Network Working Group                                          C. Rigney
Request for Comments: 2865                                    S. Willens
Obsoletes: 2138                                               Livingston
Category: Standards Track                                      A. Rubens
                                                                  Merit
                                                             W. Simpson
                                                             Daydreamer
                                                              June 2000


         Remote Authentication Dial In User Service (RADIUS)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

IESG Note:

  This protocol is widely implemented and used.  Experience has shown
  that it can suffer degraded performance and lost data when used in
  large scale systems, in part because it does not include provisions
  for congestion control.  Readers of this document may find it
  beneficial to track the progress of the IETF's AAA working group,
  which may develop a successor protocol that better addresses the
  scaling and congestion control issues.

Abstract

  This document describes a protocol for carrying authentication,
  authorization, and configuration information between a Network Access
  Server which desires to authenticate its links and a shared
  Authentication Server.

Implementation Note

  This memo documents the RADIUS protocol.  The early deployment of
  RADIUS was done using UDP port number 1645, which conflicts with the
  "datametrics" service.  The officially assigned port number for
  RADIUS is 1812.




Rigney, et al.              Standards Track                     [Page 1]

RFC 2865                         RADIUS                        June 2000


Table of Contents

  1.     Introduction ..........................................    3
     1.1       Specification of Requirements ...................    4
     1.2       Terminology .....................................    5
  2.     Operation .............................................    5
     2.1       Challenge/Response ..............................    7
     2.2       Interoperation with PAP and CHAP ................    8
     2.3       Proxy ...........................................    8
     2.4       Why UDP? ........................................   11
     2.5       Retransmission Hints ............................   12
     2.6       Keep-Alives Considered Harmful ..................   13
  3.     Packet Format .........................................   13
  4.     Packet Types ..........................................   17
     4.1       Access-Request ..................................   17
     4.2       Access-Accept ...................................   18
     4.3       Access-Reject ...................................   20
     4.4       Access-Challenge ................................   21
  5.     Attributes ............................................   22
     5.1       User-Name .......................................   26
     5.2       User-Password ...................................   27
     5.3       CHAP-Password ...................................   28
     5.4       NAS-IP-Address ..................................   29
     5.5       NAS-Port ........................................   30
     5.6       Service-Type ....................................   31
     5.7       Framed-Protocol .................................   33
     5.8       Framed-IP-Address ...............................   34
     5.9       Framed-IP-Netmask ...............................   34
     5.10      Framed-Routing ..................................   35
     5.11      Filter-Id .......................................   36
     5.12      Framed-MTU ......................................   37
     5.13      Framed-Compression ..............................   37
     5.14      Login-IP-Host ...................................   38
     5.15      Login-Service ...................................   39
     5.16      Login-TCP-Port ..................................   40
     5.17      (unassigned) ....................................   41
     5.18      Reply-Message ...................................   41
     5.19      Callback-Number .................................   42
     5.20      Callback-Id .....................................   42
     5.21      (unassigned) ....................................   43
     5.22      Framed-Route ....................................   43
     5.23      Framed-IPX-Network ..............................   44
     5.24      State ...........................................   45
     5.25      Class ...........................................   46
     5.26      Vendor-Specific .................................   47
     5.27      Session-Timeout .................................   48
     5.28      Idle-Timeout ....................................   49
     5.29      Termination-Action ..............................   49



Rigney, et al.              Standards Track                     [Page 2]

RFC 2865                         RADIUS                        June 2000


     5.30      Called-Station-Id ...............................   50
     5.31      Calling-Station-Id ..............................   51
     5.32      NAS-Identifier ..................................   52
     5.33      Proxy-State .....................................   53
     5.34      Login-LAT-Service ...............................   54
     5.35      Login-LAT-Node ..................................   55
     5.36      Login-LAT-Group .................................   56
     5.37      Framed-AppleTalk-Link ...........................   57
     5.38      Framed-AppleTalk-Network ........................   58
     5.39      Framed-AppleTalk-Zone ...........................   58
     5.40      CHAP-Challenge ..................................   59
     5.41      NAS-Port-Type ...................................   60
     5.42      Port-Limit ......................................   61
     5.43      Login-LAT-Port ..................................   62
     5.44      Table of Attributes .............................   63
  6.     IANA Considerations ...................................   64
     6.1       Definition of Terms .............................   64
     6.2       Recommended Registration Policies ...............   65
  7.     Examples ..............................................   66
     7.1       User Telnet to Specified Host ...................   66
     7.2       Framed User Authenticating with CHAP ............   67
     7.3       User with Challenge-Response card ...............   68
  8.     Security Considerations ...............................   71
  9.     Change Log ............................................   71
  10.    References ............................................   73
  11.    Acknowledgements ......................................   74
  12.    Chair's Address .......................................   74
  13.    Authors' Addresses ....................................   75
  14.    Full Copyright Statement ..............................   76

1.  Introduction

  This document obsoletes RFC 2138 [1].  A summary of the changes
  between this document and RFC 2138 is available in the "Change Log"
  appendix.

  Managing dispersed serial line and modem pools for large numbers of
  users can create the need for significant administrative support.
  Since modem pools are by definition a link to the outside world, they
  require careful attention to security, authorization and accounting.
  This can be best achieved by managing a single "database" of users,
  which allows for authentication (verifying user name and password) as
  well as configuration information detailing the type of service to
  deliver to the user (for example, SLIP, PPP, telnet, rlogin).







Rigney, et al.              Standards Track                     [Page 3]

RFC 2865                         RADIUS                        June 2000


  Key features of RADIUS are:

  Client/Server Model

     A Network Access Server (NAS) operates as a client of RADIUS.  The
     client is responsible for passing user information to designated
     RADIUS servers, and then acting on the response which is returned.

     RADIUS servers are responsible for receiving user connection
     requests, authenticating the user, and then returning all
     configuration information necessary for the client to deliver
     service to the user.

     A RADIUS server can act as a proxy client to other RADIUS servers
     or other kinds of authentication servers.

  Network Security

     Transactions between the client and RADIUS server are
     authenticated through the use of a shared secret, which is never
     sent over the network.  In addition, any user passwords are sent
     encrypted between the client and RADIUS server, to eliminate the
     possibility that someone snooping on an unsecure network could
     determine a user's password.

  Flexible Authentication Mechanisms

     The RADIUS server can support a variety of methods to authenticate
     a user.  When it is provided with the user name and original
     password given by the user, it can support PPP PAP or CHAP, UNIX
     login, and other authentication mechanisms.

  Extensible Protocol

     All transactions are comprised of variable length Attribute-
     Length-Value 3-tuples.  New attribute values can be added without
     disturbing existing implementations of the protocol.

1.1.  Specification of Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14 [2].  These key
  words mean the same thing whether capitalized or not.

  An implementation is not compliant if it fails to satisfy one or more
  of the must or must not requirements for the protocols it implements.
  An implementation that satisfies all the must, must not, should and



Rigney, et al.              Standards Track                     [Page 4]

RFC 2865                         RADIUS                        June 2000


  should not requirements for its protocols is said to be
  "unconditionally compliant"; one that satisfies all the must and must
  not requirements but not all the should or should not requirements
  for its protocols is said to be "conditionally compliant".

  A NAS that does not implement a given service MUST NOT implement the
  RADIUS attributes for that service.  For example, a NAS that is
  unable to offer ARAP service MUST NOT implement the RADIUS attributes
  for ARAP.  A NAS MUST treat a RADIUS access-accept authorizing an
  unavailable service as an access-reject instead.

1.2.  Terminology

  This document frequently uses the following terms:

  service   The NAS provides a service to the dial-in user, such as PPP
            or Telnet.

  session   Each service provided by the NAS to a dial-in user
            constitutes a session, with the beginning of the session
            defined as the point where service is first provided and
            the end of the session defined as the point where service
            is ended.  A user may have multiple sessions in parallel or
            series if the NAS supports that.

  silently discard
            This means the implementation discards the packet without
            further processing.  The implementation SHOULD provide the
            capability of logging the error, including the contents of
            the silently discarded packet, and SHOULD record the event
            in a statistics counter.

2.  Operation

  When a client is configured to use RADIUS, any user of the client
  presents authentication information to the client.  This might be
  with a customizable login prompt, where the user is expected to enter
  their username and password.  Alternatively, the user might use a
  link framing protocol such as the Point-to-Point Protocol (PPP),
  which has authentication packets which carry this information.

  Once the client has obtained such information, it may choose to
  authenticate using RADIUS.  To do so, the client creates an "Access-
  Request" containing such Attributes as the user's name, the user's
  password, the ID of the client and the Port ID which the user is
  accessing.  When a password is present, it is hidden using a method
  based on the RSA Message Digest Algorithm MD5 [3].




Rigney, et al.              Standards Track                     [Page 5]

RFC 2865                         RADIUS                        June 2000


  The Access-Request is submitted to the RADIUS server via the network.
  If no response is returned within a length of time, the request is
  re-sent a number of times.  The client can also forward requests to
  an alternate server or servers in the event that the primary server
  is down or unreachable.  An alternate server can be used either after
  a number of tries to the primary server fail, or in a round-robin
  fashion.  Retry and fallback algorithms are the topic of current
  research and are not specified in detail in this document.

  Once the RADIUS server receives the request, it validates the sending
  client.  A request from a client for which the RADIUS server does not
  have a shared secret MUST be silently discarded.  If the client is
  valid, the RADIUS server consults a database of users to find the
  user whose name matches the request.  The user entry in the database
  contains a list of requirements which must be met to allow access for
  the user.  This always includes verification of the password, but can
  also specify the client(s) or port(s) to which the user is allowed
  access.

  The RADIUS server MAY make requests of other servers in order to
  satisfy the request, in which case it acts as a client.

  If any Proxy-State attributes were present in the Access-Request,
  they MUST be copied unmodified and in order into the response packet.
  Other Attributes can be placed before, after, or even between the
  Proxy-State attributes.

  If any condition is not met, the RADIUS server sends an "Access-
  Reject" response indicating that this user request is invalid.  If
  desired, the server MAY include a text message in the Access-Reject
  which MAY be displayed by the client to the user.  No other
  Attributes (except Proxy-State) are permitted in an Access-Reject.

  If all conditions are met and the RADIUS server wishes to issue a
  challenge to which the user must respond, the RADIUS server sends an
  "Access-Challenge" response.  It MAY include a text message to be
  displayed by the client to the user prompting for a response to the
  challenge, and MAY include a State attribute.

  If the client receives an Access-Challenge and supports
  challenge/response it MAY display the text message, if any, to the
  user, and then prompt the user for a response.  The client then re-
  submits its original Access-Request with a new request ID, with the
  User-Password Attribute replaced by the response (encrypted), and
  including the State Attribute from the Access-Challenge, if any.
  Only 0 or 1 instances of the State Attribute SHOULD be





Rigney, et al.              Standards Track                     [Page 6]

RFC 2865                         RADIUS                        June 2000


  present in a request.  The server can respond to this new Access-
  Request with either an Access-Accept, an Access-Reject, or another
  Access-Challenge.

  If all conditions are met, the list of configuration values for the
  user are placed into an "Access-Accept" response.  These values
  include the type of service (for example: SLIP, PPP, Login User) and
  all necessary values to deliver the desired service.  For SLIP and
  PPP, this may include values such as IP address, subnet mask, MTU,
  desired compression, and desired packet filter identifiers.  For
  character mode users, this may include values such as desired
  protocol and host.

2.1.  Challenge/Response

  In challenge/response authentication, the user is given an
  unpredictable number and challenged to encrypt it and give back the
  result. Authorized users are equipped with special devices such as
  smart cards or software that facilitate calculation of the correct
  response with ease. Unauthorized users, lacking the appropriate
  device or software and lacking knowledge of the secret key necessary
  to emulate such a device or software, can only guess at the response.

  The Access-Challenge packet typically contains a Reply-Message
  including a challenge to be displayed to the user, such as a numeric
  value unlikely ever to be repeated. Typically this is obtained from
  an external server that knows what type of authenticator is in the
  possession of the authorized user and can therefore choose a random
  or non-repeating pseudorandom number of an appropriate radix and
  length.

  The user then enters the challenge into his device (or software) and
  it calculates a response, which the user enters into the client which
  forwards it to the RADIUS server via a second Access-Request.  If the
  response matches the expected response the RADIUS server replies with
  an Access-Accept, otherwise an Access-Reject.

