Network Working Group                                          M. Eisler
Request for Comments: 2847                                       Zambeel
Category: Standards Track                                      June 2000


    LIPKEY - A Low Infrastructure Public Key Mechanism Using SPKM

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

  This memorandum describes a method whereby one can use GSS-API
  [RFC2078] to supply a secure channel between a client and server,
  authenticating the client with a password, and a server with a public
  key certificate.  As such, it is analogous to the common low
  infrastructure usage of the Transport Layer Security (TLS) protocol
  [RFC2246].

  The method leverages the existing Simple Public Key Mechanism (SPKM)
  [RFC2025], and is specified as a separate GSS-API mechanism (LIPKEY)
  layered above SPKM.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2
  2.  LIPKEY's Requirements of SPKM  . . . . . . . . . . . . . . . . 4
  2.1.  Mechanism Type . . . . . . . . . . . . . . . . . . . . . . . 4
  2.2.  Name Type  . . . . . . . . . . . . . . . . . . . . . . . . . 4
  2.3.  Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 5
  2.3.1.  MANDATORY Algorithms . . . . . . . . . . . . . . . . . . . 5
  2.3.2.  RECOMMENDED Integrity Algorithms (I-ALG) . . . . . . . . . 7
  2.4.  Context Establishment Tokens . . . . . . . . . . . . . . . . 8
  2.4.1.  REQ-TOKEN Content Requirements . . . . . . . . . . . . . . 8
  2.4.1.1.  algId and req-integrity  . . . . . . . . . . . . . . . . 8
  2.4.1.2.  Req-contents . . . . . . . . . . . . . . . . . . . . . . 8
  2.4.1.2.1.  Options  . . . . . . . . . . . . . . . . . . . . . . . 9
  2.4.1.2.2.  Conf-Algs  . . . . . . . . . . . . . . . . . . . . . . 9
  2.4.1.2.3.  Intg-Algs  . . . . . . . . . . . . . . . . . . . . . . 9



Eisler                      Standards Track                     [Page 1]

RFC 2847                         LIPKEY                        June 2000


  2.4.2.  REP-TI-TOKEN Content Requirements  . . . . . . . . . . . . 9
  2.4.2.1.  algId  . . . . . . . . . . . . . . . . . . . . . . . . . 9
  2.4.2.2.  rep-ti-integ . . . . . . . . . . . . . . . . . . . . . . 9
  2.5.  Quality of Protection (QOP)  . . . . . . . . . . . . . . . .10
  3.  How LIPKEY Uses SPKM . . . . . . . . . . . . . . . . . . . .  11
  3.1.  Tokens . . . . . . . . . . . . . . . . . . . . . . . . . .  11
  3.2.  Initiator  . . . . . . . . . . . . . . . . . . . . . . . .  11
  3.2.1.  GSS_Import_name  . . . . . . . . . . . . . . . . . . . .  11
  3.2.2.  GSS_Acquire_cred . . . . . . . . . . . . . . . . . . . .  11
  3.2.3.  GSS_Init_sec_context . . . . . . . . . . . . . . . . . .  12
  3.2.3.1.  LIPKEY Caller Specified anon_req_flag as TRUE  . . . .  12
  3.2.3.2.  LIPKEY Caller Specified anon_req_flag as FALSE . . . .  13
  3.2.4.  Other operations . . . . . . . . . . . . . . . . . . . .  14
  3.3.  Target . . . . . . . . . . . . . . . . . . . . . . . . . .  14
  3.3.1.  GSS_Import_name  . . . . . . . . . . . . . . . . . . . .  14
  3.3.2.  GSS_Acquire_cred . . . . . . . . . . . . . . . . . . . .  14
  3.3.3.  GSS_Accept_sec_context . . . . . . . . . . . . . . . . .  15
  4.  LIPKEY Description . . . . . . . . . . . . . . . . . . . . .  15
  4.1.  Mechanism Type . . . . . . . . . . . . . . . . . . . . . .  15
  4.2.  Name Types . . . . . . . . . . . . . . . . . . . . . . . .  15
  4.3.  Token Formats  . . . . . . . . . . . . . . . . . . . . . .  16
  4.3.1.  Context Tokens . . . . . . . . . . . . . . . . . . . . .  16
  4.3.1.1.  Context Tokens Prior to SPKM-3 Context Establishment .  16
  4.3.1.2.  Post-SPKM-3 Context Establishment Tokens . . . . . . .  16
  4.3.1.2.1.  From LIPKEY Initiator  . . . . . . . . . . . . . . .  17
  4.3.1.2.2.  From LIPKEY Target . . . . . . . . . . . . . . . . .  17
  4.3.2.  Tokens from GSS_GetMIC and GSS_Wrap  . . . . . . . . . .  17
  4.4.  Quality of Protection  . . . . . . . . . . . . . . . . . .  18
  5.  Security Considerations  . . . . . . . . . . . . . . . . . .  18
  5.1.  Password Management  . . . . . . . . . . . . . . . . . . .  18
  5.2.  Certification Authorities  . . . . . . . . . . . . . . . .  18
  5.3.  HMAC-MD5 and MD5 Weaknesses  . . . . . . . . . . . . . . .  18
  5.4.  Security of cast5CBC . . . . . . . . . . . . . . . . . . .  18
  References . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . .  21
  Author's Address . . . . . . . . . . . . . . . . . . . . . . . .  21
  Full Copyright Statement . . . . . . . . . . . . . . . . . . . .  22

1.  Introduction

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  This memorandum describes a new security mechanism under the GSS-API
  called the Low Infrastructure Public Key Mechanism (LIPKEY).  GSS-API
  provides a way for an application protocol to implement
  authentication, integrity, and privacy. TLS is another way. While TLS



Eisler                      Standards Track                     [Page 2]

RFC 2847                         LIPKEY                        June 2000


  is in many ways simpler for an application to incorporate than GSS-
  API, there are situations where GSS-API might be more suitable.
  Certainly this is the case with application protocols that run over
  connectionless protocols. It is also the case with application
  protocols such as ONC RPC [RFC1831] [RFC2203], which have their own
  security architecture, and so do not easily mesh with a protocol like
  TLS that is implemented as a layer that encapsulates the upper layer
  application protocol. GSS-API allows the application protocol to
  encapsulate as much of the application protocol as necessary.

