the configured maximum value, or with a Path
  Vector TLV containing its own LSR Id or which exceeds the maximum
  allowable length, then R detects that the Label Request message has
  traveled in a loop.

  When R detects a loop, it MUST send a Loop Detected Notification
  message to the source of the Label Request message and drop the Label
  Request message.





Andersson, et al.           Standards Track                    [Page 25]

RFC 3036                   LDP Specification                January 2001


2.8.2. Label Mapping Message

  The use of the Path Vector TLV and Hop Count TLV in the Label Mapping
  message provide a mechanism to find and terminate looping LSPs.  When
  an LSR receives a Label Mapping message from a next hop, the message
  is propagated upstream as specified below until an ingress LSR is
  reached or a loop is found.

  The rules that govern the use of the Hop Count TLV in Label Mapping
  messages sent by an LSR R when Loop Detection is enabled are the
  following:

  -  R MUST include a Hop Count TLV.

  -  If R is the egress, the hop count value MUST be 1.

  -  If the Label Mapping message is being sent to propagate a Label
     Mapping message received from the next hop to an upstream peer,
     the hop count value MUST be determined as follows:

     o  If R is a member of the edge set of an LSR domain whose LSRs do
        not perform 'TTL-decrement' (e.g., an ATM LSR domain or a Frame
        Relay LSR domain) and the upstream peer is within that domain,
        R MUST reset the hop count to 1 before propagating the message.

     o  Otherwise, R MUST increment the hop count received from the
        next hop before propagating the message.

  -  If the Label Mapping message is not being sent to propagate a
     Label Mapping message, the hop count value MUST be the result of
     incrementing R's current knowledge of the hop count learned from
     previous Label Mapping messages.  Note that this hop count value
     will be unknown if R has not received a Label Mapping message from
     the next hop.

  Any Label Mapping message MAY contain a Path Vector TLV.  The rules
  that govern the mandatory use of the Path Vector TLV in Label Mapping
  messages sent by LSR R when Loop Detection is enabled are the
  following:

  -  If R is the egress, the Label Mapping message need not include a
     Path Vector TLV.

  -  If R is sending the Label Mapping message to propagate a Label
     Mapping message received from the next hop to an upstream peer,
     then:





Andersson, et al.           Standards Track                    [Page 26]

RFC 3036                   LDP Specification                January 2001


     o  If R is merge capable and if R has not previously sent a Label
        Mapping message to the upstream peer, then it MUST include a
        Path Vector TLV.

     o  If the received message contains an unknown hop count, then R
        MUST include a Path Vector TLV.

     o  If R has previously sent a Label Mapping message to the
        upstream peer, then it MUST include a Path Vector TLV if the
        received message reports an LSP hop count increase, a change in
        hop count from unknown to known, or a change from known to
        unknown.

     If the above rules require R include a Path Vector TLV in the
     Label Mapping message, R computes it as follows:

     o  If the received Label Mapping message included a Path Vector,
        the Path Vector sent upstream MUST be the result of adding R's
        LSR Id to the received Path Vector.

     o  If the received message had no Path Vector, the Path Vector
        sent upstream MUST be a path vector of length 1 containing R's
        LSR Id.

  -  If the Label Mapping message is not being sent to propagate a
     received message upstream, the Label Mapping message MUST include
     a Path Vector of length 1 containing R's LSR Id.

  If R receives a Label Mapping message from its next hop with a Hop
  Count TLV which exceeds the configured maximum value, or with a Path
  Vector TLV containing its own LSR Id or which exceeds the maximum
  allowable length, then R detects that the corresponding LSP contains
  a loop.

  When R detects a loop, it MUST stop using the label for forwarding,
  drop the Label Mapping message, and signal Loop Detected status to
  the source of the Label Mapping message.

2.8.3. Discussion

  If loop detection is desired in an MPLS domain, then it should be
  turned on in ALL LSRs within that MPLS domain, else loop detection
  will not operate properly and may result in undetected loops or in
  falsely detected loops.

  LSRs which are configured for loop detection are NOT expected to
  store the path vectors as part of the LSP state.




Andersson, et al.           Standards Track                    [Page 27]

RFC 3036                   LDP Specification                January 2001


  Note that in a network where only non-merge capable LSRs are present,
  Path Vectors are passed downstream from ingress to egress, and are
  not passed upstream.  Even when merge is supported, Path Vectors need
  not be passed upstream along an LSP which is known to reach the
  egress.  When an LSR experiences a change of next hop, it need pass
  Path Vectors upstream only when it cannot tell from the hop count
  that the change of next hop does not result in a loop.

  In the case of ordered label distribution, Label Mapping messages are
  propagated from egress toward ingress, naturally creating the Path
  Vector along the way.  In the case of independent label distribution,
  an LSR may originate a Label Mapping message for an FEC before
  receiving a Label Mapping message from its downstream peer for that
  FEC.  In this case, the subsequent Label Mapping message for the FEC
  received from the downstream peer is treated as an update to LSP
  attributes, and the Label Mapping message must be propagated
  upstream.  Thus, it is recommended that loop detection be configured
  in conjunction with ordered label distribution, to minimize the
  number of Label Mapping update messages.

2.9. Authenticity and Integrity of LDP Messages

  This section specifies a mechanism to protect against the
  introduction of spoofed TCP segments into LDP session connection
  streams.  The use of this mechanism MUST be supported as a
  configurable option.

  The mechanism is based on use of the TCP MD5 Signature Option
  specified in [RFC2385] for use by BGP.  See [RFC1321] for a
  specification of the MD5 hash function.

2.9.1. TCP MD5 Signature Option

  The following quotes from [RFC2385] outline the security properties
  achieved by using the TCP MD5 Signature Option and summarizes its
  operation:

     "IESG Note

        This document describes current existing practice for securing
        BGP against certain simple attacks.  It is understood to have
        security weaknesses against concerted attacks."









Andersson, et al.           Standards Track                    [Page 28]

RFC 3036                   LDP Specification                January 2001


     "Abstract

        This memo describes a TCP extension to enhance security for
        BGP.  It defines a new TCP option for carrying an MD5 [RFC1321]
        digest in a TCP segment.  This digest acts like a signature for
        that segment, incorporating information known only to the
        connection end points.  Since BGP uses TCP as its transport,
        using this option in the way described in this paper
        significantly reduces the danger from certain security attacks
        on BGP."

     "Introduction

        The primary motivation for this option is to allow BGP to
        protect itself against the introduction of spoofed TCP segments
        into the connection stream.  Of particular concern are TCP
        resets.

        To spoof a connection using the scheme described in this paper,
        an attacker would not only have to guess TCP sequence numbers,
        but would also have had to obtain the password included in the
        MD5 digest.  This password never appears in the connection
        stream, and the actual form of the password is up to the
        application.  It could even change during the lifetime of a
        particular connection so long as this change was synchronized
        on both ends (although retransmission can become problematical
        in some TCP implementations with changing passwords).

        Finally, there is no negotiation for the use of this option in
        a connection, rather it is purely a matter of site policy
        whether or not its connections use the option."

     "MD5 as a Hashing Algorithm

        Since this memo was first issued (under a different title), the
        MD5 algorithm has been found to be vulnerable to collision
        search attacks [Dobb], and is considered by some to be
        insufficiently strong for this type of application.

        This memo still specifies the MD5 algorithm, however, since the
        option has already been deployed operationally, and there was
        no "algorithm type" field defined to allow an upgrade using the
        same option number.  The original document did not specify a
        type field since this would require at least one more byte, and
        it was felt at the time that taking 19 bytes for the complete
        option (which would probably be padded to 20 bytes in TCP
        implementations) would be too much of a waste of the already
        limited option space.



Andersson, et al.           Standards Track                    [Page 29]

RFC 3036                   LDP Specification                January 2001


        This does not prevent the deployment of another similar option
        which uses another hashing algorithm (like SHA-1).  Also, if
        most implementations pad the 18 byte option as defined to 20
        bytes anyway, it would be just as well to define a new option
        which contains an algorithm type field.

        This would need to be addressed in another document, however."

  End of quotes from [RFC2385].

2.9.2. LDP Use of TCP MD5 Signature Option

  LDP uses the TCP MD5 Signature Option as follows:

     -  Use of the MD5 Signature Option for LDP TCP connections is a
        configurable LSR option.

     -  An LSR that uses the MD5 Signature Option is configured with a
        password (shared secret) for each potential LDP peer.

     -  The LSR applies the MD5 algorithm as specified in [RFC2385] to
        compute the MD5 digest for a TCP segment to be sent to a peer.
        This computation makes use of the peer password as well as the
        TCP segment.

     -  When the LSR receives a TCP segment with an MD5 digest, it
        validates the segment by calculating the MD5 digest (using its
        own record of the password) and compares the computed digest
        with the received digest.  If the comparison fails, the segment
        is dropped without any response to the sender.

     -  The LSR ignores LDP Hellos from any LSR for which a password
        has not been configured.  This ensures that the LSR establishes
        LDP TCP connections only with LSRs for which a password has
        been configured.

2.10. Label Distribution for Explicitly Routed LSPs

  Traffic Engineering [RFC2702] is expected to be an important MPLS
  application.  MPLS support for Traffic Engineering uses explicitly
  routed LSPs, which need not follow normally-routed (hop-by-hop) paths
  as determined by destination-based routing protocols.  CR-LDP [CRLDP]
  defines extensions to LDP to use LDP to set up explicitly routed
  LSPs.







Andersson, et al.           Standards Track                    [Page 30]

RFC 3036                   LDP Specification                January 2001


3. Protocol Specification

  Previous sections that describe LDP operation have discussed
  scenarios that involve the exchange of messages among LDP peers.
  This section specifies the message encodings and procedures for
  processing the messages.

  LDP message exchanges are accomplished by sending LDP protocol data
  units (PDUs) over LDP session TCP connections.

  Each LDP PDU can carry one or more LDP messages.  Note that the
  messages in an LDP PDU need not be related to one another.  For
  example, a single PDU could carry a message advertising FEC-label
  bindings for several FECs, another message requesting label bindings
  for several other FECs, and a third notification message signaling
  some event.

3.1. LDP PDUs

  Each LDP PDU is an LDP header followed by one or more LDP messages.
  The LDP header is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Version                      |         PDU Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         LDP Identifier                        |
  +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Version
     Two octet unsigned integer containing the version number of the
     protocol.  This version of the specification specifies LDP protocol
     version 1.

  PDU Length
     Two octet integer specifying the total length of this PDU in
     octets, excluding the Version and PDU Length fields.

     The maximum allowable PDU Length is negotiable when an LDP session
     is initialized.  Prior to completion of the negotiation the maximum
     allowable length is 4096 bytes.







Andersson, et al.           Standards Track                    [Page 31]

RFC 3036                   LDP Specification                January 2001


  LDP Identifier
     Six octet field that uniquely identifies the label space of the
     sending LSR for which this PDU applies.  The first four octets
     identify the LSR and must be a globally unique value.  It should be
     a 32-bit router Id assigned to the LSR and also used to identify it
     in loop detection Path Vectors.  The last two octets identify a
     label space within the LSR.  For a platform-wide label space, these
     should both be zero.

  Note that there is no alignment requirement for the first octet of an
  LDP PDU.

3.2. LDP Procedures

  LDP defines messages, TLVs and procedures in the following areas:

     -  Peer discovery;
     -  Session management;
     -  Label distribution;
     -  Notification of errors and advisory information.

  The sections that follow describe the message and TLV encodings for
  these areas and the procedures that apply to them.

  The label distribution procedures are complex and are difficult to
  describe fully, coherently and unambiguously as a collection of
  separate message and TLV specifications.

  Appendix A, "LDP Label Distribution Procedures", describes the label
  distribution procedures in terms of label distribution events that
  may occur at an LSR and how the LSR must respond.  Appendix A is the
  specification of LDP label distribution procedures.  If a procedure
  described elsewhere in this document conflicts with Appendix A,
  Appendix A specifies LDP behavior.

3.3. Type-Length-Value Encoding

  LDP uses a Type-Length-Value (TLV) encoding scheme to encode much of
  the information carried in LDP messages.

  An LDP TLV is encoded as a 2 octet field that uses 14 bits to specify
  a Type and 2 bits to specify behavior when an LSR doesn't recognize
  the Type, followed by a 2 octet Length Field, followed by a variable
  length Value field.







Andersson, et al.           Standards Track                    [Page 32]

RFC 3036                   LDP Specification                January 2001


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|        Type               |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                             Value                             |
  ~                                                               ~
  |                                                               |
  |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  U bit
     Unknown TLV bit.  Upon receipt of an unknown TLV, if U is clear
     (=0), a notification must be returned to the message originator
     and the entire message must be ignored; if U is set (=1), the
     unknown TLV is silently ignored and the rest of the message is
     processed as if the unknown TLV did not exist.  The sections
     following that define TLVs specify a value for the U-bit.

  F bit
     Forward unknown TLV bit.  This bit applies only when the U bit is
     set and the LDP message containing the unknown TLV is to be
     forwarded.  If F is clear (=0), the unknown TLV is not forwarded
     with the containing message; if F is set (=1), the unknown TLV is
     forwarded with the containing message.  The sections following
     that define TLVs specify a value for the F-bit.

  Type
     Encodes how the Value field is to be interpreted.

  Length
     Specifies the length of the Value field in octets.

  Value
     Octet string of Length octets that encodes information to be
     interpreted as specified by the Type field.

  Note that there is no alignment requirement for the first octet of a
  TLV.

  Note that the Value field itself may contain TLV encodings.  That is,
  TLVs may be nested.

  The TLV encoding scheme is very general.  In principle, everything
  appearing in an LDP PDU could be encoded as a TLV.  This
  specification does not use the TLV scheme to its full generality.  It



Andersson, et al.           Standards Track                    [Page 33]

RFC 3036                   LDP Specification                January 2001


  is not used where its generality is unnecessary and its use would
  waste space unnecessarily.  These are usually places where the type
  of a value to be encoded is known, for example by its position in a
  message or an enclosing TLV, and the length of the value is fixed or
  readily derivable from the value encoding itself.

  Some of the TLVs defined for LDP are similar to one another.  For
  example, there is a Generic Label TLV, an ATM Label TLV, and a Frame
  Relay TLV; see Sections "Generic Label TLV", "ATM Label TLV", and
  "Frame Relay TLV".

  While it is possible to think about TLVs related in this way in terms
  of a TLV type that specifies a TLV class and a TLV subtype that
  specifies a particular kind of TLV within that class, this
  specification does not formalize the notion of a TLV subtype.

  The specification assigns type values for related TLVs, such as the
  label TLVs, from a contiguous block in the 16-bit TLV type number
  space.

  Section "TLV Summary" lists the TLVs defined in this version of the
  protocol and the section in this document that describes each.

3.4. TLV Encodings for Commonly Used Parameters

  There are several parameters used by more than one LDP message.  The
  TLV encodings for these commonly used parameters are specified in
  this section.

3.4.1. FEC TLV

  Labels are bound to Forwarding Equivalence Classes (FECs).  A FEC is
  a list of one or more FEC elements.  The FEC TLV encodes FEC items.


















Andersson, et al.           Standards Track                    [Page 34]

RFC 3036                   LDP Specification                January 2001


  Its encoding is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0| FEC (0x0100)              |      Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        FEC Element 1                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                                                               ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        FEC Element n                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  FEC Element 1 to FEC Element n
     There are several types of FEC elements; see Section "FECs".  The
     FEC element encoding depends on the type of FEC element.

     A FEC Element value is encoded as a 1 octet field that specifies
     the element type, and a variable length field that is the type-
     dependent element value.  Note that while the representation of
     the FEC element value is type-dependent, the FEC element encoding
     itself is one where standard LDP TLV encoding is not used.

     The FEC Element value encoding is:

        FEC Element       Type      Value
        type name

          Wildcard        0x01      No value; i.e., 0 value octets;
                                        see below.
          Prefix          0x02      See below.
          Host Address    0x03      Full host address; see below.

     Note that this version of LDP supports the use of multiple FEC
     Elements per FEC for the Label Mapping message only.  The use of
     multiple FEC Elements in other messages is not permitted in this
     version, and is a subject for future study.

     Wildcard FEC Element
        To be used only in the Label Withdraw and Label Release
        Messages.  Indicates the withdraw/release is to be applied to
        all FECs associated with the label within the following label
        TLV.  Must be the only FEC Element in the FEC TLV.





Andersson, et al.           Standards Track                    [Page 35]

RFC 3036                   LDP Specification                January 2001


     Prefix FEC Element value encoding:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Prefix (2)   |     Address Family            |     PreLen    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Prefix                                    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Address Family
        Two octet quantity containing a value from ADDRESS FAMILY
        NUMBERS in [RFC1700] that encodes the address family for the
        address prefix in the Prefix field.

     PreLen
        One octet unsigned integer containing the length in bits of the
        address prefix that follows.  A length of zero indicates a
        prefix that matches all addresses (the default destination); in
        this case the Prefix itself is zero octets).

     Prefix
        An address prefix encoded according to the Address Family
        field, whose length, in bits, was specified in the PreLen
        field, padded to a byte boundary.

     Host Address FEC Element encoding:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Host Addr (3) |     Address Family            | Host Addr Len |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                     Host Addr                                 |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Address Family
        Two octet quantity containing a value from ADDRESS FAMILY
        NUMBERS in [RFC1700] that encodes the address family for the
        address prefix in the Prefix field.

     Host Addr Len
        Length of the Host address in octets.

     Host Addr
        An address encoded according to the Address Family field.



Andersson, et al.           Standards Track                    [Page 36]

RFC 3036                   LDP Specification                January 2001


3.4.1.1. FEC Procedures

  If in decoding a FEC TLV an LSR encounters a FEC Element with an
  Address Family it does not support, it should stop decoding the FEC
  TLV, abort processing the message containing the TLV, and send an
  "Unsupported Address Family" Notification message to its LDP peer
  signaling an error.

  If it encounters a FEC Element type it cannot decode, it should stop
  decoding the FEC TLV, abort processing the message containing the
  TLV, and send an "Unknown FEC" Notification message to its LDP peer
  signaling an error.

3.4.2. Label TLVs

  Label TLVs encode labels.  Label TLVs are carried by the messages
  used to advertise, request, release and withdraw label mappings.

  There are several different kinds of Label TLVs which can appear in
  situations that require a Label TLV.

3.4.2.1. Generic Label TLV

  An LSR uses Generic Label TLVs to encode labels for use on links for
  which label values are independent of the underlying link technology.
  Examples of such links are PPP and Ethernet.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0| Generic Label (0x0200)    |      Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Label                                                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Label
     This is a 20-bit label value as specified in [RFC3032] represented
     as a 20-bit number in a 4 octet field.













Andersson, et al.           Standards Track                    [Page 37]

RFC 3036                   LDP Specification                January 2001


3.4.2.2. ATM Label TLV

  An LSR uses ATM Label TLVs to encode labels for use on ATM links.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0| ATM Label (0x0201)        |         Length                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Res| V |          VPI          |         VCI                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Res
     This field is reserved.  It must be set to zero on transmission
     and must be ignored on receipt.

  V-bits
     Two-bit switching indicator.  If V-bits is 00, both the VPI and
     VCI are significant.  If V-bits is 01, only the VPI field is
     significant.  If V-bit is 10, only the VCI is significant.

  VPI
     Virtual Path Identifier.  If VPI is less than 12-bits it should be
     right justified in this field and preceding bits should be set to
     0.

  VCI
     Virtual Channel Identifier.  If the VCI is less than 16- bits, it
     should be right justified in the field and the preceding bits must
     be set to 0.  If Virtual Path switching is indicated in the V-bits
     field, then this field must be ignored by the receiver and set to
     0 by the sender.

