Network Working Group                                        K. Davidson
Request for Comments: 2802                                  Differential
Category: Informational                                     Y. Kawatsura
                                                                Hitachi
                                                             April 2000


Digital Signatures for the v1.0 Internet Open Trading Protocol (IOTP)

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

  A syntax and procedures are described for the computation and
  verification of digital signatures for use within Version 1.0 of the
  Internet Open Trading Protocol (IOTP).

Acknowledgment

  This document is based on work originally done on general XML digital
  signatures by:

    Richard Brown of GlobeSet, Inc. <[email protected]>

  Other contributors to the design of the IOTP DSIG DTD include, in
  alphabetic order:

    David Burdett, Commerce One
    Andrew Drapp, Hitachi
    Donald Eastlake 3rd, Motorola, Inc.













Davidson & Kawatsura         Informational                      [Page 1]

RFC 2802              Digital Signatures for IOTP             April 2000


Table of Contents

  1. Introduction............................................3
  2. Objective and Requirements..............................3
  3. Signature Basics........................................3
  3.1 Signature Element......................................3
  3.2 Digest Element.........................................4
  3.3 Originator and Recipient Information Elements..........5
  3.4 Algorithm Element......................................5
  4. Detailed Signature Syntax...............................6
  4.1 Uniform Resource Names.................................6
  4.2 IotpSignatures.........................................6
  4.3 Signature Component....................................6
  4.3.1 Signature............................................6
  4.3.2 Manifest.............................................7
  4.3.3 Algorithm............................................9
  4.3.4 Digest...............................................9
  4.3.5 Attribute...........................................10
  4.3.6 OriginatorInfo......................................11
  4.3.7 RecipientInfo.......................................11
  4.3.8 KeyIdentifier.......................................12
  4.3.9 Parameter...........................................13
  4.4 Certificate Component.................................13
  4.4.1 Certificate.........................................13
  4.4.2 IssuerAndSerialNumber...............................14
  4.5 Common Components.....................................15
  4.5.1 Value...............................................15
  4.5.2 Locator.............................................15
  5. Supported Algorithms...................................16
  5.1 Digest Algorithms.....................................16
  5.1.1 SHA1................................................16
  5.1.2 DOM-HASH............................................17
  5.2 Signature Algorithms..................................17
  5.2.1 DSA.................................................17
  5.2.2 HMAC................................................18
  5.2.3 RSA.................................................20
  5.2.4 ECDSA...............................................20
  6. Examples...............................................21
  7. Signature DTD..........................................23
  8. Security Considerations................................25
  References................................................26
  Authors' Addresses........................................28
  Full Copyright Statement..................................29








Davidson & Kawatsura         Informational                      [Page 2]

RFC 2802              Digital Signatures for IOTP             April 2000


1. Introduction

  The Internet Open Trading Protocol (IOTP) provides a payment system
  independent interoperable framework for Internet commerce as
  documented in [RFC 2801]. All IOTP messages are XML documents. XML,
  the Extensible Markup Language [XML], is a syntactical standard
  promulgated by the World Wide Web Consortium. XML is intended
  primarily for structuring data exchanged and served over the World
  Wide Web.

  Although IOTP assumes that any payment system used with it provides
  its own security, there are numerous cases where IOTP requires
  authentication and integrity services for portions of the XML
  messages it specifies.

2. Objective and Requirements

  This document covers how digital signatures may be used with XML
  documents to provide authentication and tamper-proof protocol
  messages specifically for Version 1.0 of the IOTP protocol. The
  reader should recognize that an effort towards general XML digital
  signatures exists but is unlikely to produce its final result in time
  for IOTP Version 1.0.  Future versions of IOTP will probably adopt by
  reference the results of this general XML digital signature effort.

  The objective of this document is to propose syntax and procedures
  for the computation and verification of digital signatures applicable
  to Version 1.0 IOTP protocol messages, providing for:

  -- Authentication of IOTP transactions
  -- Provide a means by which an IOTP message may be made "tamper-
     proof", or detection of tampering is made evident
  -- Describe a set of available digest and signature algorithms at
     least one of which is mandatory to implement for interoperability
  -- Easily integrate within the IOTP 1.0 Specification
  -- Provide lightweight signatures with minimal redundancy
  -- Allow signed portions of IOTP message to be "forwarded" to another
     trading roles with different signature algorithms than the
     original recipient

3. Signature Basics

3.1 Signature Element

  This specification consists primarily of the definition of an XML
  element known as the Signature element. This element consists of two
  sub-elements. The first one is a set of authenticated attributes,
  known as the signature Manifest, which comprises such things as a



Davidson & Kawatsura         Informational                      [Page 3]

RFC 2802              Digital Signatures for IOTP             April 2000


  unique reference to the resources being authenticated and an
  indication of the keying material and algorithms being used. The
  second sub-element consists of the digital signature value.

  <Signature>
          <Manifest>
                  (resource information block)
                  (originator information block)
                  (recipient information block)
                  (other attributes)
                  (signature algorithms information block)
          </Manifest>
          <Value encoding 'encoding scheme'>
                  (encoded signature value)
          <Value>
  </Signature>

  The digital signature is not computed directly from the pieces of
  information to be authenticated. Instead, the digital signature is
  computed from a set of authenticated attributes (the Manifest), which
  include references to, and a digests of, those pieces of information.

  The authentication is therefore "indirect".

3.2 Digest Element

  The Digest element consists of a unique and unambiguous reference to
  the XML resources being authenticated. It is constructed of a locator
  and the digest value data itself. The Digest algorithm is referred to
  indirectly via a DigestAlgorithmRef, so that Digest algorithms may be
  shared by multiple resources.

