Network Working Group                                        N. Brownlee
Request for Comments: 2924                    The University of Auckland
Category: Informational                                        A. Blount
                                                        MetraTech Corp.
                                                         September 2000


               Accounting Attributes and Record Formats

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

  This document summarises Internet Engineering Task Force (IETF) and
  International Telecommunication Union (ITU-T) documents related to
  Accounting.  A classification scheme for the Accounting Attributes in
  the summarised documents is presented.  Exchange formats for
  Accounting data records are discussed, as are advantages and
  disadvantages of integrated versus separate record formats and
  transport protocols.  This document discusses service definition
  independence, extensibility, and versioning.  Compound service
  definition capabilities are described.

Table of Contents

  1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . .   2
  2. Terminology and Notation . . . . . . . . . . . . . . . . . . .   3
  3. Architecture Model . . . . . . . . . . . . . . . . . . . . . .   4
  4. IETF Documents . . . . . . . . . . . . . . . . . . . . . . . .   4
  4.1. RADIUS . . . . . . . . . . . . . . . . . . . . . . . . . . .   4
  4.1.1. RADIUS Attributes  . . . . . . . . . . . . . . . . . . . .   5
  4.2. DIAMETER . . . . . . . . . . . . . . . . . . . . . . . . . .   6
  4.2.1. DIAMETER Attributes  . . . . . . . . . . . . . . . . . . .   7
  4.3. ROAMOPS  . . . . . . . . . . . . . . . . . . . . . . . . . .   8
  4.4. RTFM . . . . . . . . . . . . . . . . . . . . . . . . . . . .   8
  4.4.1. RTFM Attributes  . . . . . . . . . . . . . . . . . . . . .   9
  4.5. ISDN MIB . . . . . . . . . . . . . . . . . . . . . . . . . .  10
  4.5.1. ISDN Attributes  . . . . . . . . . . . . . . . . . . . . .  10
  4.6. AToMMIB  . . . . . . . . . . . . . . . . . . . . . . . . . .  11
  4.6.1. AToMMIB Attributes . . . . . . . . . . . . . . . . . . . .  11



Brownlee & Blount            Informational                      [Page 1]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  4.7. QoS: RSVP and DIFFSERV . . . . . . . . . . . . . . . . . . .  12
  4.7.1. QoS: RSVP and DIFFSERV Attributes  . . . . . . . . . . . .  13
  5. ITU-T Documents  . . . . . . . . . . . . . . . . . . . . . . .  13
  5.1. Q.825: Call Detail Recording . . . . . . . . . . . . . . . .  13
  5.2. Q.825 Attributes . . . . . . . . . . . . . . . . . . . . . .  14
  6. Other Documents  . . . . . . . . . . . . . . . . . . . . . . .  18
  6.1. TIPHON: ETSI TS 101 321  . . . . . . . . . . . . . . . . . .  18
  6.2. MSIX . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
  7. Accounting File and Record Formats . . . . . . . . . . . . . .  19
  7.1. ASN.1 Records  . . . . . . . . . . . . . . . . . . . . . . .  19
  7.1.1. RTFM and AToMMIB . . . . . . . . . . . . . . . . . . . . .  19
  7.1.2. Q.825  . . . . . . . . . . . . . . . . . . . . . . . . . .  20
  7.2. Binary Records . . . . . . . . . . . . . . . . . . . . . . .  20
  7.2.1. RADIUS . . . . . . . . . . . . . . . . . . . . . . . . . .  20
  7.2.2. DIAMETER . . . . . . . . . . . . . . . . . . . . . . . . .  20
  7.3. Text Records . . . . . . . . . . . . . . . . . . . . . . . .  21
  7.3.1. ROAMOPS  . . . . . . . . . . . . . . . . . . . . . . . . .  21
  8. AAA Requirements . . . . . . . . . . . . . . . . . . . . . . .  22
  8.1. A Well-defined Set of Attributes . . . . . . . . . . . . . .  22
  8.2. A Simple Interchange Format  . . . . . . . . . . . . . . . .  23
  9. Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
  9.1. Record Format vs. Protocol . . . . . . . . . . . . . . . . .  24
  9.2. Tagged, Typed Data . . . . . . . . . . . . . . . . . . . . .  24
  9.2.1. Standard Type Definitions  . . . . . . . . . . . . . . . .  25
  9.3. Transaction Identifiers  . . . . . . . . . . . . . . . . . .  26
  9.4. Service Definitions  . . . . . . . . . . . . . . . . . . . .  26
  9.4.1. Service Independence . . . . . . . . . . . . . . . . . . .  27
  9.4.2. Versioned Service Definitions  . . . . . . . . . . . . . .  29
  9.4.3. Relationships Among Usage Events . . . . . . . . . . . . .  29
  9.4.4. Service Namespace Management . . . . . . . . . . . . . . .  30
  10. Encodings . . . . . . . . . . . . . . . . . . . . . . . . . .  30
  11. Security Considerations . . . . . . . . . . . . . . . . . . .  31
  12. References  . . . . . . . . . . . . . . . . . . . . . . . . .  31
  13. Authors' Addresses  . . . . . . . . . . . . . . . . . . . . .  35
  14. Full Copyright Statement  . . . . . . . . . . . . . . . . . .  36

1.  Introduction

  This document summarises IETF and ITU-T documents related to
  Accounting.  For those documents which describe Accounting Attributes
  (i.e. quantities which can be measured and reported), an Attribute
  Summary is given.  Although several of the documents describe
  Attributes which are similar, no attempt is made to identify those
  which are the same in several documents.  An extensible
  classification scheme for AAA Accounting Attributes is proposed; it
  is a superset of the attributes in all the documents summarised.





Brownlee & Blount            Informational                      [Page 2]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  Many existing accounting record formats and protocols [RAD-ACT]
  [TIPHON] are of limited use due to their single-service descriptive
  facilities and lack of extensibility.  While some record formats and
  protocols support extensible attributes [RAD-ACT], none provide
  identification, type checking, or versioning support for defined
  groupings of attributes (service definitions).  This document makes a
  case for well-defined services.

  Advantages and disadvantages of integrated versus separate record
  formats and transport protocols are discussed.  This document
  discusses service definition independence, extensibility, and
  versioning.  Compound service definition capabilities are described.

2.  Terminology and Notation

  The following terms are used throughout the document.

  Accounting Server
     A network element that accepts Usage Events from Service Elements.
     It acts as an interface to back-end rating, billing, and
     operations support systems.

  Attribute-Value Pair (AVP)
     A representation for a Usage Attribute consisting of the name of
     the Attribute and a value.

  Property
     A component of a Usage Event.  A Usage Event describing a phone
     call, for instance, might have a "duration" Property.

  Service
     A type of task that is performed by a Service Element for a
     Service Consumer.

  Service Consumer
     Client of a Service Element.  End-user of a network service.

  Service Definition
     A specification for a particular service.  It is composed of a
     name or other identifier, versioning information, and a collection
     of Properties.

  Service Element
     A network element that provides a service to Service Consumers.
     Examples include RAS devices, voice and fax gateways, conference
     bridges.





Brownlee & Blount            Informational                      [Page 3]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  Usage Attribute
     A component of a Usage Event that describes some metric of service
     usage.

  Usage Event
     The description of an instance of service usage.

3.  Architecture Model

  Service Elements provide Services to Service Consumers.  Before,
  while, and/or after services are provided, the Service Element
  reports Usage Events to an Accounting Server.  Alternately, the
  Accounting Server may query the Service Element for Usage Events.
  Usage events are sent singly or in bulk.

     +------------+       +-----------+              +------------+
     |  Service   |<----->|  Service  | Usage Events | Accounting |
     |  Consumer  |   +-->|  Element  |------------->|   Server   |
     +------------+   |   +-----------+              +------------+
                      |
     +------------+   |
     |  Service   |<--+
     |  Consumer  |
     +------------+

  Accounting Servers may forward Usage Events to other systems,
  possibly in other administrative domains.  These transfers are not
  addressed by this document.

