Network Working Group                                        M. St. Johns
Request for Comments: 2786                                    Excite@Home
Category: Experimental                                         March 2000


                        Diffie-Helman USM Key
          Management Information Base and Textual Convention

Status of this Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

IESG Note

  This document specifies an experimental MIB. Readers, implementers
  and users of this MIB should be aware that in the future the IETF may
  charter an IETF Working Group to develop a standards track MIB to
  address the same problem space that this MIB addresses.  It is quite
  possible that an incompatible standards track MIB may result from
  that effort.

Abstract

  This memo defines an experimental portion of the Management
  Information Base (MIB) for use with network management protocols in
  the Internet community.  In particular, it defines a textual
  convention for doing Diffie-Helman key agreement key exchanges and a
  set of objects which extend the usmUserTable to permit the use of a
  DH key exchange in addition to the key change method described in
  [12]. In otherwords, this MIB adds the possibility of forward secrecy
  to the USM model.  It also defines a set of objects that can be used
  to kick start security on an SNMPv3 agent when the out of band path
  is authenticated, but not necessarily private or confidential.

  The KeyChange textual convention described in [12] permits secure key
  changes, but has the property that if a third-party has knowledge of
  the original key (e.g. if the agent was manufactured with a standard
  default key) and could capture all SNMP exchanges, the third-party
  would know the new key.  The Diffie-Helman key change described here





St. Johns                     Experimental                      [Page 1]

RFC 2786                 Diffie-Helman USM Key                March 2000


  limits knowledge of the new key to the agent and the manager making
  the change.  In otherwords, this process adds forward secrecy to the
  key change process.

  The recommendation in [12] is that the usmUserTable be populated out
  of band - e.g. not via SNMP.  If the number of agents to be
  configured is small, this can be done via a console port and
  manually.  If the number of agents is large, as is the case for a
  cable modem system, the manual approach doesn't scale well.  The
  combination of the two mechanisms specified here - the DH key change
  mechanism, and the DH key ignition mechanism - allows managable use
  of SNMPv3 USM in a system of millions of devices.

  This memo specifies a MIB module in a manner that is compliant to the
  SNMP SMIv2[5][6][7].  The set of objects is consistent with the SNMP
  framework and existing SNMP standards and is intended for use with
  the SNMPv3 User Security Model MIB and other security related MIBs.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [16].

  This memo is a private submission by the author, but is applicable to
  the SNMPv3 working group within the Internet Engineering Task Force.
  Comments are solicited and should be addressed to the the author.

Table of Contents

  1 The SNMP Management Framework .................................   2
  1.1 Structure of the MIB ........................................   3
  2 Theory of Operation ...........................................   4
  2.1 Diffie-Helman Key Changes ...................................   4
  2.2 Diffie-Helman Key Ignition ..................................   4
  3 Definitions ...................................................   6
  4 References ....................................................  17
  5 Security Considerations .......................................  18
  6 Intellectual Property .........................................  19
  7 Author's Address ..............................................  19
  8 Full Copyright Statement ......................................  20

1.  The SNMP Management Framework   The SNMP Management Framework
  presently consists of five major components:

  o   An overall architecture, described in RFC 2271 [1].

  o   Mechanisms for describing and naming objects and events for the
      purpose of management. The first version of this Structure of
      Management Information (SMI) is called SMIv1 and described in STD



St. Johns                     Experimental                      [Page 2]

RFC 2786                 Diffie-Helman USM Key                March 2000


      16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The
      second version, called SMIv2, is described in STD 58, RFC 2578
      [5], STD 58, RFC 2579 [6] and STD 58, RFC 2580 [7].

  o   Message protocols for transferring management information. The
      first version of the SNMP message protocol is called SNMPv1 and
      described in STD 15, RFC 1157 [8]. A second version of the SNMP
      message protocol, which is not an Internet standards track
      protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC
      1906 [10].  The third version of the message protocol is called
      SNMPv3 and described in RFC 1906 [10], RFC 2272 [11] and RFC 2274
      [12].

  o   Protocol operations for accessing management information. The
      first set of protocol operations and associated PDU formats is
      described in STD 15, RFC 1157 [8]. A second set of protocol
      operations and associated PDU formats is described in RFC 1905
      [13].

  o   A set of fundamental applications described in RFC 2273 [14] and
      the view-based access control mechanism described in RFC 2275
      [15].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  Objects in the MIB are
  defined using the mechanisms defined in the SMI.