  <Digest DigestAlgorithmRef='D.1'>
      <Locator href='resource locator'/>
      <Value>
           (Digest value)
      </Value>
  </Digest>

  The resource locator is implemented as a simple XML Link [XLink].
  This not only provides a unique addressing scheme for internal and
  external resources, but also facilitates authentication of composite
  documents.








Davidson & Kawatsura         Informational                      [Page 4]

RFC 2802              Digital Signatures for IOTP             April 2000


3.3 Originator and Recipient Information Elements

  The purpose of the Originator and Recipient information elements is
  to provide identification and keying material for these respective
  parties.

  <OriginatorInfo>
      (identification information block)
      (keying material information block)
  </OriginatorInfo>

  <RecipientInfo>
      (identification information block)
      (keying material information block)
  </RecipientInfo>

  The actual content of these two elements depends on the
  authentication scheme being used and the existence or non-existence
  of a prior relationship between the parties. In some circumstances,
  it may be quite difficult to distinguish between identification and
  keying material information. A unique reference to a digital
  certificate provides for both. This may also stand true for an
  account number when a prior relationship exists between the parties.

  The Originator information element is mandatory. Depending on the
  existence or non-existence of a prior relationship with the
  recipient, this block either refers to a public credential such as a
  digital certificate or displays a unique identifier known by the
  recipient.

  The Recipient information element may be used when a document
  contains multiple signature information blocks, each being intended
  for a particular recipient.  A unique reference in the Recipient
  information block helps the recipients identify their respective
  Signature information block.

  The Recipient information element may also be used when determination
  of the authentication key consists of a combination of keying
  material provided by both parties. This would be the case, for
  example, when establishing a key by means of Diffie Hellman
  [Schneier] Key Exchange algorithm.

3.4 Algorithm Element

  The Algorithm element is a generalized place to put any type of
  algorithm used within the signed IOTP message. The Algorithm may be a
  Signature algorithm or a Digest algorithm.  Each algorithm contains
  parameters specific to the algorithm used.



Davidson & Kawatsura         Informational                      [Page 5]

RFC 2802              Digital Signatures for IOTP             April 2000


     <Algorithm type='digest' ID='12'>
         (algorithm information block)
     </Algorithm>

  Algorithms are required to contain an ID which allows for indirect
  reference to them from other places in the XML signature.

4. Detailed Signature Syntax

4.1 Uniform Resource Names

  To prevent potential name conflicts in the definition of the numerous
  type qualifiers considered herein, this specification uses Uniform
  Resource Names  [RFC 2141].

4.2 IotpSignatures

  The IotpSignatures element is the top-level element in an IOTP
  signature block. It consists of a collection of Signature elements,
  and an optional set of Certificates.

  <!ELEMENT IotpSignatures (Signature+, Certificate*) >
  <!ATTLIST IotpSignatures
          ID             ID            #IMPLIED >

  Content Description

  Signature: A collection of Signature elements.

  Certificate: Zero or more certificates used for signing

  Attributes Description

  ID: Element identifier that may be used to reference the entire
  Signature element from a Resource element when implementing
  endorsement.

4.3 Signature Component

4.3.1 Signature

  The Signature element constitutes the majority of this specification.
  It is comprised of two sub-elements. The first one is a set of
  attributes, known as the Manifest, which actually constitutes the
  authenticated part of the document.  The second sub-element consists
  of the signature value or values.





Davidson & Kawatsura         Informational                      [Page 6]

RFC 2802              Digital Signatures for IOTP             April 2000


  The Value element contained within the Signature element is the
  encoded form of the signature of the Manifest element, and thus
  provides the verification of the Manifest.

  The process for generating the signed value is a multi-step process,
  involving a canonicalization algorithm, a digest algorithm, and a
  signature algorithm.

  First, the Manifest is canonicalized with an algorithm specified
  within the Algorithm element of the Manifest. The canonicalized form
  removes any inconsistencies in white space introduced by XML parsing
  engines.

  This canonicalized form is then converted into a digest form which
  uniquely identifies the canonicalized document. Any slight
  modification in the original document will result in a very different
  digest value.

  Finally, the digest is then signed using a public/symmetric key
  algorithm which digitally stamps the digest (with the certificate of
  the signer if available). The final signed digest is the value which
  is stored within the Signature's Value element.

  <!ELEMENT Signature (Manifest, Value+) >
  <!ATTLIST Signature
          ID              ID            #IMPLIED >

  Content Description

  Manifest: A set of attributes that actually constitutes the
  authenticated part of the document.

  Value:  One or more encodings of signature values. Multiple values
  allow for a multiple algorithms to be supported within a single
  signature component.

  Attributes Description

  ID: Element identifier that may be used to reference the Signature
  element from a Resource element when implementing endorsement.

4.3.2 Manifest

  The Manifest element consists of a collection of attributes that
  specify such things as references to the resources being
  authenticated and an indication of the keying material and algorithms
  to be used.




Davidson & Kawatsura         Informational                      [Page 7]

RFC 2802              Digital Signatures for IOTP             April 2000


  <!ELEMENT Manifest
          (       Algorithm+,
                  Digest+,
                  Attribute*,
                  OriginatorInfo,
                  RecipientInfo+,
          )
  <!ATTLIST Manifest
          LocatorHRefBase          CDATA        #IMPLIED
  >

  Content Description

  Algorithm: A list of algorithms used for signing, digest computation,
  and canonicalization.

  Digest: A list of digests of resources to be authentication and
  signed.

  Attribute: Optional element that consists of a collection of
  complementary attributes to be authenticated.