  Example: The NAS sends an Access-Request packet to the RADIUS Server
  with NAS-Identifier, NAS-Port, User-Name, User-Password (which may
  just be a fixed string like "challenge" or ignored).  The server
  sends back an Access-Challenge packet with State and a Reply-Message
  along the lines of "Challenge 12345678, enter your response at the
  prompt" which the NAS displays.  The NAS prompts for the response and
  sends a NEW Access-Request to the server (with a new ID) with NAS-
  Identifier, NAS-Port, User-Name, User-Password (the response just
  entered by the user, encrypted), and the same State Attribute that





Rigney, et al.              Standards Track                     [Page 7]

RFC 2865                         RADIUS                        June 2000


  came with the Access-Challenge.  The server then sends back either an
  Access-Accept or Access-Reject based on whether the response matches
  the required value, or it can even send another Access-Challenge.

2.2.  Interoperation with PAP and CHAP

  For PAP, the NAS takes the PAP ID and password and sends them in an
  Access-Request packet as the User-Name and User-Password. The NAS MAY
  include the Attributes Service-Type = Framed-User and Framed-Protocol
  = PPP as a hint to the RADIUS server that PPP service is expected.

  For CHAP, the NAS generates a random challenge (preferably 16 octets)
  and sends it to the user, who returns a CHAP response along with a
  CHAP ID and CHAP username.  The NAS then sends an Access-Request
  packet to the RADIUS server with the CHAP username as the User-Name
  and with the CHAP ID and CHAP response as the CHAP-Password
  (Attribute 3).  The random challenge can either be included in the
  CHAP-Challenge attribute or, if it is 16 octets long, it can be
  placed in the Request Authenticator field of the Access-Request
  packet.  The NAS MAY include the Attributes Service-Type = Framed-
  User and Framed-Protocol = PPP as a hint to the RADIUS server that
  PPP service is expected.

  The RADIUS server looks up a password based on the User-Name,
  encrypts the challenge using MD5 on the CHAP ID octet, that password,
  and the CHAP challenge (from the CHAP-Challenge attribute if present,
  otherwise from the Request Authenticator), and compares that result
  to the CHAP-Password.  If they match, the server sends back an
  Access-Accept, otherwise it sends back an Access-Reject.

  If the RADIUS server is unable to perform the requested
  authentication it MUST return an Access-Reject.  For example, CHAP
  requires that the user's password be available in cleartext to the
  server so that it can encrypt the CHAP challenge and compare that to
  the CHAP response.  If the password is not available in cleartext to
  the RADIUS server then the server MUST send an Access-Reject to the
  client.

2.3.  Proxy

  With proxy RADIUS, one RADIUS server receives an authentication (or
  accounting) request from a RADIUS client (such as a NAS), forwards
  the request to a remote RADIUS server, receives the reply from the
  remote server, and sends that reply to the client, possibly with
  changes to reflect local administrative policy.  A common use for
  proxy RADIUS is roaming.  Roaming permits two or more administrative
  entities to allow each other's users to dial in to either entity's
  network for service.



Rigney, et al.              Standards Track                     [Page 8]

RFC 2865                         RADIUS                        June 2000


  The NAS sends its RADIUS access-request to the "forwarding server"
  which forwards it to the "remote server".  The remote server sends a
  response (Access-Accept, Access-Reject, or Access-Challenge) back to
  the forwarding server, which sends it back to the NAS.  The User-Name
  attribute MAY contain a Network Access Identifier [8] for RADIUS
  Proxy operations.  The choice of which server receives the forwarded
  request SHOULD be based on the authentication "realm". The
  authentication realm MAY be the realm part of a Network Access
  Identifier (a "named realm").  Alternatively, the choice of which
  server receives the forwarded request MAY be based on whatever other
  criteria the forwarding server is configured to use, such as Called-
  Station-Id (a "numbered realm").

  A RADIUS server can function as both a forwarding server and a remote
  server, serving as a forwarding server for some realms and a remote
  server for other realms.  One forwarding server can act as a
  forwarder for any number of remote servers.  A remote server can have
  any number of servers forwarding to it and can provide authentication
  for any number of realms.  One forwarding server can forward to
  another forwarding server to create a chain of proxies, although care
  must be taken to avoid introducing loops.

  The following scenario illustrates a proxy RADIUS communication
  between a NAS and the forwarding and remote RADIUS servers:

  1. A NAS sends its access-request to the forwarding server.

  2. The forwarding server forwards the access-request to the remote
     server.

  3. The remote server sends an access-accept, access-reject or
     access-challenge back to the forwarding server.  For this example,
     an access-accept is sent.

  4. The forwarding server sends the access-accept to the NAS.

  The forwarding server MUST treat any Proxy-State attributes already
  in the packet as opaque data.  Its operation MUST NOT depend on the
  content of Proxy-State attributes added by previous servers.

  If there are any Proxy-State attributes in the request received from
  the client, the forwarding server MUST include those Proxy-State
  attributes in its reply to the client.  The forwarding server MAY
  include the Proxy-State attributes in the access-request when it
  forwards the request, or MAY omit them in the forwarded request.  If
  the forwarding server omits the Proxy-State attributes in the
  forwarded access-request, it MUST attach them to the response before
  sending it to the client.



Rigney, et al.              Standards Track                     [Page 9]

RFC 2865                         RADIUS                        June 2000


  We now examine each step in more detail.

  1. A NAS sends its access-request to the forwarding server.  The
     forwarding server decrypts the User-Password, if present, using
     the shared secret it knows for the NAS.  If a CHAP-Password
     attribute is present in the packet and no CHAP-Challenge attribute
     is present, the forwarding server MUST leave the Request-
     Authenticator untouched or copy it to a CHAP-Challenge attribute.

  '' The forwarding server MAY add one Proxy-State attribute to the
     packet.  (It MUST NOT add more than one.)  If it adds a Proxy-
     State, the Proxy-State MUST appear after any other Proxy-States in
     the packet.  The forwarding server MUST NOT modify any other
     Proxy-States that were in the packet (it may choose not to forward
     them, but it MUST NOT change their contents).  The forwarding
     server MUST NOT change the order of any attributes of the same
     type, including Proxy-State.

  2. The forwarding server encrypts the User-Password, if present,
     using the secret it shares with the remote server, sets the
     Identifier as needed, and forwards the access-request to the
     remote server.

  3. The remote server (if the final destination) verifies the user
     using User-Password, CHAP-Password, or such method as future
     extensions may dictate, and returns an access-accept, access-
     reject or access-challenge back to the forwarding server.  For
     this example, an access-accept is sent.  The remote server MUST
     copy all Proxy-State attributes (and only the Proxy-State
     attributes) in order from the access-request to the response
     packet, without modifying them.

  4. The forwarding server verifies the Response Authenticator using
     the secret it shares with the remote server, and silently discards
     the packet if it fails verification.  If the packet passes
     verification, the forwarding server removes the last Proxy-State
     (if it attached one), signs the Response Authenticator using the
     secret it shares with the NAS, restores the Identifier to match
     the one in the original request by the NAS, and sends the access-
     accept to the NAS.

  A forwarding server MAY need to modify attributes to enforce local
  policy.  Such policy is outside the scope of this document, with the
  following restrictions.  A forwarding server MUST not modify existing
  Proxy-State, State, or Class attributes present in the packet.






Rigney, et al.              Standards Track                    [Page 10]

RFC 2865                         RADIUS                        June 2000


  Implementers of forwarding servers should consider carefully which
  values it is willing to accept for Service-Type.  Careful
  consideration must be given to the effects of passing along Service-
  Types of NAS-Prompt or Administrative in a proxied Access-Accept, and
  implementers may wish to provide mechanisms to block those or other
  service types, or other attributes.  Such mechanisms are outside the
  scope of this document.

2.4.  Why UDP?

  A frequently asked question is why RADIUS uses UDP instead of TCP as
  a transport protocol.  UDP was chosen for strictly technical reasons.

  There are a number of issues which must be understood.  RADIUS is a
  transaction based protocol which has several interesting
  characteristics:

  1. If the request to a primary Authentication server fails, a
     secondary server must be queried.

     To meet this requirement, a copy of the request must be kept above
     the transport layer to allow for alternate transmission.  This
     means that retransmission timers are still required.

  2. The timing requirements of this particular protocol are
     significantly different than TCP provides.

     At one extreme, RADIUS does not require a "responsive" detection
     of lost data.  The user is willing to wait several seconds for the
     authentication to complete.  The generally aggressive TCP
     retransmission (based on average round trip time) is not required,
     nor is the acknowledgement overhead of TCP.

     At the other extreme, the user is not willing to wait several
     minutes for authentication.  Therefore the reliable delivery of
     TCP data two minutes later is not useful.  The faster use of an
     alternate server allows the user to gain access before giving up.

  3. The stateless nature of this protocol simplifies the use of UDP.

     Clients and servers come and go.  Systems are rebooted, or are
     power cycled independently.  Generally this does not cause a
     problem and with creative timeouts and detection of lost TCP
     connections, code can be written to handle anomalous events.  UDP
     however completely eliminates any of this special handling.  Each
     client and server can open their UDP transport just once and leave
     it open through all types of failure events on the network.




Rigney, et al.              Standards Track                    [Page 11]

RFC 2865                         RADIUS                        June 2000


  4. UDP simplifies the server implementation.

     In the earliest implementations of RADIUS, the server was single
     threaded.  This means that a single request was received,
     processed, and returned.  This was found to be unmanageable in
     environments where the back-end security mechanism took real time
     (1 or more seconds).  The server request queue would fill and in
     environments where hundreds of people were being authenticated
     every minute, the request turn-around time increased to longer
     than users were willing to wait (this was especially severe when a
     specific lookup in a database or over DNS took 30 or more
     seconds).  The obvious solution was to make the server multi-
     threaded.  Achieving this was simple with UDP.  Separate processes
     were spawned to serve each request and these processes could
     respond directly to the client NAS with a simple UDP packet to the
     original transport of the client.

  It's not all a panacea.  As noted, using UDP requires one thing which
  is built into TCP: with UDP we must artificially manage
  retransmission timers to the same server, although they don't require
  the same attention to timing provided by TCP.  This one penalty is a
  small price to pay for the advantages of UDP in this protocol.

  Without TCP we would still probably be using tin cans connected by
  string.  But for this particular protocol, UDP is a better choice.

2.5.  Retransmission Hints

  If the RADIUS server and alternate RADIUS server share the same
  shared secret, it is OK to retransmit the packet to the alternate
  RADIUS server with the same ID and Request Authenticator, because the
  content of the attributes haven't changed.  If you want to use a new
  Request Authenticator when sending to the alternate server, you may.

  If you change the contents of the User-Password attribute (or any
  other attribute), you need a new Request Authenticator and therefore
  a new ID.

  If the NAS is retransmitting a RADIUS request to the same server as
  before, and the attributes haven't changed, you MUST use the same
  Request Authenticator, ID, and source port.  If any attributes have
  changed, you MUST use a new Request Authenticator and ID.

  A NAS MAY use the same ID across all servers, or MAY keep track of
  IDs separately for each server, it is up to the implementer.  If a
  NAS needs more than 256 IDs for outstanding requests, it MAY use





Rigney, et al.              Standards Track                    [Page 12]

RFC 2865                         RADIUS                        June 2000


  additional source ports to send requests from, and keep track of IDs
  for each source port.  This allows up to 16 million or so outstanding
  requests at one time to a single server.

2.6.  Keep-Alives Considered Harmful

  Some implementers have adopted the practice of sending test RADIUS
  requests to see if a server is alive.  This practice is strongly
  discouraged, since it adds to load and harms scalability without
  providing any additional useful information.  Since a RADIUS request
  is contained in a single datagram, in the time it would take you to
  send a ping you could just send the RADIUS request, and getting a
  reply tells you that the RADIUS server is up.  If you do not have a
  RADIUS request to send, it does not matter if the server is up or
  not, because you are not using it.

  If you want to monitor your RADIUS server, use SNMP.  That's what
  SNMP is for.

3.  Packet Format

  Exactly one RADIUS packet is encapsulated in the UDP Data field [4],
  where the UDP Destination Port field indicates 1812 (decimal).

  When a reply is generated, the source and destination ports are
  reversed.

  This memo documents the RADIUS protocol.  The early deployment of
  RADIUS was done using UDP port number 1645, which conflicts with the
  "datametrics" service.  The officially assigned port number for
  RADIUS is 1812.




