3.4.2.3. Frame Relay Label TLV

  An LSR uses Frame Relay Label TLVs to encode labels for use on Frame
  Relay links.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0| Frame Relay Label (0x0202)|       Length                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Reserved    |Len|                     DLCI                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Andersson, et al.           Standards Track                    [Page 38]

RFC 3036                   LDP Specification                January 2001


  Res
     This field is reserved.  It must be set to zero on transmission
     and must be ignored on receipt.

  Len
     This field specifies the number of bits of the DLCI.  The
     following values are supported:

        0 = 10 bits DLCI
        2 = 23 bits DLCI

     Len values 1 and 3 are reserved.

  DLCI
     The Data Link Connection Identifier.  Refer to [RFC3034] for the
     label values and formats.

3.4.3. Address List TLV

  The Address List TLV appears in Address and Address Withdraw
  messages.

  Its encoding is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0| Address List (0x0101)     |      Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Address Family            |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
  |                                                               |
  |                        Addresses                              |
  ~                                                               ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Address Family
     Two octet quantity containing a value from ADDRESS FAMILY NUMBERS
     in [RFC1700] that encodes the addresses contained in the Addresses
     field.

  Addresses
     A list of addresses from the specified Address Family.  The
     encoding of the individual addresses depends on the Address Family.






Andersson, et al.           Standards Track                    [Page 39]

RFC 3036                   LDP Specification                January 2001


     The following address encodings are defined by this version of the
     protocol:

        Address Family      Address Encoding

        IPv4                4 octet full IPv4 address
        IPv6                16 octet full IPv6 address

3.4.4. Hop Count TLV

  The Hop Count TLV appears as an optional field in messages that set
  up LSPs.  It calculates the number of LSR hops along an LSP as the
  LSP is being setup.

  Note that setup procedures for LSPs that traverse ATM and Frame Relay
  links require use of the Hop Count TLV (see [RFC3035] and [RFC3034]).

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0| Hop Count (0x0103)        |      Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     HC Value  |
  +-+-+-+-+-+-+-+-+

  HC Value
     1 octet unsigned integer hop count value.

3.4.4.1. Hop Count Procedures

  During setup of an LSP an LSR R may receive a Label Mapping or Label
  Request message for the LSP that contains the Hop Count TLV.  If it
  does, it should record the hop count value.

  If LSR R then propagates the Label Mapping message for the LSP to an
  upstream peer or the Label Request message to a downstream peer to
  continue the LSP setup, it must must determine a hop count to include
  in the propagated message as follows:

  -  If the message is a Label Request message, R must increment the
     received hop count;

  -  If the message is a Label Mapping message, R determines the hop
     count as follows:







Andersson, et al.           Standards Track                    [Page 40]

RFC 3036                   LDP Specification                January 2001


     o  If R is a member of the edge set of an LSR domain whose LSRs do
        not perform 'TTL-decrement' and the upstream peer is within
        that domain, R must reset the hop count to 1 before propagating
        the message.

     o  Otherwise, R must increment the received hop count.

  The first LSR in the LSP (ingress for a Label Request message, egress
  for a Label Mapping message) should set the hop count value to 1.

  By convention a value of 0 indicates an unknown hop count.  The
  result of incrementing an unknown hop count is itself an unknown hop
  count (0).

  Use of the unknown hop count value greatly reduces the signaling
  overhead when independent control is used.  When a new LSP is
  established, each LSR starts with unknown hop count.  Addition of a
  new LSR whose hop count is also unknown does not cause a hop count
  update to be propagated upstream since the hop count remains unknown.
  When the egress is finally added to the LSP, then the LSRs propagate
  hop count updates upstream via Label Mapping messages.

  Without use of the unknown hop count, each time a new LSR is added to
  the LSP a hop count update would need to be propagated upstream if
  the new LSR is closer to the egress than any of the other LSRs.
  These updates are useless overhead since they don't reflect the hop
  count to the egress.

  From the perspective of the ingress node, the fact that the hop count
  is unknown implies nothing about whether a packet sent on the LSP
  will actually make it to the egress.  All it implies is that the hop
  count update from the egress has not yet reached the ingress.

  If an LSR receives a message containing a Hop Count TLV, it must
  check the hop count value to determine whether the hop count has
  exceeded its configured maximum allowable value.  If so, it must
  behave as if the containing message has traversed a loop by sending a
  Notification message signaling Loop Detected in reply to the sender
  of the message.

  If Loop Detection is configured, the LSR must follow the procedures
  specified in Section "Loop Detection".

3.4.5. Path Vector TLV

  The Path Vector TLV is used with the Hop Count TLV in Label Request
  and Label Mapping messages to implement the optional LDP loop
  detection mechanism.  See Section "Loop Detection".  Its use in the



Andersson, et al.           Standards Track                    [Page 41]

RFC 3036                   LDP Specification                January 2001


  Label Request message records the path of LSRs the request has
  traversed.  Its use in the Label Mapping message records the path of
  LSRs a label advertisement has traversed to setup an LSP.

  Its encoding is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|0| Path Vector (0x0104)      |        Length                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            LSR Id 1                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                                                               ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            LSR Id n                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  One or more LSR Ids
     A list of router-ids indicating the path of LSRs the message has
     traversed.  Each LSR Id is the first four octets (router-id) of
     the LDP identifier for the corresponding LSR.  This ensures it is
     unique within the LSR network.

3.4.5.1. Path Vector Procedures

  The Path Vector TLV is carried in Label Mapping and Label Request
  messages when loop detection is configured.

3.4.5.1.1. Label Request Path Vector

  Section "Loop Detection" specifies situations when an LSR must
  include a Path Vector TLV in a Label Request message.

  An LSR that receives a Path Vector in a Label Request message must
  perform the procedures described in Section "Loop Detection".

  If the LSR detects a loop, it must reject the Label Request message.

  The LSR must:

     1. Transmit a Notification message to the sending LSR signaling
        "Loop Detected".






Andersson, et al.           Standards Track                    [Page 42]

RFC 3036                   LDP Specification                January 2001


     2. Not propagate the Label Request message further.

  Note that a Label Request message with Path Vector TLV is forwarded
  until:

     1. A loop is found,

     2. The LSP egress is reached,

     3. The maximum Path Vector limit or maximum Hop Count limit is
        reached.  This is treated as if a loop had been detected.

3.4.5.1.2. Label Mapping Path Vector

  Section "Loop Detection" specifies the situations when an LSR must
  include a Path Vector TLV in a Label Mapping message.

  An LSR that receives a Path Vector in a Label Mapping message must
  perform the procedures described in Section "Loop Detection".

  If the LSR detects a loop, it must reject the Label Mapping message
  in order to prevent a forwarding loop.  The LSR must:

     1. Transmit a Label Release message carrying a Status TLV to the
        sending LSR to signal "Loop Detected".

     2. Not propagate the message further.

     3. Check whether the Label Mapping message is for an existing LSP.
        If so, the LSR must unsplice any upstream labels which are
        spliced to the downstream label for the FEC.

  Note that a Label Mapping message with a Path Vector TLV is forwarded
  until:

     1. A loop is found,

     2. An LSP ingress is reached, or

     3. The maximum Path Vector or maximum Hop Count limit is reached.
        This is treated as if a loop had been detected.

3.4.6. Status TLV

  Notification messages carry Status TLVs to specify events being
  signaled.





Andersson, et al.           Standards Track                    [Page 43]

RFC 3036                   LDP Specification                January 2001


  The encoding for the Status TLV is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F| Status (0x0300)           |      Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Status Code                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Message Type             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  U bit
     Should be 0 when the Status TLV is sent in a Notification message.
     Should be 1 when the Status TLV is sent in some other message.

  F bit
     Should be the same as the setting of the F-bit in the Status Code
     field.

  Status Code
     32-bit unsigned integer encoding the event being signaled.  The
     structure of a Status Code is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |E|F|                 Status Data                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     E bit
        Fatal error bit.  If set (=1), this is a fatal error
        notification.  If clear (=0), this is an advisory notification.

     F bit
        Forward bit.  If set (=1), the notification should be forwarded
        to the LSR for the next-hop or previous-hop for the LSP, if
        any, associated with the event being signaled.  If clear (=0),
        the notification should not be forwarded.

     Status Data
        30-bit unsigned integer which specifies the status information.

     This specification defines Status Codes (32-bit unsigned integers
     with the above encoding).




Andersson, et al.           Standards Track                    [Page 44]

RFC 3036                   LDP Specification                January 2001


     A Status Code of 0 signals success.

  Message ID
     If non-zero, 32-bit value that identifies the peer message to
     which the Status TLV refers.  If zero, no specific peer message is
     being identified.

  Message Type
     If non-zero, the type of the peer message to which the Status TLV
     refers.  If zero, the Status TLV does not refer to any specific
     message type.

  Note that use of the Status TLV is not limited to Notification
  messages.  A message other than a Notification message may carry a
  Status TLV as an Optional Parameter.  When a message other than a
  Notification carries a Status TLV the U-bit of the Status TLV should
  be set to 1 to indicate that the receiver should silently discard the
  TLV if unprepared to handle it.

3.5. LDP Messages

  All LDP messages have the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|   Message Type              |      Message Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |                     Mandatory Parameters                      |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |                     Optional Parameters                       |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+









Andersson, et al.           Standards Track                    [Page 45]

RFC 3036                   LDP Specification                January 2001


  U bit
     Unknown message bit.  Upon receipt of an unknown message, if U is
     clear (=0), a notification is returned to the message originator;
     if U is set (=1), the unknown message is silently ignored.  The
     sections following that define messages specify a value for the
     U-bit.

  Message Type
     Identifies the type of message

  Message Length
     Specifies the cumulative length in octets of the Message ID,
     Mandatory Parameters, and Optional Parameters.

  Message ID
     32-bit value used to identify this message.  Used by the sending
     LSR to facilitate identifying notification messages that may apply
     to this message.  An LSR sending a notification message in
     response to this message should include this Message Id in the
     Status TLV carried by the notification message; see Section
     "Notification Message".

  Mandatory Parameters
     Variable length set of required message parameters.  Some messages
     have no required parameters.

     For messages that have required parameters, the required
     parameters MUST appear in the order specified by the individual
     message specifications in the sections that follow.

  Optional Parameters
     Variable length set of optional message parameters.  Many messages
     have no optional parameters.

     For messages that have optional parameters, the optional
     parameters may appear in any order.

  Note that there is no alignment requirement for the first octet of an
  LDP message.

  The following message types are defined in this version of LDP:

     Message Name            Section Title

     Notification            "Notification Message"
     Hello                   "Hello Message"
     Initialization          "Initialization Message"
     KeepAlive               "KeepAlive Message"



Andersson, et al.           Standards Track                    [Page 46]

RFC 3036                   LDP Specification                January 2001


     Address                 "Address Message"
     Address Withdraw        "Address Withdraw Message"
     Label Mapping           "Label Mapping Message"
     Label Request           "Label Request Message"
     Label Abort Request     "Label Abort Request Message"
     Label Withdraw          "Label Withdraw Message"
     Label Release           "Label Release Message"

  The sections that follow specify the encodings and procedures for
  these messages.

  Some of the above messages are related to one another, for example
  the Label Mapping, Label Request, Label Withdraw, and Label Release
  messages.

  While it is possible to think about messages related in this way in
  terms of a message type that specifies a message class and a message
  subtype that specifies a particular kind of message within that
  class, this specification does not formalize the notion of a message
  subtype.

  The specification assigns type values for related messages, such as
  the label messages, from of a contiguous block in the 16-bit message
  type number space.

3.5.1. Notification Message

  An LSR sends a Notification message to inform an LDP peer of a
  significant event.  A Notification message signals a fatal error or
  provides advisory information such as the outcome of processing an
  LDP message or the state of the LDP session.

  The encoding for the Notification Message is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   Notification (0x0001)     |      Message Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Status (TLV)                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Optional Parameters                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Message ID
     32-bit value used to identify this message.



Andersson, et al.           Standards Track                    [Page 47]

RFC 3036                   LDP Specification                January 2001


  Status TLV
     Indicates the event being signaled.  The encoding for the Status
     TLV is specified in Section "Status TLV".

  Optional Parameters
     This variable length field contains 0 or more parameters, each
     encoded as a TLV.  The following Optional Parameters are generic
     and may appear in any Notification Message:

        Optional Parameter     Type     Length  Value

        Extended Status        0x0301    4      See below
        Returned PDU           0x0302    var    See below
        Returned Message       0x0303    var    See below

     Other Optional Parameters, specific to the particular event being
     signaled by the Notification Messages may appear.  These are
     described elsewhere.

     Extended Status
        The 4 octet value is an Extended Status Code that encodes
        additional information that supplements the status information
        contained in the Notification Status Code.

     Returned PDU
        An LSR uses this parameter to return part of an LDP PDU to the
        LSR that sent it.  The value of this TLV is the PDU header and
        as much PDU data following the header as appropriate for the
        condition being signaled by the Notification message.

     Returned Message
        An LSR uses this parameter to return part of an LDP message to
        the LSR that sent it.  The value of this TLV is the message
        type and length fields and as much message data following the
        type and length fields as appropriate for the condition being
        signaled by the Notification message.

3.5.1.1. Notification Message Procedures

  If an LSR encounters a condition requiring it to notify its peer with
  advisory or error information it sends the peer a Notification
  message containing a Status TLV that encodes the information and
  optionally additional TLVs that provide more information about the
  condition.

  If the condition is one that is a fatal error the Status Code carried
  in the notification will indicate that.  In this case, after sending
  the Notification message the LSR should terminate the LDP session by



Andersson, et al.           Standards Track                    [Page 48]

RFC 3036                   LDP Specification                January 2001


  closing the session TCP connection and discard all state associated
  with the session, including all label-FEC bindings learned via the
  session.

  When an LSR receives a Notification message that carries a Status
  Code that indicates a fatal error, it should terminate the LDP
  session immediately by closing the session TCP connection and discard
  all state associated with the session, including all label-FEC
  bindings learned via the session.

3.5.1.2. Events Signaled by Notification Messages

  It is useful for descriptive purpose to classify events signaled by
  Notification Messages into the following categories.

3.5.1.2.1. Malformed PDU or Message

  Malformed LDP PDUs or Messages that are part of the LDP Discovery
  mechanism are handled by silently discarding them.

  An LDP PDU received on a TCP connection for an LDP session is
  malformed if:

     -  The LDP Identifier in the PDU header is unknown to the
        receiver, or it is known but is not the LDP Identifier
        associated by the receiver with the LDP peer for this LDP
        session.  This is a fatal error signaled by the Bad LDP
        Identifier Status Code.

     -  The LDP protocol version is not supported by the receiver, or
        it is supported but is not the version negotiated for the
        session during session establishment.  This is a fatal error
        signaled by the Bad Protocol Version Status Code.

     -  The PDU Length field is too small (< 14) or too large
        (> maximum PDU length).  This is a fatal error signaled by the
        Bad PDU Length Status Code.  Section "Initialization Message"
        describes how the maximum PDU length for a session is
        determined.

  An LDP Message is malformed if:

     -  The Message Type is unknown.

        If the Message Type is < 0x8000 (high order bit = 0) it is an
        error signaled by the Unknown Message Type Status Code.





Andersson, et al.           Standards Track                    [Page 49]

RFC 3036                   LDP Specification                January 2001


        If the Message Type is >= 0x8000 (high order bit = 1) it is
        silently discarded.

     -  The Message Length is too large, that is, indicates that the
        message extends beyond the end of the containing LDP PDU.  This
        is a fatal error signaled by the Bad Message Length Status
        Code.

     -  The message is missing one or more Mandatory Parameters.  This
        is a non-fatal error signalled by the Missing Message
        Parameters Status Code.

3.5.1.2.2. Unknown or Malformed TLV

  Malformed TLVs contained in LDP messages that are part of the LDP
  Discovery mechanism are handled by silently discarding the containing
  message.

  A TLV contained in an LDP message received on a TCP connection of an
  LDP is malformed if:

     -  The TLV Length is too large, that is, indicates that the TLV
        extends beyond the end of the containing message.  This is a
        fatal error signaled by the Bad TLV Length Status Code.

     -  The TLV type is unknown.

        If the TLV type is < 0x8000 (high order bit 0) it is an error
        signaled by the Unknown TLV Status Code.

        If the TLV type is >= 0x8000 (high order bit 1) the TLV is
        silently dropped.  Section "Unknown TLV in Known Message Type"
        elaborates on this behavior.

     -  The TLV Value is malformed.  This occurs when the receiver
        handles the TLV but cannot decode the TLV Value.  This is
        interpreted as indicative of a bug in either the sending or
        receiving LSR.  It is a fatal error signaled by the Malformed
        TLV Value Status Code.

3.5.1.2.3. Session KeepAlive Timer Expiration

  This is a fatal error signaled by the KeepAlive Timer Expired Status
  Code.







Andersson, et al.           Standards Track                    [Page 50]

RFC 3036                   LDP Specification                January 2001


3.5.1.2.4. Unilateral Session Shutdown

  This is a fatal event signaled by the Shutdown Status Code.  The
  Notification Message may optionally include an Extended Status TLV to
  provide a reason for the Shutdown.  The sending LSR terminates the
  session immediately after sending the Notification.

3.5.1.2.5. Initialization Message Events

  The session initialization negotiation (see Section "Session
  Initialization") may fail if the session parameters received in the
  Initialization Message are unacceptable.  This is a fatal error.  The
  specific Status Code depends on the parameter deemed unacceptable,
  and is defined in Sections "Initialization Message".

3.5.1.2.6. Events Resulting From Other Messages

  Messages other than the Initialization message may result in events
  that must be signaled to LDP peers via Notification Messages.  These
  events and the Status Codes used in the Notification Messages to
  signal them are described in the sections that describe these
  messages.

3.5.1.2.7. Internal Errors

  An LDP implementation may be capable of detecting problem conditions
  specific to its implementation.  When such a condition prevents an
  implementation from interacting correctly with a peer, the
  implementation should, when capable of doing so, use the Internal
  Error Status Code to signal the peer.  This is a fatal error.

3.5.1.2.8. Miscellaneous Events

  These are events that fall into none of the categories above.  There
  are no miscellaneous events defined in this version of the protocol.

3.5.2. Hello Message

  LDP Hello Messages are exchanged as part of the LDP Discovery
  Mechanism; see Section "LDP Discovery".

  The encoding for the Hello Message is:









Andersson, et al.           Standards Track                    [Page 51]

RFC 3036                   LDP Specification                January 2001


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   Hello (0x0100)            |      Message Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Common Hello Parameters TLV               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Optional Parameters                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Message ID
     32-bit value used to identify this message.

  Common Hello Parameters TLV
     Specifies parameters common to all Hello messages.  The encoding
     for the Common Hello Parameters TLV is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0|0| Common Hello Parms(0x0400)|      Length                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      Hold Time                |T|R| Reserved                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Hold Time,
        Hello hold time in seconds.  An LSR maintains a record of
        Hellos received from potential peers (see Section "Hello
        Message Procedures").  Hello Hold Time specifies the time the
        sending LSR will maintain its record of Hellos from the
        receiving LSR without receipt of another Hello.

        A pair of LSRs negotiates the hold times they use for Hellos
        from each other.  Each proposes a hold time.  The hold time
        used is the minimum of the hold times proposed in their Hellos.

        A value of 0 means use the default, which is 15 seconds for
        Link Hellos and 45 seconds for Targeted Hellos.  A value of
        0xffff means infinite.

     T, Targeted Hello
        A value of 1 specifies that this Hello is a Targeted Hello.  A
        value of 0 specifies that this Hello is a Link Hello.