  OriginatorInfo: Element that provides identification and keying
  material information related to the originator.

  RecipientInfo: Optional element that provides identification and
  keying material information related to the recipient.

  Attributes Description

  LocatorHrefBase: The LocatorHrefBase provides a similar construct to
  the HTML HREFBASE attribute and implicitly sets all relative URL
  references within the Manifest to be relative to the HrefBase. For
  example, the IOTP Manifest may contain:

  <Manifest LocatorHrefBase='iotp:<globally-unique-tid>'>

  And subsequent Locators may be:

  <Locator href='C.9'>

  An implementation should concatenate the two locator references with
  "#" to create the entire URL. See definition of the Locator attribute
  on the Digest element for more detail.







Davidson & Kawatsura         Informational                      [Page 8]

RFC 2802              Digital Signatures for IOTP             April 2000


4.3.3 Algorithm

  This specification uses an Algorithm data type which indicates many
  different types of algoirithms. The Algorithm element allows for
  specification of sub-algorithms as parameters of the primary
  algorithm. This is performed via a parameter within the algorithm
  that provides a reference to another Algorithm. An example of this is
  shown in the Parameter section.

  <!ELEMENT Algorithm (Parameter*) >
  <!ATTLIST Algorithm
          ID             ID                #REQUIRED
          type     (digest|signature)      #IMPLIED
          name           NMTOKEN           #REQUIRED >

  Content Description

  Parameter: The contents of an Algorithm element consists of an
  optional collection of Parameter elements which are specified on a
  per algorithm basis.

  Attributes Description

  ID: The ID of the algorithm is used by the Digest and RecipientInfo
  to refer to the signing or digest algorithm used.

  type: The type of algorithm, either a digest or signature. This is
  implied by the element to which the algorithm is referred. That is,
  if the DigestAlgorithmRef refers to an algorithm, it is implicit by
  reference that the targeted algorithm is a digest.

  name:  The type of the algorithm expressed as a Uniform Resource
  Name.

4.3.4 Digest

  The Digest element consists of the fingerprint of a given resource.
  This element is constructed of two sub-elements. This first one
  indicates the algorithm to be used for computation of the
  fingerprint. The second element consists of the fingerprint value.

  <!ELEMENT Digest (Locator, Value) >
  <!ATTLIST Digest
          DigestAlgorithmRef       IDREF    #REQUIRED
  >






Davidson & Kawatsura         Informational                      [Page 9]

RFC 2802              Digital Signatures for IOTP             April 2000


  Content Description

  Locator: Contains a "HREF" or URL Locator for the resources to be
  fingerprinted. For use within IOTP a "scheme" with the value "iotp"
  may be used with the following structure:

    'iotp:<globally-unique-tid>#<id-value>'.

  This should be interpreted as referring to an element with an ID
  attribute that matches <id-value> in any IOTP Message that has a
  TransRefBlk Block with an IotpTransId that matches <globally-unique-
  tid>.

  If the LocatorHrefBase attribute is set on the Manifest element of
  which this Digest element is a child, then concatenate the value of
  the LocatorHrefBase attribute with the value of the Locator attribute
  before identifying the element that is being referred to.

  If the LocatorHrefBase attribute is omitted, <globally-unique-tid>
  should be interpreted as the current IotpTransId, which is included
  in the IOTP message which contains the Manifest component.

  Value: Encoding of the fingerprint value.

  Attributes Description

  DigestAlgorithmRef: ID Reference of algorithm used for computation of
  the digest.

4.3.5 Attribute

  The Attribute element consists of a complementary piece of
  information, which shall be included in the authenticated part of the
  document. This element has been defined primarily for enabling some
  level of customization in the signature element. This is the area
  where a specific IOTP implementation may include custom attributes
  which must be authenticated directly. An Attribute element consists
  of a value, a type, and a criticality.

  At this time, no IOTP specific attributes are specified.

  <!ELEMENT Attribute ANY >
  <!ATTLIST Attribute
          type               NMTOKEN           #REQUIRED
          critical        ( true | false )     #REQUIRED
  >





Davidson & Kawatsura         Informational                     [Page 10]

RFC 2802              Digital Signatures for IOTP             April 2000


  Content Description

  ANY: The actual value of an attribute depends solely upon its type.

  Attributes Description

  type:  Type of the attribute.

  critical: Boolean value that indicates if the attribute is critical
  (true) or not (false). A recipient shall reject a signature that
  contains a critical attribute that he does not recognize. However, an
  unrecognized non-critical attribute may be ignored.

4.3.6 OriginatorInfo

  The OriginatorInfo element is used for providing identification and
  keying material information for the originator.

  <!ELEMENT OriginatorInfo ANY >
  <!ATTLIST OriginatorInfo
          OriginatorRef       NMTOKEN      #IMPLIED
  >

  Content Description

  ANY:  Identification and keying material information may consist of
  ANY construct.  Such a definition allows the adoption of
  application-specific schemes.

  Attributes Description

  OriginatorRef: A reference to the IOTP Org ID of the originating
  signer.

4.3.7 RecipientInfo

  The RecipientInfo element is used for providing identification and
  keying material information for the recipient. This element is used
  either for enabling recognition of a Signature element by a given
  recipient or when determination of the authentication key consists of
  the combination of keying material provided by both the recipient and
  the originator.

  The RecipientInfo attributes provide a centralized location where
  signatures, algorithms, and certificates intended for a particular
  recipient are specified.





Davidson & Kawatsura         Informational                     [Page 11]

RFC 2802              Digital Signatures for IOTP             April 2000


  The signature certificate reference ID MUST point to a certificate
  object.