Rigney, et al.              Standards Track                    [Page 13]

RFC 2865                         RADIUS                        June 2000


  A summary of the RADIUS data format is shown below.  The fields are
  transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                         Authenticator                         |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Attributes ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-

  Code

     The Code field is one octet, and identifies the type of RADIUS
     packet.  When a packet is received with an invalid Code field, it
     is silently discarded.

     RADIUS Codes (decimal) are assigned as follows:

       1       Access-Request
       2       Access-Accept
       3       Access-Reject
       4       Accounting-Request
       5       Accounting-Response
      11       Access-Challenge
      12       Status-Server (experimental)
      13       Status-Client (experimental)
     255       Reserved

  Codes 4 and 5 are covered in the RADIUS Accounting document [5].
  Codes 12 and 13 are reserved for possible use, but are not further
  mentioned here.

  Identifier

     The Identifier field is one octet, and aids in matching requests
     and replies.  The RADIUS server can detect a duplicate request if
     it has the same client source IP address and source UDP port and
     Identifier within a short span of time.







Rigney, et al.              Standards Track                    [Page 14]

RFC 2865                         RADIUS                        June 2000


  Length

     The Length field is two octets.  It indicates the length of the
     packet including the Code, Identifier, Length, Authenticator and
     Attribute fields.  Octets outside the range of the Length field
     MUST be treated as padding and ignored on reception.  If the
     packet is shorter than the Length field indicates, it MUST be
     silently discarded.  The minimum length is 20 and maximum length
     is 4096.

  Authenticator

     The Authenticator field is sixteen (16) octets.  The most
     significant octet is transmitted first.  This value is used to
     authenticate the reply from the RADIUS server, and is used in the
     password hiding algorithm.

     Request Authenticator

        In Access-Request Packets, the Authenticator value is a 16
        octet random number, called the Request Authenticator.  The
        value SHOULD be unpredictable and unique over the lifetime of a
        secret (the password shared between the client and the RADIUS
        server), since repetition of a request value in conjunction
        with the same secret would permit an attacker to reply with a
        previously intercepted response.  Since it is expected that the
        same secret MAY be used to authenticate with servers in
        disparate geographic regions, the Request Authenticator field
        SHOULD exhibit global and temporal uniqueness.

        The Request Authenticator value in an Access-Request packet
        SHOULD also be unpredictable, lest an attacker trick a server
        into responding to a predicted future request, and then use the
        response to masquerade as that server to a future Access-
        Request.

        Although protocols such as RADIUS are incapable of protecting
        against theft of an authenticated session via realtime active
        wiretapping attacks, generation of unique unpredictable
        requests can protect against a wide range of active attacks
        against authentication.

        The NAS and RADIUS server share a secret.  That shared secret
        followed by the Request Authenticator is put through a one-way
        MD5 hash to create a 16 octet digest value which is xored with
        the password entered by the user, and the xored result placed





Rigney, et al.              Standards Track                    [Page 15]

RFC 2865                         RADIUS                        June 2000


        in the User-Password attribute in the Access-Request packet.
        See the entry for User-Password in the section on Attributes
        for a more detailed description.

     Response Authenticator

        The value of the Authenticator field in Access-Accept, Access-
        Reject, and Access-Challenge packets is called the Response
        Authenticator, and contains a one-way MD5 hash calculated over
        a stream of octets consisting of: the RADIUS packet, beginning
        with the Code field, including the Identifier, the Length, the
        Request Authenticator field from the Access-Request packet, and
        the response Attributes, followed by the shared secret.  That
        is, ResponseAuth =
        MD5(Code+ID+Length+RequestAuth+Attributes+Secret) where +
        denotes concatenation.

  Administrative Note

     The secret (password shared between the client and the RADIUS
     server) SHOULD be at least as large and unguessable as a well-
     chosen password.  It is preferred that the secret be at least 16
     octets.  This is to ensure a sufficiently large range for the
     secret to provide protection against exhaustive search attacks.
     The secret MUST NOT be empty (length 0) since this would allow
     packets to be trivially forged.

     A RADIUS server MUST use the source IP address of the RADIUS UDP
     packet to decide which shared secret to use, so that RADIUS
     requests can be proxied.

     When using a forwarding proxy, the proxy must be able to alter the
     packet as it passes through in each direction - when the proxy
     forwards the request, the proxy MAY add a Proxy-State Attribute,
     and when the proxy forwards a response, it MUST remove its Proxy-
     State Attribute if it added one.  Proxy-State is always added or
     removed after any other Proxy-States, but no other assumptions
     regarding its location within the list of attributes can be made.
     Since Access-Accept and Access-Reject replies are authenticated on
     the entire packet contents, the stripping of the Proxy-State
     attribute invalidates the signature in the packet - so the proxy
     has to re-sign it.

     Further details of RADIUS proxy implementation are outside the
     scope of this document.






Rigney, et al.              Standards Track                    [Page 16]

RFC 2865                         RADIUS                        June 2000


4.  Packet Types

  The RADIUS Packet type is determined by the Code field in the first
  octet of the Packet.

4.1.  Access-Request

  Description

     Access-Request packets are sent to a RADIUS server, and convey
     information used to determine whether a user is allowed access to
     a specific NAS, and any special services requested for that user.
     An implementation wishing to authenticate a user MUST transmit a
     RADIUS packet with the Code field set to 1 (Access-Request).

     Upon receipt of an Access-Request from a valid client, an
     appropriate reply MUST be transmitted.

     An Access-Request SHOULD contain a User-Name attribute.  It MUST
     contain either a NAS-IP-Address attribute or a NAS-Identifier
     attribute (or both).

     An Access-Request MUST contain either a User-Password or a CHAP-
     Password or a State.  An Access-Request MUST NOT contain both a
     User-Password and a CHAP-Password.  If future extensions allow
     other kinds of authentication information to be conveyed, the
     attribute for that can be used in an Access-Request instead of
     User-Password or CHAP-Password.

     An Access-Request SHOULD contain a NAS-Port or NAS-Port-Type
     attribute or both unless the type of access being requested does
     not involve a port or the NAS does not distinguish among its
     ports.

     An Access-Request MAY contain additional attributes as a hint to
     the server, but the server is not required to honor the hint.

     When a User-Password is present, it is hidden using a method based
     on the RSA Message Digest Algorithm MD5 [3].












Rigney, et al.              Standards Track                    [Page 17]

RFC 2865                         RADIUS                        June 2000


  A summary of the Access-Request packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                     Request Authenticator                     |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Attributes ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-

  Code

     1 for Access-Request.

  Identifier

     The Identifier field MUST be changed whenever the content of the
     Attributes field changes, and whenever a valid reply has been
     received for a previous request.  For retransmissions, the
     Identifier MUST remain unchanged.

  Request Authenticator

     The Request Authenticator value MUST be changed each time a new
     Identifier is used.

  Attributes

     The Attribute field is variable in length, and contains the list
     of Attributes that are required for the type of service, as well
     as any desired optional Attributes.

4.2.  Access-Accept

  Description

     Access-Accept packets are sent by the RADIUS server, and provide
     specific configuration information necessary to begin delivery of
     service to the user.  If all Attribute values received in an
     Access-Request are acceptable then the RADIUS implementation MUST
     transmit a packet with the Code field set to 2 (Access-Accept).




Rigney, et al.              Standards Track                    [Page 18]

RFC 2865                         RADIUS                        June 2000


     On reception of an Access-Accept, the Identifier field is matched
     with a pending Access-Request.  The Response Authenticator field
     MUST contain the correct response for the pending Access-Request.
     Invalid packets are silently discarded.

  A summary of the Access-Accept packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                     Response Authenticator                    |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Attributes ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-

  Code

     2 for Access-Accept.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Access-Request which caused this Access-Accept.

  Response Authenticator

     The Response Authenticator value is calculated from the Access-
     Request value, as described earlier.

  Attributes

     The Attribute field is variable in length, and contains a list of
     zero or more Attributes.












Rigney, et al.              Standards Track                    [Page 19]

RFC 2865                         RADIUS                        June 2000


4.3.  Access-Reject

  Description

     If any value of the received Attributes is not acceptable, then
     the RADIUS server MUST transmit a packet with the Code field set
     to 3 (Access-Reject).  It MAY include one or more Reply-Message
     Attributes with a text message which the NAS MAY display to the
     user.

  A summary of the Access-Reject packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                     Response Authenticator                    |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Attributes ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-

  Code

     3 for Access-Reject.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Access-Request which caused this Access-Reject.

  Response Authenticator

     The Response Authenticator value is calculated from the Access-
     Request value, as described earlier.

  Attributes

     The Attribute field is variable in length, and contains a list of
     zero or more Attributes.







Rigney, et al.              Standards Track                    [Page 20]

RFC 2865                         RADIUS                        June 2000


4.4.  Access-Challenge

  Description

     If the RADIUS server desires to send the user a challenge
     requiring a response, then the RADIUS server MUST respond to the
     Access-Request by transmitting a packet with the Code field set to
     11 (Access-Challenge).

     The Attributes field MAY have one or more Reply-Message
     Attributes, and MAY have a single State Attribute, or none.
     Vendor-Specific, Idle-Timeout, Session-Timeout and Proxy-State
     attributes MAY also be included.  No other Attributes defined in
     this document are permitted in an Access-Challenge.

     On receipt of an Access-Challenge, the Identifier field is matched
     with a pending Access-Request.  Additionally, the Response
     Authenticator field MUST contain the correct response for the
     pending Access-Request.  Invalid packets are silently discarded.

     If the NAS does not support challenge/response, it MUST treat an
     Access-Challenge as though it had received an Access-Reject
     instead.

     If the NAS supports challenge/response, receipt of a valid
     Access-Challenge indicates that a new Access-Request SHOULD be
     sent.  The NAS MAY display the text message, if any, to the user,
     and then prompt the user for a response.  It then sends its
     original Access-Request with a new request ID and Request
     Authenticator, with the User-Password Attribute replaced by the
     user's response (encrypted), and including the State Attribute
     from the Access-Challenge, if any.  Only 0 or 1 instances of the
     State Attribute can be present in an Access-Request.

     A NAS which supports PAP MAY forward the Reply-Message to the
     dialing client and accept a PAP response which it can use as
     though the user had entered the response.  If the NAS cannot do
     so, it MUST treat the Access-Challenge as though it had received
     an Access-Reject instead.












Rigney, et al.              Standards Track                    [Page 21]

RFC 2865                         RADIUS                        June 2000


  A summary of the Access-Challenge packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                     Response Authenticator                    |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Attributes ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-

  Code

     11 for Access-Challenge.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Access-Request which caused this Access-Challenge.

  Response Authenticator

     The Response Authenticator value is calculated from the Access-
     Request value, as described earlier.

  Attributes

     The Attributes field is variable in length, and contains a list of
     zero or more Attributes.

5.  Attributes

  RADIUS Attributes carry the specific authentication, authorization,
  information and configuration details for the request and reply.

  The end of the list of Attributes is indicated by the Length of the
  RADIUS packet.

  Some Attributes MAY be included more than once.  The effect of this
  is Attribute specific, and is specified in each Attribute
  description.  A summary table is provided at the end of the
  "Attributes" section.




Rigney, et al.              Standards Track                    [Page 22]

RFC 2865                         RADIUS                        June 2000


  If multiple Attributes with the same Type are present, the order of
  Attributes with the same Type MUST be preserved by any proxies.  The
  order of Attributes of different Types is not required to be
  preserved.  A RADIUS server or client MUST NOT have any dependencies
  on the order of attributes of different types.  A RADIUS server or
  client MUST NOT require attributes of the same type to be contiguous.

  Where an Attribute's description limits which kinds of packet it can
  be contained in, this applies only to the packet types defined in
  this document, namely Access-Request, Access-Accept, Access-Reject
  and Access-Challenge (Codes 1, 2, 3, and 11).  Other documents
  defining other packet types may also use Attributes described here.
  To determine which Attributes are allowed in Accounting-Request and
  Accounting-Response packets (Codes 4 and 5) refer to the RADIUS
  Accounting document [5].

  Likewise where packet types defined here state that only certain
  Attributes are permissible in them, future memos defining new
  Attributes should indicate which packet types the new Attributes may
  be present in.