  Despite the flexibility of GSS-API, it compares unfavorably with TLS
  with respect to the perception of the amount of infrastructure
  required to deploy it. The better known GSS-API mechanisms, Kerberos
  V5 [RFC1964] and SPKM require a great deal of infrastructure to set
  up. Compare this to the typical TLS deployment scenario, which
  consists of a client with no public key certificate accessing a
  server with a public key certificate.  The client:

  *    obtains the server's certificate,

  *    verifies that it was signed by a trusted Certification Authority
       (CA),

  *    generates a random session symmetric key,

  *    encrypts the session key with the server's public key, and

  *    sends the encrypted session key to the server.

  At this point, the client and server have a secure channel.  The
  client can then provide a user name and password to the server to
  authenticate the client. For example, when TLS is being used with the
  http protocol, once there is a secure channel, the http server will
  present the client with an html page that prompts for a user name and
  password. This information is then encrypted with the session key and
  sent to the server. The server then authenticates the client.

  Note that the client is not required to have a certificate for itself
  to identify and authenticate it to the server. In addition to a TLS
  implementation, the required security infrastructure includes a
  public key certificate and password database on the server, and a
  list of trusted CAs and their public keys on the client. Most
  operating systems that the http server would run on already have a
  native password database, so the net additional infrastructure is a
  server certificate and CA list. Hence the term "low infrastructure
  security model" to identify this typical TLS deployment scenario.





Eisler                      Standards Track                     [Page 3]

RFC 2847                         LIPKEY                        June 2000


  By using unilateral authentication, and using a mechanism resembling
  the SPKM-1 mechanism type, SPKM can offer many aspects of the
  previously described low infrastructure security model. An
  application that uses GSS-API is certainly free to use GSS-API's
  GSS_Wrap() routine to encrypt a user name and password and send them
  to the server, for it to decrypt and verify.

  Applications often have application protocols associated with them,
  and there might not be any provision in the protocol to specify a
  password.  Layering a thin GSS-API mechanism over a mechanism
  resembling SPKM-1 can mitigate this problem. This can be a useful
  approach to avoid modifying applications that have already bound to
  GSS-API, assuming the applications are not statically bound to
  specific GSS-API mechanisms.  The remainder of this memorandum
  defines the thin mechanism: the Low Infrastructure Public Key
  Mechanism (LIPKEY).

2.  LIPKEY's Requirements of SPKM

  SPKM-1 with unilateral authentication is close to the desired low
  infrastructure model described earlier. This section describes some
  additional changes to how SPKM-1 operates in order to realize the low
  infrastructure model.  These changes include some minor changes in
  semantics.  While it would be possible to implement these semantic
  changes within an SPKM-1 implementation (including using the same
  mechanism type Object Identifier (OID) as SPKM-1), the set of changes
  stretch the interpretation of RFC 2025 to the point where
  compatibility would be in danger. A new mechanism type, called SPKM-
  3, is warranted. LIPKEY requires that the SPKM implementation support
  SPKM-3.  SPKM-3 is equivalent to SPKM-1, except as described in the
  remainder of this section.

2.1.  Mechanism Type

  SPKM-3 has a different mechanism type OID from SPKM-1.

  spkm-3 OBJECT IDENTIFIER ::=
     {iso(1)identified-organization(3)dod(6)internet(1)security(5)
     mechanisms(5)spkm(1)spkm-3(3)}

2.2.  Name Type

  RFC 2025 defines no required name types of SPKM. LIPKEY requires that
  the SPKM-3 implementation support all the mechanism independent name
  types in RFC 2078.






Eisler                      Standards Track                     [Page 4]

RFC 2847                         LIPKEY                        June 2000


2.3.  Algorithms

2.3.1.  MANDATORY Algorithms

  RFC 2025 defines various algorithms for integrity, confidentiality,
  key establishment, and subkey derivation.  Except for
  md5WithRSAEncryption, the REQUIRED Key Establishment (K-ALG),
  Integrity (I-ALG) and One-Way Functions for Subkey Derivation (O-ALG)
  algorithms listed in RFC 2025 continue to be REQUIRED.

  SPKM is designed to be extensible with regard to new algorithms. In
  order for LIPKEY to work correctly and securely, the following
  algorithms MUST be implemented in SPKM-3:

  *    Integrity algorithms (I-ALG)

     NULL-MAC
          Because the initiator may not have a certificate for itself,
          nor for the target, it is not possible for it to calculate an
          Integrity value in the initiator's REQ-TOKEN that is sent to
          the target. So we define, in ASN.1 [CCITT] syntax, a null I-
          ALG that returns a zero length bit string regardless of the
          input passed to it:

     NULL-MAC OBJECT IDENTIFIER ::=
        {iso(1)identified-organization(3)dod(6)internet(1)security(5)
        integrity(3)NULL-MAC(3)}

     id-dsa-with-sha1
          This is the signature algorithm as defined in Section 7.2.2
          of [RFC2459].  As noted in RFC 2459, the ASN.1 OID used to
          identify this signature algorithm is:

             id-dsa-with-sha1 OBJECT IDENTIFIER ::= {
                     iso(1) member-body(2) us(840) x9-57(10040)
                             x9cm(4) 3
             }

          Note that there is a work-in-progress [PKIX] to obsolete RFC
          2459. However that work-in-progress does not change the
          definition of id-dsa-with-sha1.