4.  IETF Documents

  In March 1999 there were at least 19 Internet Drafts and 8 RFCs
  concerned with Accounting.  These are summarised (by working group)
  in the following sections.

4.1.  RADIUS

  The RADIUS protocol [RAD-PROT] carries authentication, authorization
  and configuration information between a Network Access Server (NAS)
  and an authentication server.  Requests and responses carried by the
  protocol are expressed in terms of RADIUS attributes such as User-
  Name, Service-Type, and so on.  These attributes provide the
  information needed by a RADIUS server to authenticate users and to
  establish authorized network service for them.

  The protocol was extended to carry accounting information between a
  NAS and a shared accounting server.  This was achieved by defining a
  set of RADIUS accounting attributes [RAD-ACT].



Brownlee & Blount            Informational                      [Page 4]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  RADIUS packets have a short header containing the RADIUS packet type
  and authenticator (sixteen octets) and length, followed by a sequence
  of (Type, Length, Value) triples, one for each attribute.

  RADIUS is very widely used, and a number of significant new
  extensions to it have been proposed.  For example [RAD-EXT] discusses
  extensions to implement the Extensible Authentication Protocol (EAP)
  and the Apple Remote Access Protocol (ARAP).  [RAD-TACC] discusses
  extensions to permit RADIUS to interwork effectively with tunnels
  using protocols such as PPTP and L2TP.

4.1.1.  RADIUS Attributes

  Each RADIUS attribute is identified by an 8-bit number, referred to
  as the RADIUS Type field.  Up-to-date values of this field are
  specified in the most recent Assigned Numbers RFC [ASG-NBR], but the
  current list is as follows:

  RADIUS Attributes [RAD-PROT]             36  Login-LAT-Group
                                           37  Framed-AppleTalk-Link
      1  User-Name                         38  Framed-AppleTalk-Network
      2  User-Password                     39  Framed-AppleTalk-Zone
      3  CHAP-Password
      4  NAS-IP-Address                    60  CHAP-Challenge
      5  NAS-Port                          61  NAS-Port-Type
      6  Service-Type                      62  Port-Limit
      7  Framed-Protocol                   63  Login-LAT-Port
      8  Framed-IP-Address
      9  Framed-IP-Netmask              RADIUS Accounting Attributes
     10  Framed-Routing                 [RAD-ACT]
     11  Filter-Id
     12  Framed-MTU                        40  Acct-Status-Type
     13  Framed-Compression                41  Acct-Delay-Time
     14  Login-IP-Host                     42  Acct-Input-Octets
     15  Login-Service                     43  Acct-Output-Octets
     16  Login-TCP-Port                    44  Acct-Session-Id
     17  (unassigned)                      45  Acct-Authentic
     18  Reply-Message                     46  Acct-Session-Time
     19  Callback-Number                   47  Acct-Input-Packets
     20  Callback-Id                       48  Acct-Output-Packets
     21  (unassigned)                      49  Acct-Terminate-Cause
     22  Framed-Route                      50  Acct-Multi-Session-Id
     23  Framed-IPX-Network                51  Acct-Link-Count
     24  State
     25  Class                          RADIUS Extension Attributes
     26  Vendor-Specific                [RAD-EXT]
     27  Session-Timeout
     28  Idle-Timeout                      52  Acct-Input-Gigawords



Brownlee & Blount            Informational                      [Page 5]

RFC 2924        Accounting Attributes and Record Formats  September 2000


     29  Termination-Action                53  Acct-Output-Gigawords
     30  Called-Station-Id                 54  Unused
     31  Calling-Station-Id                55  Event-Timestamp
     32  NAS-Identifier
     33  Proxy-State                       70  ARAP-Password
     34  Login-LAT-Service                 71  ARAP-Features
     35  Login-LAT-Node                    72  ARAP-Zone-Access
     73  ARAP-Security
     74  ARAP-Security-Data
     75  Password-Retry
     76  Prompt
     77  Connect-Info
     78  Configuration-Token
     79  EAP-Message
     80  Message-Authenticator

     84  ARAP-Challenge-Response
     85  Acct-Interim-Interval
     87  NAS-Port-Id
     88  Framed-Pool

  RADIUS Tunneling Attributes
  [RAD-TACC]

     64  Tunnel-Type
     65  Tunnel-Medium-Type
     66  Tunnel-Client-Endpoint
     67  Tunnel-Server-Endpoint
     68  Acct-Tunnel-Connection
     69  Tunnel-Password

     81  Tunnel-Private-Group-ID
     82  Tunnel-Assignment-ID
     83  Tunnel-Preference

     90  Tunnel-Client-Auth-ID
     91  Tunnel-Server-Auth-ID

4.2.  DIAMETER

  The DIAMETER framework [DIAM-FRAM] defines a policy protocol used by
  clients to perform Policy, AAA and Resource Control.  This allows a
  single server to handle policies for many services.  The DIAMETER
  protocol consists of a header followed by objects.  Each object is
  encapsulated in a header known as an Attribute-Value Pair (AVP).






Brownlee & Blount            Informational                      [Page 6]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  DIAMETER defines a base protocol that specifies the header formats,
  security extensions and requirements as well as a small number of
  mandatory commands and AVPs.  A new service can extend DIAMETER by
  extending the base protocol to support new functionality.

  One key differentiator with DIAMETER is its inherent support for
  Inter-Server communication.  Although this can be achieved in a
  variety of ways, the most useful feature is the ability to "proxy"
  messages across a set of DIAMETER servers (known as a proxy chain).

  The DIAMETER Accounting Extension document [DIAM-ACT] extends
  DIAMETER by defining a protocol for securely transferring accounting
  records over the DIAMETER base protocol.  This includes the case
  where accounting records may be passed through one or more
  intermediate proxies, in accordance with the 'referral broker' model.

  The DIAMETER accounting protocol [DIAM-ACT] defines DIAMETER records
  for transferring an ADIF record (see below).  It introduces five new
  attributes (480..485) which specify the way in which accounting
  information is to be delivered between DIAMETER servers.

4.2.1.  DIAMETER Attributes

  DIAMETER AVPs are identified by a 16-bit number defined in [DIAM-
  AUTH].  Since most of the AVPs found in that document were copied
  from the RADIUS protocol [RAD-PROT], it is possible to have both
  RADIUS and DIAMETER servers read the same dictionary and users files.

  The backward compatibility that DIAMETER offers is intended to
  facilitate deployment.  To this end, DIAMETER inherits the RADIUS
  attributes, and adds only a few of its own.

  In the list below attribute numbers which are used for RADIUS
  attributes but not for DIAMETER are indicated with a star (*).
  RADIUS attributes used by DIAMETER are not listed again here.

  The DIAMETER attributes are:

      4      (unassigned, *)
     17      (unassigned)
     21      (unassigned)
     24      (unassigned, *)
     25      (unassigned, *)
     27      (unassigned, *)
     32      (unassigned, *)
     33      (unassigned, *)
    280      Filter-Rule
    281      Framed-Password-Policy



Brownlee & Blount            Informational                      [Page 7]

RFC 2924        Accounting Attributes and Record Formats  September 2000


    480      Accounting-Record-Type
    481      ADIF-Record
    482      Accounting-Interim-Interval
    483      Accounting-Delivery-Max-Batch
    484      Accounting-Delivery-Max-Delay
    485      Accounting-Record-Number

    600      SIP-Sequence
    601      SIP-Call-ID
    602      SIP-To
    603      SIP-From

4.3.  ROAMOPS

  [ROAM-IMPL] reviews the design and functionality of existing roaming
  implementations.  "Roaming capability" may be loosely defined as the
  ability to use any one of multiple Internet service providers (ISPs),
  while maintaining a formal customer-vendor relationship with only
  one.  One requirement for successful roaming is the provision of
  effective accounting.