  A summary of the Attribute format is shown below.  The fields are
  transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  Value ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     The Type field is one octet.  Up-to-date values of the RADIUS Type
     field are specified in the most recent "Assigned Numbers" RFC [6].
     Values 192-223 are reserved for experimental use, values 224-240
     are reserved for implementation-specific use, and values 241-255
     are reserved and should not be used.

     A RADIUS server MAY ignore Attributes with an unknown Type.

     A RADIUS client MAY ignore Attributes with an unknown Type.










Rigney, et al.              Standards Track                    [Page 23]

RFC 2865                         RADIUS                        June 2000


     This specification concerns the following values:

         1      User-Name
         2      User-Password
         3      CHAP-Password
         4      NAS-IP-Address
         5      NAS-Port
         6      Service-Type
         7      Framed-Protocol
         8      Framed-IP-Address
         9      Framed-IP-Netmask
        10      Framed-Routing
        11      Filter-Id
        12      Framed-MTU
        13      Framed-Compression
        14      Login-IP-Host
        15      Login-Service
        16      Login-TCP-Port
        17      (unassigned)
        18      Reply-Message
        19      Callback-Number
        20      Callback-Id
        21      (unassigned)
        22      Framed-Route
        23      Framed-IPX-Network
        24      State
        25      Class
        26      Vendor-Specific
        27      Session-Timeout
        28      Idle-Timeout
        29      Termination-Action
        30      Called-Station-Id
        31      Calling-Station-Id
        32      NAS-Identifier
        33      Proxy-State
        34      Login-LAT-Service
        35      Login-LAT-Node
        36      Login-LAT-Group
        37      Framed-AppleTalk-Link
        38      Framed-AppleTalk-Network
        39      Framed-AppleTalk-Zone
        40-59   (reserved for accounting)
        60      CHAP-Challenge
        61      NAS-Port-Type
        62      Port-Limit
        63      Login-LAT-Port





Rigney, et al.              Standards Track                    [Page 24]

RFC 2865                         RADIUS                        June 2000


  Length

     The Length field is one octet, and indicates the length of this
     Attribute including the Type, Length and Value fields.  If an
     Attribute is received in an Access-Request but with an invalid
     Length, an Access-Reject SHOULD be transmitted.  If an Attribute
     is received in an Access-Accept, Access-Reject or Access-Challenge
     packet with an invalid length, the packet MUST either be treated
     as an Access-Reject or else silently discarded.

  Value

     The Value field is zero or more octets and contains information
     specific to the Attribute.  The format and length of the Value
     field is determined by the Type and Length fields.

     Note that none of the types in RADIUS terminate with a NUL (hex
     00).  In particular, types "text" and "string" in RADIUS do not
     terminate with a NUL (hex 00).  The Attribute has a length field
     and does not use a terminator.  Text contains UTF-8 encoded 10646
     [7] characters and String contains 8-bit binary data.  Servers and
     servers and clients MUST be able to deal with embedded nulls.
     RADIUS implementers using C are cautioned not to use strcpy() when
     handling strings.

     The format of the value field is one of five data types.  Note
     that type "text" is a subset of type "string".

     text      1-253 octets containing UTF-8 encoded 10646 [7]
               characters.  Text of length zero (0) MUST NOT be sent;
               omit the entire attribute instead.

     string    1-253 octets containing binary data (values 0 through
               255 decimal, inclusive).  Strings of length zero (0)
               MUST NOT be sent; omit the entire attribute instead.

     address   32 bit value, most significant octet first.

     integer   32 bit unsigned value, most significant octet first.

     time      32 bit unsigned value, most significant octet first --
               seconds since 00:00:00 UTC, January 1, 1970.  The
               standard Attributes do not use this data type but it is
               presented here for possible use in future attributes.







Rigney, et al.              Standards Track                    [Page 25]

RFC 2865                         RADIUS                        June 2000


5.1.  User-Name

  Description

     This Attribute indicates the name of the user to be authenticated.
     It MUST be sent in Access-Request packets if available.

     It MAY be sent in an Access-Accept packet, in which case the
     client SHOULD use the name returned in the Access-Accept packet in
     all Accounting-Request packets for this session.  If the Access-
     Accept includes Service-Type = Rlogin and the User-Name attribute,
     a NAS MAY use the returned User-Name when performing the Rlogin
     function.

  A summary of the User-Name Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     1 for User-Name.

  Length

     >= 3

  String

     The String field is one or more octets.  The NAS may limit the
     maximum length of the User-Name but the ability to handle at least
     63 octets is recommended.

     The format of the username MAY be one of several forms:

     text      Consisting only of UTF-8 encoded 10646 [7] characters.

     network access identifier
               A Network Access Identifier as described in RFC 2486
               [8].

     distinguished name
               A name in ASN.1 form used in Public Key authentication
               systems.



Rigney, et al.              Standards Track                    [Page 26]

RFC 2865                         RADIUS                        June 2000


5.2.  User-Password

  Description

     This Attribute indicates the password of the user to be
     authenticated, or the user's input following an Access-Challenge.
     It is only used in Access-Request packets.

     On transmission, the password is hidden.  The password is first
     padded at the end with nulls to a multiple of 16 octets.  A one-
     way MD5 hash is calculated over a stream of octets consisting of
     the shared secret followed by the Request Authenticator.  This
     value is XORed with the first 16 octet segment of the password and
     placed in the first 16 octets of the String field of the User-
     Password Attribute.

     If the password is longer than 16 characters, a second one-way MD5
     hash is calculated over a stream of octets consisting of the
     shared secret followed by the result of the first xor.  That hash
     is XORed with the second 16 octet segment of the password and
     placed in the second 16 octets of the String field of the User-
     Password Attribute.

     If necessary, this operation is repeated, with each xor result
     being used along with the shared secret to generate the next hash
     to xor the next segment of the password, to no more than 128
     characters.

     The method is taken from the book "Network Security" by Kaufman,
     Perlman and Speciner [9] pages 109-110.  A more precise
     explanation of the method follows:

     Call the shared secret S and the pseudo-random 128-bit Request
     Authenticator RA.  Break the password into 16-octet chunks p1, p2,
     etc.  with the last one padded at the end with nulls to a 16-octet
     boundary.  Call the ciphertext blocks c(1), c(2), etc.  We'll need
     intermediate values b1, b2, etc.

        b1 = MD5(S + RA)       c(1) = p1 xor b1
        b2 = MD5(S + c(1))     c(2) = p2 xor b2
               .                       .
               .                       .
               .                       .
        bi = MD5(S + c(i-1))   c(i) = pi xor bi

     The String will contain c(1)+c(2)+...+c(i) where + denotes
     concatenation.




Rigney, et al.              Standards Track                    [Page 27]

RFC 2865                         RADIUS                        June 2000


     On receipt, the process is reversed to yield the original
     password.

  A summary of the User-Password Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     2 for User-Password.

  Length

     At least 18 and no larger than 130.

  String

     The String field is between 16 and 128 octets long, inclusive.

5.3.  CHAP-Password

  Description

     This Attribute indicates the response value provided by a PPP
     Challenge-Handshake Authentication Protocol (CHAP) user in
     response to the challenge.  It is only used in Access-Request
     packets.

     The CHAP challenge value is found in the CHAP-Challenge Attribute
     (60) if present in the packet, otherwise in the Request
     Authenticator field.

  A summary of the CHAP-Password Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  CHAP Ident   |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-






Rigney, et al.              Standards Track                    [Page 28]

RFC 2865                         RADIUS                        June 2000


  Type

     3 for CHAP-Password.

  Length

     19

  CHAP Ident

     This field is one octet, and contains the CHAP Identifier from the
     user's CHAP Response.

  String

     The String field is 16 octets, and contains the CHAP Response from
     the user.

5.4.  NAS-IP-Address

  Description

     This Attribute indicates the identifying IP Address of the NAS
     which is requesting authentication of the user, and SHOULD be
     unique to the NAS within the scope of the RADIUS server. NAS-IP-
     Address is only used in Access-Request packets.  Either NAS-IP-
     Address or NAS-Identifier MUST be present in an Access-Request
     packet.

     Note that NAS-IP-Address MUST NOT be used to select the shared
     secret used to authenticate the request.  The source IP address of
     the Access-Request packet MUST be used to select the shared
     secret.

  A summary of the NAS-IP-Address Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |            Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           Address (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     4 for NAS-IP-Address.



Rigney, et al.              Standards Track                    [Page 29]

RFC 2865                         RADIUS                        June 2000


  Length

     6

  Address

     The Address field is four octets.

5.5.  NAS-Port

  Description

     This Attribute indicates the physical port number of the NAS which
     is authenticating the user.  It is only used in Access-Request
     packets.  Note that this is using "port" in its sense of a
     physical connection on the NAS, not in the sense of a TCP or UDP
     port number.  Either NAS-Port or NAS-Port-Type (61) or both SHOULD
     be present in an Access-Request packet, if the NAS differentiates
     among its ports.

  A summary of the NAS-Port Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     5 for NAS-Port.

  Length

     6

  Value

     The Value field is four octets.









Rigney, et al.              Standards Track                    [Page 30]

RFC 2865                         RADIUS                        June 2000


5.6.  Service-Type

  Description

     This Attribute indicates the type of service the user has
     requested, or the type of service to be provided.  It MAY be used
     in both Access-Request and Access-Accept packets.  A NAS is not
     required to implement all of these service types, and MUST treat
     unknown or unsupported Service-Types as though an Access-Reject
     had been received instead.

  A summary of the Service-Type Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     6 for Service-Type.

  Length

     6

  Value

     The Value field is four octets.

      1      Login
      2      Framed
      3      Callback Login
      4      Callback Framed
      5      Outbound
      6      Administrative
      7      NAS Prompt
      8      Authenticate Only
      9      Callback NAS Prompt
     10      Call Check
     11      Callback Administrative






Rigney, et al.              Standards Track                    [Page 31]

RFC 2865                         RADIUS                        June 2000


     The service types are defined as follows when used in an Access-
     Accept.  When used in an Access-Request, they MAY be considered to
     be a hint to the RADIUS server that the NAS has reason to believe
     the user would prefer the kind of service indicated, but the
     server is not required to honor the hint.

     Login               The user should be connected to a host.

     Framed              A Framed Protocol should be started for the
                         User, such as PPP or SLIP.

     Callback Login      The user should be disconnected and called
                         back, then connected to a host.

     Callback Framed     The user should be disconnected and called
                         back, then a Framed Protocol should be started
                         for the User, such as PPP or SLIP.

     Outbound            The user should be granted access to outgoing
                         devices.

     Administrative      The user should be granted access to the
                         administrative interface to the NAS from which
                         privileged commands can be executed.

     NAS Prompt          The user should be provided a command prompt
                         on the NAS from which non-privileged commands
                         can be executed.

     Authenticate Only   Only Authentication is requested, and no
                         authorization information needs to be returned
                         in the Access-Accept (typically used by proxy
                         servers rather than the NAS itself).

     Callback NAS Prompt The user should be disconnected and called
                         back, then provided a command prompt on the
                         NAS from which non-privileged commands can be
                         executed.

     Call Check          Used by the NAS in an Access-Request packet to
                         indicate that a call is being received and
                         that the RADIUS server should send back an
                         Access-Accept to answer the call, or an
                         Access-Reject to not accept the call,
                         typically based on the Called-Station-Id or
                         Calling-Station-Id attributes.  It is





Rigney, et al.              Standards Track                    [Page 32]

RFC 2865                         RADIUS                        June 2000


                         recommended that such Access-Requests use the
                         value of Calling-Station-Id as the value of
                         the User-Name.

     Callback Administrative
                         The user should be disconnected and called
                         back, then granted access to the
                         administrative interface to the NAS from which
                         privileged commands can be executed.

5.7.  Framed-Protocol

  Description

     This Attribute indicates the framing to be used for framed access.
     It MAY be used in both Access-Request and Access-Accept packets.

  A summary of the Framed-Protocol Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     7 for Framed-Protocol.

  Length

     6

  Value

     The Value field is four octets.

     1      PPP
     2      SLIP
     3      AppleTalk Remote Access Protocol (ARAP)
     4      Gandalf proprietary SingleLink/MultiLink protocol
     5      Xylogics proprietary IPX/SLIP
     6      X.75 Synchronous





Rigney, et al.              Standards Track                    [Page 33]

RFC 2865                         RADIUS                        June 2000


5.8.  Framed-IP-Address

  Description

     This Attribute indicates the address to be configured for the
     user.  It MAY be used in Access-Accept packets.  It MAY be used in
     an Access-Request packet as a hint by the NAS to the server that
     it would prefer that address, but the server is not required to
     honor the hint.