     HMAC-MD5
          A consequence of the SPKM-3 initiator not having a
          certificate is that it cannot use a digital signature
          algorithm like md5WithRSAEncryption, id-dsa-with-sha1, or
          sha1WithRSAEncryption once the context is established.
          Instead, a message authentication code (MAC) algorithm is



Eisler                      Standards Track                     [Page 5]

RFC 2847                         LIPKEY                        June 2000


          required. DES-MAC is specified as recommended in [RFC2025].
          Since the security of 56 bit DES has been shown to be
          inadequate [EFF], SPKM-3 needs a stronger MAC. Thus, SPKM-3
          MUST support the HMAC-MD5 algorithm [RFC2104], with this OID:

             HMAC-MD5 OBJECT IDENTIFIER ::= {
                     iso(1) org(3) dod(6) internet(1) security(5)
                             mechanisms(5) ipsec(8) isakmpOakley(1)
                             1
             }

          The reference for the algorithm OID of HMAC-MD5 is [IANA].
          The reference for the HMAC-MD5 algorithm is [RFC2104].

          The HMAC-SHA1 algorithm is not a mandatory SPKM-3 I-ALG MAC
          because SHA-1 is about half the speed of MD5 [Young].  A MAC
          based on an encryption algorithm like cast5CBC, DES EDE3, or
          RC4 is not mandatory because MD5 is 31 percent faster than
          the fastest of the three encryption algorithms [Young].

  *    Confidentiality algorithm (C-ALG).

       RFC 2025 does not have a MANDATORY confidentiality algorithm,
       and instead has RECOMMENDED a 56 bit DES algorithm. Since the
       LIPKEY initiator needs to send a password to the target, and
       since 56 bit DES has been demonstrated as inadequate [EFF],
       LIPKEY needs stronger encryption. Thus, SPKM-3 MUST support this
       algorithm:

          cast5CBC OBJECT IDENTIFIER ::= {
                  iso(1) memberBody(2) usa(840) nt(113533) nsn(7)
                          algorithms(66) 10
          }

          Parameters ::= SEQUENCE {
                  iv OCTET STRING DEFAULT 0, -- Initialization vector
                  keyLength INTEGER          -- Key length, in bits
          }

       The reference for the OID and description of the cast5CBC
       algorithm is [RFC2144]. The keyLength in the Parameters MUST be
       set to 128 bits.

       A triple DES (DES EDE3) algorithm is not a mandatory SPKM-3 C-
       ALG because it is much slower than cast5CBC. One set of
       measurements [Young] on a Pentium Pro 200 megahertz processor
       using the SSLeay code, showed that DES EDE3 performed as high as
       1,646,210 bytes per second, using 1024 byte blocks. The same



Eisler                      Standards Track                     [Page 6]

RFC 2847                         LIPKEY                        June 2000


       test bed yielded performance of 7,147,760 bytes per second for
       cast5CBC, and 22,419,840 bytes per second for RC4. Most TLS
       sessions negotiate the RC4 cipher. Given that LIPKEY is targeted
       at environments similar to that where TLS is deployed, selecting
       a cipher that is over 13 times slower (and over 13 times more
       CPU intensive) than RC4 would severely impede the usefulness of
       LIPKEY.  For performance reasons, RC4 would be the preferred
       mandatory algorithm for SPKM-3. Due to intellectual property
       considerations with RC4 [Schneier], the combination of
       cast5CBC's reasonable performance, and its royalty-free
       licensing terms [RFC2144] make cast5CBC the optimal choice among
       DES EDE3, RC4, and cast5CBC.

  *    Key Establishment Algorithm (K-ALG)

       RFC 2025 lists dhKeyAgreement [PKCS-3] as an apparently optional
       algorithm.  As will be described later, the RSAEncryption key
       establishment algorithm is of no use for a low infrastructure
       security mechanism as defined by this memorandum. Hence, in
       SPKM-3, dhKeyAgreement is a REQUIRED key establishment
       algorithm:

          dhKeyAgreement OBJECT IDENTIFIER ::= {
                  iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1)
                  pkcs-3(3) 1
          }

  *    One-Way Function for Subkey Derivation Algorithm (O-ALG)

       RFC 2025 lists MD5 as a mandatory algorithm.  Since MD5 has been
       found to have weaknesses when used as a hash [Dobbertin], id-
       sha1 is a MANDATORY O-ALG in SPKM-3:

          id-sha1 OBJECT IDENTIFIER ::= {
                  iso(1) identified-organization(3) oiw(14)
                  secsig(3) algorithms(2) 26
          }

       The reference for the algorithm OID of id-sha1 is [RFC2437].
       The reference for SHA-1 algorithm corresponding to id-sha1 is
       [FIPS].

2.3.2.  RECOMMENDED Integrity Algorithms (I-ALG)

  md5WithRSAEncryption
       The md5WithRSAEncryption integrity algorithm is listed in
       [RFC2025] as mandatory.  Due to intellectual property
       considerations [RSA-IP], SPKM-3 implementations cannot be



Eisler                      Standards Track                     [Page 7]

RFC 2847                         LIPKEY                        June 2000


       required to implement it. However, given the proliferation of
       certificates using RSA public keys, md5WithRSAEncryption is
       strongly RECOMMENDED. Otherwise, the opportunities for LIPKEY to
       leverage existing public key infrastructure will be limited.

  sha1WithRSAEncryption
       For reasons similar to that for md5WithRSAEncryption,
       sha1WithRSAEncryption is a RECOMMENDED algorithm. The
       sha1WithRSAEncryption algorithm is listed in addition to
       md5WithRSAEncryption due to weaknesses in the MD5 hash algorithm
       [Dobbertin]. The OID for sha1WithRSAEncryption is:

          sha1WithRSAEncryption  OBJECT IDENTIFIER ::= {
                  iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1)
                  pkcs-1(1) 5
          }

       The reference for the algorithm OID and description of
       sha1WithRSAEncryption is [RFC2437].