Andersson, et al.           Standards Track                    [Page 52]

RFC 3036                   LDP Specification                January 2001


     R, Request Send Targeted Hellos
        A value of 1 requests the receiver to send periodic Targeted
        Hellos to the source of this Hello.  A value of 0 makes no
        request.

        An LSR initiating Extended Discovery sets R to 1.  If R is 1,
        the receiving LSR checks whether it has been configured to send
        Targeted Hellos to the Hello source in response to Hellos with
        this request.  If not, it ignores the request.  If so, it
        initiates periodic transmission of Targeted Hellos to the Hello
        source.

     Reserved
        This field is reserved.  It must be set to zero on transmission
        and ignored on receipt.

     Optional Parameters
        This variable length field contains 0 or more parameters, each
        encoded as a TLV.  The optional parameters defined by this
        version of the protocol are

        Optional Parameter         Type     Length  Value

        IPv4 Transport Address     0x0401     4      See below
        Configuration              0x0402     4      See below
           Sequence Number
        IPv6 Transport Address     0x0403    16      See below

     IPv4 Transport Address
        Specifies the IPv4 address to be used for the sending LSR when
        opening the LDP session TCP connection.  If this optional TLV
        is not present the IPv4 source address for the UDP packet
        carrying the Hello should be used.

     Configuration Sequence Number
        Specifies a 4 octet unsigned configuration sequence number that
        identifies the configuration state of the sending LSR.  Used by
        the receiving LSR to detect configuration changes on the
        sending LSR.

     IPv6 Transport Address
        Specifies the IPv6 address to be used for the sending LSR when
        opening the LDP session TCP connection.  If this optional TLV
        is not present the IPv6 source address for the UDP packet
        carrying the Hello should be used.






Andersson, et al.           Standards Track                    [Page 53]

RFC 3036                   LDP Specification                January 2001


3.5.2.1. Hello Message Procedures

  An LSR receiving Hellos from another LSR maintains a Hello adjacency
  corresponding to the Hellos.  The LSR maintains a hold timer with the
  Hello adjacency which it restarts whenever it receives a Hello that
  matches the Hello adjacency.  If the hold timer for a Hello adjacency
  expires the LSR discards the Hello adjacency: see sections
  "Maintaining Hello Adjacencies" and "Maintaining LDP Sessions".

  We recommend that the interval between Hello transmissions be at most
  one third of the Hello hold time.

  An LSR processes a received LDP Hello as follows:

     1. The LSR checks whether the Hello is acceptable.  The criteria
        for determining whether a Hello is acceptable are
        implementation dependent (see below for example criteria).

     2. If the Hello is not acceptable, the LSR ignores it.

     3. If the Hello is acceptable, the LSR checks whether it has a
        Hello adjacency for the Hello source.  If so, it restarts the
        hold timer for the Hello adjacency.  If not it creates a Hello
        adjacency for the Hello source and starts its hold timer.

     4. If the Hello carries any optional TLVs the LSR processes them
        (see below).

     5. Finally, if the LSR has no LDP session for the label space
        specified by the LDP identifier in the PDU header for the
        Hello, it follows the procedures of Section "LDP Session
        Establishment".

  The following are examples of acceptability criteria for Link and
  Targeted Hellos:

     A Link Hello is acceptable if the interface on which it was
     received has been configured for label switching.

     A Targeted Hello from source address A is acceptable if either:

     -  The LSR has been configured to accept Targeted Hellos, or

     -  The LSR has been configured to send Targeted Hellos to A.

     The following describes how an LSR processes Hello optional TLVs:





Andersson, et al.           Standards Track                    [Page 54]

RFC 3036                   LDP Specification                January 2001


     Transport Address
        The LSR associates the specified transport address with the
        Hello adjacency.

     Configuration Sequence Number
        The Configuration Sequence Number optional parameter is used by
        the sending LSR to signal configuration changes to the
        receiving LSR.  When a receiving LSR playing the active role in
        LDP session establishment detects a change in the sending LSR
        configuration, it may clear the session setup backoff delay, if
        any, associated with the sending LSR (see Section "Session
        Initialization").

        A sending LSR using this optional parameter is responsible for
        maintaining the configuration sequence number it transmits in
        Hello messages.  Whenever there is a configuration change on
        the sending LSR, it increments the configuration sequence
        number.

3.5.3. Initialization Message

  The LDP Initialization Message is exchanged as part of the LDP
  session establishment procedure; see Section "LDP Session
  Establishment".

  The encoding for the Initialization Message is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   Initialization (0x0200)   |      Message Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Common Session Parameters TLV             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Optional Parameters                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Message ID
     32-bit value used to identify this message.

  Common Session Parameters TLV
     Specifies values proposed by the sending LSR for parameters that
     must be negotiated for every LDP session.

     The encoding for the Common Session Parameters TLV is:




Andersson, et al.           Standards Track                    [Page 55]

RFC 3036                   LDP Specification                January 2001


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0|0| Common Sess Parms (0x0500)|      Length                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Protocol Version              |      KeepAlive Time           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |A|D|  Reserved |     PVLim     |      Max PDU Length           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Receiver LDP Identifier                       |
     +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               |
     -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++

     Protocol Version
        Two octet unsigned integer containing the version number of the
        protocol.  This version of the specification specifies LDP
        protocol version 1.

     KeepAlive Time
        Two octet unsigned non zero integer that indicates the number
        of seconds that the sending LSR proposes for the value of the
        KeepAlive Time.  The receiving LSR MUST calculate the value of
        the KeepAlive Timer by using the smaller of its proposed
        KeepAlive Time and the KeepAlive Time received in the PDU.  The
        value chosen for KeepAlive Time indicates the maximum number of
        seconds that may elapse between the receipt of successive PDUs
        from the LDP peer on the session TCP connection.  The KeepAlive
        Timer is reset each time a PDU arrives.

     A, Label Advertisement Discipline
        Indicates the type of Label advertisement.  A value of 0 means
        Downstream Unsolicited advertisement; a value of 1 means
        Downstream On Demand.

        If one LSR proposes Downstream Unsolicited and the other
        proposes Downstream on Demand, the rules for resolving this
        difference is:

        -  If the session is for a label-controlled ATM link or a
           label-controlled Frame Relay link, then Downstream on Demand
           must be used.

        -  Otherwise, Downstream Unsolicited must be used.

        If the label advertisement discipline determined in this way is
        unacceptable to an LSR, it must send a Session
        Rejected/Parameters Advertisement Mode Notification message in



Andersson, et al.           Standards Track                    [Page 56]

RFC 3036                   LDP Specification                January 2001


        response to the Initialization message and not establish the
        session.

     D, Loop Detection
        Indicates whether loop detection based on path vectors is
        enabled.  A value of 0 means loop detection is disabled; a
        value of 1 means that loop detection is enabled.

     PVLim, Path Vector Limit
        The configured maximum path vector length.  Must be 0 if loop
        detection is disabled (D = 0).  If the loop detection
        procedures would require the LSR to send a path vector that
        exceeds this limit, the LSR will behave as if a loop had been
        detected for the FEC in question.

        When Loop Detection is enabled in a portion of a network, it is
        recommended that all LSRs in that portion of the network be
        configured with the same path vector limit.  Although knowledge
        of a peer's path vector limit will not change an LSR's
        behavior, it does enable the LSR to alert an operator to a
        possible misconfiguration.

     Reserved
        This field is reserved.  It must be set to zero on transmission
        and ignored on receipt.

     Max PDU Length
        Two octet unsigned integer that proposes the maximum allowable
        length for LDP PDUs for the session.  A value of 255 or less
        specifies the default maximum length of 4096 octets.

        The receiving LSR MUST calculate the maximum PDU length for the
        session by using the smaller of its and its peer's proposals
        for Max PDU Length.  The default maximum PDU length applies
        before session initialization completes.

        If the maximum PDU length determined this way is unacceptable
        to an LSR, it must send a Session Rejected/Parameters Max PDU
        Length Notification message in response to the Initialization
        message and not establish the session.

     Receiver LDP Identifier
        Identifies the receiver's label space.  This LDP Identifier,
        together with the sender's LDP Identifier in the PDU header
        enables the receiver to match the Initialization message with
        one of its Hello adjacencies; see Section "Hello Message
        Procedures".




Andersson, et al.           Standards Track                    [Page 57]

RFC 3036                   LDP Specification                January 2001


        If there is no matching Hello adjacency, the LSR must send a
        Session Rejected/No Hello Notification message in response to
        the Initialization message and not establish the session.

  Optional Parameters
     This variable length field contains 0 or more parameters, each
     encoded as a TLV.  The optional parameters are:

        Optional Parameter       Type     Length  Value

        ATM Session Parameters   0x0501   var     See below
        Frame Relay Session      0x0502   var     See below
          Parameters

     ATM Session Parameters
        Used when an LDP session manages label exchange for an ATM link
        to specify ATM-specific session parameters.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0|0|   ATM Sess Parms (0x0501) |      Length                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | M |   N   |D|                        Reserved                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 ATM Label Range Component 1                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~                                                               ~
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 ATM Label Range Component N                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     M, ATM Merge Capabilities
        Specifies the merge capabilities of an ATM switch.  The
        following values are supported in this version of the
        specification:

                 Value          Meaning

                   0            Merge not supported
                   1            VP Merge supported
                   2            VC Merge supported
                   3            VP & VC Merge supported

        If the merge capabilities of the LSRs differ, then:




Andersson, et al.           Standards Track                    [Page 58]

RFC 3036                   LDP Specification                January 2001


        -  Non-merge and VC-merge LSRs may freely interoperate.

        -  The interoperability of VP-merge-capable switches with non-
           VP-merge-capable switches is a subject for future study.
           When the LSRs differ on the use of VP-merge, the session is
           established, but VP merge is not used.

        Note that if VP merge is used, it is the responsibility of the
        ingress node to ensure that the chosen VCI is unique within the
        LSR domain (see [ATM-VP]).

     N, Number of label range components
        Specifies the number of ATM Label Range Components included in
        the TLV.

     D, VC Directionality
        A value of 0 specifies bidirectional VC capability, meaning the
        LSR can (within a given VPI) support the use of a given VCI as
        a label for both link directions independently.  A value of 1
        specifies unidirectional VC capability, meaning (within a given
        VPI) a given VCI may appear in a label mapping for one
        direction on the link only.  When either or both of the peers
        specifies unidirectional VC capability, both LSRs use
        unidirectional VC label assignment for the link as follows.
        The LSRs compare their LDP Identifiers as unsigned integers.
        The LSR with the larger LDP Identifier may assign only odd-
        numbered VCIs in the VPI/VCI range as labels.  The system with
        the smaller LDP Identifier may assign only even-numbered VCIs
        in the VPI/VCI range as labels.

     Reserved
        This field is reserved.  It must be set to zero on transmission
        and ignored on receipt.

     One or more ATM Label Range Components
        A list of ATM Label Range Components which together specify the
        Label range supported by the transmitting LSR.

        A receiving LSR MUST calculate the intersection between the
        received range and its own supported label range.  The
        intersection is the range in which the LSR may allocate and
        accept labels.  LSRs MUST NOT establish a session with
        neighbors for which the intersection of ranges is NULL.  In
        this case, the LSR must send a Session Rejected/Parameters
        Label Range Notification message in response to the
        Initialization message and not establish the session.

        The encoding for an ATM Label Range Component is:



Andersson, et al.           Standards Track                    [Page 59]

RFC 3036                   LDP Specification                January 2001


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Res  |    Minimum VPI        |      Minimum VCI              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Res  |    Maximum VPI        |      Maximum VCI              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Res
           This field is reserved. It must be set to zero on
           transmission and must be ignored on receipt.

        Minimum VPI (12 bits)
           This 12 bit field specifies the lower bound of a block of
           Virtual Path Identifiers that is supported on the
           originating switch.  If the VPI is less than 12-bits it
           should be right justified in this field and preceding bits
           should be set to 0.

        Minimum VCI (16 bits)
           This 16 bit field specifies the lower bound of a block of
           Virtual Connection Identifiers that is supported on the
           originating switch.  If the VCI is less than 16-bits it
           should be right justified in this field and preceding bits
           should be set to 0.

        Maximum VPI (12 bits)
           This 12 bit field specifies the upper bound of a block of
           Virtual Path Identifiers that is supported on the
           originating switch.  If the VPI is less than 12-bits it
           should be right justified in this field and preceding bits
           should be set to 0.

        Maximum VCI (16 bits)
           This 16 bit field specifies the upper bound of a block of
           Virtual Connection Identifiers that is supported on the
           originating switch.  If the VCI is less than 16-bits it
           should be right justified in this field and preceding bits
           should be set to 0.

     When peer LSRs are connected indirectly by means of an ATM VP, the
     sending LSR should set the Minimum and Maximum VPI fields to 0,
     and the receiving LSR must ignore the Minimum and Maximum VPI
     fields.

     See [ATM-VP] for specification of the fields for ATM Label Range
     Components to be used with VP merge LSRs.




Andersson, et al.           Standards Track                    [Page 60]

RFC 3036                   LDP Specification                January 2001


     Frame Relay Session Parameters
        Used when an LDP session manages label exchange for a Frame
        Relay link to specify Frame Relay-specific session parameters.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0|0|   FR Sess Parms (0x0502)  |      Length                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | M |   N   |D|                        Reserved                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |             Frame Relay Label Range Component 1               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~                                                               ~
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |             Frame Relay Label Range Component N               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     M, Frame Relay Merge Capabilities
        Specifies the merge capabilities of a Frame Relay switch.  The
        following values are supported in this version of the
        specification:

                 Value          Meaning

                   0            Merge not supported
                   1            Merge supported

        Non-merge and merge Frame Relay LSRs may freely interoperate.

     N, Number of label range components
        Specifies the number of Frame Relay Label Range Components
        included in the TLV.

     D, VC Directionality
        A value of 0 specifies bidirectional VC capability, meaning the
        LSR can support the use of a given DLCI as a label for both
        link directions independently.  A value of 1 specifies
        unidirectional VC capability, meaning a given DLCI may appear
        in a label mapping for one direction on the link only.  When
        either or both of the peers specifies unidirectional VC
        capability, both LSRs use unidirectional VC label assignment
        for the link as follows.  The LSRs compare their LDP
        Identifiers as unsigned integers.  The LSR with the larger LDP





Andersson, et al.           Standards Track                    [Page 61]

RFC 3036                   LDP Specification                January 2001


        Identifier may assign only odd-numbered DLCIs in the range as
        labels.  The system with the smaller LDP Identifier may assign
        only even-numbered DLCIs in the range as labels.

     Reserved
        This field is reserved.  It must be set to zero on transmission
        and ignored on receipt.

     One or more Frame Relay Label Range Components
        A list of Frame Relay Label Range Components which together
        specify the Label range supported by the transmitting LSR.

        A receiving LSR MUST calculate the intersection between the
        received range and its own supported label range.  The
        intersection is the range in which the LSR may allocate and
        accept labels.  LSRs MUST NOT establish a session with
        neighbors for which the intersection of ranges is NULL.  In
        this case, the LSR must send a Session Rejected/Parameters
        Label Range Notification message in response to the
        Initialization message and not establish the session.

        The encoding for a Frame Relay Label Range Component is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Reserved    |Len|                     Minimum DLCI            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Reserved        |                     Maximum DLCI            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Reserved
           This field is reserved.  It must be set to zero on
           transmission and ignored on receipt.

        Len
           This field specifies the number of bits of the DLCI.  The
           following values are supported:

                Len    DLCI bits

                0       10
                2       23

           Len values 1 and 3 are reserved.






Andersson, et al.           Standards Track                    [Page 62]

RFC 3036                   LDP Specification                January 2001


        Minimum DLCI
           This 23-bit field specifies the lower bound of a block of
           Data Link Connection Identifiers (DLCIs) that is supported
           on the originating switch.  The DLCI should be right
           justified in this field and unused bits should be set to 0.

        Maximum DLCI
           This 23-bit field specifies the upper bound of a block of
           Data Link Connection Identifiers (DLCIs) that is supported
           on the originating switch.  The DLCI should be right
           justified in this field and unused bits should be set to 0.

  Note that there is no Generic Session Parameters TLV for sessions
  which advertise Generic Labels.

3.5.3.1. Initialization Message Procedures

  See Section "LDP Session Establishment" and particularly Section
  "Session Initialization" for general procedures for handling the
  Initialization Message.

3.5.4. KeepAlive Message

  An LSR sends KeepAlive Messages as part of a mechanism that monitors
  the integrity of the LDP session transport connection.

  The encoding for the KeepAlive Message is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   KeepAlive (0x0201)        |      Message Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Optional Parameters                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Message ID
     32-bit value used to identify this message.

  Optional Parameters
     No optional parameters are defined for the KeepAlive message.

3.5.4.1. KeepAlive Message Procedures

  The KeepAlive Timer mechanism described in Section "Maintaining LDP
  Sessions" resets a session KeepAlive timer every time an LDP PDU is



Andersson, et al.           Standards Track                    [Page 63]

RFC 3036                   LDP Specification                January 2001


  received on the session TCP connection.  The KeepAlive Message is
  provided to allow reset of the KeepAlive Timer in circumstances where
  an LSR has no other information to communicate to an LDP peer.

  An LSR must arrange that its peer receive an LDP Message from it at
  least every KeepAlive Time period.  Any LDP protocol message will do
  but, in circumstances where no other LDP protocol messages have been
  sent within the period, a KeepAlive message must be sent.

3.5.5. Address Message

  An LSR sends the Address Message to an LDP peer to advertise its
  interface addresses.

  The encoding for the Address Message is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   Address (0x0300)          |      Message Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                     Address List TLV                          |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Optional Parameters                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Message ID
     32-bit value used to identify this message.

  Address List TLV
     The list of interface addresses being advertised by the sending
     LSR.  The encoding for the Address List TLV is specified in Section
     "Address List TLV".

  Optional Parameters
     No optional parameters are defined for the Address message.

3.5.5.1. Address Message Procedures

  An LSR that receives an Address Message message uses the addresses it
  learns to maintain a database for mapping between peer LDP
  Identifiers and next hop addresses; see Section "LDP Identifiers and
  Next Hop Addresses".




Andersson, et al.           Standards Track                    [Page 64]

RFC 3036                   LDP Specification                January 2001


  When a new LDP session is initialized and before sending Label
  Mapping or Label Request messages an LSR should advertise its
  interface addresses with one or more Address messages.

  Whenever an LSR "activates" a new interface address, it should
  advertise the new address with an Address message.

  Whenever an LSR "de-activates" a previously advertised address, it
  should withdraw the address with an Address Withdraw message; see
  Section "Address Withdraw Message".

  If an LSR does not support the Address Family specified in the
  Address List TLV, it should send an "Unsupported Address Family"
  Notification to its LDP signalling an error and abort processing the
  message.

3.5.6. Address Withdraw Message

  An LSR sends the Address Withdraw Message to an LDP peer to withdraw
  previously advertised interface addresses.

  The encoding for the Address Withdraw Message is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   Address Withdraw (0x0301) |      Message Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                     Address List TLV                          |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Optional Parameters                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Message ID
     32-bit value used to identify this message.

  Address list TLV
     The list of interface addresses being withdrawn by the sending
     LSR.  The encoding for the Address list TLV is specified in
     Section "Address List TLV".

  Optional Parameters
     No optional parameters are defined for the Address Withdraw
     message.



Andersson, et al.           Standards Track                    [Page 65]

RFC 3036                   LDP Specification                January 2001


3.5.6.1. Address Withdraw Message Procedures

  See Section "Address Message Procedures"

3.5.7. Label Mapping Message

  An LSR sends a Label Mapping message to an LDP peer to advertise
  FEC-label bindings to the peer.