  <!ELEMENT RecipientInfo ANY >
  <!ATTLIST RecipientInfo
          SignatureAlgorithmRef   IDREF        #REQUIRED
          SignatureValueRef       IDREF        #IMPLIED
          SignatureCertRef        IDREF        #IMPLIED
          RecipientRefs           NMTOKENS     #IMPLIED
  >

  Content Description

  ANY:  Identification and keying material information may consist of
  ANY construct.

  Attributes Description

  SignatureAlgorithmRef: A reference to the signature algorithm used to
  sign the SignatureValueRef intended for this recipient. The signature
  algorithm reference ID MUST point to a signature algorithm within the
  Manifest.

  SignatureValueRef: A reference to the signature value for this
  recipient. The signature value reference ID MUST point to a value
  structure directly included within a Manifest. This reference can be
  omitted if the application can specify the digest value.

  SignatureCertRef: A reference to the certificate used to sign the
  Value pointed to by the SignatureValueRef. This reference can be
  omitted if the application can identify the certificate.

  RecipientRefs: A list of references to the IOTP Org ID of the
  recipients this signature is intended for.

4.3.8 KeyIdentifier

  The key identifier element can identify the shared public/symmetric
  key identification between parties that benefit from a prior
  relationship. This element can be included in the ReceipientInfo
  Element.

  <!ELEMENT KeyIdentifier EMPTY>
  <!ATTLIST KeyIdentifier
    value             CDATA        #REQUIRED
  >





Davidson & Kawatsura         Informational                     [Page 12]

RFC 2802              Digital Signatures for IOTP             April 2000


4.3.9 Parameter

  A Parameter element provides the value of a particular algorithm
  parameter, whose name and format have been specified for the
  algorithm considered.

  <!ELEMENT Parameter ANY >
  <!ATTLIST Parameter
          type       CDATA       #REQUIRED
  >

  For IOTP 1.0, the following parameter type is standardized:
  "AlgorithmRef".

  An AlgorithmRef contains an ID of a "sub-Algorithm" used when
  computing a sequence of algorithms. For example, a signature
  algorithm actually signs a digest algorithm. To specify a chain of
  algorithms used to compute a signature, AlgorithmRef parameter types
  are used in the following manner:

<Algorithm ID='A1' type='digest' name='urn:ibm-com:dom-hash'>
       <Parameter type='AlgorithmRef'>A2</Parameter>
</Algorithm>
<Algorithm ID='A2' type='digest' name='urn:nist-gov:sha1'>
</Algorithm>
<Algorithm ID='A3' type='signature' name='urn:rsasdi-com:rsa-encryption'>
       <Parameter type='AlgorithmRef'>A1</Parameter>
</Algorithm>

  Content Description

  ANY:  The contents of a Parameter element consists of ANY valid
  construct, which is specified on a per algorithm per parameter basis.

  Attributes Description

  type:  The type of the parameter expressed as a free form string,
  whose value is specified on a per algorithm basis.

4.4 Certificate Component

4.4.1 Certificate

  The Certificate element may be used for either providing the value of
  a digital certificate or specifying a location from where it may be
  retrieved.





Davidson & Kawatsura         Informational                     [Page 13]

RFC 2802              Digital Signatures for IOTP             April 2000


  <!ELEMENT Certificate
  (       IssuerAndSerialNumber,
          ( Value | Locator ) )
  >
  <!ATTLIST Certificate
          ID           ID           #IMPLIED
          type         NMTOKEN      #REQUIRED >

  Content Description

  IssuerAndSerialNumber:  Unique identifier of this certificate. This
  element has been made mandatory is order to prevent unnecessary
  decoding during validation of a certificate chain. This feature also
  helps certificates caching, especially when the value is not directly
  provided.

  Value: Encoding of the certificate value. The actual value to be
  encoded depends upon the type of the certificate.

  Locator: XML link element that could be used for retrieving a copy of
  the digital certificate. The actual value being returned by means of
  this locator depends upon the security protocol being used.

  Attributes Description

  ID: Element identifier that may be used to reference the Certificate
  element from a RecipientInfo element.

  type: Type of the digital certificate. This attribute is specified as
  a Universal Resource Name. Support for the X.509 version 3
  certificate [X.509] is mandatory in this specification if the
  Certificate element is used.  The URN for such certificates is
  "urn:X500:X509v3".

4.4.2 IssuerAndSerialNumber

  The IssuerAndSerialNumber element identifies a certificate, and
  thereby an entity and a public key, by the name of the certificate
  issuer and an issuer-specific certificate identification.

  <!ELEMENT IssuerAndSerialNumber EMPTY >
  <!ATTLIST IssuerAndSerialNumber
          issuer        CDATA         #REQUIRED
          number        CDATA         #REQUIRED >







Davidson & Kawatsura         Informational                     [Page 14]

RFC 2802              Digital Signatures for IOTP             April 2000


  Attributes Description

  issuer: Name of the issuing certification authority.  See [RFC 2253]
  for RECOMMENDED syntax.

  number: Issuer-specific certificate identification.

4.5 Common Components

4.5.1 Value

  A value contains the "raw" data of a signature or digest algorithm,
  usually in a base-64 encoded form. See [RFC 2045] for algorithm used
  to base-64 encode data.

  <!ELEMENT Value ( #PCDATA ) >
  <!ATTLIST Value
          ID                 ID            #IMPLIED
          encoding      (base64|none)     'base64'
  >

  Content Description

  PCDATA:  Content value after adequate encoding.