2.4.  Context Establishment Tokens

  RFC 2025 sets up a context with an initiator first token (REQ-TOKEN),
  a target reply (REP-TI-TOKEN), and finally an initiator second token
  (REP-IT-TOKEN) to reply to the target's reply. Since LIPKEY uses
  SPKM-3 with unilateral authentication, the REP-IT-TOKEN is not used.
  LIPKEY has certain requirements on the contents of the REQ-TOKEN and
  REP-TI-TOKEN, but the syntax of the SPKM-3 tokens is not different
  from RFC 2025's SPKM-1 tokens.

2.4.1.  REQ-TOKEN Content Requirements

2.4.1.1.  algId and req-integrity

  If the SPKM-3 initiator cannot calculate a req-integrity field due to
  the lack of a target certificate, it MUST use the NULL-MAC I-ALG
  described earlier in this memorandum. This will produce a zero length
  bit string in the Integrity field.

2.4.1.2.  Req-contents

  Because RFC 2025 requires that the RSAEncryption K-ALG be present,
  SPKM-1 must be able to map the target (targ-name) to its public key
  certificate, and thus SPKM can use the RSAEncryption algorithm to
  fill in the key-estb-req field.  Because LIPKEY assumes a low
  infrastructure deployment, SPKM-3 MUST be prepared to be unable to
  map the targ-name field of the Req-contents field.  This is a
  contradiction which is resolved by requiring SPKM-3 to support the



Eisler                      Standards Track                     [Page 8]

RFC 2847                         LIPKEY                        June 2000


  dhKeyAgreement algorithm. Note that if an SPKM-3 implementation tries
  to map the target to a certificate, and succeeds, it is free to use
  the RSAEncryption K-ALG algorithm. It is also free to use an algID
  other than NULL-MAC in the REQ-TOKEN type.

2.4.1.2.1.  Options

  SPKM-3 implementations MUST set the target-certif-data-required bit
  to 1 if the only K-ALG in the key-estb-set field of Req-contents is
  dhKeyAgreement. This would normally occur if the SPKM-3
  implementation cannot resolve the target name to a certificate.

2.4.1.2.2.  Conf-Algs

  If the SPKM-3 implementation supports an algorithm weaker than
  cast5CBC, cast5CBC MUST be listed before the weaker algorithm to
  encourage the target to negotiate the stronger algorithm.

2.4.1.2.3.  Intg-Algs

  Because the initiator will be anonymous (at the SPKM-3 level) and
  will not have a certificate for itself, the initiator cannot use an
  integrity algorithm that supports non-repudiation; it must use a MAC
  algorithm. If the SPKM-3 implementation supports an algorithm weaker
  than HMAC-MD5, HMAC-MD5 MUST be listed before the weaker algorithm to
  encourage the target to negotiate the stronger algorithm.

2.4.2.  REP-TI-TOKEN Content Requirements

  With the previously described requirements on REQ-TOKEN, the contents
  of SPKM-3's REP-TI-TOKEN can for the most part be derived from the
  specification in RFC 2025. The exceptions are the algId and rep-ti-
  integ fields.

2.4.2.1.  algId

  The SPKM-3 target MUST NOT use a NULL-MAC I-ALG; it MUST use a
  signature algorithm like id-dsa-with-sha1, md5WithRSAEncryption, or
  sha1WithRSAEncryption.

2.4.2.2.  rep-ti-integ

  If the req-token has an algId of NULL-MAC, then the target MUST
  compute the rep-ti-integ on the concatenation of the req-contents and
  rep-ti-contents.






Eisler                      Standards Track                     [Page 9]

RFC 2847                         LIPKEY                        June 2000


2.5.  Quality of Protection (QOP)

  The SPKM-3 initiator and target negotiate the set of algorithms they
  mutually support, using the procedure defined in Section 5.2 of RFC
  2025. If a QOP of zero is specified, then the initiator and target
  will use the first C-ALG (privacy), and I-ALG (integrity) algorithms
  negotiated.

  SPKM breaks the QOP into several fields, as reproduced here from
  Section 5.2 of RFC 2025:

      Confidentiality                    Integrity
      31 (MSB)                        16 15                 (LSB) 0
     -------------------------------|-------------------------------
     | TS(5) | U(3) | IA(4) | MA(4) | TS(5) | U(3) | IA(4) | MA(4) |
     -------------------------------|-------------------------------

  The MA subfields enumerate mechanism-defined algorithms. Since this
  memorandum introduces a new mechanism, SPKM-3, within the SPKM
  family, it is appropriate to add algorithms to the MA subfields of
  the respective Confidentiality and Integrity fields.

  The complete set of Confidentiality MA algorithms is thus:

     0001 (1) = DES-CBC
     0010 (2) = cast5CBC

  Where "0001" and "0010" are in base 2.  An SPKM peer that negotiates
  a confidentiality MA algorithm value of "0010" MUST use a 128 bit
  key, i.e. set the keyLength values in the cast5CBC Parameters to 128
  bits.

  The complete set of Integrity MA algorithms is thus:

     0001 (1) = md5WithRSAEncryption
     0010 (2) = DES-MAC
     0011 (3) = id-dsa-with-sha1
     0100 (4) = HMAC-MD5
     0101 (5) = sha1WithRSAEncryption

  Where "0001" through "0101" are in base 2.