  The encoding for the Label Mapping Message is:

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   Label Mapping (0x0400)    |      Message Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     FEC TLV                                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Label TLV                                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Optional Parameters                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Message ID
     32-bit value used to identify this message.

  FEC TLV
     Specifies the FEC component of the FEC-Label mapping being
     advertised.  See Section "FEC TLV" for encoding.

  Label TLV
     Specifies the Label component of the FEC-Label mapping.  See
     Section "Label TLV" for encoding.

  Optional Parameters
     This variable length field contains 0 or more parameters, each
     encoded as a TLV.  The optional parameters are:

        Optional Parameter    Length       Value

        Label Request         4            See below
            Message ID TLV
        Hop Count TLV         1            See below
        Path Vector TLV       variable     See below





Andersson, et al.           Standards Track                    [Page 66]

RFC 3036                   LDP Specification                January 2001


     The encodings for the Hop Count, and Path Vector TLVs can be found
     in Section "TLV Encodings for Commonly Used Parameters".

     Label Request Message ID
        If this Label Mapping message is a response to a Label Request
        message it must include the Request Message Id optional
        parameter.  The value of this optional parameter is the Message
        Id of the corresponding Label Request Message.

     Hop Count
        Specifies the running total of the number of LSR hops along the
        LSP being setup by the Label Message.  Section "Hop Count
        Procedures" describes how to handle this TLV.

     Path Vector
        Specifies the LSRs along the LSP being setup by the Label
        Message.  Section "Path Vector Procedures" describes how to
        handle this TLV.

3.5.7.1. Label Mapping Message Procedures

  The Mapping message is used by an LSR to distribute a label mapping
  for a FEC to an LDP peer.  If an LSR distributes a mapping for a FEC
  to multiple LDP peers, it is a local matter whether it maps a single
  label to the FEC, and distributes that mapping to all its peers, or
  whether it uses a different mapping for each of its peers.

  An LSR is responsible for the consistency of the label mappings it
  has distributed, and that its peers have these mappings.

  An LSR receiving a Label Mapping message from a downstream LSR for a
  Prefix or Host Address FEC Element should not use the label for
  forwarding unless its routing table contains an entry that exactly
  matches the FEC Element.

  See Appendix A "LDP Label Distribution Procedures" for more details.

3.5.7.1.1. Independent Control Mapping

  If an LSR is configured for independent control, a mapping message is
  transmitted by the LSR upon any of the following conditions:

     1. The LSR recognizes a new FEC via the forwarding table, and the
        label advertisement mode is Downstream Unsolicited
        advertisement.

     2. The LSR receives a Request message from an upstream peer for a
        FEC present in the LSR's forwarding table.



Andersson, et al.           Standards Track                    [Page 67]

RFC 3036                   LDP Specification                January 2001


     3. The next hop for a FEC changes to another LDP peer, and loop
        detection is configured.

     4. The attributes of a mapping change.

     5. The receipt of a mapping from the downstream next hop  AND
           a) no upstream mapping has been created  OR
           b) loop detection is configured  OR
           c) the attributes of the mapping have changed.

3.5.7.1.2. Ordered Control Mapping

  If an LSR is doing ordered control, a Mapping message is transmitted
  by downstream LSRs upon any of the following conditions:

     1. The LSR recognizes a new FEC via the forwarding table, and is
        the egress for that FEC.

     2. The LSR receives a Request message from an upstream peer for a
        FEC present in the LSR's forwarding table, and the LSR is the
        egress for that FEC OR has a downstream mapping for that FEC.

     3. The next hop for a FEC changes to another LDP peer, and loop
        detection is configured.

     4. The attributes of a mapping change.

     5. The receipt of a mapping from the downstream next hop  AND
           a) no upstream mapping has been created   OR
           b) loop detection is configured   OR
           c) the attributes of the mapping have changed.

3.5.7.1.3. Downstream on Demand Label Advertisement

  In general, the upstream LSR is responsible for requesting label
  mappings when operating in Downstream on Demand mode.  However,
  unless some rules are followed, it is possible for neighboring LSRs
  with different advertisement modes to get into a livelock situation
  where everything is functioning properly, but no labels are
  distributed.  For example, consider two LSRs Ru and Rd where Ru is
  the upstream LSR and Rd is the downstream LSR for a particular FEC.
  In this example, Ru is using Downstream Unsolicited advertisement
  mode and Rd is using Downstream on Demand mode.  In this case, Rd may
  assume that Ru will request a label mapping when it wants one and Ru
  may assume that Rd will advertise a label if it wants Ru to use one.
  If Rd and Ru operate as suggested, no labels will be distributed from
  Rd to Ru.




Andersson, et al.           Standards Track                    [Page 68]

RFC 3036                   LDP Specification                January 2001


  This livelock situation can be avoided if the following rule is
  observed: an LSR operating in Downstream on Demand mode should not be
  expected to send unsolicited mapping advertisements.  Therefore, if
  the downstream LSR is operating in Downstream on Demand mode, the
  upstream LSR is responsible for requesting label mappings as needed.

3.5.7.1.4. Downstream Unsolicited Label Advertisement

  In general, the downstream LSR is responsible for advertising a label
  mapping when it wants an upstream LSR to use the label.  An upstream
  LSR may issue a mapping request if it so desires.

  The combination of Downstream Unsolicited mode and conservative label
  retention can lead to a situation where an LSR releases the label for
  a FEC that it later needs.  For example, if LSR Rd advertises to LSR
  Ru the label for a FEC for which it is not Ru's next hop, Ru will
  release the label.  If Ru's next hop for the FEC later changes to Rd,
  it needs the previously released label.

  To deal with this situation either Ru can explicitly request the
  label when it needs it, or Rd can periodically readvertise it to Ru.
  In many situations Ru will know when it needs the label from Rd.  For
  example, when its next hop for the FEC changes to Rd.  However, there
  could be situations when Ru does not.  For example, Rd may be
  attempting to establish an LSP with non-standard properties.  Forcing
  Ru to explicitly request the label in this situation would require it
  to maintain state about a potential LSP with non-standard properties.

  In situations where Ru knows it needs the label, it is responsible
  for explicitly requesting the label by means of a Label Request
  message.  In situations where Ru may not know that it needs the
  label, Rd is responsible for periodically readvertising the label to
  Ru.

  For this version of LDP, the only situation where Ru knows it needs a
  label for a FEC from Rd is when Rd is its next hop for the FEC, Ru
  does not have a label from Rd, and the LSP for the FEC is one that
  can be established with TLVs defined in this document.

3.5.8. Label Request Message

  An LSR sends the Label Request Message to an LDP peer to request a
  binding (mapping) for a FEC.








Andersson, et al.           Standards Track                    [Page 69]

RFC 3036                   LDP Specification                January 2001


  The encoding for the Label Request Message is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   Label Request (0x0401)    |      Message Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     FEC TLV                                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Optional Parameters                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Message ID
     32-bit value used to identify this message.

  FEC TLV
     The FEC for which a label is being requested.  See Section "FEC
     TLV" for encoding.

  Optional Parameters
     This variable length field contains 0 or more parameters, each
     encoded as a TLV.  The optional parameters are:

        Optional Parameter     Length       Value

        Hop Count TLV          1            See below
        Path Vector TLV        variable     See below

     The encodings for the Hop Count, and Path Vector TLVs can be found
     in Section "TLV Encodings for Commonly Used Parameters".

     Hop Count
        Specifies the running total of the number of LSR hops along the
        LSP being setup by the Label Request Message.  Section "Hop
        Count Procedures" describes how to handle this TLV.

     Path Vector
        Specifies the LSRs along the LSR being setup by the Label
        Request Message.  Section "Path Vector Procedures" describes
        how to handle this TLV.

3.5.8.1. Label Request Message Procedures

  The Request message is used by an upstream LSR to explicitly request
  that the downstream LSR assign and advertise a label for a FEC.




Andersson, et al.           Standards Track                    [Page 70]

RFC 3036                   LDP Specification                January 2001


  An LSR may transmit a Request message under any of the following
  conditions:

     1. The LSR recognizes a new FEC via the forwarding table, and the
        next hop is an LDP peer, and the LSR doesn't already have a
        mapping from the next hop for the given FEC.

     2. The next hop to the FEC changes, and the LSR doesn't already
        have a mapping from that next hop for the given FEC.

        Note that if the LSR already has a pending Label Request
        message for the new next hop it should not issue an additional
        Label Request in response to the next hop change.

     3. The LSR receives a Label Request for a FEC from an upstream LDP
        peer, the FEC next hop is an LDP peer, and the LSR doesn't
        already have a mapping from the next hop.

        Note that since a non-merge LSR must setup a separate LSP for
        each upstream peer requesting a label, it must send a separate
        Label Request for each such peer.  A consequence of this is
        that a non-merge LSR may have multiple Label Request messages
        for a given FEC outstanding at the same time.

  The receiving LSR should respond to a Label Request message with a
  Label Mapping for the requested label or with a Notification message
  indicating why it cannot satisfy the request.

  When the FEC for which a label is requested is a Prefix FEC Element
  or a Host Address FEC Element, the receiving LSR uses its routing
  table to determine its response.  Unless its routing table includes
  an entry that exactly matches the requested Prefix or Host Address,
  the LSR must respond with a No Route Notification message.

  The message ID of the Label Request message serves as an identifier
  for the Label Request transaction.  When the receiving LSR responds
  with a Label Mapping message, the mapping message must include a
  Label Request/Returned Message ID TLV optional parameter which
  includes the message ID of the Label Request message.  Note that
  since LSRs use Label Request message IDs as transaction identifiers
  an LSR should not reuse the message ID of a Label Request message
  until the corresponding transaction completes.

  This version of the protocol defines the following Status Codes for
  the Notification message that signals a request cannot be satisfied:






Andersson, et al.           Standards Track                    [Page 71]

RFC 3036                   LDP Specification                January 2001


     No Route
        The FEC for which a label was requested includes a FEC Element
        for which the LSR does not have a route.

     No Label Resources
        The LSR cannot provide a label because of resource limitations.
        When resources become available the LSR must notify the
        requesting LSR by sending a Notification message with the Label
        Resources Available Status Code.

        An LSR that receives a No Label Resources response to a Label
        Request message must not issue further Label Request messages
        until it receives a Notification message with the Label
        Resources Available Status code.

     Loop Detected
        The LSR has detected a looping Label Request message.

  See Appendix A "LDP Label Distribution Procedures" for more details.

3.5.9. Label Abort Request Message

  The Label Abort Request message may be used to abort an outstanding
  Label Request message.

  The encoding for the Label Abort Request Message is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   Label Abort Req (0x0404)  |      Message Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     FEC TLV                                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Label Request Message ID TLV              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Optional Parameters                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Message ID
     32-bit value used to identify this message.

  FEC TLV
     Identifies the FEC for which the Label Request is being aborted.





Andersson, et al.           Standards Track                    [Page 72]

RFC 3036                   LDP Specification                January 2001


  Label Request Message ID TLV
     Specifies the message ID of the Label Request message to be
     aborted.

  Optional Parameters
     No optional parameters are defined for the Label Abort Req
     message.

3.5.9.1. Label Abort Request Message Procedures

  An LSR Ru may send a Label Abort Request message to abort an
  outstanding Label Request message for FEC sent to LSR Rd in the
  following circumstances:

     1. Ru's next hop for FEC has changed from LSR Rd to LSR X; or

     2. Ru is a non-merge, non-ingress LSR and has received a Label
        Abort Request for FEC from an upstream peer Y.

     3. Ru is a merge, non-ingress LSR and has received a Label Abort
        Request for FEC from an upstream peer Y and Y is the only
        (last) upstream LSR requesting a label for FEC.

  There may be other situations where an LSR may choose to abort an
  outstanding Label Request message in order to reclaim resource
  associated with the pending LSP.  However, specification of general
  strategies for using the abort mechanism is beyond the scope of LDP.

  When an LSR receives a Label Abort Request message, if it has not
  previously responded to the Label Request being aborted with a Label
  Mapping message or some other Notification message, it must
  acknowledge the abort by responding with a Label Request Aborted
  Notification message.  The Notification must include a Label Request
  Message ID TLV that carries the message ID of the aborted Label
  Request message.

  If an LSR receives a Label Abort Request Message after it has
  responded to the Label Request in question with a Label Mapping
  message or a Notification message, it ignores the abort request.

  If an LSR receives a Label Mapping message in response to a Label
  Request message after it has sent a Label Abort Request message to
  abort the Label Request, the label in the Label Mapping message is
  valid.  The LSR may choose to use the label or to release it with a
  Label Release message.






Andersson, et al.           Standards Track                    [Page 73]

RFC 3036                   LDP Specification                January 2001


  An LSR aborting a Label Request message may not reuse the Message ID
  for the Label Request message until it receives one of the following
  from its peer:

     -  A Label Request Aborted Notification message acknowledging the
        abort;

     -  A Label Mapping message in response to the Label Request
        message being aborted;

     -  A Notification message in response to the Label Request message
        being aborted (e.g., Loop Detected, No Label Resources, etc.).

  To protect itself against tardy peers or faulty peer implementations
  an LSR may choose to time out receipt of the above.  The time out
  period should be relatively long (several minutes).  If the time out
  period elapses with no reply from the peer the LSR may reuse the
  Message Id of the Label Request message; if it does so, it should
  also discard any record of the outstanding Label Request and Label
  Abort messages.

  Note that the response to a Label Abort Request message is never
  "ordered".  That is, the response does not depend on the downstream
  state of the LSP setup being aborted.  An LSR receiving a Label Abort
  Request message must process it immediately, regardless of the
  downstream state of the LSP, responding with a Label Request Aborted
  Notification or ignoring it, as appropriate.

3.5.10. Label Withdraw Message

  An LSR sends a Label Withdraw Message to an LDP peer to signal the
  peer that the peer may not continue to use specific FEC-label
  mappings the LSR had previously advertised.  This breaks the mapping
  between the FECs and the labels.

















Andersson, et al.           Standards Track                    [Page 74]

RFC 3036                   LDP Specification                January 2001


  The encoding for the Label Withdraw Message is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   Label Withdraw (0x0402)   |      Message Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     FEC TLV                                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Label TLV (optional)                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Optional Parameters                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Message ID
     32-bit value used to identify this message.

  FEC TLV
     Identifies the FEC for which the FEC-label mapping is being
     withdrawn.

  Optional Parameters
     This variable length field contains 0 or more parameters, each
     encoded as a TLV.  The optional parameters are:

        Optional Parameter    Length       Value

        Label TLV             variable     See below

     The encoding for Label TLVs are found in Section "Label TLVs".

     Label
        If present, specifies the label being withdrawn (see procedures
        below).

3.5.10.1. Label Withdraw Message Procedures

  An LSR transmits a Label Withdraw message under the following
  conditions:

     1. The LSR no longer recognizes a previously known FEC for which
        it has advertised a label.

     2. The LSR has decided unilaterally (e.g., via configuration) to
        no longer label switch a FEC (or FECs) with the label mapping
        being withdrawn.



Andersson, et al.           Standards Track                    [Page 75]

RFC 3036                   LDP Specification                January 2001


  The FEC TLV specifies the FEC for which labels are to be withdrawn.
  If no Label TLV follows the FEC, all labels associated with the FEC
  are to be withdrawn; otherwise only the label specified in the
  optional Label TLV is to be withdrawn.

  The FEC TLV may contain the Wildcard FEC Element; if so, it may
  contain no other FEC Elements.  In this case, if the Label Withdraw
  message contains an optional Label TLV, then the label is to be
  withdrawn from all FECs to which it is bound.  If there is not an
  optional Label TLV in the Label Withdraw message, then the sending
  LSR is withdrawing all label mappings previously advertised to the
  receiving LSR.

  An LSR that receives a Label Withdraw message must respond with a
  Label Release message.

  See Appendix A "LDP Label Distribution Procedures" for more details.

3.5.11. Label Release Message

  An LSR sends a Label Release message to an LDP peer to signal the
  peer that the LSR no longer needs specific FEC-label mappings
  previously requested of and/or advertised by the peer.

  The encoding for the Label Release Message is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |0|   Label Release (0x0403)   |      Message Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     FEC TLV                                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Label TLV (optional)                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Optional Parameters                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Message ID
     32-bit value used to identify this message.

  FEC TLV
     Identifies the FEC for which the FEC-label mapping is being
     released.





Andersson, et al.           Standards Track                    [Page 76]

RFC 3036                   LDP Specification                January 2001


  Optional Parameters
     This variable length field contains 0 or more parameters, each
     encoded as a TLV.  The optional parameters are:

        Optional Parameter    Length       Value

        Label TLV             variable     See below

     The encodings for Label TLVs are found in Section "Label TLVs".

     Label
        If present, the label being released (see procedures below).

3.5.11.1. Label Release Message Procedures

  An LSR transmits a Label Release message to a peer when it is no
  longer needs a label previously received from or requested of that
  peer.

  An LSR must transmit a Label Release message under any of the
  following conditions:

     1. The LSR which sent the label mapping is no longer the next hop
        for the mapped FEC, and the LSR is configured for conservative
        operation.

     2. The LSR receives a label mapping from an LSR which is not the
        next hop for the FEC, and the LSR is configured for
        conservative operation.

     3. The LSR receives a Label Withdraw message.

  Note that if an LSR is configured for "liberal mode", a release
  message will never be transmitted in the case of conditions (1) and
  (2) as specified above.  In this case, the upstream LSR keeps each
  unused label, so that it can immediately be used later if the
  downstream peer becomes the next hop for the FEC.

  The FEC TLV specifies the FEC for which labels are to be released.
  If no Label TLV follows the FEC, all labels associated with the FEC
  are to be released; otherwise only the label specified in the
  optional Label TLV is to be released.

  The FEC TLV may contain the Wildcard FEC Element; if so, it may
  contain no other FEC Elements.  In this case, if the Label Release
  message contains an optional Label TLV, then the label is to be
  released for all FECs to which it is bound.  If there is not an




Andersson, et al.           Standards Track                    [Page 77]

RFC 3036                   LDP Specification                January 2001


  optional Label TLV in the Label Release message, then the sending LSR
  is releasing all label mappings previously learned from the receiving
  LSR.

  See Appendix A "LDP Label Distribution Procedures" for more details.

3.6. Messages and TLVs for Extensibility

  Support for LDP extensibility includes the rules for the U and F bits
  that specify how an LSR should handle unknown TLVs and messages.

  This section specifies TLVs and messages for vendor-private and
  experimental use.

3.6.1. LDP Vendor-private Extensions

  Vendor-private TLVs and messages are used to convey vendor-private
  information between LSRs.

3.6.1.1. LDP Vendor-private TLVs

  The Type range 0x3E00 through 0x3EFF is reserved for vendor-private
  TLVs.

  The encoding for a vendor-private TLV is:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|    Type (0x3E00-0x3EFF)   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Vendor ID                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                           Data....                            |
  ~                                                               ~
  |                                                               |
  |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  U bit
     Unknown TLV bit.  Upon receipt of an unknown TLV, if U is clear
     (=0), a notification must be returned to the message originator
     and the entire message must be ignored; if U is set (=1), the
     unknown TLV is silently ignored and the rest of the message is
     processed as if the unknown TLV did not exist.




Andersson, et al.           Standards Track                    [Page 78]

RFC 3036                   LDP Specification                January 2001


     The determination as to whether a vendor-private message is
     understood is based on the Type and the mandatory Vendor ID field.

  F bit
     Forward unknown TLV bit.  This bit only applies when the U bit is
     set and the LDP message containing the unknown TLV is is to be
     forwarded.  If F is clear (=0), the unknown TLV is not forwarded
     with the containing message; if F is set (=1), the unknown TLV is
     forwarded with the containing message.

  Type
     Type value in the range 0x3E00 through 0x3EFF.  Together, the Type
     and Vendor Id field specify how the Data field is to be
     interpreted.