  [ROAM-ADIF] proposes a standard accounting record format, the
  Accounting Data Interchange Format (ADIF), which is designed to
  compactly represent accounting data in a protocol-independent manner.
  As a result, ADIF may be used to represent accounting data from any
  protocol using attribute value pairs (AVPs) or variable bindings.

  ADIF does not define accounting attributes of its own.  Instead, it
  gives examples of accounting records using the RADIUS accounting
  attributes.

4.4.  RTFM

  The RTFM Architecture [RTFM-ARC] provides a general method of
  measuring network traffic flows between "metered traffic groups".
  Each RTFM flow has a set of "address" attributes, which define the
  traffic groups at each of the flow's end-points.

  As well as address attributes, each flow has traffic-related
  attributes, e.g. times of first and last packets, counts for packets
  and bytes in each direction.

  RTFM flow measurements are made by RTFM meters [RTFM-MIB] and
  collected by RTFM meter readers using SNMP.  The MIB uses a
  "DataPackage" convention, which specifies the attribute values to be
  read from a flow table row.  The meter returns the values for each





Brownlee & Blount            Informational                      [Page 8]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  required attribute within a BER-encoded sequence.  This means there
  is only one object identifier for the whole sequence, greatly
  reducing the number of bytes required to retrieve the data.

4.4.1.  RTFM Attributes

  RTFM attributes are identified by a 16-bit attribute number.

  The RTFM Attributes are:

   0  Null
   1  Flow Subscript                Integer    Flow table info

   4  Source Interface              Integer    Source Address
   5  Source Adjacent Type          Integer
   6  Source Adjacent Address       String
   7  Source Adjacent Mask          String
   8  Source Peer Type              Integer
   9  Source Peer Address           String
  10  Source Peer Mask              String
  11  Source Trans Type             Integer
  12  Source Trans Address          String
  13  Source Trans Mask             String

  14  Destination Interface         Integer    Destination Address
  15  Destination Adjacent Type     Integer
  16  Destination Adjacent Address  String
  17  Destination AdjacentMask      String
  18  Destination PeerType          Integer
  19  Destination PeerAddress       String
  20  Destination PeerMask          String
  21  Destination TransType         Integer
  22  Destination TransAddress      String
  23  Destination TransMask         String

  26  Rule Set Number               Integer    Meter attribute

  27  Forward Bytes                 Integer    Source-to-Dest counters
  28  Forward Packets               Integer
  29  Reverse Bytes                 Integer    Dest-to-Source counters
  30  Reverse Packets               Integer
  31  First Time                    Timestamp  Activity times
  32  Last Active Time              Timestamp
  33  Source Subscriber ID          String     Session attributes
  34  Destination Subscriber ID     String
  35  Session ID                    String





Brownlee & Blount            Informational                      [Page 9]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  36  Source Class                  Integer    "Computed" attributes
  37  Destination Class             Integer
  38  Flow Class                    Integer
  39  Source Kind                   Integer
  40  Destination Kind              Integer
  41  Flow Kind                     Integer

  50  MatchingStoD                  Integer    PME variable

  51  v1                            Integer    Meter Variables
  52  v2                            Integer
  53  v3                            Integer
  54  v4                            Integer
  55  v5                            Integer

  65-127 "Extended" attributes
            (to be defined by the RTFM working group)

4.5.  ISDN MIB

  The ISDN MIB [ISDN-MIB] defines a minimal set of managed objects for
  SNMP-based management of ISDN terminal interfaces.  It does not
  explicitly define anything related to accounting, however it does
  define isdnBearerChargedUnits as

     The number of charged units for the current or last connection.
     For incoming calls or if charging information is not supplied by
     the switch, the value of this object is zero.

  This allows for an ISDN switch to convert its traffic flow data (such
  as Call Connect Time) into charging data.

4.5.1.  ISDN Attributes

  The relevant object in the MIB is the ISDN bearer table, which has
  entries in the following form:

  IsdnBearerEntry ::=
      SEQUENCE {
          isdnBearerChannelType           INTEGER,
          isdnBearerOperStatus            INTEGER,
          isdnBearerChannelNumber         INTEGER,
          isdnBearerPeerAddress           DisplayString,
          isdnBearerPeerSubAddress        DisplayString,
          isdnBearerCallOrigin            INTEGER,
          isdnBearerInfoType              INTEGER,
          isdnBearerMultirate             TruthValue,
          isdnBearerCallSetupTime         TimeStamp,



Brownlee & Blount            Informational                     [Page 10]

RFC 2924        Accounting Attributes and Record Formats  September 2000


          isdnBearerCallConnectTime       TimeStamp,
          isdnBearerChargedUnits          Gauge32
          }

4.6.  AToMMIB

  The "ATM Accounting Information MIB" document [ATM-ACT] describes a
  large set of accounting objects for ATM connections.  An
  administrator may select objects from this set using a selector of
  the form (subtree, list) where "subtree" specifies an object
  identifier from the AToMMIB.  For each subtree there is a table
  holding values for each ATM connection.  The required connections are
  indicated by setting bits in "list", which is an octet string.  For
  example, the set containing the number of received cells for the
  first eight ATM connections would be selected by
  (atmAcctngReceivedCells, 0xFF).

  The Connection-Oriented Accounting MIB document [ATM-COLL] defines a
  MIB providing managed objects used for controlling the collection and
  storage of accounting information for connection-oriented networks
  such as ATM.  The accounting data is collected into files for later
  retrieval via a file transfer protocol.  Records within an accounting
  file are stored as BER strings [ASN1, BER].

4.6.1.  AToMMIB Attributes

  Accounting data objects within the AToMMBIB are identified by the
  last integer in their object identifiers.

  The ATM accounting data objects are:

     1   atmAcctngConnectionType
     2   atmAcctngCastType
     3   atmAcctngIfName
     4   atmAcctngIfAlias
     5   atmAcctngVpi
     6   atmAcctngVci
     7   atmAcctngCallingParty
     8   atmAcctngCalledParty
     9   atmAcctngCallReference
    10   atmAcctngStartTime
    11   atmAcctngCollectionTime
    12   atmAcctngCollectMode
    13   atmAcctngReleaseCause
    14   atmAcctngServiceCategory
    15   atmAcctngTransmittedCells
    16   atmAcctngTransmittedClp0Cells
    17   atmAcctngReceivedCells



Brownlee & Blount            Informational                     [Page 11]

RFC 2924        Accounting Attributes and Record Formats  September 2000


    18   atmAcctngReceivedClp0Cells
    19   atmAcctngTransmitTrafficDescriptorType
    20   atmAcctngTransmitTrafficDescriptorParam1
    21   atmAcctngTransmitTrafficDescriptorParam2
    22   atmAcctngTransmitTrafficDescriptorParam3
    23   atmAcctngTransmitTrafficDescriptorParam4
    24   atmAcctngTransmitTrafficDescriptorParam5
    25   atmAcctngReceiveTrafficDescriptorType
    26   atmAcctngReceiveTrafficDescriptorParam1
    27   atmAcctngReceiveTrafficDescriptorParam2
    28   atmAcctngReceiveTrafficDescriptorParam3
    29   atmAcctngReceiveTrafficDescriptorParam4
    30   atmAcctngReceiveTrafficDescriptorParam5
    31   atmAcctngCallingPartySubAddress
    32   atmAcctngCalledPartySubAddress
    33   atmAcctngRecordCrc16

4.7.  QoS: RSVP and DIFFSERV

  As we move towards providing more than simple "best effort"
  connectivity, there has been a tremendous surge of interest in (and
  work on) protocols to provide managed Quality of Service for Internet
  sessions.  This is of particular interest for the provision of
  "Integrated Services", i.e. the transport of audio, video, real-time,
  and classical data traffic within a single network infrastructure.