  Adding support for cast5CBC, id-dsa-with-sha1, HMAC-MD5, and
  sha1WithRSAEncryption in the above manner to SPKM-1 and SPKM-2 does
  not impair SPKM-1 and SPKM-2 backward compatibility because, as noted
  previously, SPKM negotiates algorithms. An older SPKM-1 or SPKM-2
  that does not recognize MA values for cast5CBC, id-dsa-with-sha1,
  HMAC-MD5, or sha1WithRSAEncryption will not select them.



Eisler                      Standards Track                    [Page 10]

RFC 2847                         LIPKEY                        June 2000


3.  How LIPKEY Uses SPKM

3.1.  Tokens

  LIPKEY will invoke SPKM-3 to produce SPKM tokens. Since the mechanism
  that the application uses is LIPKEY, LIPKEY will wrap some of the
  SPKM-3 tokens with LIPKEY prefixes. The exact definition of the
  tokens is described later in this memorandum.

3.2.  Initiator

3.2.1.  GSS_Import_name

  The initiator uses GSS_Import_name to import the target's name,
  typically, but not necessarily, using the GSS_C_NT_HOSTBASED_SERVICE
  name type.  Ultimately, the output of GSS_Import_name will apply to
  an SPKM-3 mechanism type because a LIPKEY target is an SPKM-3 target.

3.2.2.  GSS_Acquire_cred

  The initiator calls GSS_Acquire_cred. The credentials that are
  acquired are LIPKEY credentials, a user name and password. How the
  user name and password is acquired is dependent upon the operating
  environment. A application that invokes GSS_Acquire_cred() while the
  application's user has a graphical user interface running might
  trigger the appearance of a pop up window that prompts for the
  information. A application embedded into the operating system, such
  as an NFS [Sandberg] client implemented as a native file system might
  broadcast a message to the user's terminals telling him to invoke a
  command that prompts for the information.

  Because the credentials will not be used until GSS_Init_sec_context
  is called, the LIPKEY implementation will need to safeguard the
  credentials. If this is a problem, the implementation may instead
  defer actual acquisition of the user name and password until
  GSS_init_sec_context is ready to send the user name and password to
  the target. In that event, the output_cred_handle argument of
  GSS_Acquire_cred would simply be a reference that mapped to the
  principal corresponding to the desired_name argument. A subsequent
  GSS_Init_sec_context call would consider the mapping of
  claimant_cred_handle to principal when it acquires the user name and
  password. For example, the aforementioned pop up window might fill in
  the user name portion of the dialog with a default value that maps to
  the principal referred to in claimant_cred_handle.







Eisler                      Standards Track                    [Page 11]

RFC 2847                         LIPKEY                        June 2000


3.2.3.  GSS_Init_sec_context

  When a program invokes GSS_Init_sec_context on the LIPKEY mechanism
  type, if the context handle is NULL, the LIPKEY mechanism will in
  turn invoke GSS_Init_sec_context on an SPKM-3 mechanism implemented
  according to the requirements described previously. This call to
  SPKM-3 MUST have the following attributes:

  *    claimant_cred_handle is NULL

  *    mutual_req_flag is FALSE

  *    anon_req_flag is TRUE

  *    input_token is NULL

  *    mech_type is the OID of the SPKM-3 mechanism

  Keep in mind the above attributes are in the GSS_Init_sec_context
  call from the LIPKEY mechanism down to the SPKM-3 mechanism. There
  are no special restrictions placed on the application invoking
  LIPKEY's GSS_Init_sec_context routine.  All other arguments are
  derived from the LIPKEY GSS_Init_sec_context arguments.

  The call to the SPKM-3 GSS_Init_sec_context will create an SPKM-3
  context handle. The remainder of the description of the LIPKEY
  GSS_Init_sec_context call depends on whether the caller of the LIPKEY
  GSS_Init_sec_context sets anon_req_flag to TRUE or FALSE.

3.2.3.1.  LIPKEY Caller Specified anon_req_flag as TRUE

  If the caller of LIPKEY's GSS_Init_sec_context sets anon_req_flag to
  TRUE, it MUST return to the LIPKEY caller all the outputs from the
  SPKM-3 GSS_Init_sec_context call, including the
  output_context_handle, output_token, and mech_type. In this way,
  LIPKEY now "gets out of the way" of GSS-API processing between the
  application and SPKM-3, because nothing in the returned outputs
  relates to LIPKEY.  This is necessary, because LIPKEY context tokens
  do not have provision for specifying anonymous initiators. This is
  because SPKM-3 is sufficient for purpose of supporting anonymous
  initiators in a low infrastructure environment.

  Clearly, when the LIPKEY caller desires anonymous authentication,
  LIPKEY does not add any value, but it is simpler to support the
  feature, than to insist the caller directly use SPKM-3.






Eisler                      Standards Track                    [Page 12]

RFC 2847                         LIPKEY                        June 2000


  If all goes well, the caller of LIPKEY will be returned a
  major_status of GSS_S_CONTINUE_NEEDED via SPKM-3, and so the caller
  of LIPKEY will send the output_token to the target.  The caller of
  LIPKEY then receives the response token from the target, and directly
  invokes the SPKM-3 GSS_Init_sec_context.  Upon return, the
  major_status should be GSS_S_COMPLETE.

3.2.3.2.  LIPKEY Caller Specified anon_req_flag as FALSE

  The LIPKEY mechanism will need to allocate a context handle for
  itself, and record in the LIPKEY context handle the SPKM-3 context
  handle that was returned in the output_context_handle parameter from
  the call to the SPKM-3 GSS_Init_sec_context routine.  The LIPKEY
  GSS_Init_sec_context routine will return in output_context_handle the
  LIPKEY context handle, and in mech_type, the LIPKEY mechanism type.
  The output_token is as defined later in this memorandum, in the
  subsection entitled "Context Tokens Prior to SPKM-3 Context
  Establishment."  All the other returned outputs will be those that
  the SPKM-3 GSS_Init_sec_context routine returned to LIPKEY. If all
  went well, the SPKM-3 mechanism will have returned a major_status of
  GSS_S_CONTINUE_NEEDED.