  Length
     Specifies the cumulative length in octets of the Vendor ID and
     Data fields.

  Vendor Id
     802 Vendor ID as assigned by the IEEE.

  Data
     The remaining octets after the Vendor ID in the Value field are
     optional vendor-dependent data.


























Andersson, et al.           Standards Track                    [Page 79]

RFC 3036                   LDP Specification                January 2001


3.6.1.2. LDP Vendor-private Messages

  The Message Type range 0x3E00 through 0x3EFF is reserved for vendor-
  private Messages.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|    Msg Type (0x3E00-0x3EFF) |      Message Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Message ID                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Vendor ID                                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  +                                                               +
  |                     Remaining Mandatory Parameters            |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |                     Optional Parameters                       |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  U bit
     Unknown message bit.  Upon receipt of an unknown message, if U is
     clear (=0), a notification is returned to the message originator;
     if U is set (=1), the unknown message is silently ignored.

     The determination as to whether a vendor-private message is
     understood is based on the Msg Type and the Vendor ID parameter.

  Msg Type
     Message type value in the range 0x3E00 through 0x3EFF.  Together,
     the Msg Type and the Vendor ID specify how the message is to be
     interpreted.

  Message Length
     Specifies the cumulative length in octets of the Message ID,
     Vendor ID, Remaining Mandatory Parameters and Optional Parameters.









Andersson, et al.           Standards Track                    [Page 80]

RFC 3036                   LDP Specification                January 2001


  Message ID
     32-bit integer used to identify this message.  Used by the sending
     LSR to facilitate identifying notification messages that may apply
     to this message.  An LSR sending a notification message in
     response to this message will include this Message Id in the
     notification message; see Section "Notification Message".

  Vendor ID
     802 Vendor ID as assigned by the IEEE.

  Remaining Mandatory Parameters
     Variable length set of remaining required message parameters.

  Optional Parameters
     Variable length set of optional message parameters.

3.6.2. LDP Experimental Extensions

  LDP support for experimentation is similar to support for vendor-
  private extensions with the following differences:

     -  The Type range 0x3F00 through 0x3FFF is reserved for
        experimental TLVs.

     -  The Message Type range 0x3F00 through 0x3FFF is reserved for
        experimental messages.

     -  The encodings for experimental TLVs and messages are similar to
        the vendor-private encodings with the following difference.

        Experimental TLVs and messages use an Experiment ID field in
        place of a Vendor ID field.  The Experiment ID field is used
        with the Type or Message Type field to specify the
        interpretation of the experimental TLV or Message.

        Administration of Experiment IDs is the responsibility of the
        experimenters.

3.7. Message Summary

  The following are the LDP messages defined in this version of the
  protocol.

     Message Name            Type     Section Title

     Notification            0x0001   "Notification Message"
     Hello                   0x0100   "Hello Message"
     Initialization          0x0200   "Initialization Message"



Andersson, et al.           Standards Track                    [Page 81]

RFC 3036                   LDP Specification                January 2001


     KeepAlive               0x0201   "KeepAlive Message"
     Address                 0x0300   "Address Message"
     Address Withdraw        0x0301   "Address Withdraw Message"
     Label Mapping           0x0400   "Label Mapping Message"
     Label Request           0x0401   "Label Request Message"
     Label Withdraw          0x0402   "Label Withdraw Message"
     Label Release           0x0403   "Label Release Message"
     Label Abort Request     0x0404   "Label Abort Request Message"
     Vendor-Private          0x3E00-  "LDP Vendor-private Extensions"
                             0x3EFF
     Experimental            0x3F00-  "LDP Experimental Extensions"
                             0x3FFF

3.8. TLV Summary

  The following are the TLVs defined in this version of the protocol.

     TLV                      Type      Section Title

     FEC                      0x0100    "FEC TLV"
     Address List             0x0101    "Address List TLV"
     Hop Count                0x0103    "Hop Count TLV"
     Path Vector              0x0104    "Path Vector TLV"
     Generic Label            0x0200    "Generic Label TLV"
     ATM Label                0x0201    "ATM Label TLV"
     Frame Relay Label        0x0202    "Frame Relay Label TLV"
     Status                   0x0300    "Status TLV"
     Extended Status          0x0301    "Notification Message"
     Returned PDU             0x0302    "Notification Message"
     Returned Message         0x0303    "Notification Message"
     Common Hello             0x0400    "Hello Message"
        Parameters
     IPv4 Transport Address   0x0401    "Hello Message"
     Configuration            0x0402    "Hello Message"
        Sequence Number
     IPv6 Transport Address   0x0403    "Hello Message"
     Common Session           0x0500    "Initialization Message"
        Parameters
     ATM Session Parameters   0x0501    "Initialization Message"
     Frame Relay Session      0x0502    "Initialization Message"
        Parameters
     Label Request            0x0600    "Label Mapping Message"
         Message ID
     Vendor-Private           0x3E00-   "LDP Vendor-private Extensions"
                              0x3EFF
     Experimental             0x3F00-   "LDP Experimental Extensions"
                              0x3FFF




Andersson, et al.           Standards Track                    [Page 82]

RFC 3036                   LDP Specification                January 2001


3.9. Status Code Summary

  The following are the Status Codes defined in this version of the
  protocol.

  The "E" column is the required setting of the Status Code E-bit; the
  "Status Data" column is the value of the 30-bit Status Data field in
  the Status Code TLV.

  Note that the setting of the Status Code F-bit is at the discretion
  of the LSR originating the Status TLV.

     Status Code           E   Status Data   Section Title

     Success               0   0x00000000    "Status TLV"
     Bad LDP Identifier    1   0x00000001    "Events Signaled by ..."
     Bad Protocol Version  1   0x00000002    "Events Signaled by ..."
     Bad PDU Length        1   0x00000003    "Events Signaled by ..."
     Unknown Message Type  0   0x00000004    "Events Signaled by ..."
     Bad Message Length    1   0x00000005    "Events Signaled by ..."
     Unknown TLV           0   0x00000006    "Events Signaled by ..."
     Bad TLV length        1   0x00000007    "Events Signaled by ..."
     Malformed TLV Value   1   0x00000008    "Events Signaled by ..."
     Hold Timer Expired    1   0x00000009    "Events Signaled by ..."
     Shutdown              1   0x0000000A    "Events Signaled by ..."
     Loop Detected         0   0x0000000B    "Loop Detection"
     Unknown FEC           0   0x0000000C    "FEC Procedures"
     No Route              0   0x0000000D    "Label Request Mess ..."
     No Label Resources    0   0x0000000E    "Label Request Mess ..."
     Label Resources /     0   0x0000000F    "Label Request Mess ..."
         Available
     Session Rejected/     1   0x00000010    "Session Initialization"
        No Hello
     Session Rejected/     1   0x00000011    "Session Initialization"
        Parameters Advertisement Mode
     Session Rejected/     1   0x00000012    "Session Initialization"
        Parameters Max PDU Length
     Session Rejected/     1   0x00000013    "Session Initialization"
        Parameters Label Range
     KeepAlive Timer       1   0x00000014    "Events Signaled by ..."
         Expired
     Label Request Aborted 0   0x00000015    "Label Request Abort ..."
     Missing Message       0   0x00000016    "Events Signaled by ..."
         Parameters
     Unsupported Address   0   0x00000017    "FEC Procedures"
         Family                              "Address Message Proc ..."





Andersson, et al.           Standards Track                    [Page 83]

RFC 3036                   LDP Specification                January 2001


     Session Rejected/     1   0x00000018    "Session Initialization"
        Bad KeepAlive Time
     Internal Error        1   0x00000019    "Events Signaled by ..."

3.10. Well-known Numbers

3.10.1. UDP and TCP Ports

  The UDP port for LDP Hello messages is 646.

  The TCP port for establishing LDP session connections is 646.

3.10.2. Implicit NULL Label

  The Implicit NULL label (see [RFC3031]) is represented as a Generic
  Label TLV with a Label field value as specified by [RFC3032].

4. IANA Considerations

  LDP defines the following name spaces which require management:

     -  Message Type Name Space.
     -  TLV Type Name Space.
     -  FEC Type Name Space.
     -  Status Code Name Space.
     -  Experiment ID Name Space.

  The following sections provide guidelines for managing these name
  spaces.

4.1. Message Type Name Space

  LDP divides the name space for message types into three ranges.  The
  following are the guidelines for managing these ranges:

     -  Message Types 0x0000 - 0x3DFF.  Message types in this range are
        part of the LDP base protocol.  Following the policies outlined
        in [IANA], Message types in this range are allocated through an
        IETF Consensus action.

     -  Message Types 0x3E00 - 0x3EFF.  Message types in this range are
        reserved for Vendor Private extensions and are the
        responsibility of the individual vendors (see Section "LDP
        Vendor-private Messages").  IANA management of this range of
        the Message Type Name Space is unnecessary.






Andersson, et al.           Standards Track                    [Page 84]

RFC 3036                   LDP Specification                January 2001


     -  Message Types 0x3F00 - 0x3FFF.  Message types in this range are
        reserved for Experimental extensions and are the responsibility
        of the individual experimenters (see Sections "LDP Experimental
        Extensions" and "Experiment ID Name Space").  IANA management
        of this range of the Message Type Name Space is unnecessary;
        however, IANA is responsible for managing part of the
        Experiment ID Name Space (see below).

4.2. TLV Type Name Space

  LDP divides the name space for TLV types into three ranges.  The
  following are the guidelines for managing these ranges:

     -  TLV Types 0x0000 - 0x3DFF.  TLV types in this range are part of
        the LDP base protocol.  Following the policies outlined in
        [IANA], TLV types in this range are allocated through an IETF
        Consensus action.

     -  TLV Types 0x3E00 - 0x3EFF.  TLV types in this range are
        reserved for Vendor Private extensions and are the
        responsibility of the individual vendors (see Section "LDP
        Vendor-private TLVs").  IANA management of this range of the
        TLV Type Name Space is unnecessary.

     -  TLV Types 0x3F00 - 0x3FFF.  TLV types in this range are
        reserved for Experimental extensions and are the responsibility
        of the individual experimenters (see Sections "LDP Experimental
        Extensions" and "Experiment ID Name Space").  IANA management
        of this range of the TLV Name Space is unnecessary; however,
        IANA is responsible for managing part of the Experiment ID Name
        Space (see below).

4.3. FEC Type Name Space

  The range for FEC types is 0 - 255.

  Following the policies outlined in [IANA], FEC types in the range 0 -
  127 are allocated through an IETF Consensus action, types in the
  range 128 - 191 are allocated as First Come First Served, and types
  in the range 192 - 255 are reserved for Private Use.











Andersson, et al.           Standards Track                    [Page 85]

RFC 3036                   LDP Specification                January 2001


4.4. Status Code Name Space

  The range for Status Codes is 0x00000000 - 0x3FFFFFFF.

  Following the policies outlined in [IANA], Status Codes in the range
  0x00000000 - 0x1FFFFFFF are allocated through an IETF Consensus
  action, codes in the range 0x20000000 - 0x3EFFFFFF are allocated as
  First Come First Served, and codes in the range 0x3F000000 -
  0x3FFFFFFF are reserved for Private Use.

4.5. Experiment ID Name Space

  The range for Experiment Ids is 0x00000000 - 0xffffffff.

  Following the policies outlined in [IANA], Experiment Ids in the
  range 0x00000000 - 0xefffffff are allocated as First Come First
  Served and Experiment Ids in the range 0xf0000000 - 0xffffffff are
  reserved for Private Use.

5. Security Considerations

  This section identifies threats to which LDP may be vulnerable and
  discusses means by which those threats might be mitigated.

5.1. Spoofing

  There are two types of LDP communication that could be the target of
  a spoofing attack.

  1. Discovery exchanges carried by UDP.

     LSRs directly connected at the link level exchange Basic Hello
     messages over the link.  The threat of spoofed Basic Hellos can be
     reduced by:

        o  Accepting Basic Hellos only on interfaces to which LSRs that
           can be trusted are directly connected.

        o  Ignoring Basic Hellos not addressed to the All Routers on
           this Subnet multicast group.

     LSRs not directly connected at the link level may use Extended
     Hello messages to indicate willingness to establish an LDP
     session.  An LSR can reduce the threat of spoofed Extended Hellos
     by filtering them and accepting only those originating at sources
     permitted by an access list.





Andersson, et al.           Standards Track                    [Page 86]

RFC 3036                   LDP Specification                January 2001


  2. Session communication carried by TCP.

     LDP specifies use of the TCP MD5 Signature Option to provide for
     the authenticity and integrity of session messages.

     [RFC2385] asserts that MD5 authentication is now considered by
     some to be too weak for this application.  It also points out that
     a similar TCP option with a stronger hashing algorithm (it cites
     SHA-1 as an example) could be deployed.  To our knowledge no such
     TCP option has been defined and deployed.  However, we note that
     LDP can use whatever TCP message digest techniques are available,
     and when one stronger than MD5 is specified and implemented,
     upgrading LDP to use it would be relatively straightforward.

5.2. Privacy

  LDP provides no mechanism for protecting the privacy of label
  distribution.

  The security requirements of label distribution protocols are
  essentially identical to those of the protocols which distribute
  routing information.  By providing a mechanism to ensure the
  authenticity and integrity of its messages LDP provides a level of
  security which is at least as good as, though no better than, that
  which can be provided by the routing protocols themselves.  The more
  general issue of whether privacy should be required for routing
  protocols is beyond the scope of this document.

  One might argue that label distribution requires privacy to address
  the threat of label spoofing.  However, that privacy would not
  protect against label spoofing attacks since data packets carry
  labels in the clear.  Furthermore, label spoofing attacks can be made
  without knowledge of the FEC bound to a label.

  To avoid label spoofing attacks, it is necessary to ensure that
  labeled data packets are labeled by trusted LSRs and that the labels
  placed on the packets are properly learned by the labeling LSRs.

5.3. Denial of Service

  LDP provides two potential targets for denial of service (DoS)
  attacks:

  1. Well known UDP Port for LDP Discovery

     An LSR administrator can address the threat of DoS attacks via
     Basic Hellos by ensuring that the LSR is directly connected only
     to peers which can be trusted to not initiate such an attack.



Andersson, et al.           Standards Track                    [Page 87]

RFC 3036                   LDP Specification                January 2001


     Interfaces to peers interior to the administrator's domain should
     not represent a threat since interior peers are under the
     administrator's control.  Interfaces to peers exterior to the
     domain represent a potential threat since exterior peers are not.
     An administrator can reduce that threat by connecting the LSR only
     to exterior peers that can be trusted to not initiate a Basic
     Hello attack.

     DoS attacks via Extended Hellos are potentially a more serious
     threat.  This threat can be addressed by filtering Extended Hellos
     using access lists that define addresses with which extended
     discovery is permitted.  However, performing the filtering
     requires LSR resource.

     In an environment where a trusted MPLS cloud can be identified,
     LSRs at the edge of the cloud can be used to protect interior LSRs
     against DoS attacks via Extended Hellos by filtering out Extended
     Hellos originating outside of the trusted MPLS cloud, accepting
     only those originating at addresses permitted by access lists.
     This filtering protects LSRs in the interior of the cloud but
     consumes resources at the edges.

  2. Well known TCP port for LDP Session Establishment

     Like other control plane protocols that use TCP, LDP may be the
     target of DoS attacks, such a SYN attacks.  LDP is no more or less
     vulnerable to such attacks than other control plane protocols that
     use TCP.

     The threat of such attacks can be mitigated somewhat by the
     following:

        o  An LSR should avoid promiscuous TCP listens for LDP session
           establishment.  It should use only listens that are specific
           to discovered peers.  This enables it to drop attack packets
           early in their processing since they are less likely to
           match existing or in-progress connections.

        o  The use of the MD5 option helps somewhat since it prevents a
           SYN from being accepted unless the MD5 segment checksum is
           valid.  However, the receiver must compute the checksum
           before it can decide to discard an otherwise acceptable SYN
           segment.

        o  The use of access list mechanisms applied at the boundary of
           the MPLS cloud in a manner similar to that suggested above
           for Extended Hellos can protect the interior against attacks
           originating from outside the cloud.



Andersson, et al.           Standards Track                    [Page 88]

RFC 3036                   LDP Specification                January 2001


6. Areas for Future Study

  The following topics not addressed in this version of LDP are
  possible areas for future study:

     -  Section 2.16 of the MPLS architecture [RFC3031] requires that
        the initial label distribution protocol negotiation between
        peer LSRs enable each LSR to determine whether its peer is
        capable of popping the label stack.  This version of LDP
        assumes that LSRs support label popping for all link types
        except ATM and Frame Relay.  A future version may specify means
        to make this determination part of the session initiation
        negotiation.

     -  LDP support for CoS is not specified in this version.  CoS
        support may be addressed in a future version.

     -  LDP support for multicast is not specified in this version.
        Multicast support may be addressed in a future version.

     -  LDP support for multipath label switching is not specified in
        this version.  Multipath support may be addressed in a future
        version.

7. Intellectual Property Considerations

  The IETF has been notified of intellectual property rights claimed in
  regard to some or all of the specification contained in this
  document.  For more information consult the online list of claimed
  rights.

8. Acknowledgments

  The ideas and text in this document have been collected from a number
  of sources.  We would like to thank Rick Boivie, Ross Callon, Alex
  Conta, Eric Gray, Yoshihiro Ohba, Eric Rosen, Bernard Suter, Yakov
  Rekhter, and Arun Viswanathan.

9. References

  [ATM-VP]    N. Feldman, B. Jamoussi, S. Komandur, A, Viswanathan, T
              Worster, "MPLS using ATM VP Switching", Work in Progress.

  [CRLDP]     L. Andersson, A. Fredette, B. Jamoussi, R. Callon, P.
              Doolan, N. Feldman, E. Gray, J. Halpern, J. Heinanen T.
              E. Kilty, A. G.  Malis, M. Girish, K. Sundell, P.
              Vaananen, T. Worster, L. Wu, R.  Dantu, "Constraint-Based
              LSP Setup using LDP", Work in Progress.



Andersson, et al.           Standards Track                    [Page 89]

RFC 3036                   LDP Specification                January 2001


  [DIFFSERV]  Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.
              and W. Weiss, "An Architecture for Differentiated
              Services", RFC 2475, December 1998.

  [IANA]      Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 2434,
              October 1998.

  [RFC1321]   Rivest, R., "The MD5 Message-Digest Algorithm," RFC 1321,
              April 1992.

  [RFC1483]   Heinanen, J., "Multiprotocol Encapsulation over ATM
              Adaptation Layer 5", RFC 1483, July 1993.

  [RFC2328]   Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

  [RFC1700]   Reynolds, J. and J. Postel, "ASSIGNED NUMBERS", STD 2,
              RFC 1700, October 1994.

  [RFC1771]   Rekhter, Y. and T. Li, "A Border Gateway Protocol 4
              (BGP-4)", RFC 1771, March 1995.

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2205]   Braden, R., Zhang, L., Berson, S., Herzog, S. and S.
              Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
              Functional Specification", RFC 2205, September 1997.

  [RFC2385]   Heffernan, A., "Protection of BGP Sessions via the TCP
              MD5 Signature Option", RFC 2385, August 1998.

  [RFC2702]   Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M. and J.
              McManus, "Requirements for Traffic Engineering over
              MPLS", RFC 2702, September 1999.

  [RFC3031]   Rosen, E., Viswanathan, A. and R. Callon, "Multiprotocol
              Label Switching Architecture", RFC 3031, January 2001.

  [RFC3032]   Rosen, E., Rekhter, Y., Tappan, D., Farinacci, D.,
              Fedorkow, G.,  Li, T. and A. Conta, "MPLS Label Stack
              Encoding", RFC 3032, January 2001.