  Attributes Description

  encoding:  This attribute specifies the decoding scheme to be
  employed for recovering the original byte stream from the content of
  the element. This document recognizes the following two schemes:

  none: the content has not been subject to any particular encoding.
  This does not preclude however the use of native XML encoding such as
  CDATA section or XML escaping.

  base64: The content has been encoded by means of the base64 encoding
  scheme.

4.5.2 Locator

  The Locator element consists of simple XML link [XLink].  This
  element allows unambiguous reference to a resource or fragment of a
  resource.

  <!ELEMENT Locator EMPTY>
  <!ATTLIST Locator
          xml:link         CDATA        #FIXED         'simple'
          href             CDATA        #REQUIRED >



Davidson & Kawatsura         Informational                     [Page 15]

RFC 2802              Digital Signatures for IOTP             April 2000


  Attributes Description

  xml:link: Required XML link attribute that specifies the nature of
  the link (simple in this case).

  href: Locator value that may contains either a URI [RFC 2396], a
  fragment identifier, or both.

5. Supported Algorithms

  The IOTP specification 1.0 requires the implementation of the DSA,
  DOM-HASH, SHA1, HMAC algorithms. Implementation of RSA is also
  recommended.

5.1 Digest Algorithms

  This specification contemplates two types of digest algorithms, both
  of which provide a digest string as a result:

  Surface string digest algorithms

  These algorithms do not have any particular knowledge about the
  content being digested and operate on the raw content value. Any
  changes in the surface string of a given content affect directly the
  value of the digest being produced.

  Canonical digest algorithms

  These algorithms have been tailored for a particular content type and
  produce a digest value that depends upon the core semantics of such
  content. Changes limited to the surface string of a given content do
  not affect the value of the digest being produced unless they affect
  the core semantic.

5.1.1 SHA1

  Surface string digest algorithm designed by NIST and NSA for use with
  the Digital Signature Standard. This algorithm produces a 160-bit
  hash value. This algorithm is documented in NIST FIPS Publication
  180-1 [SHA1].

  This algorithm does not require any parameter.

  The SHA1 URN used for this specification is "urn:nist-gov:sha1".







Davidson & Kawatsura         Informational                     [Page 16]

RFC 2802              Digital Signatures for IOTP             April 2000


5.1.2 DOM-HASH

  XML canonical digest algorithm proposed by IBM Tokyo Research
  Laboratory. This algorithm operates on the DOM representation of the
  document and provides an unambiguous means for recursive computation
  of the hash value of the nodes that constitute the DOM tree [RFC
  2803]. This algorithm has many applications such as computation of
  digital signature and synchronization of DOM trees. However, because
  the hash value of an element is computed from the hash values of the
  inner elements, this algorithm is better adapted to small documents
  that do not require one-pass processing.

  As of today, this algorithm is limited to the contents of an XML
  document and, therefore, does not provide for authentication of the
  internal or external subset of the DTD.

  The DOM-HASH algorithm requires a single parameter, which shall
  include a surface string digest algorithm such as SHA1.

  The DOM-HASH URN used for this specification is "urn:ibm-com:dom-
  hash".

  The DOM-HASH uses a surface-string digest algorithm for computation
  of a fingerprint. The SHA1 is recommended in this specification.

  Example
  <Algorithm name='urn:fips:sha1' type='digest' ID='P.3'>
  </Algorithm>

  <Algorithm name='urn:ibm:dom-hash' type='digest' ID='P.5'>
    <Parameter type='AlgorithmRef'>P.3</Parameter>
  </Algorithm>

5.2 Signature Algorithms

  This specification uses the terminology of 'digital signature' for
  qualifying indifferently digital signature and message authentication
  codes.  Thus, the signature algorithms contemplated herein include
  public key digital signature algorithms such as ECDSA and message
  authentication codes such as HMAC [RFC 2104].

5.2.1 DSA

  Public-key signature algorithm proposed by NIST for use with the
  Digital Signature Standard. This standard is documented in NIST FIPS
  Publication 186 [DSS] and ANSI X9.30 [X9.30].





Davidson & Kawatsura         Informational                     [Page 17]

RFC 2802              Digital Signatures for IOTP             April 2000


  The DSA algorithm requires a single parameter, which includes the
  canonical digest algorithm to be used for computing the fingerprint
  of the signature Manifest.

  The DSA URN used in this specification is "urn:nist-gov:dsa".

  The DSA uses a canonical or surface-string digest algorithm for
  computation of the Manifest fingerprint. The DOM-HASH is recommended
  in this specification.

  Signature Value Encoding:

  The output of this algorithm consists of a pair of integers usually
  referred by the pair (r, s). The signature value shall consist of the
  concatenation of two octet-streams that respectively result from the
  octet-encoding of the values r and s. Integer to octet-stream
  conversion shall be done according to PKCS#1 [RFC 2437] specification
  with a k parameter equals to 20.

  Example
  <Algorithm name='urn:nist-gov:dsa' type='signature' ID='P.3'>
    <Parameter type='AlgorithmRef'>P.4</Parameter>
  </Algorithm>
  <Algorithm name='urn:ibm-com:dom-hash' type='digest' ID='P.4'>
    <Parameter type='AlgorithmRef'>P.5</Parameter>
  </Algorithm>
  <Algorithm name='urn:nist-gov:sha1' type='digest' ID='P.5'>
  </Algorithm>

5.2.2 HMAC

  Message Authentication Code proposed by H. Krawczyk et al., and
  documented in [RFC 2104].