  The caller of the LIPKEY GSS_Init_sec_context routine will see a
  major_status of GSS_S_CONTINUE_NEEDED, and so the caller of LIPKEY
  will send the output_token to the target. The caller of LIPKEY then
  receives the target's response token, and invokes the LIPKEY
  GSS_Init_sec_context routine for a second time. LIPKEY then invokes
  the SPKM-3 GSS_Init_sec_context for a second time and upon return,
  the major_status should be GSS_S_COMPLETE.

  While SPKM-3's context establishment is now complete, LIPKEY's
  context establishment is not yet complete, because the initiator must
  send to the target the user name and password that were passed to it
  via the claimant_cred_handle on the first call to the LIPKEY
  GSS_Init_sec_context routine. LIPKEY uses the established SPKM-3
  context handle as the input to GSS_Wrap (with conf_req_flag set to
  TRUE) to encrypt what the claimant_cred_handle refers to (user name
  and password), and returns that as the output_token to the caller of
  LIPKEY (provided the conf_state output from the call to SPKM-3's
  GSS_Wrap is TRUE), along with a major_status of
  GSS_S_CONTINUE_NEEDED.

  The caller of LIPKEY sends its second context establishment token to
  the target, and waits for a token provided by the target's
  GSS_Accept_sec_context routine. The target's LIPKEY
  GSS_Accept_sec_context routine invokes the SPKM-3 GSS_Unwrap routine
  on the token, and validates the user name and password.  The target
  then invokes SPKM-3's GSS_Wrap routine on a boolean indicating



Eisler                      Standards Track                    [Page 13]

RFC 2847                         LIPKEY                        June 2000


  whether or not the user name and password were accepted, and returns
  the output_message result from GSS_Wrap as the output_token result
  for GSS_Accept_sec_context.

  The caller of LIPKEY receives the target's response token, and passes
  this via the input_token parameter to the LIPKEY GSS_Init_sec_context
  routine.  LIPKEY then invokes GSS_Unwrap to get the boolean
  acceptance indication, and maps this to a major_status of either
  GSS_S_COMPLETE indicating successful (the boolean was TRUE) and
  completed LIPKEY context establishment, or GSS_S_FAILURE, indicating
  that context establishment failed.  GSS_S_CONTINUE_NEEDED will not be
  returned.

  Note that the mutual_req_flag parameter is ignored because unilateral
  authentication is impossible.  The initiator must authenticate the
  target via SPKM-3 in order to create a secure channel to transmit the
  user name and password. The target must authenticate the initiator
  when it receives the user name and password.

  The SPKM-3 context remains established while the LIPKEY context is
  established.  If the SPKM-3 context expires before the LIPKEY context
  is destroyed, the LIPKEY implementation should expire the LIPKEY
  context and return the appropriate error on the next GSS-API
  operation.

3.2.4.  Other operations

  For other operations, the LIPKEY context acts as a pass through to
  the SPKM-3 context. Operations that affect or inquire context state,
  such as GSS_Delete_sec_context, GSS_Export_sec_context,
  GSS_Import_sec_context, and GSS_Inquire_context will require a pass
  through to the SPKM-3 context and a state modification of the LIPKEY
  context.

3.3.  Target

3.3.1.  GSS_Import_name

  As with the initiator, the imported name will be that of the target.

3.3.2.  GSS_Acquire_cred

  The target calls the LIPKEY GSS_Acquire_cred routine to get a
  credential for an SPKM-3 target, via the SPKM-3 GSS_Acquire_cred
  routine. The desired_name is the output_name from GSS_Import_name.






Eisler                      Standards Track                    [Page 14]

RFC 2847                         LIPKEY                        June 2000


3.3.3.  GSS_Accept_sec_context

  When a program invokes GSS_Accept_sec_context on the LIPKEY mechanism
  type, if the context handle is NULL, the LIPKEY mechanism will in
  turn invoke GSS_Accept_sec_context on an SPKM-3 mechanism implemented
  according the requirements described previously. This call to SPKM-3
  is no different than what one would expect for a layered call to
  GSS_Accept_sec_context.

  If all goes well, the SPKM-3 GSS_Accept_sec_context call succeeds
  with GSS_S_COMPLETE, and the LIPKEY GSS_Accept_sec_context call
  returns the output_token to the caller, but with a major_status of
  GSS_S_CONTINUE_NEEDED because the LIPKEY initiator is still expected
  to send the user name and password.

  Once the SPKM-3 context is in a GSS_S_COMPLETE state, the next token
  the target receives will contain the user name and password, wrapped
  by the output of an SPKM-3 GSS_Wrap call. The target invokes the
  LIPKEY GSS_Accept_sec_context, which in turn invokes the SPKM-3
  GSS_Unwrap routine. The LIPKEY GSS_Accept_sec_context routine then
  compares the user name and password with its user name name and
  password database.  If the initiator's user name and password are
  valid, GSS_S_COMPLETE is returned to the caller.  Otherwise
  GSS_S_FAILURE is returned. In either case, an output_token - equal to
  the output_message result from an SPKM-3 GSS_Wrap call on a boolean
  value - is returned to the caller.  The boolean value is set to TRUE
  if the the user name and password were valid, FALSE otherwise. The
  target expects no more context establishment tokens from caller.

4.  LIPKEY Description

4.1.  Mechanism Type

  lipkey OBJECT IDENTIFIER ::=
     {iso(1)identified-organization(3)dod(6)internet(1)security(5)
     mechanisms(5)lipkey(9)}

4.2.  Name Types

  LIPKEY uses only the mechanism independent name types defined in RFC
  2078. All the name types defined in RFC 2078 are REQUIRED.