  A summary of the Framed-IP-Address Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |            Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           Address (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     8 for Framed-IP-Address.

  Length

     6

  Address

     The Address field is four octets.  The value 0xFFFFFFFF indicates
     that the NAS Should allow the user to select an address (e.g.
     Negotiated).  The value 0xFFFFFFFE indicates that the NAS should
     select an address for the user (e.g. Assigned from a pool of
     addresses kept by the NAS).  Other valid values indicate that the
     NAS should use that value as the user's IP address.

5.9.  Framed-IP-Netmask

  Description

     This Attribute indicates the IP netmask to be configured for the
     user when the user is a router to a network.  It MAY be used in
     Access-Accept packets.  It MAY be used in an Access-Request packet
     as a hint by the NAS to the server that it would prefer that
     netmask, but the server is not required to honor the hint.




Rigney, et al.              Standards Track                    [Page 34]

RFC 2865                         RADIUS                        June 2000


  A summary of the Framed-IP-Netmask Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |            Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           Address (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     9 for Framed-IP-Netmask.

  Length

     6

  Address

     The Address field is four octets specifying the IP netmask of the
     user.

5.10.  Framed-Routing

  Description

     This Attribute indicates the routing method for the user, when the
     user is a router to a network.  It is only used in Access-Accept
     packets.

  A summary of the Framed-Routing Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     10 for Framed-Routing.





Rigney, et al.              Standards Track                    [Page 35]

RFC 2865                         RADIUS                        June 2000


  Length

     6

  Value

     The Value field is four octets.

      0      None
      1      Send routing packets
      2      Listen for routing packets
      3      Send and Listen

5.11.  Filter-Id

  Description

     This Attribute indicates the name of the filter list for this
     user.  Zero or more Filter-Id attributes MAY be sent in an
     Access-Accept packet.

     Identifying a filter list by name allows the filter to be used on
     different NASes without regard to filter-list implementation
     details.

  A summary of the Filter-Id Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  Text ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     11 for Filter-Id.

  Length

     >= 3

  Text

     The Text field is one or more octets, and its contents are
     implementation dependent.  It is intended to be human readable and
     MUST NOT affect operation of the protocol.  It is recommended that
     the message contain UTF-8 encoded 10646 [7] characters.



Rigney, et al.              Standards Track                    [Page 36]

RFC 2865                         RADIUS                        June 2000


5.12.  Framed-MTU

  Description

     This Attribute indicates the Maximum Transmission Unit to be
     configured for the user, when it is not negotiated by some other
     means (such as PPP).  It MAY be used in Access-Accept packets.  It
     MAY be used in an Access-Request packet as a hint by the NAS to
     the server that it would prefer that value, but the server is not
     required to honor the hint.

  A summary of the Framed-MTU Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     12 for Framed-MTU.

  Length

     6

  Value

     The Value field is four octets.  Despite the size of the field,
     values range from 64 to 65535.

5.13.  Framed-Compression

  Description

     This Attribute indicates a compression protocol to be used for the
     link.  It MAY be used in Access-Accept packets.  It MAY be used in
     an Access-Request packet as a hint to the server that the NAS
     would prefer to use that compression, but the server is not
     required to honor the hint.

     More than one compression protocol Attribute MAY be sent.  It is
     the responsibility of the NAS to apply the proper compression
     protocol to appropriate link traffic.



Rigney, et al.              Standards Track                    [Page 37]

RFC 2865                         RADIUS                        June 2000


  A summary of the Framed-Compression Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     13 for Framed-Compression.

  Length

     6

  Value

     The Value field is four octets.

      0      None
      1      VJ TCP/IP header compression [10]
      2      IPX header compression
      3      Stac-LZS compression

5.14.  Login-IP-Host

  Description

     This Attribute indicates the system with which to connect the user,
     when the Login-Service Attribute is included.  It MAY be used in
     Access-Accept packets.  It MAY be used in an Access-Request packet as
     a hint to the server that the NAS would prefer to use that host, but
     the server is not required to honor the hint.

  A summary of the Login-IP-Host Attribute format is shown below.  The
  fields are transmitted from left to right.











Rigney, et al.              Standards Track                    [Page 38]

RFC 2865                         RADIUS                        June 2000


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |            Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           Address (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     14 for Login-IP-Host.

  Length

     6

  Address

     The Address field is four octets.  The value 0xFFFFFFFF indicates
     that the NAS SHOULD allow the user to select an address.  The
     value 0 indicates that the NAS SHOULD select a host to connect the
     user to.  Other values indicate the address the NAS SHOULD connect
     the user to.

5.15.  Login-Service

  Description

     This Attribute indicates the service to use to connect the user to
     the login host.  It is only used in Access-Accept packets.

  A summary of the Login-Service Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     15 for Login-Service.






Rigney, et al.              Standards Track                    [Page 39]

RFC 2865                         RADIUS                        June 2000


  Length

     6

  Value

     The Value field is four octets.

      0   Telnet
      1   Rlogin
      2   TCP Clear
      3   PortMaster (proprietary)
      4   LAT
      5   X25-PAD
      6   X25-T3POS
      8   TCP Clear Quiet (suppresses any NAS-generated connect string)

5.16.  Login-TCP-Port

  Description

     This Attribute indicates the TCP port with which the user is to be
     connected, when the Login-Service Attribute is also present.  It
     is only used in Access-Accept packets.

  A summary of the Login-TCP-Port Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     16 for Login-TCP-Port.

  Length

     6

  Value

     The Value field is four octets.  Despite the size of the field,
     values range from 0 to 65535.



Rigney, et al.              Standards Track                    [Page 40]

RFC 2865                         RADIUS                        June 2000


5.17.  (unassigned)

  Description

     ATTRIBUTE TYPE 17 HAS NOT BEEN ASSIGNED.

5.18.  Reply-Message

  Description

     This Attribute indicates text which MAY be displayed to the user.

     When used in an Access-Accept, it is the success message.

     When used in an Access-Reject, it is the failure message.  It MAY
     indicate a dialog message to prompt the user before another
     Access-Request attempt.

     When used in an Access-Challenge, it MAY indicate a dialog message
     to prompt the user for a response.

     Multiple Reply-Message's MAY be included and if any are displayed,
     they MUST be displayed in the same order as they appear in the
     packet.

  A summary of the Reply-Message Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  Text ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     18 for Reply-Message.

  Length

     >= 3

  Text

     The Text field is one or more octets, and its contents are
     implementation dependent.  It is intended to be human readable,
     and MUST NOT affect operation of the protocol.  It is recommended
     that the message contain UTF-8 encoded 10646 [7] characters.



Rigney, et al.              Standards Track                    [Page 41]

RFC 2865                         RADIUS                        June 2000


5.19.  Callback-Number

  Description

     This Attribute indicates a dialing string to be used for callback.
     It MAY be used in Access-Accept packets.  It MAY be used in an
     Access-Request packet as a hint to the server that a Callback
     service is desired, but the server is not required to honor the
     hint.

  A summary of the Callback-Number Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     19 for Callback-Number.

  Length

     >= 3

  String

     The String field is one or more octets.  The actual format of the
     information is site or application specific, and a robust
     implementation SHOULD support the field as undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.20.  Callback-Id

  Description

     This Attribute indicates the name of a place to be called, to be
     interpreted by the NAS.  It MAY be used in Access-Accept packets.









Rigney, et al.              Standards Track                    [Page 42]

RFC 2865                         RADIUS                        June 2000


  A summary of the Callback-Id Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     20 for Callback-Id.

  Length

     >= 3

  String

     The String field is one or more octets.  The actual format of the
     information is site or application specific, and a robust
     implementation SHOULD support the field as undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.21.  (unassigned)

  Description

     ATTRIBUTE TYPE 21 HAS NOT BEEN ASSIGNED.

5.22.  Framed-Route

  Description

     This Attribute provides routing information to be configured for
     the user on the NAS.  It is used in the Access-Accept packet and
     can appear multiple times.

  A summary of the Framed-Route Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  Text ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-



Rigney, et al.              Standards Track                    [Page 43]

RFC 2865                         RADIUS                        June 2000


  Type

     22 for Framed-Route.

  Length

     >= 3

  Text

     The Text field is one or more octets, and its contents are
     implementation dependent.  It is intended to be human readable and
     MUST NOT affect operation of the protocol.  It is recommended that
     the message contain UTF-8 encoded 10646 [7] characters.

     For IP routes, it SHOULD contain a destination prefix in dotted
     quad form optionally followed by a slash and a decimal length
     specifier stating how many high order bits of the prefix to use.
     That is followed by a space, a gateway address in dotted quad
     form, a space, and one or more metrics separated by spaces.  For
     example, "192.168.1.0/24 192.168.1.1 1 2 -1 3 400". The length
     specifier may be omitted, in which case it defaults to 8 bits for
     class A prefixes, 16 bits for class B prefixes, and 24 bits for
     class C prefixes.  For example, "192.168.1.0 192.168.1.1 1".

     Whenever the gateway address is specified as "0.0.0.0" the IP
     address of the user SHOULD be used as the gateway address.

5.23.  Framed-IPX-Network

  Description

     This Attribute indicates the IPX Network number to be configured
     for the user.  It is used in Access-Accept packets.

  A summary of the Framed-IPX-Network Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Rigney, et al.              Standards Track                    [Page 44]

RFC 2865                         RADIUS                        June 2000


  Type

     23 for Framed-IPX-Network.

  Length

     6

  Value

     The Value field is four octets.  The value 0xFFFFFFFE indicates
     that the NAS should select an IPX network for the user (e.g.
     assigned from a pool of one or more IPX networks kept by the NAS).
     Other values should be used as the IPX network for the link to the
     user.

5.24.  State

  Description

     This Attribute is available to be sent by the server to the client
     in an Access-Challenge and MUST be sent unmodified from the client
     to the server in the new Access-Request reply to that challenge,
     if any.

     This Attribute is available to be sent by the server to the client
     in an Access-Accept that also includes a Termination-Action
     Attribute with the value of RADIUS-Request.  If the NAS performs
     the Termination-Action by sending a new Access-Request upon
     termination of the current session, it MUST include the State
     attribute unchanged in that Access-Request.

     In either usage, the client MUST NOT interpret the attribute
     locally.  A packet must have only zero or one State Attribute.
     Usage of the State Attribute is implementation dependent.

  A summary of the State Attribute format is shown below.  The fields
  are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     24 for State.



Rigney, et al.              Standards Track                    [Page 45]

RFC 2865                         RADIUS                        June 2000


  Length

     >= 3

  String

     The String field is one or more octets.  The actual format of the
     information is site or application specific, and a robust
     implementation SHOULD support the field as undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.25.  Class

  Description

     This Attribute is available to be sent by the server to the client
     in an Access-Accept and SHOULD be sent unmodified by the client to
     the accounting server as part of the Accounting-Request packet if
     accounting is supported.  The client MUST NOT interpret the
     attribute locally.

  A summary of the Class Attribute format is shown below.  The fields
  are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     25 for Class.

  Length

     >= 3

  String

     The String field is one or more octets.  The actual format of the
     information is site or application specific, and a robust
     implementation SHOULD support the field as undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.



Rigney, et al.              Standards Track                    [Page 46]

RFC 2865                         RADIUS                        June 2000


5.26.  Vendor-Specific

  Description

     This Attribute is available to allow vendors to support their own
     extended Attributes not suitable for general usage.  It MUST not
     affect the operation of the RADIUS protocol.

     Servers not equipped to interpret the vendor-specific information
     sent by a client MUST ignore it (although it may be reported).
     Clients which do not receive desired vendor-specific information
     SHOULD make an attempt to operate without it, although they may do
     so (and report they are doing so) in a degraded mode.

  A summary of the Vendor-Specific Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |  Length       |            Vendor-Id
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       Vendor-Id (cont)           |  String...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     26 for Vendor-Specific.

  Length

     >= 7

  Vendor-Id

     The high-order octet is 0 and the low-order 3 octets are the SMI
     Network Management Private Enterprise Code of the Vendor in
     network byte order, as defined in the "Assigned Numbers" RFC [6].

  String

     The String field is one or more octets.  The actual format of the
     information is site or application specific, and a robust
     implementation SHOULD support the field as undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.