  This memo specifies a MIB module that is compliant to the SMIv2. A
  MIB conforming to the SMIv1 can be produced through the appropriate
  translations. The resulting translated MIB must be semantically
  equivalent, except where objects or events are omitted because no
  translation is possible (use of Counter64). Some machine readable
  information in SMIv2 will be converted into textual descriptions in
  SMIv1 during the translation process. However, this loss of machine
  readable information is not considered to change the semantics of the
  MIB.

1.1.  Structure of the MIB

  This MIB is structured into three groups and a single textual
  convention:

  o   The DHKeyChange textual convention defines the process for
      changing a secret key value via a Diffie-Helman key exchange.

  o   The usmDHPublicObjects group contains a single object which
      describes the public Diffie-Helman parameters required by any
      instance of a DHKeyChange typed object.



St. Johns                     Experimental                      [Page 3]

RFC 2786                 Diffie-Helman USM Key                March 2000


  o   The usmDHUserKeyTable augments and extends the usmUserTable
      defined in the SNMPv3 User-based Security Model MIB [12] by
      providing objects which permit the updating of the Authentication
      and Privacy keys for a row in this table through the use of a
      Diffie-Helman key exchange.

  o   The usmDHKickstartTable provides a mechanism for a management
      station to be able to agree upon a set of authentication and
      confidentiality keys and their associated row in the
      usmUserTable.

2.  Theory of Operation

2.1.  Diffie-Helman Key Changes

  Upon row creation (in the usmUserTable), or object change (either of
  the object in the usmDHUserKeyTable or its associated value in the
  usmUserTable), the agent generates a random number.  From this random
  number, the agent uses the DH parameters and transforms to derive a
  DH public value which is then published to the associated MIB object.
  The management station reads one or more of the objects in the
  usmDHUserKeyTable to get the agent's DH public values.

  The management station generates a random number, derives a DH public
  value from that random number (as described in the DHKeyChange
  Textual Convention), and does an SNMP SET against the object in the
  usmDHUserKeyTable.  The set consists of the concatenation of the
  agent's derived DH public value and the manager's derived DH public
  value (to ensure the DHKeyChange object hasn't otherwise changed in
  the meantime).

  Upon successful completion of the set, the underlying key
  (authentication or confidentiality) for the associated object in the
  usmUserTable is changed to a key derived from the DH shared secret.
  Both the agent and the management station are able to calculate this
  value based on their knowledge of their own random number and the
  other's DH public number.

2.2.  Diffie-Helman Key Ignition

  [12] recommends that the usmUserTable be populated out of band, for
  example - manually.  This works reasonably well if there are a small
  number of agents, or if all the agents are using the same key
  material, and if the device is physically accessible for that action.
  It does not scale very well to the case of possibly millions of
  devices located in thousands of locations in hundreds of markets in





St. Johns                     Experimental                      [Page 4]

RFC 2786                 Diffie-Helman USM Key                March 2000


  multiple countries.  In other words, it doesn't work well with a
  cable modem system, and may not work all that well with other large-
  scale consumer broadband IP offerings.

  The methods described in the objects under the usmDHKickstartGroup
  can be used to populate the usmUserTable in the circumstances where
  you may be able to provide at least limited integrity for the
  provisioning process, but you can't guarantee confidentiality.  In
  addition, as a side effect of using the DH exchange, the operational
  USM keys for each agent will differ from the operational USM keys for
  every other device in the system, ensuring that compromise of one
  device does not compromise the system as a whole.

  The vendor who implements these objects is expected to provide one or
  more usmSecurityNames which map to a set of accesses defined in the
  VACM [15] tables.  For example, the vendor may provide a 'root' user
  who has access to the entire device for read-write, and 'operator'
  user who has access to the network specific monitoring objects and
  can also reset the device, and a 'customer' user who has access to a
  subset of the monitoring objects which can be used to help the
  customer debug the device in conjunction with customer service
  questions.