  [RFC3034]   Conta, A., Doolan, P. and A. Malis, "Use of Label
              Switching on Frame Relay Networks Specification", RFC
              3034, January 2001.





Andersson, et al.           Standards Track                    [Page 90]

RFC 3036                   LDP Specification                January 2001


  [RFC3035]   Davie, B., Lawrence, J., McCloghrie, K., Rekhter, Y.,
              Rosen, E., Swallow, G. and P. Doolan, "MPLS using LDP and
              ATM VC Switching", RFC 3035, January 2001.

  [RFC3037]   Thomas, B. and E. Gray, "LDP Applicability", RFC 3037,
              January 2001.













































Andersson, et al.           Standards Track                    [Page 91]

RFC 3036                   LDP Specification                January 2001


10. Authors' Addresses

  Loa Andersson
  Nortel Networks Inc
  St Eriksgatan 115, PO Box 6701
  113 85 Stockholm
  Sweden

  Phone: +46 8 5088 36 34
  Mobile: +46 70 522 78 34
  EMail: [email protected]


  Paul Doolan
  Ennovate Networks
  60 Codman Hill Rd
  Marlborough MA 01719

  Phone: 978-263-2002
  EMail: [email protected]


  Nancy Feldman
  IBM Research
  30 Saw Mill River Road
  Hawthorne, NY 10532

  Phone:  914-784-3254
  EMail: [email protected]


  Andre Fredette
  PhotonEx Corporation
  8C Preston Court
  Bedford, MA 01730

  Phone: 781-301-4655
  EMail: [email protected]


  Bob Thomas
  Cisco Systems, Inc.
  250 Apollo Dr.
  Chelmsford, MA 01824

  Phone:  978-244-8078
  EMail: [email protected]




Andersson, et al.           Standards Track                    [Page 92]

RFC 3036                   LDP Specification                January 2001


Appendix A. LDP Label Distribution Procedures

  This section specifies label distribution behavior in terms of LSR
  response to the following events:

     -  Receive Label Request Message;
     -  Receive Label Mapping Message;
     -  Receive Label Abort Request Message;
     -  Receive Label Release Message;
     -  Receive Label Withdraw Message;
     -  Recognize new FEC;
     -  Detect change in FEC next hop;
     -  Receive Notification Message / Label Request Aborted;
     -  Receive Notification Message / No Label Resources;
     -  Receive Notification Message / No Route;
     -  Receive Notification Message / Loop Detected;
     -  Receive Notification Message / Label Resources Available;
     -  Detect local label resources have become available;
     -  LSR decides to no longer label switch a FEC;
     -  Timeout of deferred label request.

  The specification of LSR behavior in response to an event has three
  parts:

     1. Summary.  Prose that describes LSR response to the event in
        overview.

     2. Context.  A list of elements referred to by the Algorithm part
        of the specification.  (See 3.)

     3. Algorithm.  An algorithm for LSR response to the event.

  The Summary may omit details of the LSR response, such as bookkeeping
  action or behavior dependent on the LSR label advertisement mode,
  control mode, or label retention mode in use.  The intent is that the
  Algorithm fully and unambiguously specify the LSR response.

  The algorithms in this section use procedures defined in the MPLS
  architecture specification [RFC3031] for hop-by-hop routed traffic.
  These procedures are:

     -  Label Distribution procedure, which is performed by a
        downstream LSR to determine when to distribute a label for a
        FEC to LDP peers.  The architecture defines four Label
        Distribution procedures:






Andersson, et al.           Standards Track                    [Page 93]

RFC 3036                   LDP Specification                January 2001


        .  Downstream Unsolicited Independent Control, called
           PushUnconditional in [RFC3031].

        .  Downstream Unsolicited Ordered Control, called
           PushConditional in [RFC3031].

        .  Downstream On Demand Independent Control, called
           PulledUnconditional in [RFC3031].

        .  Downstream On Demand Ordered Control, called
           PulledConditional in [RFC3031].

     -  Label Withdrawal procedure, which is performed by a downstream
        LSR to determine when to withdraw a FEC label mapping
        previously distributed to LDP peers.  The architecture defines
        a single Label Withdrawal procedure.  Whenever an LSR breaks
        the binding between a label and a FEC, it must withdraw the FEC
        label mapping from all LDP peers to which it has previously
        sent the mapping.

     -  Label Request procedure, which is performed by an upstream LSR
        to determine when to explicitly request that a downstream LSR
        bind a label to a FEC and send it the corresponding label
        mapping.  The architecture defines three Label Request
        procedures:

        .  Request Never.  The LSR never requests a label.

        .  Request When Needed.  The LSR requests a label whenever
           it needs one.

        .  Request On Request.  This procedure is used by
           non-label merging LSRs.  The LSR requests a label
           when it receives a request for one, in addition
           to whenever it needs one.

     -  Label Release procedure, which is performed by an upstream LSR
        to determine when to release a previously received label
        mapping for a FEC.  The architecture defines two Label Release
        procedures:

        .  Conservative label retention, called Release On Change in
           [RFC3031].

        .  Liberal label retention, called No Release On Change in
           [RFC3031].





Andersson, et al.           Standards Track                    [Page 94]

RFC 3036                   LDP Specification                January 2001


     -  Label Use procedure, which is performed by an LSR to determine
        when to start using a FEC label for forwarding/switching.  The
        architecture defines three Label Use procedures:

        .  Use Immediate.  The LSR immediately uses a label received
           from a FEC next hop for forwarding/switching.

        .  Use If Loop Free.  The LSR uses a FEC label received from a
           FEC next hop for forwarding/switching only if it has
           determined that by doing so it will not cause a forwarding
           loop.

        .  Use If Loop Not Detected.  This procedure is the same as Use
           Immediate unless the LSR has detected a loop in the FEC LSP.
           Use of the FEC label for forwarding/switching will continue
           until the next hop for the FEC changes or the loop is no
           longer detected.

        This version of LDP does not include a loop prevention
        mechanism; therefore, the procedures below do not make use of
        the Use If Loop Free procedure.

     -  Label No Route procedure (called Label Not Available procedure
        in [RFC3031]), which is performed by an upstream LSR to
        determine how to respond to a No Route notification from a
        downstream LSR in response to a request for a FEC label
        mapping.  The architecture specification defines two Label No
        Route procedures:

        .  Request Retry.  The LSR should issue the label request at a
           later time.

        .  No Request Retry.  The LSR should assume the downstream LSR
           will provide a label mapping when the downstream LSR has a
           next hop and it should not reissue the request.

A.1. Handling Label Distribution Events

  This section defines LDP label distribution procedures by specifying
  an algorithm for each label distribution event.  The requirement on
  an LDP implementation is that its event handling must have the effect
  specified by the algorithms.  That is, an implementation need not
  follow exactly the steps specified by the algorithms as long as the
  effect is identical.







Andersson, et al.           Standards Track                    [Page 95]

RFC 3036                   LDP Specification                January 2001


  The algorithms for handling label distribution events share common
  actions.  The specifications below package these common actions into
  procedure units.  Specifications for these common procedures are in
  their own section "Common Label Distribution Procedures", which
  follows this.

  An implementation would use data structures to store information
  about protocol activity.  This appendix specifies the information to
  be stored in sufficient detail to describe the algorithms, and
  assumes the ability to retrieve the information as needed.  It does
  not specify the details of the data structures.

A.1.1. Receive Label Request

  Summary:

     The response by an LSR to receipt of a FEC label request from an
     LDP peer may involve one or more of the following actions:

     -  Transmission of a notification message to the requesting LSR
        indicating why a label mapping for the FEC cannot be provided;

     -  Transmission of a FEC label mapping to the requesting LSR;

     -  Transmission of a FEC label request to the FEC next hop;

     -  Installation of labels for forwarding/switching use by the LSR.

  Context:

     -  LSR.  The LSR handling the event.

     -  MsgSource.  The LDP peer that sent the message.

     -  FEC.  The FEC specified in the message.

     -  RAttributes.  Attributes received with the message.  E.g., Hop
        Count, Path Vector.

     -  SAttributes.  Attributes to be included in Label Request
        message, if any, propagated to FEC Next Hop.

     -  StoredHopCount.  The hop count, if any, previously recorded for
        the FEC.







Andersson, et al.           Standards Track                    [Page 96]

RFC 3036                   LDP Specification                January 2001


  Algorithm:

     LRq.1   Execute procedure Check_Received_Attributes (MsgSource,
             LabelRequest, RAttributes).
             If Loop Detected, goto LRq.13.

     LRq.2   Is there a Next Hop for FEC?
             If not, goto LRq.5.

     LRq.3   Is MsgSource the Next Hop?
             Ifnot, goto LRq.6.

     LRq.4   Execute procedure Send_Notification (MsgSource, Loop
             Detected).
             Goto LRq.13

     LRq.5   Execute procedure Send_Notification (MsgSource, No Route).
             Goto LRq.13.

     LRq.6   Has LSR previously received a label request for FEC from
             MsgSource?
             If not, goto LRq.8.  (See Note 1.)

     LRq.7   Is the label request a duplicate request?
             If so, Goto LRq.13.  (See Note 2.)

     LRq.8   Record label request for FEC received from MsgSource and
             mark it pending.

     LRq.9   Perform LSR Label Distribution procedure:

           For Downstream Unsolicited Independent Control OR
           For Downstream On Demand Independent Control

              1. Has LSR previously received and retained a label
                 mapping for FEC from Next Hop?.
                 Is so, set Propagating to IsPropagating.
                 If not, set Propagating to NotPropagating.

              2. Execute procedure
                 Prepare_Label_Mapping_Attributes(MsgSource, FEC,
                 RAttributes, SAttributes, Propagating,
                 StoredHopCount).

              3. Execute procedure Send_Label (MsgSource, FEC,
                 SAttributes).





Andersson, et al.           Standards Track                    [Page 97]

RFC 3036                   LDP Specification                January 2001


              4. Is LSR egress for FEC? OR
                 Has LSR previously received and retained a label
                 mapping for FEC from Next Hop?
                 If so, goto LRq.11.
                 If not, goto LRq.10.

           For Downstream Unsolicited Ordered Control OR
           For Downstream On Demand Ordered Control

              1. Is LSR egress for FEC? OR
                 Has LSR previously received and retained a label
                 mapping for FEC from Next Hop?  (See Note 3.)
                 If not, goto LRq.10.

              2. Execute procedure
                 Prepare_Label_Mapping_Attributes(MsgSource, FEC,
                 RAttributes, SAttributes, IsPropagating,
                 StoredHopCount)

              3. Execute procedure Send_Label (MsgSource, FEC,
                 SAttributes).
                 Goto LRq.11.

     LRq.10  Perform LSR Label Request procedure:

           For Request Never

              1. Goto LRq.13.

           For Request When Needed OR
           For Request On Request

              1. Execute procedure Prepare_Label_Request_Attributes
                 (Next Hop, FEC, RAttributes, SAttributes);

              2. Execute procedure Send_Label_Request (Next Hop, FEC,
                 SAttributes).
                 Goto LRq.13.

     LRq.11  Has LSR successfully sent a label for FEC to MsgSource?
             If not, goto LRq.13.  (See Note 4.)

     LRq.12  Perform LSR Label Use procedure.

           For Use Immediate OR
           For Use If Loop Not Detected





Andersson, et al.           Standards Track                    [Page 98]

RFC 3036                   LDP Specification                January 2001


              1. Install label sent to MsgSource and label from Next
                 Hop (if LSR is not egress) for forwarding/switching
                 use.

     LRq.13  DONE

  Notes:

     1. In the case where MsgSource is a non-label merging LSR it will
        send a label request for each upstream LDP peer that has
        requested a label for FEC from it.  The LSR must be able to
        distinguish such requests from a non-label merging MsgSource
        from duplicate label requests.

        The LSR uses the message ID of received Label Request messages
        to detect duplicate requests.  This means that an LSR (the
        upstream peer) may not reuse the message ID used for a Label
        Request until the Label Request transaction has completed.

     2. When an LSR sends a label request to a peer it records that the
        request has been sent and marks it as outstanding.  As long as
        the request is marked outstanding the LSR should not send
        another request for the same label to the peer.  Such a second
        request would be a duplicate.  The Send_Label_Request procedure
        described below obeys this rule.

        A duplicate label request is considered a protocol error and
        should be dropped by the receiving LSR (perhaps with a suitable
        notification returned to MsgSource).

     3. If LSR is not merge-capable, this test will fail.

     4. The Send_Label procedure may fail due to lack of label
        resources, in which case the LSR should not perform the Label
        Use procedure.

A.1.2. Receive Label Mapping

  Summary:

     The response by an LSR to receipt of a FEC label mapping from an
     LDP peer may involve one or more of the following actions:

     -  Transmission of a label release message for the FEC label to
        the LDP peer;

     -  Transmission of label mapping messages for the FEC to one or
        more LDP peers,



Andersson, et al.           Standards Track                    [Page 99]

RFC 3036                   LDP Specification                January 2001


     -  Installation of the newly learned label for
        forwarding/switching use by the LSR.

  Context:

     -  LSR.  The LSR handling the event.

     -  MsgSource.  The LDP peer that sent the message.

     -  FEC.  The FEC specified in the message.

     -  Label.  The label specified in the message.

     -  PrevAdvLabel.  The label for FEC, if any, previously advertised
        to an upstream peer.

     -  StoredHopCount.  The hop count previously recorded for the FEC.

     -  RAttributes.  Attributes received with the message.  E.g., Hop
        Count, Path Vector.

     -  SAttributes to be included in Label Mapping message, if any,
        propagated to upstream peers.

  Algorithm:

     LMp.1   Does the received label mapping match an outstanding
             label request for FEC previously sent to MsgSource.
             If not, goto LMp.3.

     LMp.2   Delete record of outstanding FEC label request.

     LMp.3   Execute procedure Check_Received_Attributes (MsgSource,
             LabelMapping, RAttributes).
             If No Loop Detected, goto LMp.9.

     LMp.4   Does the LSR have a previously received label mapping for
             FEC from MsgSource? (See Note 1.)
             If not, goto LMp.8.  (See Note 2.)

     LMp.5   Does the label previously received from MsgSource match
             Label (i.e., the label received in the message)?
             (See Note 3.)
             If not, goto LMp.8.  (See Note 4.)

     LMp.6   Delete matching label mapping for FEC previously
             received from MsgSource.




Andersson, et al.           Standards Track                   [Page 100]

RFC 3036                   LDP Specification                January 2001


     LMp.7   Remove Label from forwarding/switching use.  (See Note 5.)
             Goto LMp.33.

     LMp.8   Execute procedure Send_Message (MsgSource, Label Release,
             FEC, Label, Loop Detected Status code).  Goto LMp.33.

     LMp.9   Does LSR have a previously received label mapping for FEC
             from MsgSource for the LSP in question?  (See Note 6.)
             If not, goto LMp.11.

     LMp.10  Does the label previously received from MsgSource match
             Label (i.e., the label received in the message)?
             (See Note 3.)
             If not, goto LMp.32.  (See Note 4.)

     LMp.11  Determine the Next Hop for FEC.

     LMp.12  Is MsgSource the Next Hop for FEC?
             If so, goto LMp.14.

     LMp.13  Perform LSR Label Release procedure:

           For Conservative Label retention:

             1. Goto LMp.32.

           For Liberal Label retention:

             1. Record label mapping for FEC with Label and
                RAttributes has been received from MsgSource.
                Goto LMp.33.

     LMp.14  Is LSR an ingress for FEC?
             If not, goto LMp.16.

     LMp.15  Install Label for forwarding/switching use.

     LMp.16  Record label mapping for FEC with Label and RAttributes
             has been received from MsgSource.

     LMp.17  Iterate through LMp.31 for each Peer.  (See Note 7).

     LMp.18  Has LSR previously sent a label mapping for FEC to Peer
             for the LSP in question?  (See Note 8.)
             If so, goto LMp.22.






Andersson, et al.           Standards Track                   [Page 101]

RFC 3036                   LDP Specification                January 2001


     LMp.19  Is the Downstream Unsolicited Ordered Control Label
             Distribution procedure being used by LSR?  If not, goto
             LMp.28.

     LMp.20  Execute procedure Prepare_Label_Mapping_Attributes(Peer,
             FEC, RAttributes, SAttributes, IsPropagating,
             StoredHopCount).

     LMp.21  Execute procedure Send_Message (Peer, Label Mapping, FEC,
             PrevAdvLabel, SAttributes).
             Goto LMp.28

     LMp.22  Iterate through LMp.27 for each label mapping for FEC
             previously sent to Peer.

     LMp.23  Are RAttributes in the received label mapping consistent
             with those previously sent to Peer?
             If so, continue iteration from LMp.22 for next label
             mapping. (See Note 9.)

     LMp.24  Execute procedure Prepare_Label_Mapping_Attributes(Peer,
             FEC, RAttributes, SAttributes, IsPropagating,
             StoredHopCount).

     LMp.25  Execute procedure Send_Message (Peer, Label Mapping, FEC,
             PrevAdvLabel, SAttributes).  (See Note 10.)

     LMp.26  Update record of label mapping for FEC previously sent to
             Peer to include the new attributes sent.

     LMp.27  End iteration from LMp.22.

     LMp.28  Does LSR have any label requests for FEC from Peer marked
             as pending?
             If not, goto LMp.30.

     LMp.29  Perform LSR Label Distribution procedure:

           For Downstream Unsolicited Independent Control OR
           For Downstream Unsolicited Ordered Control

             1. Execute procedure
                Prepare_Label_Mapping_Attributes(Peer, FEC,
                RAttributes, SAttributes, IsPropagating,
                UnknownHopCount).






Andersson, et al.           Standards Track                   [Page 102]

RFC 3036                   LDP Specification                January 2001


             2. Execute procedure Send_Label (Peer, FEC, SAttributes).
                If the procedure fails, continue iteration for
                next Peer at LMp.17.

             3. If no pending requests exist for Peer goto LMp.30.
                (See Note 11.)

           For Downstream On Demand Independent Control OR
           For Downstream On Demand Ordered Control

             1. Iterate through Step 5 for each pending label
                request for FEC from Peer marked as pending.

             2. Execute procedure
                Prepare_Label_Mapping_Attributes(Peer, FEC,
                RAttributes, SAttributes, IsPropagating,
                UnknownHopCount)

             3. Execute procedure Send_Label (Peer, FEC,
                SAttributes).
                If the procedure fails, continue iteration for next
                Peer at LMp.17.

             4. Delete record of pending request.

             5. End iteration from Step 1.

             6. Goto LMp.30.

     LMp.30  Perform LSR Label Use procedure:

           For Use Immediate OR
           For Use If Loop Not Detected

             1. Iterate through Step 3 for each label mapping for
                FEC previously sent to Peer.

             2. Install label received and label sent to Peer for
                forwarding/switching use.

             3. End iteration from Step 1.

             4. Goto LMp.31.

     LMp.31  End iteration from LMp.17.
             Go to LMp.33.





Andersson, et al.           Standards Track                   [Page 103]

RFC 3036                   LDP Specification                January 2001


     LMp.32  Execute procedure Send_Message (MsgSource, Label Release,
             FEC, Label).

     LMp.33  DONE.

  Notes:

     1.  If the LSR is merging there should be at most 1 received
         mapping for the FEC for the LSP in question.  In the non-
         merging case there could be multiple received mappings for the
         FEC for the LSP in question.

     2.  If LSR has detected a loop and it has not previously received
         a label mapping from MsgSource for the FEC, it simply releases
         the label.

     3.  Does the Label received in the message match any of the 1 or
         more label mappings identified in the previous step (LMp.4 or
         LMp.9)?