Rigney, et al.              Standards Track                    [Page 47]

RFC 2865                         RADIUS                        June 2000


     It SHOULD be encoded as a sequence of vendor type / vendor length
     / value fields, as follows.  The Attribute-Specific field is
     dependent on the vendor's definition of that attribute.  An
     example encoding of the Vendor-Specific attribute using this
     method follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |  Length       |            Vendor-Id
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
          Vendor-Id (cont)           | Vendor type   | Vendor length |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Attribute-Specific...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

     Multiple subattributes MAY be encoded within a single Vendor-
     Specific attribute, although they do not have to be.

5.27.  Session-Timeout

  Description

     This Attribute sets the maximum number of seconds of service to be
     provided to the user before termination of the session or prompt.
     This Attribute is available to be sent by the server to the client
     in an Access-Accept or Access-Challenge.

  A summary of the Session-Timeout Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     27 for Session-Timeout.

  Length

     6





Rigney, et al.              Standards Track                    [Page 48]

RFC 2865                         RADIUS                        June 2000


  Value

     The field is 4 octets, containing a 32-bit unsigned integer with
     the maximum number of seconds this user should be allowed to
     remain connected by the NAS.

5.28.  Idle-Timeout

  Description

     This Attribute sets the maximum number of consecutive seconds of
     idle connection allowed to the user before termination of the
     session or prompt.  This Attribute is available to be sent by the
     server to the client in an Access-Accept or Access-Challenge.

  A summary of the Idle-Timeout Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     28 for Idle-Timeout.

  Length

     6

  Value

     The field is 4 octets, containing a 32-bit unsigned integer with
     the maximum number of consecutive seconds of idle time this user
     should be permitted before being disconnected by the NAS.

5.29.  Termination-Action

  Description

     This Attribute indicates what action the NAS should take when the
     specified service is completed.  It is only used in Access-Accept
     packets.




Rigney, et al.              Standards Track                    [Page 49]

RFC 2865                         RADIUS                        June 2000


  A summary of the Termination-Action Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     29 for Termination-Action.

  Length

     6

  Value

     The Value field is four octets.

      0      Default
      1      RADIUS-Request

     If the Value is set to RADIUS-Request, upon termination of the
     specified service the NAS MAY send a new Access-Request to the
     RADIUS server, including the State attribute if any.

5.30.  Called-Station-Id

  Description

     This Attribute allows the NAS to send in the Access-Request packet
     the phone number that the user called, using Dialed Number
     Identification (DNIS) or similar technology.  Note that this may
     be different from the phone number the call comes in on.  It is
     only used in Access-Request packets.

  A summary of the Called-Station-Id Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-



Rigney, et al.              Standards Track                    [Page 50]

RFC 2865                         RADIUS                        June 2000


  Type

     30 for Called-Station-Id.

  Length

     >= 3

  String

     The String field is one or more octets, containing the phone
     number that the user's call came in on.

     The actual format of the information is site or application
     specific.  UTF-8 encoded 10646 [7] characters are recommended, but
     a robust implementation SHOULD support the field as
     undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.31.  Calling-Station-Id

  Description

     This Attribute allows the NAS to send in the Access-Request packet
     the phone number that the call came from, using Automatic Number
     Identification (ANI) or similar technology.  It is only used in
     Access-Request packets.

  A summary of the Calling-Station-Id Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     31 for Calling-Station-Id.

  Length

     >= 3





Rigney, et al.              Standards Track                    [Page 51]

RFC 2865                         RADIUS                        June 2000


  String

     The String field is one or more octets, containing the phone
     number that the user placed the call from.

     The actual format of the information is site or application
     specific.  UTF-8 encoded 10646 [7] characters are recommended, but
     a robust implementation SHOULD support the field as
     undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.32.  NAS-Identifier

  Description

     This Attribute contains a string identifying the NAS originating
     the Access-Request.  It is only used in Access-Request packets.
     Either NAS-IP-Address or NAS-Identifier MUST be present in an
     Access-Request packet.

     Note that NAS-Identifier MUST NOT be used to select the shared
     secret used to authenticate the request.  The source IP address of
     the Access-Request packet MUST be used to select the shared
     secret.

  A summary of the NAS-Identifier Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     32 for NAS-Identifier.

  Length

     >= 3








Rigney, et al.              Standards Track                    [Page 52]

RFC 2865                         RADIUS                        June 2000


  String

     The String field is one or more octets, and should be unique to
     the NAS within the scope of the RADIUS server.  For example, a
     fully qualified domain name would be suitable as a NAS-Identifier.

     The actual format of the information is site or application
     specific, and a robust implementation SHOULD support the field as
     undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.33.  Proxy-State

  Description

     This Attribute is available to be sent by a proxy server to
     another server when forwarding an Access-Request and MUST be
     returned unmodified in the Access-Accept, Access-Reject or
     Access-Challenge.  When the proxy server receives the response to
     its request, it MUST remove its own Proxy-State (the last Proxy-
     State in the packet) before forwarding the response to the NAS.

     If a Proxy-State Attribute is added to a packet when forwarding
     the packet, the Proxy-State Attribute MUST be added after any
     existing Proxy-State attributes.

     The content of any Proxy-State other than the one added by the
     current server should be treated as opaque octets and MUST NOT
     affect operation of the protocol.

     Usage of the Proxy-State Attribute is implementation dependent.  A
     description of its function is outside the scope of this
     specification.

  A summary of the Proxy-State Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     33 for Proxy-State.



Rigney, et al.              Standards Track                    [Page 53]

RFC 2865                         RADIUS                        June 2000


  Length

     >= 3

  String

     The String field is one or more octets.  The actual format of the
     information is site or application specific, and a robust
     implementation SHOULD support the field as undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.34.  Login-LAT-Service

  Description

     This Attribute indicates the system with which the user is to be
     connected by LAT.  It MAY be used in Access-Accept packets, but
     only when LAT is specified as the Login-Service.  It MAY be used
     in an Access-Request packet as a hint to the server, but the
     server is not required to honor the hint.

     Administrators use the service attribute when dealing with
     clustered systems, such as a VAX or Alpha cluster. In such an
     environment several different time sharing hosts share the same
     resources (disks, printers, etc.), and administrators often
     configure each to offer access (service) to each of the shared
     resources. In this case, each host in the cluster advertises its
     services through LAT broadcasts.

     Sophisticated users often know which service providers (machines)
     are faster and tend to use a node name when initiating a LAT
     connection.  Alternately, some administrators want particular
     users to use certain machines as a primitive form of load
     balancing (although LAT knows how to do load balancing itself).

  A summary of the Login-LAT-Service Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-






Rigney, et al.              Standards Track                    [Page 54]

RFC 2865                         RADIUS                        June 2000


  Type

     34 for Login-LAT-Service.

  Length

     >= 3

  String

     The String field is one or more octets, and contains the identity
     of the LAT service to use.  The LAT Architecture allows this
     string to contain $ (dollar), - (hyphen), . (period), _
     (underscore), numerics, upper and lower case alphabetics, and the
     ISO Latin-1 character set extension [11].  All LAT string
     comparisons are case insensitive.

5.35.  Login-LAT-Node

  Description

     This Attribute indicates the Node with which the user is to be
     automatically connected by LAT.  It MAY be used in Access-Accept
     packets, but only when LAT is specified as the Login-Service.  It
     MAY be used in an Access-Request packet as a hint to the server,
     but the server is not required to honor the hint.

  A summary of the Login-LAT-Node Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     35 for Login-LAT-Node.

  Length

     >= 3








Rigney, et al.              Standards Track                    [Page 55]

RFC 2865                         RADIUS                        June 2000


  String

     The String field is one or more octets, and contains the identity
     of the LAT Node to connect the user to.  The LAT Architecture
     allows this string to contain $ (dollar), - (hyphen), . (period),
     _ (underscore), numerics, upper and lower case alphabetics, and
     the ISO Latin-1 character set extension.  All LAT string
     comparisons are case insensitive.

5.36.  Login-LAT-Group

  Description

     This Attribute contains a string identifying the LAT group codes
     which this user is authorized to use.  It MAY be used in Access-
     Accept packets, but only when LAT is specified as the Login-
     Service.  It MAY be used in an Access-Request packet as a hint to
     the server, but the server is not required to honor the hint.

     LAT supports 256 different group codes, which LAT uses as a form
     of access rights.  LAT encodes the group codes as a 256 bit
     bitmap.

     Administrators can assign one or more of the group code bits at
     the LAT service provider; it will only accept LAT connections that
     have these group codes set in the bit map. The administrators
     assign a bitmap of authorized group codes to each user; LAT gets
     these from the operating system, and uses these in its requests to
     the service providers.

  A summary of the Login-LAT-Group Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     36 for Login-LAT-Group.

  Length

     34





Rigney, et al.              Standards Track                    [Page 56]

RFC 2865                         RADIUS                        June 2000


  String

     The String field is a 32 octet bit map, most significant octet
     first.  A robust implementation SHOULD support the field as
     undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.37.  Framed-AppleTalk-Link

  Description

     This Attribute indicates the AppleTalk network number which should
     be used for the serial link to the user, which is another
     AppleTalk router.  It is only used in Access-Accept packets.  It
     is never used when the user is not another router.

  A summary of the Framed-AppleTalk-Link Attribute format is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     37 for Framed-AppleTalk-Link.

  Length

     6

  Value

     The Value field is four octets.  Despite the size of the field,
     values range from 0 to 65535.  The special value of 0 indicates
     that this is an unnumbered serial link.  A value of 1-65535 means
     that the serial line between the NAS and the user should be
     assigned that value as an AppleTalk network number.







Rigney, et al.              Standards Track                    [Page 57]

RFC 2865                         RADIUS                        June 2000


5.38.  Framed-AppleTalk-Network

  Description

     This Attribute indicates the AppleTalk Network number which the
     NAS should probe to allocate an AppleTalk node for the user.  It
     is only used in Access-Accept packets.  It is never used when the
     user is another router.  Multiple instances of this Attribute
     indicate that the NAS may probe using any of the network numbers
     specified.

  A summary of the Framed-AppleTalk-Network Attribute format is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     38 for Framed-AppleTalk-Network.

  Length

     6

  Value

     The Value field is four octets.  Despite the size of the field,
     values range from 0 to 65535.  The special value 0 indicates that
     the NAS should assign a network for the user, using its default
     cable range.  A value between 1 and 65535 (inclusive) indicates
     the AppleTalk Network the NAS should probe to find an address for
     the user.

5.39.  Framed-AppleTalk-Zone

  Description

     This Attribute indicates the AppleTalk Default Zone to be used for
     this user.  It is only used in Access-Accept packets.  Multiple
     instances of this attribute in the same packet are not allowed.





Rigney, et al.              Standards Track                    [Page 58]

RFC 2865                         RADIUS                        June 2000


  A summary of the Framed-AppleTalk-Zone Attribute format is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     39 for Framed-AppleTalk-Zone.

  Length

     >= 3

  String

     The name of the Default AppleTalk Zone to be used for this user.
     A robust implementation SHOULD support the field as
     undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.40.  CHAP-Challenge

  Description

     This Attribute contains the CHAP Challenge sent by the NAS to a
     PPP Challenge-Handshake Authentication Protocol (CHAP) user.  It
     is only used in Access-Request packets.

     If the CHAP challenge value is 16 octets long it MAY be placed in
     the Request Authenticator field instead of using this attribute.

  A summary of the CHAP-Challenge Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |    String...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-






Rigney, et al.              Standards Track                    [Page 59]

RFC 2865                         RADIUS                        June 2000


  Type

     60 for CHAP-Challenge.

  Length

     >= 7

  String

     The String field contains the CHAP Challenge.

5.41.  NAS-Port-Type

  Description

     This Attribute indicates the type of the physical port of the NAS
     which is authenticating the user.  It can be used instead of or in
     addition to the NAS-Port (5) attribute.  It is only used in
     Access-Request packets.  Either NAS-Port (5) or NAS-Port-Type or
     both SHOULD be present in an Access-Request packet, if the NAS
     differentiates among its ports.

  A summary of the NAS-Port-Type Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     61 for NAS-Port-Type.

  Length

     6

  Value

     The Value field is four octets.  "Virtual" refers to a connection
     to the NAS via some transport protocol, instead of through a
     physical port.  For example, if a user telnetted into a NAS to




Rigney, et al.              Standards Track                    [Page 60]

RFC 2865                         RADIUS                        June 2000


     authenticate himself as an Outbound-User, the Access-Request might
     include NAS-Port-Type = Virtual as a hint to the RADIUS server
     that the user was not on a physical port.