  To use, the system manager (the organization or individual who own
  the group of devices) generates one or more random numbers - R.  The
  manager derives the DH Public Numbers R' from these random numbers,
  associates the public numbers with a security name, and configures
  the agent with this association.  The configuration would be done
  either manually (in the case of a small number of devices), or via
  some sort of distributed configuration file.  The actual mechanism is
  outside the scope of this document.  The agent in turn generates a
  random number for each name/number pair, and publishes the DH Public
  Number derived from its random number in the usmDHKickstartTable
  along with the manager's public number and provided security name.

  Once the agent is initialized, an SNMP Manager can read the contents
  of the usmDHKickstartTable using the security name of 'dhKickstart'
  with no authentication.  The manager looks for one or more entries in
  this table where it knows the random number used to derive the
  usmDHKickstartMgrPublic number.  Given the manager's knowledge of the
  private random number, and the usmDHKickstartMyPublic number, the
  manager can calculate the DH shared secret.  From that shared secret,
  it can derive the operational authentication and confidentiality keys
  for the usmUserTable row which has the matching security name.  Given
  the keys and the security name, the manager can then use normal USM
  mechanisms to access the remainder of the agent's MIB space.





St. Johns                     Experimental                      [Page 5]

RFC 2786                 Diffie-Helman USM Key                March 2000


3.  Definitions

SNMP-USM-DH-OBJECTS-MIB DEFINITIONS ::= BEGIN

IMPORTS
   MODULE-IDENTITY, OBJECT-TYPE,
   -- OBJECT-IDENTITY,
   experimental, Integer32
       FROM SNMPv2-SMI
   TEXTUAL-CONVENTION
       FROM SNMPv2-TC
   MODULE-COMPLIANCE, OBJECT-GROUP
       FROM SNMPv2-CONF
   usmUserEntry
       FROM SNMP-USER-BASED-SM-MIB
   SnmpAdminString
       FROM SNMP-FRAMEWORK-MIB;

snmpUsmDHObjectsMIB MODULE-IDENTITY
   LAST-UPDATED "200003060000Z"  -- 6 March 2000, Midnight
   ORGANIZATION "Excite@Home"
   CONTACT-INFO "Author: Mike StJohns
                 Postal: Excite@Home
                         450 Broadway
                         Redwood City, CA 94063
                 Email:  [email protected]
                 Phone:  +1-650-556-5368"

   DESCRIPTION
       "The management information definitions for providing forward
   secrecy for key changes for the usmUserTable, and for providing a
   method for 'kickstarting' access to the agent via a Diffie-Helman
   key agreement."

   REVISION     "200003060000Z"
   DESCRIPTION
      "Initial version published as RFC 2786."


   ::= { experimental 101 }  -- IANA DHKEY-CHANGE 101

-- Administrative assignments

usmDHKeyObjects OBJECT IDENTIFIER ::= { snmpUsmDHObjectsMIB 1 }
usmDHKeyConformance OBJECT IDENTIFIER ::= { snmpUsmDHObjectsMIB 2 }

-- Textual conventions




St. Johns                     Experimental                      [Page 6]

RFC 2786                 Diffie-Helman USM Key                March 2000


DHKeyChange ::=         TEXTUAL-CONVENTION
   STATUS              current
   DESCRIPTION
       "Upon initialization, or upon creation of a row containing an
   object of this type, and after any successful SET of this value, a
   GET of this value returns 'y' where y = g^xa MOD p, and where g is
   the base from usmDHParameters, p is the prime from
   usmDHParameters, and xa is a new random integer selected by the
   agent in the interval 2^(l-1) <= xa < 2^l < p-1.  'l' is the
   optional privateValueLength from usmDHParameters in bits.  If 'l'
   is omitted, then xa (and xr below) is selected in the interval 0
   <= xa < p-1.  y is expressed as an OCTET STRING 'PV' of length 'k'
   which satisfies

             k
       y =  SUM   2^(8(k-i)) PV'i
            i=1

       where PV1,...,PVk are the octets of PV from first to last, and
       where PV1 <> 0.

   A successful SET consists of the value 'y' expressed as an OCTET
   STRING as above concatenated with the value 'z'(expressed as an
   OCTET STRING in the same manner as y) where z = g^xr MOD p, where
   g, p and l are as above, and where xr is a new random integer
   selected by the manager in the interval 2^(l-1) <= xr < 2^l <
   p-1. A SET to an object of this type will fail with the error
   wrongValue if the current 'y' does not match the 'y' portion of
   the value of the varbind for the object. (E.g. GET yout, SET
   concat(yin, z), yout <> yin).