  Two approaches to this have emerged so far:

  -  the Integrated Services architecture (intserv) [IIS-ARC], with its
     accompanying signaling protocol, RSVP [RSVP-ARC], and RSVP's
     Common Open Policy Service protocol, COPS [RAP-COPS]

  -  the Differentiated Services architecture (diffserv) [DSRV-ARC]

  RSVP is a signaling protocol that applications may use to request
  resources from the network.  The network responds by explicitly
  admitting or rejecting RSVP requests.  Certain applications that have
  quantifiable resource requirements express these requirements using
  intserv parameters [IIS-SPEC].

  Diffserv networks classify packets into one of a small number of
  aggregated flows or "classes", based on the diffserv codepoint (DSCP)
  in the packet's IP header.  At each diffserv router, packets are
  subjected to a "per-hop behavior" (PHB), which is invoked by the
  DSCP.  Since RSVP is purely a requirements signalling protocol it can
  also be used to request connections from a diffserv network [RS-DS-
  OP].




Brownlee & Blount            Informational                     [Page 12]

RFC 2924        Accounting Attributes and Record Formats  September 2000


4.7.1.  RSVP and DIFFSERV Attributes

  A set of parameters for specifying a requested Quality of Service are
  given in [IIS-SPEC].  These have been turned into accounting
  attributes within RTFM [RTFM-NEWA] and within the RSVP MIB [RSVP-
  MIB].

  The RTFM QoS attributes are:

       98      QoSService
       99      QoSStyle
      100      QoSRate
      101      QoSSlackTerm
      102      QoSTokenBucketRate
      103      QoSTokenBucketSize
      104      QoSPeakDataRate
      105      QoSMinPolicedUnit
      106      QoSMaxPolicedUnit

  The RSVP MIB contains a large number of objects, arranged within the
  following sections:

      General Objects
      Session Statistics Table
      Session Sender Table
      Reservation Requests Received Table
      Reservation Requests Forwarded Table
      RSVP Interface Attributes Table
      RSVP Neighbor Table

  The Session tables contain information such as the numbers of senders
  and receivers for each session, while the Reservation Requests tables
  contain details of requests handled by the RSVP router.  There are
  too many objects to list here, but many of them could be used for
  accounting.  In particular, RSVP Requests contain the specification
  of the service parameters requested by a user; these, together with
  the actual usage data for the connection make up an accounting record
  for that usage.

5.  ITU-T Documents

5.1.  Q.825: Call Detail Recording

  ITU-T Recommendation Q.825 specifies how CDRs (Call Detail Records)
  are produced and managed in Network Elements for POTS, ISDN and IN
  (Intelligent Networks).

  Uses of Call Detail information for various purposes are discussed.



Brownlee & Blount            Informational                     [Page 13]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  Each call produces one or more records describing events that
  occurred during the life of a call.  Data may be produced in real
  time (single CDRs), near real-time (blocks of CDRs), or as batch
  files of CDRs.

  The information model for Call Detail Recording is formally described
  in terms of an Entity-Relationship model, and an object model
  specified in terms of GDMO templates (Guidelines for the Definition
  of Managed Objects).  Note that this model includes the ways in which
  CDRs are transported from the (NE) Network Element where they are
  generated to the OS (Operations System) where they are used.

5.2.  Q.825 Attributes

  The following attributes are defined.  The explanations given are
  very brief summaries only, see [Q-825] for the complete text.

  1  accessDelivery
       Indicates that the call was delivered to the called subscriber

  2  accountCodeInput
       Account code (for billing), supplied by subscriber.

 78  additionalParticipantInfo
       (No details given)

  5  b-PartyCategory
       Subscriber category for called subscriber.

  4  bearerService
       Bearer capability information (only for ISDN calls).

 13  cDRPurpose
       Reason for triggering this Call Data Record.

 70  callDetailDataId
       Unique identifier for the CallDetailData object.

 79  callDuration
       Duration of call

  6  callIdentificationNumber
       Identification number for call; all records produced for this
       call have the same callIdenfificationNumber.

 73  callStatus
       Identifies whether the call was answered or not.




Brownlee & Blount            Informational                     [Page 14]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  9  calledPartyNumber
       Telephone number of the called subscriber (may be a
       "diverted-to" or "translated" number.

  7  callingPartyCategory
       Calling subscriber category.

  8  callingPartyNumber
       Telephone number of the calling party.

 10  callingPartyNumberNotScreened
       An additional, user-provided (not screened) number to the
       calling party.

 11  callingPartyType
       Calling subscriber type.

 74  carrierId
       Carrier ID to which the call is sent.

 12  cause
       Cause and location value for the termination of the call.

 14  chargedDirectoryNumber
       Charged directory number (where the charged participant
       element can't indicate the number).

 16  chargedParticipant
       Participant to be charged for the usage.

 15  chargingInformation
       Charging information generated by a Network Element which is
       capable of charging.

 17  configurationMask
       Time consumption, e.g. from B-answer to termination time,
       between partial call records, etc.

 18  conversationTime
       Time consumption from B-answer to end of call.

 19  creationTriggerList
       List of trigger values which will create Call Detail data
       objects.

 75  dPC
       Destination point code (for analysis purposes).




Brownlee & Blount            Informational                     [Page 15]

RFC 2924        Accounting Attributes and Record Formats  September 2000


 20  dataValidity
       Indicates that the NE is having problems, contents of the
       generated Call Detail record is not reliable.

 23  durationTimeACM
       Time consumption from seizure until received ACM.

 21  durationTimeB-Answer
       Time consumption from seizure until B-answer.

 22  durationTimeNoB-Answer
       Time from seizure to termination when no B-answer was
       received.

 25  exchangeInfo
       Identity of exchange where Call Detail record was generated.

 26  fallbackBearerService
       Fallback bearer capability information for a call.

 27  glare
       Indicates if a glare condition was encountered.

 31  iNServiceInformationList
       Contains information about the use of IN (Intelligent Network)
       services.

 32  iNSpecificInformation
       Contains information about the use of one IN service.

 33  iSUPPreferred
       Indicate whether an ISUP preference was requested.

 28  immediateNotificationForUsageMetering
       Indicates that the Call Detail records requires
       immediate data transfer to the Operations System.

 34  maxBlockSize
       Maximum number of Call Detail records in a block.

 35  maxTimeInterval
       Maximum latency allowable for near-real-time Call Detail
       data delivery.

 36  networkManagementControls
       Indicates which Traffic Management Control has affected
       the call.




Brownlee & Blount            Informational                     [Page 16]

RFC 2924        Accounting Attributes and Record Formats  September 2000


 37  networkProviderId
       Indicates the Network Provider for whom the CDR is generated.

 76  oPC
       Originating point code for a failed call (for analysis
       purposes).

 38  operatorSpecific1AdditionalNumber
 40  operatorSpecific2AdditionalNumber
 42  operatorSpecific3AdditionalNumber
       Operator-defined additional participant information.

 39  operatorSpecific1Number
 41  operatorSpecific2Number
 43  operatorSpecific3Number
       Operator-defined participant information.

 44  originalCalledNumber
       Telephone number of the original called party.

 45  partialGeneration
       Included if the CDR (Call Detail record) output is partial.
       Such CDRs have a field indicating their partial record number.

 77  participantInfo
       (No details given).

 46  percentageToBeBilled
       Percentage to be billed when normal billing rules are
       not to be followed.

 47  periodicTrigger
       Defines the intervals at which the CDR file should be created.

 48  personalUserId
       Internationally unique personal User Identity (for UPT calls).

 49  physicalLineCode
       Identifies the call subscriber's physical line.

 50  progress
       Describes an event which occurred during the life of a call.

 51  queueInfo
       Used to record usage of queueing resources with IN calls.






Brownlee & Blount            Informational                     [Page 17]

RFC 2924        Accounting Attributes and Record Formats  September 2000


 52  receivedDigits
       The digits dialed by the subscriber.  (Normally only included
       for customer care purposes).

 53  recordExtensions
       Information elements added by network operators and/or
       manufacturers in addition to the standard ones above.