Eisler                      Standards Track                    [Page 15]

RFC 2847                         LIPKEY                        June 2000


4.3.  Token Formats

4.3.1.  Context Tokens

  GSS-API defines the context tokens as:

     InitialContextToken ::=
     -- option indication (delegation, etc.) indicated within
     -- mechanism-specific token
     [APPLICATION 0] IMPLICIT SEQUENCE {
            thisMech MechType,
            innerContextToken ANY DEFINED BY thisMech
               -- contents mechanism-specific
               -- ASN.1 structure not required
     }

     SubsequentContextToken ::= innerContextToken ANY
     -- interpretation based on predecessor InitialContextToken
     -- ASN.1 structure not required

  The contents of the innerContextToken depend on whether the SPKM-3
  context is established or not.

4.3.1.1.  Context Tokens Prior to SPKM-3 Context Establishment

  In a LIPKEY InitialContextToken, thisMech will be the Object
  identifier for LIPKEY.  However, as long as LIPKEY has not
  established the SPKM-3 mechanism, the innerContextToken for both the
  InitialContextToken and the SubsequentContextToken will be the output
  of an SPKM-3 GSS_Init_sec_context or GSS_Accept_sec_context.  So the
  LIPKEY innerContextToken would be either:

  *    An InitialContextToken, with thisMech set to the object
       identifier for SPKM-3, with innerContextToken defined to be an
       SPKMInnerContextToken, as defined in RFC 2025.

  *    A SubsequentContextToken, with innerContextToken defined to be
       SPKMInnerContextToken

4.3.1.2.  Post-SPKM-3 Context Establishment Tokens

  Once the SPKM-3 context is established, there is just one token sent
  from the initiator to the target, and one token returned to
  initiator.







Eisler                      Standards Track                    [Page 16]

RFC 2847                         LIPKEY                        June 2000


4.3.1.2.1.  From LIPKEY Initiator

  The LIPKEY initiator generates a token that is the the result of a
  GSS_Wrap (conf_req is set to TRUE) of a user name and password by the
  SPKM-3 context.  The input_message argument of GSS_Wrap refers to an
  instance of the UserName-Password type defined below:

     UserName-Password ::= SEQUENCE {
             user-name       OCTET STRING,
                                     -- each octet is an octet of a
                                     -- UTF-8 [RFC2279] string
             password        OCTET STRING
                                     -- each octet is an octet of a
                                     -- UTF-8 [RFC2279] string
     }

4.3.1.2.2.  From LIPKEY Target

  The target validates the user name and password token from the
  initiator, and generates a response token that is the output_message
  result of an SPKM-3 GSS_Wrap (conf_req may or may not be set to TRUE)
  call on an indication of validation success. The input_message
  argument of GSS_Wrap refers to an instance of the Valid-UNP type
  defined below:

     Valid-UNP ::= BOOLEAN
                     -- If TRUE, user name/password pair was valid.

4.3.2.  Tokens from GSS_GetMIC and GSS_Wrap

  RFC 2078 defines the token emitted by GSS_GetMIC and GSS_Wrap as:
            PerMsgToken ::=
            -- as emitted by GSS_GetMIC and processed by GSS_VerifyMIC
            -- ASN.1 structure not required
                    innerMsgToken ANY

            SealedMessage ::=
            -- as emitted by GSS_Wrap and processed by GSS_Unwrap
            -- includes internal, mechanism-defined indicator
            -- of whether or not encrypted
            -- ASN.1 structure not required
                    sealedUserData ANY

  As one can see, there are no mechanism independent prefixes in
  PerMSGToken or SealedMessage, and no explicit mechanism specific
  information. Since LIPKEY does not add any value to GSS_GetMIC and





Eisler                      Standards Track                    [Page 17]

RFC 2847                         LIPKEY                        June 2000


  GSS_Wrap other than passing the message to the SPKM-3 GSS_GetMIC and
  GSS_Wrap, LIPKEY's PerMsgToken and SealedMessage tokens are exactly
  what SPKM-3's GSS_GetMIC and GSS_Wrap routines produce.

4.4.  Quality of Protection

  LIPKEY, being a pass through for GSS_Wrap and GSS_GetMIC to SPKM-3,
  does not interpret or alter the QOPs passed to the aforementioned
  routines or received from their complements, GSS_Unwrap, and
  GSS_VerifyMIC. Thus, LIPKEY supports the same set of QOPs as SPKM-3.

5.  Security Considerations

5.1.  Password Management

  LIPKEY sends the clear text password encrypted by 128 bit cast5CBC so
  the risk in this approach is in how the target manages the password
  after it is done with it. The approach should be safe, provided the
  target clears the memory (primary and secondary, such as disk)
  buffers that contained the password, and any hash of the password
  immediately after it has validated the user's password.

5.2.  Certification Authorities

  The initiator must have a list of trusted Certification Authorities
  in order to verify the checksum (rep-ti-integ) on the SPKM-3 target's
  context reply token. If it encounters a certificate signed by an
  unknown and/or untrusted certificate authority, the initiator MUST
  NOT silently accept the certificate. If it does wish to accept the
  certificate, it MUST get confirmation from the user running the
  application that is using GSS-API.

5.3.  HMAC-MD5 and MD5 Weaknesses

  While the MD5 hash algorithm has been found to have weaknesses
  [Dobbertin], the weaknesses do not impact the security of HMAC-MD5
  [Dobbertin].