   Note that the private values xa and xr are never transmitted from
   manager to device or vice versa, only the values y and z.
   Obviously, these values must be retained until a successful SET on
   the associated object.

   The shared secret 'sk' is calculated at the agent as sk = z^xa MOD
   p, and at the manager as sk = y^xr MOD p.

   Each object definition of this type MUST describe how to map from
   the shared secret 'sk' to the operational key value used by the
   protocols and operations related to the object.  In general, if n
   bits of key are required, the author suggests using the n
   right-most bits of the shared secret as the operational key value."
   REFERENCE
       "-- Diffie-Hellman Key-Agreement Standard, PKCS #3;
           RSA Laboratories, November 1993"
   SYNTAX              OCTET STRING



St. Johns                     Experimental                      [Page 7]

RFC 2786                 Diffie-Helman USM Key                March 2000


-- Diffie Hellman public values

usmDHPublicObjects      OBJECT IDENTIFIER ::= { usmDHKeyObjects 1 }

usmDHParameters OBJECT-TYPE
   SYNTAX  OCTET STRING
   MAX-ACCESS read-write
   STATUS  current
   DESCRIPTION
       "The public Diffie-Hellman parameters for doing a Diffie-Hellman
   key agreement for this device.  This is encoded as an ASN.1
   DHParameter per PKCS #3, section 9.  E.g.

       DHParameter ::= SEQUENCE {
          prime   INTEGER,   -- p
          base    INTEGER,   -- g
          privateValueLength  INTEGER OPTIONAL }


   Implementors are encouraged to use either the values from
   Oakley Group 1  or the values of from Oakley Group 2 as specified
   in RFC-2409, The Internet Key Exchange, Section 6.1, 6.2 as the
   default for this object.  Other values may be used, but the
   security properties of those values MUST be well understood and
   MUST meet the requirements of PKCS #3 for the selection of
   Diffie-Hellman primes.

       In addition, any time usmDHParameters changes, all values of
   type DHKeyChange will change and new random numbers MUST be
   generated by the agent for each DHKeyChange object."
   REFERENCE
       "-- Diffie-Hellman Key-Agreement Standard, PKCS #3,
           RSA Laboratories, November 1993
        -- The Internet Key Exchange, RFC 2409, November 1998,
           Sec 6.1, 6.2"
   ::= { usmDHPublicObjects 1 }

usmDHUserKeyTable OBJECT-TYPE
   SYNTAX  SEQUENCE OF UsmDHUserKeyEntry
   MAX-ACCESS not-accessible
   STATUS  current
   DESCRIPTION
       "This table augments and extends the usmUserTable and provides
   4 objects which exactly mirror the objects in that table with the
   textual convention of 'KeyChange'.  This extension allows key
   changes to be done in a manner where the knowledge of the current
   secret plus knowledge of the key change data exchanges (e.g. via
   wiretapping)  will not reveal the new key."



St. Johns                     Experimental                      [Page 8]

RFC 2786                 Diffie-Helman USM Key                March 2000


   ::= { usmDHPublicObjects 2 }

usmDHUserKeyEntry OBJECT-TYPE
   SYNTAX  UsmDHUserKeyEntry
   MAX-ACCESS not-accessible
   STATUS  current
   DESCRIPTION
       "A row of DHKeyChange objects which augment or replace the
   functionality of the KeyChange objects in the base table row."
   AUGMENTS { usmUserEntry }
   ::= {usmDHUserKeyTable 1 }

UsmDHUserKeyEntry ::= SEQUENCE {
       usmDHUserAuthKeyChange          DHKeyChange,
   usmDHUserOwnAuthKeyChange   DHKeyChange,
       usmDHUserPrivKeyChange          DHKeyChange,
       usmDHUserOwnPrivKeyChange       DHKeyChange
       }

usmDHUserAuthKeyChange OBJECT-TYPE
   SYNTAX  DHKeyChange
   MAX-ACCESS read-create
   STATUS  current
   DESCRIPTION
       "The object used to change any given user's Authentication Key
   using a Diffie-Hellman key exchange.