6.  Other Documents

6.1.  TIPHON: ETSI TS 101 321

  TIPHON [TIPHON] is an XML-based protocol, carried by HTTP, which
  handles accounting and authorization requests and responses.

  The following are elements selected from TIPHON's DTD that are used
  for accounting.

  <!ELEMENT Currency (#PCDATA)> <!ELEMENT Amount (#PCDATA)>
      Identifies a numeric value.  Expressed using the period (.) as a
      decimal separator with no punctuation as the thousands separator.

  <!ELEMENT CallId (#PCDATA)>
      Contains a call's H.323 CallID value, and is thus used to
      uniquely identify individual calls.

  <!ELEMENT Currency (#PCDATA)>
      Defines the financial currency in use for the parent element.

  <!ELEMENT DestinationInfo type ( e164 | h323 | url | email |
                                   transport | international |
                                   national | network | subscriber |
                                   abbreviated | e164prefix )
      Gives the primary identification of the destination for a call.

  <!ELEMENT Increment (#PCDATA)>
      Indicates the number of units being accounted.

  <!ELEMENT Service EMPTY>
      Indicates a type of service being priced, authorized, or
      reported.  An empty Service element indicates basic Internet
      telephony service, which is the only service type defined by
      V1.4.2 of the specification.  The specification notes that "Later
      revisions of this standard are expected to specify more enhanced
      service definitions to represent quality of service,
      availability, payment methods, etc."





Brownlee & Blount            Informational                     [Page 18]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  <!ELEMENT DestinationInfo type ( e164 | h323 | url | email |
                                   transport | international |
                                   national | network | subscriber |
                                   abbreviated | e164prefix)
      Gives the primary identification of the source of a call.


  <!ELEMENT Timestamp (#PCDATA)>
      A restricted form of [ISO-DATE] that indicates the time at which
      the component was generated.

  <!ELEMENT TransactionId (#PCDATA)>
      Contains an integer, decimal valued identifier assigned to a
      specific authorized transaction.

  <!ELEMENT Unit (#PCDATA)>
      Indicates the units by which pricing is measured or usage
      recorded.  It shall contain one of the following values:
          s      seconds
          p      packets (datagrams)
          byte   bytes

  <!Element UsageDetail ( Service, Amount, Increment, Unit ) >
      Collects information describing the usage of a service.

6.2.  MSIX

  MSIX [MSIX-SPEC] is an XML-based protocol transported by HTTP that is
  used to make accounting service definitions and transmit service
  usage information.  As its service definitions are parameterized and
  dynamic, it makes no definition of services or attributes itself, but
  allows implementors to make their own.  It specifies only the base
  data types that attributes may take: STRING, UNISTRING, INT32, FLOAT,
  DOUBLE, BOOLEAN, TIMESTAMP.

7.  Accounting File and Record Formats

7.1.  ASN.1 Records

7.1.1.  RTFM and AToMMIB

  RTFM and AToMMIB use ASN.1 Basic Encoding Rules (BER) to encode lists
  of attributes into accounting records.  RTFM uses SNMP to retrieve
  such records as BER strings, thus avoiding having to have an object
  identifier for every object.






Brownlee & Blount            Informational                     [Page 19]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  AToMMIB carries this a stage further by defining an accounting file
  format in ASN.1 and making it available for retrieval by a file
  transfer protocol, thereby providing a more efficient alternative to
  simply retrieving the records using SNMP.

7.1.2.  Q.825

  A Q.825 Call Record is an ASN.1 SET containing a specified group of
  the Q.825 attributes.  Call records would presumably be encoded as
  BER strings before being collected for later processing.

7.2.  Binary Records

7.2.1.  RADIUS

  Radius packets carry a sequence of attributes and their values, as
  (Type, Length, Value) triples.  The format of the value field is one
  of four data types.

     string   0-253 octets

     address  32 bit value, most significant octet first.

     integer  32 bit value, most significant octet first.

     time     32 bit value, most significant octet first -- seconds
              since 00:00:00 GMT, January 1, 1970.  The standard
              Attributes do not use this data type but it is presented
              here for possible use within Vendor-Specific attributes.

7.2.2.  DIAMETER

  Each DIAMETER message consists of multiple AVP's that are 32-bit
  aligned, with the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           AVP Code                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          AVP Length           |     Reserved        |P|T|V|R|M|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Vendor ID (opt)                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Tag (opt)                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Data ...
     +-+-+-+-+-+-+-+-+



Brownlee & Blount            Informational                     [Page 20]

RFC 2924        Accounting Attributes and Record Formats  September 2000


     Code
        The AVP Code identifies the attribute uniquely.  If the Vendor-
        Specific bit is set, the AVP Code is allocated from the
        vendor's private address space.

        The first 256 AVP numbers are reserved for backward
        compatibility with RADIUS and are to be interpreted as per
        RADIUS [RAD-PROT].  AVP numbers 256 and above are used for
        DIAMETER, which are allocated by IANA.

     AVP Length
        A 16-bit field contains the total object length in bytes.
        Must always be a multiple of 4, and at least 8.

     AVP Flags
        P                      Protected bit
        T                      Tag bit
        V                      Vendor-ID bit
        R                      Reserved (MUST be set to 0)
        M                      Mandatory bit

7.3.  Text Records

7.3.1.  ROAMOPS

  ADIF (Accounting Data Interchange Format [ROAM-ADIF]) presents a
  general, text-based format for accounting data files, described in a
  straightforward BNF grammar.  Its file header contains a field
  indicating the default protocol from which accounting attributes are
  drawn.  If an attribute from another protocol is to be used, it is
  preceded by its protocol name, for example rtfm//27 would be RTFM's
  "forward bytes" attribute.  Comments in an ADIF file begin with a
  cross-hatch.

  Example: An ADIF file encoding RADIUS accounting data

       version: 1
       device: server3
       description: Accounting Server 3
       date: 02 Mar 1999 12:19:01 -0500
       defaultProtocol: radius

       rdate: 02 Mar 1999 12:20:17 -0500
       #NAS-IP-Address
       4: 204.45.34.12
       #NAS-Port
       5: 12
       #NAS-Port-Type



Brownlee & Blount            Informational                     [Page 21]

RFC 2924        Accounting Attributes and Record Formats  September 2000


       61: 2
       #User-Name
       1: [email protected]
       #Acct-Status-Type
       40: 2
       #Acct-Delay-Time
       41: 14
       #Acct-Input-Octets
       42: 234732
       #Acct-Output-Octets
       43: 15439
       #Acct-Session-Id
       44: 185
       #Acct-Authentic
       45: 1
       #Acct-Session-Time
       46: 1238
       #Acct-Input-Packets
       47: 153
       #Acct-Output-Packets
       48: 148
       #Acct-Terminate-Cause
       49: 11
       #Acct-Multi-Session-Id
       50: 73
       #Acct-Link-Count
       51: 2

8.  AAA Requirements

8.1.  A Well-Defined Set of Attributes

  AAA needs a well-defined set of attributes whose values are to be
  carried in records to or from accounting servers.

  Most of the existing sets of documents described above include a set
  of attributes, identified by small integers.  It is likely that these
  sets overlap, i.e. that some of them have attributes which represent
  the same quantity using different names in different sets.  This
  suggests it might be possible to produce a single combined set of
  "universal" accounting attributes, but such a "universal" set does
  not seem worthwhile.

  The ADIF approach of specifying a default protocol (from which
  attributes are assumed to come) and identifying any exceptions seems
  much more practical.  We therefore propose that AAA should use the





Brownlee & Blount            Informational                     [Page 22]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  ADIF convention (or something like it) to identify attributes,
  together with all the sets of attributes covered by the [ASG-NBR]
  document.

8.2.  A Simple Interchange Format

  AAA needs a simple interchange file format, to be used for accounting
  data.  Several schemes for packaging and transporting such data have
  been described above.