5.4.  Security of cast5CBC

  The cast5CBC encryption algorithm is relatively new compared to
  established algorithms like triple DES, and RC4. Nonetheless, the
  choice of cast5CBC as the MANDATORY C-ALG for SPKM-3 is advisable.
  The cast5CBC algorithm is a 128 bit algorithm that the 256 bit
  cast6CBC [RFC2612] algorithm is based upon. The cast6CBC algorithm
  was judged by the U.S. National Institute of Standards and Technology
  (NIST) to have no known major or minor "security gaps," and to have a
  "high security margin" [AES]. NIST did note some vulnerabilities



Eisler                      Standards Track                    [Page 18]

RFC 2847                         LIPKEY                        June 2000


  related to smart card implementations, but many other algorithms NIST
  analyzed shared the vulnerabilities, and in any case, LIPKEY is by
  definition not aimed at smart cards.

References

  [AES]       Nechvatal, J., Barker, E., Dodson, D., Dworkin, M., Foti,
              J., Roback, E. (Undated, but no later than 1999). "Status
              Report on the First Round of the Development of the
              Advanced Encryption Standard."
              http://csrc.nist.gov/encryption/aes/round1/r1report.htm

  [CCITT]     CCITT (1988). "Recommendation X.208: Specification of
              Abstract Syntax Notation One (ASN.1)."

  [Dobbertin] Dobbertin, H. (1996). "The Status of Md5 After a Recent
              Attack," RSA Laboratories' CryptoBytes, Volume 2, Number
              2.
              ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto2n2.pdf

  [EFF]       Electronic Frontier Foundation, John Gilmore (Editor)
              (1998). "Cracking Des: Secrets of Encryption Research,
              Wiretap Politics & Chip Design," O'Reilly & Associates,
              ISBN 1565925203.

  [FIPS]      National Institute of Standards and Technology (1995).
              "Secure Hash Standard" (SHA-1).
              http://www.itl.nist.gov/fipspubs/fip180-1.htm

  [IANA]      Internet Assigned Numbers Authority (1999). "Network
              Management Parameters."  http://www.isi.edu/in-
              notes/iana/assignments/smi-numbers

  [PKCS-3]    RSA Laboratories (1993). "PKCS #3: Diffie-Hellman Key-
              Agreement Standard, Version 1.4."
              ftp://ftp.rsa.com/pub/pkcs/ascii/pkcs-3.asc

  [PKIX]      Housley, R., Ford, W., Polk, W., Solo, D., "Internet
              X.509 Public Key Infrastructure Certificate and CRL
              Profile", Work in Progress.

  [RFC1831]   Srinivasan, R., "RPC: Remote Procedure Call Protocol
              Specification Version 2", RFC 1831, August 1995.

  [RFC1832]   Srinivasan, R., "XDR: External Data Representation
              Standard", RFC 1832, August 1995.





Eisler                      Standards Track                    [Page 19]

RFC 2847                         LIPKEY                        June 2000


  [RFC1964]   Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC
              1964, June 1996.

  [RFC2203]   Eisler, M., Chiu, A. and L. Ling, "RPCSEC_GSS Protocol
              Specification", RFC 2203, September 1997.

  [RFC2025]   Adams, C., "The Simple Public-Key GSS-API Mechanism
              (SPKM)", RFC 2025, October 1996.

  [RFC2078]   Linn, J., "Generic Security Service Application Program
              Interface, Version 2", RFC 2078, January 1997.

  [RFC2104]   Krawczyk, H, Bellare, M. and R. Canetti, "HMAC:  Keyed-
              Hashing for Message Authentication", RFC 2104, February
              1997.

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2144]   Adams, C., "The CAST-128 Encryption Algorithm", RFC 2144,
              May 1997.

  [RFC2246]   Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
              RFC 2246, January 1999.

  [RFC2279]   Yergeau, F., "UTF-8, a transformation format of ISO
              10646", RFC 2279, January 1998.

  [RFC2437]   Kaliski, B. and J. Staddon, "PKCS #1: RSA Cryptography
              Specifications Version 2.0", RFC 2437, October 1998.

  [RFC2459]   Housley, R., Ford, W., Polk, W. and D. Solo, "Internet
              X.509 Public Key Infrastructure Certificate and CRL
              Profile", RFC 2459, January 1999.

  [RFC2612]  Adams, C. and J. Gilchrist, "The CAST-256 Encryption
              Algorithm", RFC 2612, June 1999.

  [RSA-IP]   All statements received by the IETF Secretariat are places
              on-line in http://www.ietf.org/ipr.html.  Please check
              this web page to see any IPR information received about
              this and other technology.

  [Sandberg]  Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon,
              B. (1985). "Design and Implementation of the Sun Network
              Filesystem,"  Proceedings of the 1985 Summer USENIX
              Technical Conference.




Eisler                      Standards Track                    [Page 20]

RFC 2847                         LIPKEY                        June 2000


  [Schneier]  Schneier, B. (1996). "Applied Cryptography," John Wiley &
              Sons, Inc., ISBN 0-471-11709-9.

  [Young]     Young, E.A. (1997). Collected timing results from the
              SSLeay source code distribution.

Acknowledgments

  The author thanks and acknowledges:

  *    Jack Kabat for his patient explanation of the intricacies of
       SPKM, excellent suggestions, and review comments.

  *    Denis Pinkas for his review comments.

  *    Carlisle Adams for his review comments.

  *    John Linn for his review comments.

  *    Martin Rex for his review comments.

  *    This memorandum includes ASN.1 definitions for GSS-API tokens
       from RFC 2078, which was authored by John Linn.

  *    This memorandum includes ASN.1 definitions and other text from
       the SPKM definition in RFC 2025, which was authored by Carlisle
       Adams.

Author's Address

  Address comments related to this memorandum to:

  [email protected]

  Mike Eisler
  Zambeel
  5565 Wilson Road
  Colorado Springs, CO 80919

  Phone: 1-719-599-9026
  EMail: [email protected]










Eisler                      Standards Track                    [Page 21]

RFC 2847                         LIPKEY                        June 2000


Full Copyright Statement

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Eisler                      Standards Track                    [Page 22]