  This specification adopts a scheme that differs a bit from the common
  usage of this algorithm -- computation of the MAC is performed on the
  hash of the contents being authenticated instead of the actual
  contents. Thence, the actual signature value output by the algorithm
  might be depicted as follows:

    SignatureValue = HMAC( SecretKey, H(Manifest))

  This specification also considered HMAC output truncation such as
  proposed by Preneel and van Oorschot. In their paper [PV] these two
  researchers have shown some analytical advantages of truncating the
  output of hash-based MAC functions. Such output truncation is also
  considered in the RFC document.




Davidson & Kawatsura         Informational                     [Page 18]

RFC 2802              Digital Signatures for IOTP             April 2000


  HMAC requires three parameters. The first one consists of a canonical
  digest algorithm. The second one consists of a hash function. The
  last one is optional and specifies the length in bit of the truncated
  output. If this last parameter is absent, no truncation shall occur.

  The HMAC URN used in this specification is "urn:ietf-org:hmac".

  Canonical digest algorithm: Canonical or surface-string digest
  algorithm is to be used for computation of the Manifest fingerprint.
  The type of this parameter is set to "AlgorithmRef".  The recommended
  value of this Parameter should be the ID reference for the Algorithm
  element DOM-HASH.

  Hash-function: Hash function is to be used to compute the MAC value
  from the secret key and the fingerprint of the signature Manifest.
  The type of this parameter is set to "HashAlgorithmRef" and the value
  of this parameter should be set to the ID reference for the Algorithm
  element of SHA1.

  Output-length: Length in bits of the truncated MAC value. The type of
  this parameter is set to "KeyLength" and the value of this parameter
  is set the length in bits of the truncated MAC value.

  Signature Value Encoding:

  The output of this algorithm can be assumed as a large integer value.
  The signature value shall consist of the octet-encoded value of this
  integer. Integer to octet-stream conversion shall be done according
  to PKCS#1 [RFC 2437] specification with a k parameter equals to
  ((Hlen +7) mod8), Mlen being the length in bits of the MAC value.

  Example
  <Algorithm name='urn:ietf-org:hmac' type='signature' ID='P.3'>
    <Parameter type='AlgorithmRef'>P.4</Parameter>
    <Parameter type='HashAlgorithmRef'>P.5</Parameter>
    <Parameter type='KeyLength'>128</Parameter>
  </Algorithm>
  <Algorithm name='urn:ibm-com:dom-hash' type='digest' ID='P.4'>
    <Parameter type='AlgorithmRef'>P.5</Parameter>
  </Algorithm>
  <Algorithm name='urn:nist-gov:sha1' type='digest' ID='P.5'>
  </Algorithm>









Davidson & Kawatsura         Informational                     [Page 19]

RFC 2802              Digital Signatures for IOTP             April 2000


5.2.3 RSA

  Public-key signature algorithm proposed by RSA Laboratories and
  documented in PKCS#1 [RFC 2437].

  This specification adopts the RSA encryption algorithm with padding
  block type 01. For computing the signature value, the signer shall
  first digest the signature Manifest and then encrypt the resulting
  digest with his private key.

  This signature algorithm requires a single parameter, which consists
  of the canonical digest algorithm to be used for computing the
  fingerprint of the signature Manifest.

  Specifications

  The RSA URN used in this specification is "urn:rsasdi-com:rsa-
  encription".

  The RSA uses a canonical or surface-string digest algorithm for
  computation of the Manifest fingerprint. The DOM-HASH is recommended
  in this specification.

  Signature Value Encoding:

  The output of this algorithm consists of single octet-stream. No
  further encoding is required.

  Example
  <Algorithm name='urn:rsasdi-com:rsa-encription'
                                      type='signature' ID='P.3'>
    <Parameter type='AlgorithmRef'>P.4</Parameter>
  </Algorithm>
  <Algorithm name='urn:ibm-com:dom-hash' type='digest' ID='P.4'>
    <Parameter type='AlgorithmRef'>P.5</Parameter>
  </Algorithm>
  <Algorithm name='urn:nist-gov:sha1' type='digest' ID='P.5'>
  </Algorithm>

5.2.4 ECDSA

  Public-key signature algorithm proposed independently by Neil Koblitz
  and Victor Miller. This algorithm is being proposed as an ANSI
  standard and is documented in ANSI X9.62 standard proposal [X9.62]
  and IEEE/P1363 standard draft proposal [IEEE P1363].






Davidson & Kawatsura         Informational                     [Page 20]

RFC 2802              Digital Signatures for IOTP             April 2000


  The ECDSA algorithm requires a single parameter, which consists of
  the canonical digest algorithm to be used for computing the
  fingerprint of the signature Manifest.

  Specifications

  The ECDSA URN used in this specification is "urn:ansi-org:ecdsa".

  The ECDSA uses a canonical or surface-string digest algorithm for
  computation of the Manifest fingerprint. The DOM-HASH [RFC 2803] is
  recommended in this specification.

  Signature Value Encoding:

  The output of this algorithm consists of a pair of integers usually
  referred by the pair (r, s). The signature value shall consist of the
  concatenation of two octet-streams that respectively result from the
  octet-encoding of the values r and s. Integer to octet-stream
  conversion shall be done according to PKCS#1 [RFC 2437] specification
  with a k parameter equals to 20.