     4.  An unsolicited mapping with a different label from the same
         peer would be an attempt to establish multipath label
         switching, which is not supported in this version of LDP.

     5.  If Label is not in forwarding/switching use, LMp.7 has no
         effect.

     6.  If the received label mapping message matched an outstanding
         label request in LMp.1, then (by definition) LSR has not
         previously received a label mapping for FEC for the LSP in
         question.  If the LSR is merging upstream labels for the LSP
         in question, there should be at most 1 received mapping.  In
         the non-merging case, there could be multiple received label
         mappings for the same FEC, one for each resulting LSP.

     7.  The LMp.17 iteration includes MsgSource in order to handle the
         case where LSR is operating in Downstream Unsolicited ordered
         control mode.  Ordered control prevents LSR from advertising a
         label for FEC until it has received a label mapping from its
         next hop (MsgSource) for FEC.

     8.  If LSR is merging the LSP it may have previously sent label
         mappings for the FEC LSP to one or more peers.  If LSR is not
         merging, it may have sent a label mapping for the LSP in
         question to at most one LSR.






Andersson, et al.           Standards Track                   [Page 104]

RFC 3036                   LDP Specification                January 2001


     9.  The loop detection Path Vector attribute is considered in this
         check.  If the received RAttributes include a Path Vector and
         no Path Vector had been previously sent to the Peer, or if the
         received Path Vector is inconsistent with the Path Vector
         previously sent to the Peer, then the attributes are
         considered to be inconsistent.  Note that an LSR is not
         required to store a received Path Vector after it propagates
         the Path Vector in a mapping message.  If an LSR does not
         store the Path Vector, it has no way to check the consistency
         of a newly received Path Vector.  This means that whenever
         such an LSR receives a mapping message carrying a Path Vector
         it must always propagate the Path Vector.

     10. LMp.22 through LMp.27 deal with a situation that can arise
         when the LSR is using independent control and it receives a
         mapping from the downstream peer after it has sent a mapping
         to an upstream peer.  In this situation the LSR needs to
         propagate any changed attributes, such as Hop Count, upstream.
         If Loop Detection is configured on, the propagated attributes
         must include the Path Vector

     11. An LSR operating in Downstream Unsolicited mode must process
         any Label Request messages it receives.  If there are pending
         label requests, fall through into the Downstream on Demand
         procedures in order to satisfy the pending requests.

A.1.3. Receive Label Abort Request

  Summary:

     When an LSR receives a label abort request message from a peer, it
     checks whether it has already responded to the label request in
     question. If it has, it silently ignores the message.  If it has
     not, it sends the peer a Label Request Aborted Notification.  In
     addition, if it has a label request outstanding for the LSP in
     question to a downstream peer, it sends a Label Abort Request to
     the downstream peer to abort the LSP.

  Context:

     -  LSR.  The LSR handling the event.

     -  MsgSource.  The LDP peer that sent the message.

     -  FEC.  The FEC specified in the message.

     -  RequestMessageID.  The message ID of the label request message
        to be aborted.



Andersson, et al.           Standards Track                   [Page 105]

RFC 3036                   LDP Specification                January 2001


     -  Next Hop.  The next hop for the FEC.

  Algorithm:

     LAbR.1  Does the message match a previously received label request
             message from MsgSource? (See Note 1.)
             If not, goto LAbR.12.

     LAbR.2  Has LSR responded to the previously received label
             request?
             If so, goto LAbR.12.

     LAbR.3  Execute procedure Send_Message(MsgSource, Notification,
             Label Request Aborted, TLV), where TLV is the Label
             Request Message ID TLV received in the label abort
             request message.

     LAbR.4  Does LSR have a label request message outstanding for
             FEC?
             If so, goto LAbR.7

     LAbR.5  Does LSR have a label mapping for FEC?
             If not, goto LAbR.11

     LAbR.6  Generate Event: Received Label Release Message for FEC
             from MsgSource.  (See Note 2.)
             Goto LAbR.11.

     LAbR.7  Is LSR merging the LSP for FEC?
             If not, goto LAbR.9.

     LAbR.8  Are there upstream peers other than MsgSource that have
             requested a label for FEC?
             If so, goto LAbR.11.

     LAbR.9  Execute procedure Send_Message (Next Hop, Label Abort
             Request, FEC, TLV), where TLV is a Label Request Message
             ID TLV containing the Message ID used by the LSR in the
             outstanding Label Request message.

     LAbR.10  Record that a label abort request for FEC is pending.

     LAbR.11  Delete record of label request for FEC from MsgSource.

     LAbR.12  DONE






Andersson, et al.           Standards Track                   [Page 106]

RFC 3036                   LDP Specification                January 2001


  Notes:

     1. LSR uses FEC and the Label Request Message ID TLV carried by
        the label abort request to locate its record (if any) for the
        previously received label request from MsgSource.

     2. If LSR has received a label mapping from NextHop, it should
        behave as if it had advertised a label mapping to MsgSource and
        MsgSource has released it.

A.1.4. Receive Label Release

  Summary:

     When an LSR receives a label release message for a FEC from a
     peer, it checks whether other peers hold the released label.  If
     none do, the LSR removes the label from forwarding/switching use,
     if it has not already done so, and if the LSR holds a label
     mapping from the FEC next hop, it releases the label mapping.

  Context:

     -  LSR.  The LSR handling the event.

     -  MsgSource.  The LDP peer that sent the message.

     -  Label.  The label specified in the message.

     -  FEC.  The FEC specified in the message.

  Algorithm:

     LRl.1   Remove MsgSource from record of peers that hold Label for
             FEC.  (See Note 1.)

     LRl.2   Does message match an outstanding label withdraw for FEC
             previously sent to MsgSource?
             If not, goto LRl.4

     LRl.3   Delete record of outstanding label withdraw for FEC
             previously sent to MsgSource.

     LRl.4   Is LSR merging labels for this FEC?
             If not, goto LRl.6.  (See Note 2.)

     LRl.5   Has LSR previously advertised a label for this FEC to
             other peers?
             If so, goto LRl.10.



Andersson, et al.           Standards Track                   [Page 107]

RFC 3036                   LDP Specification                January 2001


     LRl.6   Is LSR egress for the FEC?
             If so, goto LRl.10

     LRl.7   Is there a Next Hop for FEC? AND
             Does LSR have a previously received label mapping for FEC
             from Next Hop?
             If not, goto LRl.10.

     LRl.8   Is LSR configured to propagate releases?
             If not, goto LRl.10.  (See Note 3.)

     LRl.9   Execute procedure Send_Message (Next Hop, Label Release,
             FEC, Label from Next Hop).

     LRl.10  Remove Label from forwarding/switching use for traffic
             from MsgSource.

     LRl.11  Do any peers still hold Label for FEC?
             If so, goto LRl.13.

     LRl.12  Free the Label.

     LRl.13  DONE.

  Notes:

     1. If LSR is using Downstream Unsolicited label distribution, it
        should not re-advertise a label mapping for FEC to MsgSource
        until MsgSource requests it.

     2. LRl.4 through LRl.8 deal with determining whether where the LSR
        should propagate the label release to a downstream peer
        (LRl.9).

     3. If LRl.8 is reached, no upstream LSR holds a label for the FEC,
        and the LSR holds a label for the FEC from the FEC Next Hop.
        The LSR could propagate the Label Release to the Next Hop.  By
        propagating the Label Release the LSR releases a potentially
        scarce label resource.  In doing so, it also increases the
        latency for re-establishing the LSP should MsgSource or some
        other upstream LSR send it a new Label Request for FEC.

        Whether or not to propagate the release is not a protocol
        issue.  Label distribution will operate properly whether or not
        the release is propagated.  The decision to propagate or not
        should take into consideration factors such as: whether labels
        are a scarce resource in the operating environment; the
        importance of keeping LSP setup latency low by keeping the



Andersson, et al.           Standards Track                   [Page 108]

RFC 3036                   LDP Specification                January 2001


        amount of signaling required small; whether LSP setup is
        ingress-controlled or egress-controlled in the operating
        environment.

A.1.5. Receive Label Withdraw

  Summary:

     When an LSR receives a label withdraw message for a FEC from an
     LDP peer, it responds with a label release message and it removes
     the label from any forwarding/switching use.  If ordered control
     is in use, the LSR sends a label withdraw message to each LDP peer
     to which it had previously sent a label mapping for the FEC.  If
     the LSR is using Downstream on Demand label advertisement with
     independent control, it then acts as if it had just recognized the
     FEC.

  Context:

     -  LSR.  The LSR handling the event.

     -  MsgSource.  The LDP peer that sent the message.

     -  Label.  The label specified in the message.

     -  FEC.  The FEC specified in the message.

  Algorithm:

     LWd.1   Remove Label from forwarding/switching use.  (See Note 1.)

     LWd.2   Execute procedure Send_Message (MsgSource, Label Release,
             FEC, Label)

     LWd.3   Has LSR previously received and retained a matching label
             mapping for FEC from MsgSource?
             If not, goto LWd.13.

     LWd.4   Delete matching label mapping for FEC previously received
             from MsgSource.

     LWd.5   Is LSR using ordered control?
             If so, goto LWd.8.

     LWd.6   Is MsgSource using Downstream On Demand label
             advertisement?
             If not, goto LWd.13.




Andersson, et al.           Standards Track                   [Page 109]

RFC 3036                   LDP Specification                January 2001


     LWd.7   Generate Event: Recognize New FEC for FEC.
             Goto LWd.13.  (See Note 2.)

     LWd.8   Iterate through LWd.12 for each Peer, other than
             MsgSource.

     LWd.9   Has LSR previously sent a label mapping for FEC to Peer?
             If not, continue iteration for next Peer at LWd.8.

     LWd.10  Does the label previously sent to Peer "map" to the
             withdrawn Label?
             If not, continue iteration for next Peer at LWd.8.
             (See Note 3.)

     LWd.11  Execute procedure Send_Label_Withdraw (Peer, FEC, Label
             previously sent to Peer).

     LWd.12  End iteration from LWd.8.

     LWd.13  DONE

  Notes:

     1. If Label is not in forwarding/switching use, LWd.1 has no
        effect.

     2. LWd.7 handles the case where the LSR is using Downstream On
        Demand label distribution with independent control.  In this
        situation the LSR should send a label request to the FEC next
        hop as if it had just recognized the FEC.

     3. LWd.10 handles both label merging (one or more incoming labels
        map to the same outgoing label) and no label merging (one label
        maps to the outgoing label) cases.

A.1.6. Recognize New FEC

  Summary:

     The response by an LSR to learning a new FEC via the routing table
     may involve one or more of the following actions:

     -  Transmission of label mappings for the FEC to one or more LDP
        peers;

     -  Transmission of a label request for the FEC to the FEC next
        hop;




Andersson, et al.           Standards Track                   [Page 110]

RFC 3036                   LDP Specification                January 2001


     -  Any of the actions that can occur when the LSR receives a label
        mapping for the FEC from the FEC next hop.

  Context:

     -  LSR.  The LSR handling the event.

     -  FEC. The newly recognized FEC.

     -  Next Hop.  The next hop for the FEC.

     -  InitAttributes.  Attributes to be associated with the new FEC.
        (See Note 1.)

     -  SAttributes.  Attributes to be included in Label Mapping or
        Label Request messages, if any, sent to peers.

     -  StoredHopCount.  Hop count associated with FEC label mapping,
        if any, previously received from Next Hop.

  Algorithm:

     FEC.1   Perform LSR Label Distribution procedure:

           For Downstream Unsolicited Independent Control

              1. Iterate through 5 for each Peer.

              2. Has LSR previously received and retained a label
                 mapping for FEC from Next Hop?
                 If so, set Propagating to IsPropagating.
                 If not, set Propagating to NotPropagating.

              3. Execute procedure Prepare_Label_Mapping_Attributes
                 (Peer, FEC, InitAttributes, SAttributes, Propagating,
                 Unknown hop count(0)).

              4. Execute procedure Send_Label (Peer, FEC, SAttributes)

              5. End iteration from 1.
                 Goto FEC.2.

           For Downstream Unsolicited Ordered Control

              1. Iterate through 5 for each Peer.






Andersson, et al.           Standards Track                   [Page 111]

RFC 3036                   LDP Specification                January 2001


              2. Is LSR egress for the FEC? OR
                 Has LSR previously received and retained a label
                 mapping for FEC from Next Hop?
                 If not, continue iteration for next Peer.

              3. Execute procedure Prepare_Label_Mapping_Attributes
                 (Peer, FEC, InitAttributes, SAttributes, Propagating,
                 StoredHopCount).

              4. Execute procedure Send_Label (Peer, FEC, SAttributes)

              5. End iteration from 1.
                 Goto FEC.2.

           For Downstream On Demand Independent Control OR
           For Downstream On Demand Ordered Control

              1. Goto FEC.2.  (See Note 2.)

     FEC.2   Has LSR previously received and retained a label
             mapping for FEC from Next Hop?
             If so, goto FEC.5

     FEC.3   Is Next Hop an LDP peer?
             If not, Goto FEC.6

     FEC.4   Perform LSR Label Request procedure:

           For Request Never

             1. Goto FEC.6

           For Request When Needed OR
           For Request On Request

             1. Execute procedure
                Prepare_Label_Request_Attributes
                (Next Hop, FEC, InitAttributes, SAttributes);

             2. Execute procedure Send_Label_Request (Next
                Hop, FEC, SAttributes).
                Goto FEC.6.

     FEC.5   Generate Event: Received Label Mapping from Next Hop.
             (See Note 3.)

     FEC.6   DONE.




Andersson, et al.           Standards Track                   [Page 112]

RFC 3036                   LDP Specification                January 2001


  Notes:

     1. An example of an attribute that might be part of InitAttributes
        is one which specifies desired LSP characteristics, such as
        class of service (CoS).  (Note that while the current version
        of LDP does not specify a CoS attribute, LDP extensions may.)

        The means by which FEC InitAttributes, if any, are specified is
        beyond the scope of LDP.  Note that the InitAttributes will not
        include a known Hop Count or a Path Vector.

     2. An LSR using Downstream On Demand label distribution would send
        a label only if it had a previously received label request
        marked as pending.  The LSR would have no such pending requests
        because it responds to any label request for an unknown FEC by
        sending the requesting LSR a No Route notification and
        discarding the label request; see LRq.3

     3. If the LSR has a label for the FEC from the Next Hop, it should
        behave as if it had just received the label from the Next Hop.
        This occurs in the case of Liberal label retention mode.

A.1.7. Detect Change in FEC Next Hop

  Summary:

     The response by an LSR to a change in the next hop for a FEC may
     involve one or more of the following actions:

     -  Removal of the label from the FEC's old next hop from
        forwarding/switching use;

     -  Transmission of label mapping messages for the FEC to one or
        more LDP peers;

     -  Transmission of a label request to the FEC's new next hop;

     -  Any of the actions that can occur when the LSR receives a label
        mapping from the FEC's new next hop.

  Context:

     -  LSR.  The LSR handling the event.

     -  FEC.  The FEC whose next hop changed.

     -  New Next Hop.  The current next hop for the FEC.




Andersson, et al.           Standards Track                   [Page 113]

RFC 3036                   LDP Specification                January 2001


     -  Old Next Hop.  The previous next hop for the FEC.

     -  OldLabel.  Label, if any, previously received from Old Next
        Hop.

     -  CurAttributes.  The attributes, if any, currently associated
        with the FEC.

     -  SAttributes.  Attributes to be included in Label Label Request
        message, if any, sent to New Next Hop.

  Algorithm:

     NH.1   Has LSR previously received and retained a label mapping
            for FEC from Old Next Hop?
            If not, goto NH.6.

     NH.2   Remove label from forwarding/switching use.  (See Note 1.)

     NH.3   Is LSR using Liberal label retention?
            If so, goto NH.6.

     NH.4   Execute procedure Send_Message (Old Next Hop, Label
            Release, OldLabel).

     NH.5   Delete label mapping for FEC previously received from Old
            Next Hop.

     NH.6   Does LSR have a label request pending with Old Next Hop?
            If not, goto NH.10.

     NH.7   Is LSR using Conservative label retention?
            If not, goto NH.10.

     NH.8   Execute procedure Send_Message (Old Next Hop, Label Abort
            Request, FEC, TLV), where TLV is a Label Request Message
            ID TLV that carries the message ID of the pending label
            request.

     NH.9   Record a label abort request is pending for FEC with Old
            Next Hop.

     NH.10  Is there a New Next Hop for the FEC?
            If not, goto NH.16.

     NH.11  Has LSR previously received and retained a label mapping
            for FEC from New Next Hop?
            If not, goto NH.13.



Andersson, et al.           Standards Track                   [Page 114]

RFC 3036                   LDP Specification                January 2001


     NH.12  Generate Event: Received Label Mapping from New Next Hop.
            Goto NH.20.  (See Note 2.)

     NH.13  Is LSR using Downstream on Demand advertisement? OR
            Is Next Hop using Downstream on Demand advertisement? OR
            Is LSR using Conservative label retention? (See Note 3.)
            If so, goto NH.14.
            If not, goto NH.20.

     NH.14  Execute procedure Prepare_Label_Request_Attributes (Next
            Hop, FEC, CurAttributes, SAttributes)

     NH.15  Execute procedure Send_Label_Request (New Next Hop, FEC,
            SAttributes).  (See Note 4.)
            Goto NH.20.

     NH.16  Iterate through NH.19 for each Peer.

     NH.17  Has LSR previously sent a label mapping for FEC to Peer?
            If not, continue iteration for next Peer at NH.16.

     NH.18  Execute procedure Send_Label_Withdraw (Peer, FEC, Label
            previously sent to Peer).

     NH.19  End iteration from NH.16.

     NH.20  DONE.

  Notes:

     1. If Label is not in forwarding/switching use, NH.2 has no
        effect.

     2. If the LSR has a label for the FEC from the New Next Hop, it
        should behave as if it had just received the label from the New
        Next Hop.

     3. The purpose of the check on label retention mode is to avoid a
        race with steps LMp.12-LMp.13 of the procedure for handling a
        Label Mapping message where the LSR operating in Conservative
        Label retention mode may have released a label mapping received
        from the New Next Hop before it detected the FEC next hop had
        changed.

     4. Regardless of the Label Request procedure in use by the LSR, it
        must send a label request if the conditions in NH.8 hold.
        Therefore it executes the Send_Label_Request procedure directly
        rather than perform LSR Label Request procedure.



Andersson, et al.           Standards Track                   [Page 115]

RFC 3036                   LDP Specification                January 2001


A.1.8. Receive Notification / Label Request Aborted

  Summary:

     When an LSR receives a Label Request Aborted notification from an
     LDP peer it records that the corresponding label request
     transaction, if any, has completed.

  Context:

     -  LSR.  The LSR handling the event.

     -  FEC.  The FEC for which a label was requested.

     -  RequestMessageID.  The message ID of the label request message
        to be aborted.

     -  MsgSource.  The LDP peer that sent the Notification message.

  Algorithm:

     LRqA.1  Does the notification correspond to an outstanding label
             request abort for FEC? (See Note 1).
             If not, goto LRqA.3.

     LRqA.2  Record that the label request for FEC has been aborted.

     LRqA.3  DONE

  Notes:

     1. The LSR uses the FEC and RequestMessageID to locate its record,
        if any, of the outstanding label request abort.

A.1.9. Receive Notification / No Label Resources

  Summary:

     When an LSR receives a No Label Resources notification from an LDP
     peer, it stops sending label request messages to the peer until it
     receives a Label Resources Available Notification from the peer.

  Context:

     -  LSR.  The LSR handling the event.

     -  FEC.  The FEC for which a label was requested.