  The SNMP-based ones fit well within the context of an SNMP-based
  network management system.  RTFM and AToMMIB provide ways to reduce
  the SNMP overhead for collecting data, and AToMMIB defines a complete
  file format.  Both provide good ways to collect accounting data.

  As an interchange format, however, ASN.1-based schemes suffer from
  being rather complex binary structures.  This means that one requires
  suitable tools to work with them, as compared to plain-text files
  where one can use existing text-based utilities.

  The binary schemes such as RADIUS and DIAMETER have simpler
  structures, but they too need purpose-built tools.  For general use
  they would need to be extended to allow them to use attributes from
  other protocols.

  From the point of view of being easy for humans to understand, ADIF
  seems very promising.  Of course any processing program would need a
  suitable ADIF input parser, but using plain-text files makes them
  much easier to understand.

  TIPHON's record format is specified by an XML DTD.  While XML
  representations have the advantages of being well-known, they are
  limited by XML's inability to specify type or other validity checking
  for information within the tags.  This situation will likely be
  improved by the XML Schema [XML-SCHM] efforts that are underway, but
  a stable reference is not yet available.

9.  Issues

  It is generally agreed that there is a need for a standard record
  format and transport protocol for communication between Service
  Elements and Accounting Servers.

  There is less agreement on the following issues:

     o  Separate or integral record format and transport protocol
     o  Standard set of base data types
     o  Service definitions: part of the protocol or separately defined



Brownlee & Blount            Informational                     [Page 23]

RFC 2924        Accounting Attributes and Record Formats  September 2000


     o  Service definition namespace management

  The following sections address these issues.

9.1.  Record Format vs. Protocol

  All known Internet-centric billing protocols to date have an integral
  record format.  That is, the collection of Properties that describe a
  Usage Event are specified as an integral part of the protocol,
  typically as a part of a "submit" message that is used to transmit a
  Usage Event from a Service Entity to an Accounting Server.

  It may be advantageous to define a record format that is independent
  of the transport protocol.  Such a record format should support both
  representation of individual records and records in bulk, as Usage
  Events are often aggregated and transmitted in bulk.

  A separate record format is useful for record archiving and temporary
  file storage.  Multiple transport protocols may be defined without
  affecting the record format.  The task of auditing is made easier if
  a standard file format is defined.  If a canonical format is used,
  bulk records may be hashed with MD5 [MD5] or a similar function, for
  reliability and security purposes.

                                 +------------+
                                 |  transport |
                                 |   header   |
           +------------+        +------------+
           |            |        |            |
           |   Usage    |        |   Usage    |
           |  Event(s)  |        |  Event(s)  |
           |            |        |            |
           |            |        |            |
           +------------+        +------------+
                                 |  trailer   |
                                 +------------+

           record format       transport protocol

  If the protocol is written such that it can transmit Usage Events in
  the record format, no record rewriting for transport is required.

9.2.  Tagged, Typed Data

  Record formats and protocols use a combination of data locality and
  explicit tagging to identify data elements.  Mail [RFC822], for
  instance, defines a header block composed of several Attribute-Value
  Pairs, followed by a message body.  Each header field is explicitly



Brownlee & Blount            Informational                     [Page 24]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  tagged, but the order of the AVPs is undefined.  The message body is
  not tagged (except with an additional preceding blank line), and is
  found through its position in the message, which must be after all
  header fields.

  Some record formats make no use of tags--data elements are identified
  only by their position within a record structure.  While this
  practice provides for the least amount of record space overhead, it
  is difficult to later modify the record format by adding or removing
  elements, as all record readers will have to be altered to handle the
  change.  Tagged data allows old readers to detect unexpected tags and
  to detect if required data are missing.  If the overhead of carrying
  explicit tags can be borne, it is advantageous to use explicitly
  tagged data elements where possible.

  An AVP approach has proven useful in accounting.  RADIUS [RADIUS]
  uses numeric data type identifiers.  ETSI's TIPHON [TIPHON] uses XML
  markup.

  For an AAA accounting record format, the authors suggest that each
  Property be named by a textual or numeric identifier and carry a
  value and a data type indicator, which governs interpretation of the
  value.  It may also be useful for each Property to carry a units of
  measure identifier.  The TIPHON specification takes this approach.
  TS 101 321 also carries an Increment field, which denominates the
  Property's Unit of Measure field.  Whether this additional
  convenience is necessary is a matter for discussion.

  It is not strictly necessary for each data record to carry data type,
  units of measure, or increments identifiers.  If this information is
  recorded in a record schema document that is referenced by each data
  record, each record may be validated against the schema without the
  overhead of carrying type information.

9.2.1.  Standard Type Definitions

  It is useful to define a standard set of primitive data types to be
  used by the record format and protocol.  Looking at the prior art,
  DIAMETER supports Data (arbitrary octets), String (UTF-8), Address
  (32 or 128 bit), Integer32, Integer64, Time (32 bits, seconds since
  1970), and Complex.  MSIX [MSIX-SPEC] supports String, Unistring,
  Int32, Float, Double, Boolean, and Timestamp.  SMIv2 [SMI-V2] offers
  ASN.1 types INTEGER, OCTET STRING, and OBJECT IDENTIFIER, and the
  application-defined types Integer32, IpAddress, Counter32, Gauge32,
  Unsigned32, TimeTicks, Opaque, and Counter64.






Brownlee & Blount            Informational                     [Page 25]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  An appropriate set would likely include booleans, 32 and 64 bit
  signed integers, 32 and 64 bit floats, arbitrary octets, UTF-8 and
  UTF-16 strings, and ISO 8601:1988 [ISO-DATE] timestamps.  Fixed-
  precision numbers capable of representing currency amounts (with
  precision specified on both sides of the decimal point) have proven
  useful in accounting record formats, as they are immune to the
  precision problems that are encountered when one attempts to
  represent fixed-point amounts with floating point numbers.

  It may be worthwhile to consider the datatypes that are being
  specified by the W3C's "XML Schema Part 2: Datatypes" [XML-DATA]
  document.  That document specifies a rich set of base types, along
  with a mechanism to specify derivations that further constrain the
  base types.

9.3.  Transaction Identifiers

  Each Usage Event requires its own unique identifier.

  It is expedient to allow Service Elements to create their own unique
  identifiers.  In this manner, Usage Events can be created and
  archived without the involvement of an Accounting Server or other
  central authority.

  A number of methods for creating unique identifiers are well known.
  One popular identifier is an amalgamation of a monotonically
  increasing sequence number, a large random value, a network element
  identifier, and a timestamp.  Another possible source of entropy is a
  hash value of all or part of the record itself.

  RFC 822 [MAIL], RFC 1036 [NEWS], and RFC 2445 [ICAL-CORE] give
  guidance on the creation of good unique identifiers.

9.4.  Service Definitions

  A critical differentiator in accounting record formats and protocols
  is their capability to account for arbitrary service usage.  To date,
  no accounting record format or protocol that can handle arbitrary
  service definitions has achieved broad acceptance on the Internet.

  This section analyzes the issues in service definition and makes a
  case for a record format and protocol with the capability to carry
  Usage Events for rich, independently-defined services.








Brownlee & Blount            Informational                     [Page 26]

RFC 2924        Accounting Attributes and Record Formats  September 2000


9.4.1.  Service Independence

  It is informative to survey a number of popular Internet protocols
  and document encodings and examine their capacities for extension.
  These protocols can be categorized into two broad categories--"fully
  specified" protocols that have little provision for extension and
  "framework" protocols that are incomplete, but provide a basis for
  future extension when coupled with application documents.

  Examples of fully-specified protocols are NTP [NTP], NNTP [NNTP],
  RADIUS Accounting [RAD-ACT], and HTML [HTML].

  Aside from leaving some field values "reserved for future use", all
  of Network Time Protocol's fields are fixed-width and completely
  defined.  This is appropriate for a simple protocol that solves a
  simple problem.