  Example
  <Algorithm name='urn:ansi-org:ecdsa' type='signature' ID='P.3'>
    <Parameter type='AlgorithmRef'>P.4</Parameter>
  </Algorithm>
  <Algorithm name='urn:ibm-com:dom-hash' type='digest' ID='P.4'>
    <Parameter type='AlgorithmRef'>P.5</Parameter>
  </Algorithm>
  <Algorithm name='urn:nist-gov:sha1' type='digest' ID='P.5'>
  </Algorithm>

6. Examples

  The following is an example signed IOTP message:

  <IotpMessage>
     <TransRefBlk ID='M.1'>
         <TransId
             ID='M.2'
             version='1.0'
             IotpTransID='[email protected]'
             IotpTransType='BaselinePurchase'
             TransTimeStamp='1999-08-09T12:58:40.000Z+9'>
         </TransId>
         <MsgId xml:lang='en' SoftwareID='Iotp wallet version 1.0'>
         </MsgId>
     </TransRefBlk>
     <IotpSignatures>



Davidson & Kawatsura         Informational                     [Page 21]

RFC 2802              Digital Signatures for IOTP             April 2000


         <Signature>
             <Manifest>
                 <Algorithm name='urn:nist-gov:sha1'
                                             type='digest' ID='P.3'>
                 </Algorithm>
                 <Algorithm name='urn:nist-gov:dsa'
                                             type='signature' ID='P.4'>
                     <Parameter type='AlgorithmRef'>P.5</Parameter>
                 </Algorithm>
                 <Algorithm name='urn:ibm-com:dom-hash'
                                             type='digest' ID='P.5'>
                     <Parameter type='AlgorithmRef'>P.3</Parameter>
                 </Algorithm>
                 <Digest DigestAlgorithmRef='P.6'>
                     <Locator href='P.1'/>
                     <Value>
                      xsqsfasDys2h44u4ehJDe54he5j4dJYTJ
                     </Value>
                 </Digest>
                 <OriginatorInfo
                     <IssuerAndSerialNumber
                      issuer='o=Iotp Ltd., c=US'
                      number='12345678987654'/>
                 </OriginatorInfo>
                 <RecipientInfo
                     SignatureAlgorithmRef='P.4'
                 </RecipientInfo>
             </Manifest>
             <Value>
                  9dj28fjakA9sked0Ks01k2d7a0kgmf9dk19lf63kkDSs0
             </Value>
         </Signature>
         <Certificate type='urn:X500:X509v3'>
             <IssuerAndSerialNumber
                  issuer='o=GlobeSet Inc., c=US'
                  number='123456789102356'/>
             <Value>
              xsqsfasDys2h44u4ehJDe54he5j4dJYTJ=
             </Value>
        </Certificate>
     </IotpSignatures>
     <PayExchBlk ID='P.1'>
         <PaySchemeData
             ID='P.2'
             PaymentRef='M.5'
             ContentSoftwareId='abcdefg'>
                 <PackagedContent Name='FirstPiece'>
                      snroasdfnas934k



Davidson & Kawatsura         Informational                     [Page 22]

RFC 2802              Digital Signatures for IOTP             April 2000


                 </PackagedContent>
        </PaySchemeData>
     </PayExchBlk>
  </IotpMessage>

7. Signature DTD

  <!--
  ******************************************************
  * IOTP SIGNATURES BLOCK DEFINITION                   *
  ******************************************************
  -->

  <!ELEMENT IotpSignatures (Signature+ ,Certificate*) >
  <!ATTLIST IotpSignatures
          ID        ID        #IMPLIED
  >

  <!--
  ******************************************************
  * IOTP SIGNATURE COMPONENT DEFINITION                *
  ******************************************************
  -->

  <!ELEMENT Signature (Manifest, Value+) >
  <!ATTLIST Signature
          ID         ID        #IMPLIED
  >

  <!ELEMENT Manifest
          (       Algorithm+,
                  Digest+,
                  Attribute*,
                  OriginatorInfo,
                  RecipientInfo+
          )
  >

  <!ATTLIST Manifest
          LocatorHRefBase       CDATA             #IMPLIED
  >

  <!ELEMENT Algorithm (Parameter*) >
  <!ATTLIST Algorithm
          ID                     ID                #REQUIRED
          type            (digest|signature)      #IMPLIED
          name                  NMTOKEN           #REQUIRED
  >



Davidson & Kawatsura         Informational                     [Page 23]

RFC 2802              Digital Signatures for IOTP             April 2000


  <!ELEMENT Digest (Locator, Value) >
  <!ATTLIST Digest
          DigestAlgorithmRef    IDREF             #REQUIRED
  >

  <!ELEMENT Attribute ANY >
  <!ATTLIST Attribute
          type                   NMTOKEN           #REQUIRED
          critical            ( true | false )     #REQUIRED
  >

  <!ELEMENT OriginatorInfo ANY >
  <!ATTLIST OriginatorInfo
          OriginatorRef           NMTOKEN          #IMPLIED
  >

  <!ELEMENT RecipientInfo ANY >
  <!ATTLIST RecipientInfo
          SignatureAlgorithmRef   IDREF            #REQUIRED
          SignatureValueRef       IDREF            #IMPLIED
          SignatureCertRef        IDREF            #IMPLIED
          RecipientRefs           NMTOKENS         #IMPLIED
  >

  <!ELEMENT KeyIdentifier EMPTY>
  <!ATTLIST KeyIdentifier
          value                    CDATA           #REQUIRED
  >

  <!ELEMENT Parameter ANY >
  <!ATTLIST Parameter
          type                     CDATA           #REQUIRED
  >

  <!--
  ******************************************************
  * IOTP CERTIFICATE COMPONENT DEFINITION              *
  ******************************************************
  -->

  <!ELEMENT Certificate
    (  IssuerAndSerialNumber,  ( Value | Locator ) )
  >

  <!ATTLIST Certificate
          ID                        ID                #IMPLIED
          type                      NMTOKEN           #REQUIRED
  >



Davidson & Kawatsura         Informational                     [Page 24]