Andersson, et al.           Standards Track                   [Page 116]

RFC 3036                   LDP Specification                January 2001


     -  MsgSource.  The LDP peer that sent the Notification message.

  Algorithm:

     NoRes.1 Delete record of outstanding label request for FEC sent
             to MsgSource.

     NoRes.2 Record label mapping for FEC from MsgSource is needed but
             that no label resources are available.

     NoRes.3 Set status record indicating it is not OK to send label
             requests to MsgSource.

     NoRes.4 DONE.

A.1.10. Receive Notification / No Route

  Summary:

     When an LSR receives a No Route notification from an LDP peer in
     response to a Label Request message, the Label No Route procedure
     in use dictates its response. The LSR either will take no further
     action, or it will defer the label request by starting a timer and
     send another Label Request message to the peer when the timer
     later expires.

  Context:

     -  LSR.  The LSR handling the event.

     -  FEC.  The FEC for which a label was requested.

     -  Attributes.  The attributes associated with the label request.

     -  MsgSource.  The LDP peer that sent the Notification message.

  Algorithm:

     NoNH.1  Delete record of outstanding label request for FEC sent
             to MsgSource.

     NoNH.2  Perform LSR Label No Route procedure.

           For Request No Retry

             1. Goto NoNH.3.





Andersson, et al.           Standards Track                   [Page 117]

RFC 3036                   LDP Specification                January 2001


           For Request Retry

             1. Record deferred label request for FEC and Attributes
                to be sent to MsgSource.

             2. Start timeout.  Goto NoNH.3.

     NoNH.3  DONE.

A.1.11. Receive Notification / Loop Detected

  Summary:

     When an LSR receives a Loop Detected Status Code from an LDP peer
     in response to a Label Request message or a Label Mapping message,
     it behaves as if it had received a No Route notification.

  Context:

     See "Receive Notification / No Route".

  Algorithm:

     See "Receive Notification / No Route"

  Notes:

     1. When the Loop Detected notification is in response to a Label
        Request message, it arrives in a Status Code TLV in a
        Notification message.  When it is in response to a Label
        Mapping message, it arrives in a Status Code TLV in a Label
        Release message.

A.1.12. Receive Notification / Label Resources Available

  Summary:

     When an LSR receives a Label Resources Available notification from
     an LDP peer, it resumes sending label requests to the peer.

  Context:

     -  LSR.  The LSR handling the event.

     -  MsgSource.  The LDP peer that sent the Notification message.

     -  SAttributes.  Attributes stored with postponed Label Request
        message.



Andersson, et al.           Standards Track                   [Page 118]

RFC 3036                   LDP Specification                January 2001


  Algorithm:

     Res.1   Set status record indicating it is OK to send label
             requests to MsgSource.

     Res.2   Iterate through Res.6 for each record of a FEC label
             mapping needed from MsgSource for which no label
             resources are available.

     Res.3   Is MsgSource the next hop for FEC?
             If not, goto Res.5.

     Res.4   Execute procedure Send_Label_Request (MsgSource, FEC,
             SAttributes).  If the procedure fails, terminate
             iteration.

     Res.5   Delete record that no resources are available for a label
             mapping for FEC needed from MsgSource.

     Res.6   End iteration from Res.2

     Res.7   DONE.

A.1.13. Detect local label resources have become available

  Summary:

     After an LSR has sent a No Label Resources notification to an LDP
     peer, when label resources later become available it sends a Label
     Resources Available notification to each such peer.

  Context:

     -  LSR.  The LSR handling the event.

     -  Attributes.  Attributes stored with postponed Label Mapping
        message.

  Algorithm:

     ResA.1  Iterate through ResA.4 for each Peer to which LSR has
             previously sent a No Label Resources notification.

     ResA.2  Execute procedure Send_Notification (Peer, Label
             Resources Available)

     ResA.3  Delete record that No Label Resources notification was
             previously sent to Peer.



Andersson, et al.           Standards Track                   [Page 119]

RFC 3036                   LDP Specification                January 2001


     ResA.4  End iteration from ResA.1

     ResA.5  Iterate through ResA.8 for each record of a label mapping
             needed for FEC for Peer but no-label-resources.  (See Note
             1.)

     ResA.6  Execute procedure Send_Label (Peer, FEC, Attributes).  If
             the procedure fails, terminate iteration.

     ResA.7  Clear record of FEC label mapping needed for peer but no-
             label-resources.

     ResA.8  End iteration from ResA.5

     ResA.9  DONE.

  Notes:

     1. Iteration ResA.5 through ResA.8 handles the situation where the
        LSR is using Downstream Unsolicited label distribution and was
        previously unable to allocate a label for a FEC.

A.1.14. LSR decides to no longer label switch a FEC

  Summary:

     An LSR may unilaterally decide to no longer label switch a FEC for
     an LDP peer.  An LSR that does so must send a label withdraw message
     for the FEC to the peer.

  Context:

     -  Peer.  The peer.

     -  FEC.  The FEC.

     -  PrevAdvLabel.  The label for FEC previously advertised to Peer.

  Algorithm:

     NoLS.1  Execute procedure Send_Label_Withdraw (Peer, FEC,
             PrevAdvLabel).  (See Note 1.)

     NoLS.2  DONE.







Andersson, et al.           Standards Track                   [Page 120]

RFC 3036                   LDP Specification                January 2001


  Notes:

     1. The LSR may remove the label from forwarding/switching use as
        part of this event or as part of processing the label release
        from the peer in response to the label withdraw.

A.1.15. Timeout of deferred label request

  Summary:

     Label requests are deferred in response to No Route and Loop
     Detected notifications.  When a deferred FEC label request for a
     peer times out, the LSR sends the label request.

  Context:

     -  LSR.  The LSR handling the event.

     -  FEC.  The FEC associated with the timeout event.

     -  Peer.  The LDP peer associated with the timeout event.

     -  Attributes.  Attributes stored with deferred Label Request
        message.

  Algorithm:

     TO.1    Retrieve the record of the deferred label request.

     TO.2    Is Peer the next hop for FEC?
             If not, goto TO.4.

     TO.3    Execute procedure Send_Label_Request (Peer, FEC).

     TO.4    DONE.

A.2. Common Label Distribution Procedures

     This section specifies utility procedures used by the algorithms
     that handle label distribution events.

A.2.1. Send_Label

  Summary:

     The Send_Label procedure allocates a label for a FEC for an LDP
     peer, if possible, and sends a label mapping for the FEC to the
     peer.  If the LSR is unable to allocate the label and if it has a



Andersson, et al.           Standards Track                   [Page 121]

RFC 3036                   LDP Specification                January 2001


     pending label request from the peer, it sends the LDP peer a No
     Label Resources notification.

  Parameters:

     -  Peer.  The LDP peer to which the label mapping is to be sent.

     -  FEC.  The FEC for which a label mapping is to be sent.

     -  Attributes.  The attributes to be included with the label
        mapping.

  Additional Context:

     -  LSR.  The LSR executing the procedure.

     -  Label.  The label allocated and sent to Peer.

  Algorithm:

     SL.1   Does LSR have a label to allocate?
            If not, goto SL.9.

     SL.2   Allocate Label and bind it to the FEC.

     SL.3   Install Label for forwarding/switching use.

     SL.4   Execute procedure Send_Message (Peer, Label Mapping, FEC,
            Label, Attributes).

     SL.5   Record label mapping for FEC with Label and Attributes has
            been sent to Peer.

     SL.6   Does LSR have a record of a FEC label request from Peer
            marked as pending?
            If not, goto SL.8.

     SL.7   Delete record of pending label request for FEC from Peer.

     SL.8   Return success.

     SL.9   Does LSR have a label request for FEC from Peer marked as
            pending?
            If not, goto SL.13.

     SL.10  Execute procedure Send_Notification (Peer, No Label
            Resources).




Andersson, et al.           Standards Track                   [Page 122]

RFC 3036                   LDP Specification                January 2001


     SL.11  Delete record of pending label request for FEC from Peer.

     SL.12  Record No Label Resources notification has been sent to
            Peer.
            Goto SL.14.

     SL.13  Record label mapping needed for FEC and Attributes for
            Peer, but no-label-resources.  (See Note 1.)

     SL.14  Return failure.

  Notes:

     1. SL.13 handles the case of Downstream Unsolicited label
        distribution when the LSR is unable to allocate a label for a
        FEC to send to a Peer.

A.2.2. Send_Label_Request

  Summary:

     An LSR uses the Send_Label_Request procedure to send a request for
     a label for a FEC to an LDP peer if currently permitted to do so.

  Parameters:

     -  Peer.  The LDP peer to which the label request is to be sent.

     -  FEC.  The FEC for which a label request is to be sent.

     -  Attributes.  Attributes to be included in the label request.
        E.g., Hop Count, Path Vector.

  Additional Context:

     -  LSR.  The LSR executing the procedure.

  Algorithm:

     SLRq.1  Has a label request for FEC previously been sent to Peer
             and is it marked as outstanding?
             If so, Return success.  (See Note 1.)

     SLRq.2  Is status record indicating it is OK to send label
             requests to Peer set?
             If not, goto SLRq.6





Andersson, et al.           Standards Track                   [Page 123]

RFC 3036                   LDP Specification                January 2001


     SLRq.3  Execute procedure Send_Message (Peer, Label Request, FEC,
             Attributes).

     SLRq.4  Record label request for FEC has been sent to Peer and
             mark it as outstanding.

     SLRq.5  Return success.

     SLRq.6  Postpone the label request by recording label mapping for
             FEC and Attributes from Peer is needed but that no label
             resources are available.

     SLRq.7  Return failure.

  Notes:

     1. If the LSR is a non-merging LSR it must distinguish between
        attempts to send label requests for a FEC triggered by
        different upstream LDP peers from duplicate requests.  This
        procedure will not send a duplicate label request.

A.2.3. Send_Label_Withdraw

  Summary:

     An LSR uses the Send_Label_Withdraw procedure to withdraw a label
     for a FEC from an LDP peer.  To do this the LSR sends a Label
     Withdraw message to the peer.

  Parameters:

     -  Peer.  The LDP peer to which the label withdraw is to be sent.

     -  FEC.  The FEC for which a label is being withdrawn.

     -  Label.  The label being withdrawn

  Additional Context:

     -  LSR.  The LSR executing the procedure.

  Algorithm:

     SWd.1  Execute procedure Send_Message (Peer, Label Withdraw, FEC,
            Label)

     SWd.2  Record label withdraw for FEC has been sent to Peer and
            mark it as outstanding.



Andersson, et al.           Standards Track                   [Page 124]

RFC 3036                   LDP Specification                January 2001


A.2.4. Send_Notification

  Summary:

     An LSR uses the Send_Notification procedure to send an LDP peer a
     notification message.

  Parameters:

     -  Peer.  The LDP peer to which the Notification message is to be
        sent.

     -  Status.  Status code to be included in the Notification
        message.

  Additional Context:

     None.

  Algorithm:

     SNt.1  Execute procedure Send_Message (Peer, Notification, Status)

A.2.5. Send_Message

  Summary:

     An LSR uses the Send_Message procedure to send an LDP peer an LDP
     message.

  Parameters:

     -  Peer.  The LDP peer to which the message is to be sent.

     -  Message Type.  The type of message to be sent.

     -  Additional message contents . . .  .

  Additional Context:

     None.

  Algorithm:

     This procedure is the means by which an LSR sends an LDP message
     of the specified type to the specified LDP peer.





Andersson, et al.           Standards Track                   [Page 125]

RFC 3036                   LDP Specification                January 2001


A.2.6. Check_Received_Attributes

  Summary:

     Check the attributes received in a Label Mapping or Label Request
     message.  If the attributes include a Hop Count or Path Vector,
     perform a loop detection check.  If a loop is detected, cause a
     Loop Detected Notification message to be sent to MsgSource.

  Parameters:

     -  MsgSource.  The LDP peer that sent the message.

     -  MsgType.  The type of message received.

     -  RAttributes.  The attributes in the message.

  Additional Context:

     -  LSR Id.  The unique LSR Id of this LSR.

     -  Hop Count.  The Hop Count, if any, in the received attributes.

     -  Path Vector.  The Path Vector, if any in the received
        attributes.

  Algorithm:

     CRa.1   Do RAttributes include Hop Count?
             If not, goto CRa.5.

     CRa.2   Does Hop Count exceed Max allowable hop count?
             If so, goto CRa.6.

     CRa.3   Do RAttributes include Path Vector?
             If not, goto CRa.5.

     CRa.4   Does Path Vector Include LSR Id? OR
             Does length of Path Vector exceed Max allowable length?
             If so, goto CRa.6

     CRa.5   Return No Loop Detected.

     CRa.6   Is MsgType LabelMapping?
             If so, goto CRa.8.  (See Note 1.)

     CRa.7   Execute procedure Send_Notification (MsgSource, Loop
             Detected)



Andersson, et al.           Standards Track                   [Page 126]

RFC 3036                   LDP Specification                January 2001


     CRa.8   Return Loop Detected.

     CRa.9   DONE

  Notes:

     1. When the attributes being checked were received in a Label
        Mapping message, the LSR sends the Loop Detected notification
        in a Status Code TLV in a Label Release message.  (See Section
        "Receive Label Mapping").

A.2.7. Prepare_Label_Request_Attributes

  Summary:

     This procedure is used whenever a Label Request is to be sent to a
     Peer to compute the Hop Count and Path Vector, if any, to include
     in the message.

  Parameters:

     -  Peer.  The LDP peer to which the message is to be sent.

     -  FEC.  The FEC for which a label request is to be sent.

     -  RAttributes.  The attributes this LSR associates with the LSP
        for FEC.

     -  SAttributes.  The attributes to be included in the Label
        Request message.

  Additional Context:

     -  LSR Id.  The unique LSR Id of this LSR.

  Algorithm:

     PRqA.1  Is Hop Count required for this Peer (see Note 1.) ? OR
             Do RAttributes include a Hop Count? OR
             Is Loop Detection configured on LSR?
             If not, goto PRqA.14.

     PRqA.2  Is LSR ingress for FEC?
             If not, goto PRqA.6.

     PRqA.3  Include Hop Count of 1 in SAttributes.





Andersson, et al.           Standards Track                   [Page 127]

RFC 3036                   LDP Specification                January 2001


     PRqA.4  Is Loop Detection configured on LSR?
             If not, goto PRqA.14.

     PRqA.5  Is LSR merge-capable?
             If so, goto PRqA.14.
             If not, goto PRqA.13.

     PRqA.6  Do RAttributes include a Hop Count?
             If not, goto PRqA.8.

     PRqA.7  Increment RAttributes Hop Count and copy the resulting Hop
             Count to SAttributes.  (See Note 2.)
             Goto PRqA.9.

     PRqA.8  Include Hop Count of unknown (0) in SAttributes.

     PRqA.9  Is Loop Detection configured on LSR?
             If not, goto PRqA.14.

     PRqA.10 Do RAttributes have a Path Vector?
             If so, goto PRqA.12.

     PRqA.11 Is LSR merge-capable?
             If so, goto PRqA.14.
             If not, goto PRqA.13.

     PRqA.12 Add LSR Id to beginning of Path Vector from RAttributes
             and copy the resulting Path Vector into SAttributes.
             Goto PRqA.14.

     PRqA.13 Include Path Vector of length 1 containing LSR Id in
             SAttributes.

     PRqA.14 DONE.

  Notes:

     1. The link with Peer may require that Hop Count be included in
        Label Request messages; for example, see [RFC3035] and
        [RFC3034].

     2. For hop count arithmetic, unknown + 1 = unknown.









Andersson, et al.           Standards Track                   [Page 128]

RFC 3036                   LDP Specification                January 2001


A.2.8.  Prepare_Label_Mapping_Attributes

  Summary:

     This procedure is used whenever a Label Mapping is to be sent to a
     Peer to compute the Hop Count and Path Vector, if any, to include
     in the message.

  Parameters:

     -  Peer.  The LDP peer to which the message is to be sent.

     -  FEC.  The FEC for which a label request is to be sent.

     -  RAttributes.  The attributes this LSR associates with the LSP
        for FEC.

     -  SAttributes.  The attributes to be included in the Label
        Mapping message.

     -  IsPropagating.  The LSR is sending the Label Mapping message to
        propagate one received from the FEC next hop.

     -  PrevHopCount.  The Hop Count, if any, this LSR associates with
        the LSP for the FEC.

  Additional Context:

     -  LSR Id.  The unique LSR Id of this LSR.

  Algorithm:

     PMpA.1  Is Hop Count required for this Peer (see Note 1.) ? OR
             Do RAttributes include a Hop Count? OR
             Is Loop Detection configured on LSR?
             If not, goto PMpA.21.

     PMpA.2  Is LSR egress for FEC?
             If not, goto PMpA.4.

     PMpA.3  Include Hop Count of 1 in SAttributes.  Goto PMpA.21.

     PMpA.4  Do RAttributes have a Hop Count?
             If not, goto PMpA.8.







Andersson, et al.           Standards Track                   [Page 129]

RFC 3036                   LDP Specification                January 2001


     PMpA.5  Is LSR member of edge set for an LSR domain whose LSRs do
             not perform TTL decrement AND
             Is Peer in that domain (See Note 2.).
             If not, goto PMpA.7.

     PMpA.6  Include Hop Count of 1 in SAttributes.  Goto PMpA.9.

     PMpA.7  Increment RAttributes Hop Count and copy the resulting
             Hop Count to SAttributes.  See Note 2.  Goto PMpA.9.

     PMpA.8  Include Hop Count of unknown (0) in SAttributes.

     PMpA.9  Is Loop Detection configured on LSR?
             If not, goto PMpA.21.

     PMpA.10 Do RAttributes have a Path Vector?
             If so, goto PMpA.19.

     PMpA.11 Is LSR propagating a received Label Mapping?
             If not, goto PMpA.20.

     PMpA.12 Does LSR support merging?
             If not, goto PMpA.14.

     PMpA.13 Has LSR previously sent a Label Mapping for FEC to Peer?
             If not, goto PMpA.20.

     PMpA.14 Do RAttributes include a Hop Count?
             If not, goto PMpA.21.

     PMpA.15 Is Hop Count in Rattributes unknown(0)?
             If so, goto PMpA.20.

     PMpA.16 Has LSR previously sent a Label Mapping for FEC to Peer?
             If not goto PMpA.21.

     PMpA.17 Is Hop Count in RAttributes different from PrevHopCount ?
             If not goto PMpA.21.

     PMpA.18 Is the Hop Count in RAttributes > PrevHopCount? OR
             Is PrevHopCount unknown(0)
             If not, goto PMpA.21.

     PMpA.19 Add LSR Id to beginning of Path Vector from RAttributes
             and copy the resulting Path Vector into SAttributes.
             Goto PMpA.21.





Andersson, et al.           Standards Track                   [Page 130]

RFC 3036                   LDP Specification                January 2001


     PMpA.20 Include Path Vector of length 1 containing LSR Id in
             SAttributes.

     PMpA.21 DONE.

  Notes:

     1. The link with Peer may require that Hop Count be included in
        Label Mapping messages; for example, see [RFC3035] and
        [RFC3034].

     2. If the LSR is at the edge of a cloud of LSRs that do not
        perform TTL-decrement and it is propagating the Label Mapping
        message upstream into the cloud, it sets the Hop Count to 1 so
        that Hop Count across the cloud is calculated properly.  This
        ensures proper TTL management for packets forwarded across the
        part of the LSP that passes through the cloud.

     3. For hop count arithmetic, unknown + 1 = unknown.
































Andersson, et al.           Standards Track                   [Page 131]

RFC 3036                   LDP Specification                January 2001


Full Copyright Statement

  Copyright (C) The Internet Society (2001).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Andersson, et al.           Standards Track                   [Page 132]