  Network News Transfer Protocol [NEWS-PROT] specifies that further
  commands may be added, and requests that non-standard implementations
  use the "X-" experimental prefix so as to not conflict with future
  additions.  The content of news is 7-bit data, with the high-order
  bit cleared to 0.  Nothing further about the content is defined.
  There is no in-protocol facility for automating decoding of content
  type.

  We pay particular attention to RADIUS Accounting [RAD-ACT].  Perhaps
  the second most frequently heard complaint (after security
  shortcomings) about RADIUS Accounting is its preassigned and fixed
  set of "Types".  These are coded as a range of octets from 40 to 51
  and are as follows:

        40      Acct-Status-Type
        41      Acct-Delay-Time
        42      Acct-Input-Octets
        43      Acct-Output-Octets
        44      Acct-Session-Id
        45      Acct-Authentic
        46      Acct-Session-Time
        47      Acct-Input-Packets
        48      Acct-Output-Packets
        49      Acct-Terminate-Cause
        50      Acct-Multi-Session-Id
        51      Acct-Link-Count

  These identifiers were designed to account for packet-based network
  access service.  They are ill-suited for describing other services.
  While extension documents have specified additional types, the base




Brownlee & Blount            Informational                     [Page 27]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  protocol limits the type identifier to a single octet, limiting the
  total number of types to 256.

  HTML/2.0 [HTML] is mostly a fully-specified protocol, but with W3C's
  HTML/4.0, HTML is becoming more of a framework protocol.  HTML/2.0
  specified a fixed set of markups, with no provision for addition
  (without protocol revision).

  Examples of "framework" protocols and document encodings are HTTP,
  XML, and SNMP.

  HTTP/1.1 [HTTP] is somewhat similar to NNTP in that it is designed to
  transport arbitrary content.  It is different in that it supports
  description of that content through its Content-Type, Content-
  Encoding, Accept-Encoding, and Transfer-Encoding header fields.  New
  types of content can be designated and carried by HTTP/1.1 without
  modification to the HTTP protocol.

  XML [XML] is a preeminent general-purpose framework encoding.  DTD
  publishing is left to users.  There is no standard registry of DTDs.

  SNMP presents a successful example of a framework protocol.  SNMP's
  authors envisioned SNMP as a general management protocol, and allow
  extension through the use of private MIBs.  SNMP's ASN.1 MIBs are
  defined, published, and standardized without the necessity to modify
  the SNMP standard itself.  From "An Overview of SNMP" [SNMP-OVER]:

     It can easily be argued that SNMP has become prominent mainly from
     its ability to augment the standard set of MIB objects with new
     values specific for certain applications and devices.  Hence, new
     functionality can continuously be added to SNMP, since a standard
     method has been defined to incorporate that functionality into
     SNMP devices and network managers.

  Most accounting protocols are fully-specified, with either a
  completely defined service or set of services (RADIUS Accounting) or
  with one or more services defined and provision for "extension"
  services to be added to the protocol later (TIPHON).  While the
  latter is preferable, it may be preferable to take a more SNMP-like
  approach, where the accounting record format and protocol provide
  only a framework for service definition, and leave the task of
  service definition (and standardization) to separate efforts.  In
  this manner, the accounting protocol itself would not have to be
  modified to handle new services.







Brownlee & Blount            Informational                     [Page 28]

RFC 2924        Accounting Attributes and Record Formats  September 2000


9.4.2.  Versioned Service Definitions

  Versioning is a naming and compatibility issue.  Version identifiers
  are useful in service definition because they enable service
  definitions to be upgraded without a possibly awkward name change.
  They also enable possible compatibility between different versions of
  the same service.

  An example could be the service definition of a phone call.  Version
  1 might define Properties for the start time, duration, and called
  and calling party numbers.  Later, version 2 is defined, which
  augments the former service definition with a byte count.  An
  Accounting Server, aware only of Version 1, may accept Version 2
  records, discarding the additional information (forward
  compatibility).  Alternately, if an Accounting Server is made aware
  of version 2, it could optionally still accept version 1 records from
  Service Elements, provided the Accounting Sever does not require the
  additional information to properly account for service usage
  (backward compatibility).

9.4.3.  Relationships Among Usage Events

  Accounting record formats and protocols to date do not sufficiently
  addressed "compound" service description.

  A compound service is a service that is described as a composition of
  other services.  A conference call, for example, may be described as
  a number of point-to-point calls to a conference bridge.  It is
  important to account for the individual calls, rather than just
  summing up an aggregate, both for auditing purposes and to enable
  differential rating.  If these calls are to be reported to the
  Accounting Server individually, the Usage Events require a shared
  identifier that can be used by the Accounting Server and other back-
  end systems to group the records together.

  In order for a Service Element to report compound events over time as
  a succession of individual Usage Events, the accounting protocol
  requires a facility to communicate that the compound event has
  started and stopped.  The "start" message can be implicit--the
  transmission of the first Usage Event will suffice.  An additional
  semaphore is required to tell the Accounting Server that the compound
  service is complete and may be further processed.  This is necessary
  to prevent the Accounting Server from prematurely processing compound
  events that overlap the end of a billing period.







Brownlee & Blount            Informational                     [Page 29]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  RADIUS Accounting has some provision for this sort of accounting with
  its "Acct-Multi-Session-Id" field.  Unfortunately, RADIUS
  Accounting's other shortcomings preclude it from being used in
  general purpose service usage description.

9.4.4.  Service Namespace Management

  "Framework" protocols, as previously mentioned, do not define
  complete schema for their payload.  For interoperability to be
  achieved, it must be possible for:

     (1) content definers to specify definitions without conflicting
         with the names of other definitions

     (2) protocol users to find and use content definitions

  Condition (1) can be readily managed through IANA assignment or by
  using an existing namespace differentiator (for example, DNS).

  Condition (2) is harder, and places considerable burden on the
  implementors.  Their clients and servers must be able, statically or
  dynamically, to find and validate definitions, and manage versioning
  issues.

  As previously mentioned, the XML specification provides no facility
  for DTD discovery or namespace management.  XML specifies only a
  document format, and as such does not need to specify support for
  more "protocol" oriented problems.

  For an accounting record format and protocol, an approach closer to
  SNMP's is useful.  SNMP uses an ISO-managed dotted-decimal namespace.
  An IANA-managed registry of service types is a possibility.  Another
  possibility, used by MSIX [MSIX-SPEC], is for Service Element
  creators to identify their services by concatenation of a new service
  name with existing unique identifier, such as a domain name.

  A standard record format for service definitions would make it
  possible for Service Element creators to directly supply accounting
  system managers with the required definitions, via the network or
  other means.

10.  Encodings

  It may be useful to define more than one record encoding.

  A "verbose" XML encoding is easily implemented and records can be
  syntactically verified with existing tools.  "Human-readable"
  protocols tend to have an edge on "bitfield" protocols where ease of



Brownlee & Blount            Informational                     [Page 30]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  implementation is paramount and the application can tolerate any
  additional processing required to generate, parse, and transport the
  records.

  A alternative "compressed" encoding that makes minimal use of storage
  and processing may be useful in many contexts.

  There are disadvantages to supporting multiple encodings.
  Optionally-supported multiple encodings mandate the requirement for
  capabilities exchange between Service Element and Accounting Server.
  Also, implementations can tend to "drift apart", with one encoding
  better-supported than another.  Unless all encodings are mandatory,
  implementors may find they are unable to interoperate because they
  picked the wrong encoding.

11.  Security Considerations

  This document summarises many existing IETF and ITU documents; please
  refer to the original documents for security considerations for their
  particular protocols.

  It must be possible for the accounting protocol to be carried by a
  secure transport.  A canonical record format is useful so that
  regeneration of secure record hashes is possible.

  When dealing with accounting data files, one must take care that
  their integrity and privacy are preserved.  This document, however,
  is only concerned with the format of such files.

12.  References

  [ACC-BKG]   Mills, C., Hirsch, G. and G. Ruth, "Internet Accounting
              Background", RFC 1272, November 1991.