RFC 2802              Digital Signatures for IOTP             April 2000


  <!ELEMENT IssuerAndSerialNumber EMPTY >
  <!ATTLIST IssuerAndSerialNumber
          issuer                     CDATA            #REQUIRED
          number                     CDATA            #REQUIRED
  >

  <!--
  ******************************************************
  * IOTP SHARED COMPONENT DEFINITION                   *
  ******************************************************
  -->
  <!ELEMENT Value ( #PCDATA ) >
  <!ATTLIST Value
          ID               ID           #IMPLIED
          encoding    (base64|none      'base64'
  >

  <!ELEMENT Locator EMPTY>
  <!ATTLIST Locator
          xml:link        CDATA         #FIXED        'simple'
          href            CDATA         #REQUIRED
  >

8. Security Considerations

  This entire document concerns the IOTP v1 protocol signature element
  which is used for authentication.  See the Security Considerations
  section of [RFC 2801] "Internet Open Trading Protocol - IOTP, Version
  1.0".






















Davidson & Kawatsura         Informational                     [Page 25]

RFC 2802              Digital Signatures for IOTP             April 2000


References

  [DSA]        Federal Information Processing Standards Publication
               FIPS PUB 186, "Digital Signature Standard(DSS)", 1994,
               <http://csrc.nist.gov>

  [IEEE P1363] IEEE P1363, "Standard Specifications for Public-Key
               Cryptography", Work in Progress, 1997,
               <http://stdsbbs.ieee.org/>

  [PV]         Preneel, B. and P. van Oorschot, "Building fast MACs
               from hash functions", Advances in Cryptology --
               CRYPTO'95 Proceedings, Lecture Notes in Computer
               Science, Springer-Verlag Vol.963, 1995, pp. 1-14.

  [RFC 1321]   Rivest, R., "The MD5 Message-Digest Algorithm", RFC
               1321, April 1992.

  [RFC 2045]   Freed, N. and N. Borenstein, "Multipurpose Internet Mail
               Extensions (MIME) Part One: Format of Internet Message
               Bodies", RFC 2045, November 1996.

  [RFC 2046]   Freed N. and N. Borenstein, "Multipurpose Internet Mail
               Extensions (MIME) Part Two: Media Types", RFC 2046,
               November 1996.

  [RFC 2104]   Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-
               Hashing for Message Authentication", RFC 2104, February
               1997.

  [RFC 2141]   Moats, R., "URN Syntax", RFC 2141, May 1997.

  [RFC 2253]   Wahl, W., Kille, S. and T. Howes, "Lightweight Directory
               Access Protocol (v3): UTF-8 String Representation of
               Distinguished Names", RFC 2253, December 1997.

  [RFC 2396]   Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
               Resource Identifiers (URI): Generic Syntax", RFC 2396,
               August 1998.

  [RFC 2437]   Kaliski, B. and J. Staddon, "PKCS #1: RSA Cryptography
               Specifications, Version 2.0", RFC 2437, October 1998.

  [RFC 2801]   Burdett, D., "Internet Open Trading Protocol - IOTP,
               Version 1.0", RFC 2801, April 2000.

  [RFC 2803]   Maruyama, H., Tamura, K. and N. Uramot, "Digest Values
               for DOM (DOMHASH)", RFC 2803, April 2000.



Davidson & Kawatsura         Informational                     [Page 26]

RFC 2802              Digital Signatures for IOTP             April 2000


  [Schneier]   Bruce Schneier, "Applied Cryptography: Protocols,
               Algorithms, and Source Code in C", 1996, John Wiley and
               Sons

  [SHA1]       NIST FIPS PUB 180-1, "Secure Hash Standard," National
               Institute of Standards and Technology, U.S. Department
               of Commerce, April 1995.

  [X.509]      ITU-T Recommendation X.509 (1997 E), "Information
               Technology - Open Systems Interconnection - The
               Directory:  Authentication Framework", June 1997.

  [X9.30]      ASC X9 Secretariat: American Bankers Association,
               "American National Standard for Financial Services -
               Public Key Cryptography Using Irreversible Algorithms
               for the Financial Services Industry - Part 1: The
               Digital Signature Algorithm(DSA)", 1995.

  [X9.62]      ASC X9 Secretariat: American Bankers
               Association,"American National Standard for Financial
               Services - Public Key Cryptography Using Irreversible
               Algorithms for the Financial Services Industry - The
               Elliptic Curve Digital Signature Algorithm (ECDSA)",
               Work in Progress, 1997.

  [XLink]      Eve Maler, Steve DeRose, "XML Linking Language (XLink)",
               <http://www.w3.org/TR/1998/WD-xlink-19980303>

  [XML]        Tim Bray, Jean Paoli, C. M. Sperber-McQueen, "Extensible
               Markup Language (XML) 1.0",
               <http://www.w3.org/TR/1998/REC-xml-19980210>




















Davidson & Kawatsura         Informational                     [Page 27]

RFC 2802              Digital Signatures for IOTP             April 2000


Authors' Addresses

  The authors of this document are:

  Kent M. Davidson
  Differential, Inc.
  440 Clyde Ave.
  Mountain View, CA 94043 USA

  EMail: [email protected]


  Yoshiaki Kawatsura
  Hitachi, Ltd.
  890-12 Kashimada Saiwai Kawasaki,
  Kanagawa 2128567 Japan

  EMail: [email protected]

































Davidson & Kawatsura         Informational                     [Page 28]

RFC 2802              Digital Signatures for IOTP             April 2000


Full Copyright Statement

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Davidson & Kawatsura         Informational                     [Page 29]