     0       Async
     1       Sync
     2       ISDN Sync
     3       ISDN Async V.120
     4       ISDN Async V.110
     5       Virtual
     6       PIAFS
     7       HDLC Clear Channel
     8       X.25
     9       X.75
     10      G.3 Fax
     11      SDSL - Symmetric DSL
     12      ADSL-CAP - Asymmetric DSL, Carrierless Amplitude Phase
             Modulation
     13      ADSL-DMT - Asymmetric DSL, Discrete Multi-Tone
     14      IDSL - ISDN Digital Subscriber Line
     15      Ethernet
     16      xDSL - Digital Subscriber Line of unknown type
     17      Cable
     18      Wireless - Other
     19      Wireless - IEEE 802.11

     PIAFS is a form of wireless ISDN commonly used in Japan, and
     stands for PHS (Personal Handyphone System) Internet Access Forum
     Standard (PIAFS).

5.42.  Port-Limit

  Description

     This Attribute sets the maximum number of ports to be provided to
     the user by the NAS.  This Attribute MAY be sent by the server to
     the client in an Access-Accept packet.  It is intended for use in
     conjunction with Multilink PPP [12] or similar uses.  It MAY also
     be sent by the NAS to the server as a hint that that many ports
     are desired for use, but the server is not required to honor the
     hint.

  A summary of the Port-Limit Attribute format is shown below.  The
  fields are transmitted from left to right.







Rigney, et al.              Standards Track                    [Page 61]

RFC 2865                         RADIUS                        June 2000


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     62 for Port-Limit.

  Length

     6

  Value

     The field is 4 octets, containing a 32-bit unsigned integer with
     the maximum number of ports this user should be allowed to connect
     to on the NAS.

5.43.  Login-LAT-Port

  Description

     This Attribute indicates the Port with which the user is to be
     connected by LAT.  It MAY be used in Access-Accept packets, but
     only when LAT is specified as the Login-Service.  It MAY be used
     in an Access-Request packet as a hint to the server, but the
     server is not required to honor the hint.

  A summary of the Login-LAT-Port Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     63 for Login-LAT-Port.

  Length

     >= 3



Rigney, et al.              Standards Track                    [Page 62]

RFC 2865                         RADIUS                        June 2000


  String

     The String field is one or more octets, and contains the identity
     of the LAT port to use.  The LAT Architecture allows this string
     to contain $ (dollar), - (hyphen), . (period), _ (underscore),
     numerics, upper and lower case alphabetics, and the ISO Latin-1
     character set extension.  All LAT string comparisons are case
     insensitive.

5.44.  Table of Attributes

  The following table provides a guide to which attributes may be found
  in which kinds of packets, and in what quantity.

  Request   Accept   Reject   Challenge   #    Attribute
  0-1       0-1      0        0            1   User-Name
  0-1       0        0        0            2   User-Password [Note 1]
  0-1       0        0        0            3   CHAP-Password [Note 1]
  0-1       0        0        0            4   NAS-IP-Address [Note 2]
  0-1       0        0        0            5   NAS-Port
  0-1       0-1      0        0            6   Service-Type
  0-1       0-1      0        0            7   Framed-Protocol
  0-1       0-1      0        0            8   Framed-IP-Address
  0-1       0-1      0        0            9   Framed-IP-Netmask
  0         0-1      0        0           10   Framed-Routing
  0         0+       0        0           11   Filter-Id
  0-1       0-1      0        0           12   Framed-MTU
  0+        0+       0        0           13   Framed-Compression
  0+        0+       0        0           14   Login-IP-Host
  0         0-1      0        0           15   Login-Service
  0         0-1      0        0           16   Login-TCP-Port
  0         0+       0+       0+          18   Reply-Message
  0-1       0-1      0        0           19   Callback-Number
  0         0-1      0        0           20   Callback-Id
  0         0+       0        0           22   Framed-Route
  0         0-1      0        0           23   Framed-IPX-Network
  0-1       0-1      0        0-1         24   State [Note 1]
  0         0+       0        0           25   Class
  0+        0+       0        0+          26   Vendor-Specific
  0         0-1      0        0-1         27   Session-Timeout
  0         0-1      0        0-1         28   Idle-Timeout
  0         0-1      0        0           29   Termination-Action
  0-1       0        0        0           30   Called-Station-Id
  0-1       0        0        0           31   Calling-Station-Id
  0-1       0        0        0           32   NAS-Identifier [Note 2]
  0+        0+       0+       0+          33   Proxy-State
  0-1       0-1      0        0           34   Login-LAT-Service
  0-1       0-1      0        0           35   Login-LAT-Node



Rigney, et al.              Standards Track                    [Page 63]

RFC 2865                         RADIUS                        June 2000


  0-1       0-1      0        0           36   Login-LAT-Group
  0         0-1      0        0           37   Framed-AppleTalk-Link
  0         0+       0        0           38   Framed-AppleTalk-Network
  0         0-1      0        0           39   Framed-AppleTalk-Zone
  0-1       0        0        0           60   CHAP-Challenge
  0-1       0        0        0           61   NAS-Port-Type
  0-1       0-1      0        0           62   Port-Limit
  0-1       0-1      0        0           63   Login-LAT-Port
  Request   Accept   Reject   Challenge   #    Attribute

  [Note 1] An Access-Request MUST contain either a User-Password or a
  CHAP-Password or State.  An Access-Request MUST NOT contain both a
  User-Password and a CHAP-Password.  If future extensions allow other
  kinds of authentication information to be conveyed, the attribute for
  that can be used in an Access-Request instead of User-Password or
  CHAP-Password.

  [Note 2] An Access-Request MUST contain either a NAS-IP-Address or a
  NAS-Identifier (or both).

  The following table defines the meaning of the above table entries.

0     This attribute MUST NOT be present in packet.
0+    Zero or more instances of this attribute MAY be present in packet.
0-1   Zero or one instance of this attribute MAY be present in packet.
1     Exactly one instance of this attribute MUST be present in packet.

6.  IANA Considerations

  This section provides guidance to the Internet Assigned Numbers
  Authority (IANA) regarding registration of values related to the
  RADIUS protocol, in accordance with BCP 26 [13].

  There are three name spaces in RADIUS that require registration:
  Packet Type Codes, Attribute Types, and Attribute Values (for certain
  Attributes).

  RADIUS is not intended as a general-purpose Network Access Server
  (NAS) management protocol, and allocations should not be made for
  purposes unrelated to Authentication, Authorization or Accounting.

6.1.  Definition of Terms

  The following terms are used here with the meanings defined in
  BCP 26: "name space", "assigned value", "registration".






Rigney, et al.              Standards Track                    [Page 64]

RFC 2865                         RADIUS                        June 2000


  The following policies are used here with the meanings defined in
  BCP 26: "Private Use", "First Come First Served", "Expert Review",
  "Specification Required", "IETF Consensus", "Standards Action".

6.2.  Recommended Registration Policies

  For registration requests where a Designated Expert should be
  consulted, the IESG Area Director for Operations should appoint the
  Designated Expert.

  For registration requests requiring Expert Review, the ietf-radius
  mailing list should be consulted.

  Packet Type Codes have a range from 1 to 254, of which 1-5,11-13 have
  been allocated.  Because a new Packet Type has considerable impact on
  interoperability, a new Packet Type Code requires Standards Action,
  and should be allocated starting at 14.

  Attribute Types have a range from 1 to 255, and are the scarcest
  resource in RADIUS, thus must be allocated with care.  Attributes
  1-53,55,60-88,90-91 have been allocated, with 17 and 21 available for
  re-use.  Attributes 17, 21, 54, 56-59, 89, 92-191 may be allocated
  following Expert Review, with Specification Required.  Release of
  blocks of Attribute Types (more than 3 at a time for a given purpose)
  should require IETF Consensus.  It is recommended that attributes 17
  and 21 be used only after all others are exhausted.

  Note that RADIUS defines a mechanism for Vendor-Specific extensions
  (Attribute 26) and the use of that should be encouraged instead of
  allocation of global attribute types, for functions specific only to
  one vendor's implementation of RADIUS, where no interoperability is
  deemed useful.

  As stated in the "Attributes" section above:

     "[Attribute Type] Values 192-223 are reserved for experimental
     use, values 224-240 are reserved for implementation-specific use,
     and values 241-255 are reserved and should not be used."

  Therefore Attribute values 192-240 are considered Private Use, and
  values 241-255 require Standards Action.

  Certain attributes (for example, NAS-Port-Type) in RADIUS define a
  list of values to correspond with various meanings.  There can be 4
  billion (2^32) values for each attribute. Adding additional values to
  the list can be done on a First Come, First Served basis by the IANA.





Rigney, et al.              Standards Track                    [Page 65]

RFC 2865                         RADIUS                        June 2000


7.  Examples

  A few examples are presented to illustrate the flow of packets and
  use of typical attributes.  These examples are not intended to be
  exhaustive, many others are possible.  Hexadecimal dumps of the
  example packets are given in network byte order, using the shared
  secret "xyzzy5461".

7.1.  User Telnet to Specified Host

  The NAS at 192.168.1.16 sends an Access-Request UDP packet to the
  RADIUS Server for a user named nemo logging in on port 3 with
  password "arctangent".

  The Request Authenticator is a 16 octet random number generated by
  the NAS.

  The User-Password is 16 octets of password padded at end with nulls,
  XORed with MD5(shared secret|Request Authenticator).

     01 00 00 38 0f 40 3f 94 73 97 80 57 bd 83 d5 cb
     98 f4 22 7a 01 06 6e 65 6d 6f 02 12 0d be 70 8d
     93 d4 13 ce 31 96 e4 3f 78 2a 0a ee 04 06 c0 a8
     01 10 05 06 00 00 00 03

      1 Code = Access-Request (1)
      1 ID = 0
      2 Length = 56
     16 Request Authenticator

     Attributes:
      6  User-Name = "nemo"
     18  User-Password
      6  NAS-IP-Address = 192.168.1.16
      6  NAS-Port = 3

  The RADIUS server authenticates nemo, and sends an Access-Accept UDP
  packet to the NAS telling it to telnet nemo to host 192.168.1.3.

  The Response Authenticator is a 16-octet MD5 checksum of the code
  (2), id (0), Length (38), the Request Authenticator from above, the
  attributes in this reply, and the shared secret.









Rigney, et al.              Standards Track                    [Page 66]

RFC 2865                         RADIUS                        June 2000


     02 00 00 26 86 fe 22 0e 76 24 ba 2a 10 05 f6 bf
     9b 55 e0 b2 06 06 00 00 00 01 0f 06 00 00 00 00
     0e 06 c0 a8 01 03

      1 Code = Access-Accept (2)
      1 ID = 0 (same as in Access-Request)
      2 Length = 38
     16 Response Authenticator

     Attributes:
      6  Service-Type (6) = Login (1)
      6  Login-Service (15) = Telnet (0)
      6  Login-IP-Host (14) = 192.168.1.3

7.2.  Framed User Authenticating with CHAP

  The NAS at 192.168.1.16 sends an Access-Request UDP packet to the
  RADIUS Server for a user named flopsy logging in on port 20 with PPP,
  authenticating using CHAP.  The NAS sends along the Service-Type and
  Framed-Protocol attributes as a hint to the RADIUS server that this
  user is looking for PPP, although the NAS is not required to do so.

  The Request Authenticator is a 16 octet random number generated by
  the NAS, and is also used as the CHAP Challenge.

  The CHAP-Password consists of a 1 octet CHAP ID, in this case 22,
  followed by the 16 octet CHAP response.

     01 01 00 47 2a ee 86 f0 8d 0d 55 96 9c a5 97 8e
     0d 33 67 a2 01 08 66 6c 6f 70 73 79 03 13 16 e9
     75 57 c3 16 18 58 95 f2 93 ff 63 44 07 72 75 04
     06 c0 a8 01 10 05 06 00 00 00 14 06 06 00 00 00
     02 07 06 00 00 00 01

      1 Code = 1     (Access-Request)
      1 ID = 1
      2 Length = 71
     16 Request Authenticator

     Attributes:
      8  User-Name (1) = "flopsy"
     19  CHAP-Password (3)
      6  NAS-IP-Address (4) = 192.168.1.16
      6  NAS-Port (5) = 20
      6  Service-Type (6) = Framed (2)
      6  Framed-Protocol (7) = PPP (1)





Rigney, et al.              Standards Track                    [Page 67]

RFC 2865                         RADIUS                        June 2000


  The RADIUS server authenticates flopsy, and sends an Access-Accept
  UDP packet to the NAS telling it to start PPP service and assign an
  address for the user out of its dynamic address pool.