  [ASG-NBR]   Reynolds, J. and J. Postel, "Assigned Numbers", STD 2,
              RFC 1700, October 1994.

  [ASN1]      Information processing systems - Open Systems
              Interconnection - Specification of Abstract Syntax
              Notation One (ASN.1), International Organization for
              Standardization, International Standard 8824, December
              1987.

  [ATM-ACT]   McCloghrie, K., Heinanen, J., Greene, W. and A. Prasad,
              "Accounting Information for ATM Networks", RFC 2512,
              February 1999.





Brownlee & Blount            Informational                     [Page 31]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  [ATM-COLL]  McCloghrie, K., Heinanen, J., Greene, W. and A. Prasad, "
              Managed Objects for Controlling the Collection and
              Storage of Accounting Information for Connection-Oriented
              Networks", RFC 2513, February 1999.

  [BER]       Information processing systems - Open Systems
              Interconnection - Specification of Basic Encoding Rules
              for Abstract Notation One (ASN.1), International
              Organization for Standardization, International Standard
              8825, December 1987.

  [DIAM-ACT]  Arkko, J., Calhoun, P.R., Patel, P. and Zorn, G.,
              "DIAMETER Accounting Extension", Work in Progress.

  [DIAM-AUTH] Calhoun, P.R. and Bulley, W., "DIAMETER User
              Authentication Extensions", Work in Progress.

  [DIAM-FRAM] Calhoun, P.R., Zorn, G. and Pan, P., "DIAMETER Framework
              Document", Work in Progress.

  [DSRV-ARC]  Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.
              and W. Weiss, "An Architecture for Differentiated
              Services", RFC 2475, December 1998.

  [HTML]      Berners-Lee, T. and D. Connolly, "Hypertext Markup
              Language - 2.0", RFC 1866, November 1995.

  [HTTP]      Fielding, R., Gettys, J., Mogul, J. Frystyk, H. and T.
              Berners-Lee, "Hypertext Transfer Protocol--HTTP/1.1", RFC
              2068, January 1997.

  [ICAL-CORE] Dawson, F. and D. Stenerson, "Internet Calendaring and
              Scheduling Core Object Specification", RFC 2445, November
              1998.

  [IIS-ARC]   Braden, R., Clark, D. and S. Shenker, "Integrated
              Services in the Internet Architecture: an Overview", RFC
              1633, June 1994.

  [IIS-SPEC]  Shenker, S., Partridge, C. and R. Guerin, "Specification
              of Guaranteed Quality of Service", RFC 2212, September
              1997.

  [ISDN-MIB]  Roeck, G., "ISDN Management Information Base using
              SMIv2", RFC 2127, March 1997.






Brownlee & Blount            Informational                     [Page 32]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  [ISO-DATE]  "Data elements and interchange formats -- Information
              interchange -- Representation of dates and times", ISO
              8601:1988.

  [MAIL]      Crocker, D., "STANDARD FOR THE FORMAT OF ARPA INTERNET
              TEXT MESSAGES", STD 11, RFC 822, August 1982.

  [MD5]       Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
              April 1992.

  [MSIX-SPEC] Blount, A. and D. Young, "Metered Service Information
              Exchange 1.2", Work in Progress.

  [NEWS-MSGS] Horton, M. and R. Adams, "Standard for Interchange of
              USENET Messages", RFC 1036, December 1987.

  [NEWS-PROT] Kantor, B. and P. Lapsley, "Network News Transfer
              Protocol", RFC 977, February 1986.

  [NTP]       Mills, D., "Network Time Protocol (NTP)", RFC 958,
              September 1985.

  [Q-825]     "Specification of TMN applications at the Q3 interface:
              Call detail recording", ITU-T Recommendation Q.825, 1998.

  [RAD-ACT]   Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

  [RAD-EXT]   Rigney, C., Willats, W. and Calhoun, P., "RADIUS
              Extensions", RFC 2869, June 2000.

  [RAD-PROT]  Rigney, C., Willens, S., Rubens, A., and W. Simpson,
              "Remote Authentication Dial In User Service (RADIUS)",
              RFC 2865, June 2000.

  [RAD-TACC]  Zorn, G., Mitton, D. and A. Aboba, "RADIUS Accounting
              Modifications for Tunnel Protocol Support", RFC 2867,
              June 2000.

  [RAP-COPS]  Boyle, J., Cohen, R., Durham, D., Herzog, S., Rajan, R.
              and A. Sastry, "The COPS (Common Open Policy Service)
              Protocol", RFC 2748, January 2000.

  [ROAM-ADIF] Aboba, B. and D. Lidyard, "The Accounting Data
              Interchange Format (ADIF)", Work in Progress.

  [ROAM-IMPL] Aboba, B., Lu, J., Alsop, J., Ding, J. and W. Wang,
              "Review of Roaming Implementations", RFC 2194, September
              1997.



Brownlee & Blount            Informational                     [Page 33]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  [RS-DS-OP]  Bernet, Y., Yavatkar, R., Ford, P., Baker, F., Zhang, L.,
              Speer, M., Braden, R., Davie, B., Wroclawski, J. and E.
              Felstaine, "A Framework For Integrated Services Operation
              Over Diffserv Networks", Work in Progress.

  [RSVP-ARC]  Braden, R., Zhang, L., Berson, S., Herzog, S. and S.
              Jamin, "Resource Reservation Protocol (RSVP) Version 1
              Functional Specification", RFC 2205, September 1997.

  [RSVP-MIB]  Baker, F., Krawczyk, J. and A. Sastry, "RSVP Management
              Information Base using SMIv2", RFC 2206, September 1997.

  [RTFM-ARC]  Brownlee, N., Mills, C. and G. Ruth, "Traffic Flow
              Measurement: Architecture", RFC 2722, October 1999.

  [RTFM-MIB]  Brownlee, N., "Traffic Flow Measurement: Meter MIB",
              Measurement: Architecture", RFC 2720, October 1999.

  [RTFM-NEWA] Handelman, S., Brownlee, N., Ruth, G. and S. Stibler,
              "New Attributes for Traffic Flow Measurement", RFC 2724,
              October 1999.

  [SIP-PROT]  Handley, M., Schulzrinne, H., Schooler, E. and J.
              Rosenberg, "SIP: Session Initiation Protocol", RFC 2543,
              March 1999.

  [SMI-V2]    McCloghrie, K., Perkins, D. and J. Schoenwaelder,
              "Structure of Management Information Version 2 (SMIv2)",
              STD 58, RFC 2578, April 1999.

  [SNMP-OVER] "AN OVERVIEW OF SNMP V2.0", Diversified Data Resources,
              Inc., http://www.ddri.com, 1999.

  [TIPHON]    "Telecommunications and Internet Protocol Harmonization
              Over Networks (TIPHON); Inter-domain pricing,
              authorization, and usage exchange", TS 101 321 V1.4.2,
              December 1998.

  [XML]       Bray, T., J. Paoli, and C. Sperberg-McQueen, "Extensible
              Markup Language (XML) 1.0", W3C Recommendation, February
              1998.










Brownlee & Blount            Informational                     [Page 34]

RFC 2924        Accounting Attributes and Record Formats  September 2000


  [XML-DATA]  "XML Schema Part 2: Datatypes", W3C Working Draft 07
              April 2000, April 2000.

  [XML-SCHM]  "XML Schema Part 1: Structures", W3C Working Draft 7
              April 2000, April 2000.

13.  Authors' Addresses

  Nevil Brownlee
  Information Technology Systems & Services
  The University of Auckland

  Phone: +64 9 373 7599 x8941
  EMail: [email protected]


  Alan Blount
  MetraTech Corp.
  330 Bear Hill Road
  Waltham, MA 02451

  EMail: [email protected]





























Brownlee & Blount            Informational                     [Page 35]

RFC 2924        Accounting Attributes and Record Formats  September 2000


14.  Full Copyright Statement

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Brownlee & Blount            Informational                     [Page 36]