  The Response Authenticator is a 16-octet MD5 checksum of the code
  (2), id (1), Length (56), the Request Authenticator from above, the
  attributes in this reply, and the shared secret.

     02 01 00 38 15 ef bc 7d ab 26 cf a3 dc 34 d9 c0
     3c 86 01 a4 06 06 00 00 00 02 07 06 00 00 00 01
     08 06 ff ff ff fe 0a 06 00 00 00 02 0d 06 00 00
     00 01 0c 06 00 00 05 dc

      1 Code = Access-Accept (2)
      1 ID = 1 (same as in Access-Request)
      2 Length = 56
     16 Response Authenticator

     Attributes:
      6  Service-Type (6) = Framed (2)
      6  Framed-Protocol (7) = PPP (1)
      6  Framed-IP-Address (8) = 255.255.255.254
      6  Framed-Routing (10) = None (0)
      6  Framed-Compression (13) = VJ TCP/IP Header Compression (1)
      6  Framed-MTU (12) = 1500

7.3.  User with Challenge-Response card

  The NAS at 192.168.1.16 sends an Access-Request UDP packet to the
  RADIUS Server for a user named mopsy logging in on port 7.  The user
  enters the dummy password "challenge" in this example.  The challenge
  and response generated by the smart card for this example are
  "32769430" and "99101462".

  The Request Authenticator is a 16 octet random number generated by
  the NAS.

  The User-Password is 16 octets of password, in this case "challenge",
  padded at the end with nulls, XORed with MD5(shared secret|Request
  Authenticator).

     01 02 00 39 f3 a4 7a 1f 6a 6d 76 71 0b 94 7a b9
     30 41 a0 39 01 07 6d 6f 70 73 79 02 12 33 65 75
     73 77 82 89 b5 70 88 5e 15 08 48 25 c5 04 06 c0
     a8 01 10 05 06 00 00 00 07






Rigney, et al.              Standards Track                    [Page 68]

RFC 2865                         RADIUS                        June 2000


      1 Code = Access-Request (1)
      1 ID = 2
      2 Length = 57
     16 Request Authenticator

     Attributes:
      7 User-Name (1) = "mopsy"
     18 User-Password (2)
      6  NAS-IP-Address (4) = 192.168.1.16
      6  NAS-Port (5) = 7

  The RADIUS server decides to challenge mopsy, sending back a
  challenge string and looking for a response.  The RADIUS server
  therefore and sends an Access-Challenge UDP packet to the NAS.

  The Response Authenticator is a 16-octet MD5 checksum of the code
  (11), id (2), length (78), the Request Authenticator from above, the
  attributes in this reply, and the shared secret.

  The Reply-Message is "Challenge 32769430.  Enter response at prompt."

  The State is a magic cookie to be returned along with user's
  response; in this example 8 octets of data (33 32 37 36 39 34 33 30
  in hex).

     0b 02 00 4e 36 f3 c8 76 4a e8 c7 11 57 40 3c 0c
     71 ff 9c 45 12 30 43 68 61 6c 6c 65 6e 67 65 20
     33 32 37 36 39 34 33 30 2e 20 20 45 6e 74 65 72
     20 72 65 73 70 6f 6e 73 65 20 61 74 20 70 72 6f
     6d 70 74 2e 18 0a 33 32 37 36 39 34 33 30

      1 Code = Access-Challenge (11)
      1 ID = 2 (same as in Access-Request)
      2 Length = 78
     16 Response Authenticator

     Attributes:
     48  Reply-Message (18)
     10  State (24)

  The user enters his response, and the NAS send a new Access-Request
  with that response, and includes the State Attribute.

  The Request Authenticator is a new 16 octet random number.

  The User-Password is 16 octets of the user's response, in this case
  "99101462", padded at the end with nulls, XORed with MD5(shared
  secret|Request Authenticator).



Rigney, et al.              Standards Track                    [Page 69]

RFC 2865                         RADIUS                        June 2000


  The state is the magic cookie from the Access-Challenge packet,
  unchanged.

     01 03 00 43 b1 22 55 6d 42 8a 13 d0 d6 25 38 07
     c4 57 ec f0 01 07 6d 6f 70 73 79 02 12 69 2c 1f
     20 5f c0 81 b9 19 b9 51 95 f5 61 a5 81 04 06 c0
     a8 01 10 05 06 00 00 00 07 18 10 33 32 37 36 39
     34 33 30

      1 Code = Access-Request (1)
      1 ID = 3 (Note that this changes.)
      2 Length = 67
     16 Request Authenticator

     Attributes:
      7  User-Name = "mopsy"
     18  User-Password
      6  NAS-IP-Address (4) = 192.168.1.16
      6  NAS-Port (5) = 7
     10  State (24)

  The Response was incorrect (for the sake of example), so the RADIUS
  server tells the NAS to reject the login attempt.

  The Response Authenticator is a 16 octet MD5 checksum of the code
  (3), id (3), length(20), the Request Authenticator from above, the
  attributes in this reply (in this case, none), and the shared secret.

     03 03 00 14 a4 2f 4f ca 45 91 6c 4e 09 c8 34 0f
     9e 74 6a a0

      1 Code = Access-Reject (3)
      1 ID = 3 (same as in Access-Request)
      2 Length = 20
     16 Response Authenticator

     Attributes:
        (none, although a Reply-Message could be sent)













Rigney, et al.              Standards Track                    [Page 70]

RFC 2865                         RADIUS                        June 2000


8.  Security Considerations

  Security issues are the primary topic of this document.

  In practice, within or associated with each RADIUS server, there is a
  database which associates "user" names with authentication
  information ("secrets").  It is not anticipated that a particular
  named user would be authenticated by multiple methods.  This would
  make the user vulnerable to attacks which negotiate the least secure
  method from among a set.  Instead, for each named user there should
  be an indication of exactly one method used to authenticate that user
  name.  If a user needs to make use of different authentication
  methods under different circumstances, then distinct user names
  SHOULD be employed, each of which identifies exactly one
  authentication method.

  Passwords and other secrets should be stored at the respective ends
  such that access to them is as limited as possible.  Ideally, the
  secrets should only be accessible to the process requiring access in
  order to perform the authentication.

  The secrets should be distributed with a mechanism that limits the
  number of entities that handle (and thus gain knowledge of) the
  secret.  Ideally, no unauthorized person should ever gain knowledge
  of the secrets.  It is possible to achieve this with SNMP Security
  Protocols [14], but such a mechanism is outside the scope of this
  specification.

  Other distribution methods are currently undergoing research and
  experimentation.  The SNMP Security document [14] also has an
  excellent overview of threats to network protocols.

  The User-Password hiding mechanism described in Section 5.2 has not
  been subjected to significant amounts of cryptanalysis in the
  published literature.  Some in the IETF community are concerned that
  this method might not provide sufficient confidentiality protection
  [15] to passwords transmitted using RADIUS.  Users should evaluate
  their threat environment and consider whether additional security
  mechanisms should be employed.

9.  Change Log

  The following changes have been made from RFC 2138:

  Strings should use UTF-8 instead of US-ASCII and should be handled as
  8-bit data.

  Integers and dates are now defined as 32 bit unsigned values.



Rigney, et al.              Standards Track                    [Page 71]

RFC 2865                         RADIUS                        June 2000


  Updated list of attributes that can be included in Access-Challenge
  to be consistent with the table of attributes.

  User-Name mentions Network Access Identifiers.

  User-Name may now be sent in Access-Accept for use with accounting
  and Rlogin.

  Values added for Service-Type, Login-Service, Framed-Protocol,
  Framed-Compression, and NAS-Port-Type.

  NAS-Port can now use all 32 bits.

  Examples now include hexadecimal displays of the packets.

  Source UDP port must be used in conjunction with the Request
  Identifier when identifying duplicates.

  Multiple subattributes may be allowed in a Vendor-Specific attribute.

  An Access-Request is now required to contain either a NAS-IP-Address
  or NAS-Identifier (or may contain both).

  Added notes under "Operations" with more information on proxy,
  retransmissions, and keep-alives.

  If multiple Attributes with the same Type are present, the order of
  Attributes with the same Type MUST be preserved by any proxies.

  Clarified Proxy-State.

  Clarified that Attributes must not depend on position within the
  packet, as long as Attributes of the same type are kept in order.

  Added IANA Considerations section.

  Updated section on "Proxy" under "Operations".

  Framed-MTU can now be sent in Access-Request as a hint.

  Updated Security Considerations.

  Text strings identified as a subset of string, to clarify use of
  UTF-8.







Rigney, et al.              Standards Track                    [Page 72]

RFC 2865                         RADIUS                        June 2000


10.  References

  [1]   Rigney, C., Rubens, A., Simpson, W. and S. Willens, "Remote
        Authentication Dial In User Service (RADIUS)", RFC 2138, April
        1997.

  [2]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March, 1997.

  [3]   Rivest, R. and S. Dusse, "The MD5 Message-Digest Algorithm",
        RFC 1321, April 1992.

  [4]   Postel, J., "User Datagram Protocol", STD 6, RFC 768, August
        1980.

  [5]   Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

  [6]   Reynolds, J. and J. Postel, "Assigned Numbers", STD 2, RFC
        1700, October 1994.

  [7]   Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC
        2279, January 1998.

  [8]   Aboba, B. and M. Beadles, "The Network Access Identifier", RFC
        2486, January 1999.

  [9]   Kaufman, C., Perlman, R., and Speciner, M., "Network Security:
        Private Communications in a Public World", Prentice Hall, March
        1995, ISBN 0-13-061466-1.

  [10]  Jacobson, V., "Compressing TCP/IP headers for low-speed serial
        links", RFC 1144, February 1990.

  [11]  ISO 8859. International Standard -- Information Processing --
        8-bit Single-Byte Coded Graphic Character Sets -- Part 1: Latin
        Alphabet No. 1, ISO 8859-1:1987.

  [12]  Sklower, K., Lloyd, B., McGregor, G., Carr, D. and T.
        Coradetti, "The PPP Multilink Protocol (MP)", RFC 1990, August
        1996.

  [13]  Alvestrand, H. and T. Narten, "Guidelines for Writing an IANA
        Considerations Section in RFCs", BCP 26, RFC 2434, October
        1998.

  [14]  Galvin, J., McCloghrie, K. and J. Davin, "SNMP Security
        Protocols", RFC 1352, July 1992.




Rigney, et al.              Standards Track                    [Page 73]

RFC 2865                         RADIUS                        June 2000


  [15]  Dobbertin, H., "The Status of MD5 After a Recent Attack",
        CryptoBytes Vol.2 No.2, Summer 1996.

11.  Acknowledgements

  RADIUS was originally developed by Steve Willens of Livingston
  Enterprises for their PortMaster series of Network Access Servers.

12.  Chair's Address

  The working group can be contacted via the current chair:

  Carl Rigney
  Livingston Enterprises
  4464 Willow Road
  Pleasanton, California  94588

  Phone: +1 925 737 2100
  EMail: [email protected]
































Rigney, et al.              Standards Track                    [Page 74]

RFC 2865                         RADIUS                        June 2000


13.  Authors' Addresses

  Questions about this memo can also be directed to:

  Carl Rigney
  Livingston Enterprises
  4464 Willow Road
  Pleasanton, California  94588

  Phone: +1 925 737 2100
  EMail: [email protected]


  Allan C. Rubens
  Merit Network, Inc.
  4251 Plymouth Road
  Ann Arbor, Michigan  48105-2785

  EMail: [email protected]


  William Allen Simpson
  Daydreamer
  Computer Systems Consulting Services
  1384 Fontaine
  Madison Heights, Michigan  48071

  EMail: [email protected]


  Steve Willens
  Livingston Enterprises
  4464 Willow Road
  Pleasanton, California  94588

  EMail: [email protected]















Rigney, et al.              Standards Track                    [Page 75]

RFC 2865                         RADIUS                        June 2000


14.  Full Copyright Statement

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Rigney, et al.              Standards Track                    [Page 76]