   The right-most n bits of the shared secret 'sk', where 'n' is the
   number of bits required for the protocol defined by
   usmUserAuthProtocol, are installed as the operational
   authentication key for this row after a successful SET."
   ::= { usmDHUserKeyEntry 1 }

usmDHUserOwnAuthKeyChange OBJECT-TYPE
   SYNTAX  DHKeyChange
   MAX-ACCESS read-create
   STATUS  current
   DESCRIPTION
       "The object used to change the agents own Authentication Key
   using a Diffie-Hellman key exchange.

   The right-most n bits of the shared secret 'sk', where 'n' is the
   number of bits required for the protocol defined by
   usmUserAuthProtocol, are installed as the operational
   authentication key for this row after a successful SET."
   ::= { usmDHUserKeyEntry 2 }

usmDHUserPrivKeyChange OBJECT-TYPE



St. Johns                     Experimental                      [Page 9]

RFC 2786                 Diffie-Helman USM Key                March 2000


   SYNTAX  DHKeyChange
   MAX-ACCESS read-create
   STATUS  current
   DESCRIPTION
       "The object used to change any given user's Privacy Key using
   a Diffie-Hellman key exchange.

   The right-most n bits of the shared secret 'sk', where 'n' is the
   number of bits required for the protocol defined by
   usmUserPrivProtocol, are installed as the operational privacy key
   for this row after a successful SET."
   ::= { usmDHUserKeyEntry 3 }

usmDHUserOwnPrivKeyChange OBJECT-TYPE
   SYNTAX  DHKeyChange
   MAX-ACCESS read-create
   STATUS  current
   DESCRIPTION
       "The object used to change the agent's own Privacy Key using a
   Diffie-Hellman key exchange.

   The right-most n bits of the shared secret 'sk', where 'n' is the
   number of bits required for the protocol defined by
   usmUserPrivProtocol, are installed as the operational privacy key
   for this row after a successful SET."
   ::= { usmDHUserKeyEntry 4 }

usmDHKickstartGroup OBJECT IDENTIFIER ::= { usmDHKeyObjects 2 }

usmDHKickstartTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF UsmDHKickstartEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "A table of mappings between zero or more Diffie-Helman key
   agreement values and entries in the usmUserTable.  Entries in this
   table are created by providing the associated device with a
   Diffie-Helman public value and a usmUserName/usmUserSecurityName
   pair during initialization. How these values are provided is
   outside the scope of this MIB, but could be provided manually, or
   through a configuration file.  Valid public value/name pairs
   result in the creation of a row in this table as well as the
   creation of an associated row (with keys derived as indicated) in
   the usmUserTable.  The actual access the related usmSecurityName
   has is dependent on the entries in the VACM tables.  In general,
   an implementor will specify one or more standard security names
   and will provide entries in the VACM tables granting various
   levels of access to those names.  The actual content of the VACM



St. Johns                     Experimental                     [Page 10]

RFC 2786                 Diffie-Helman USM Key                March 2000


   table is beyond the scope of this MIB.

   Note: This table is expected to be readable without authentication
   using the usmUserSecurityName 'dhKickstart'.  See the conformance
   statements for details."
   ::= { usmDHKickstartGroup 1 }

usmDHKickstartEntry OBJECT-TYPE
   SYNTAX      UsmDHKickstartEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION

       "An entry in the usmDHKickstartTable.  The agent SHOULD either
   delete this entry or mark it as inactive upon a successful SET of
   any of the KeyChange-typed objects in the usmUserEntry or upon a
   successful SET of any of the DHKeyChange-typed objects in the
   usmDhKeyChangeEntry where the related usmSecurityName (e.g. row of
   usmUserTable or row of ushDhKeyChangeTable) equals this entry's
   usmDhKickstartSecurityName.  In otherwords, once you've changed
   one or more of the keys for a row in usmUserTable with a
   particular security name, the row in this table with that same
   security name is no longer useful or meaningful."

   INDEX   { usmDHKickstartIndex }
   ::= {usmDHKickstartTable 1 }

UsmDHKickstartEntry ::= SEQUENCE  {
       usmDHKickstartIndex     Integer32,
       usmDHKickstartMyPublic  OCTET STRING,
       usmDHKickstartMgrPublic OCTET STRING,
       usmDHKickstartSecurityName      SnmpAdminString
       }

usmDHKickstartIndex OBJECT-TYPE
   SYNTAX      Integer32  (1..2147483647)
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "Index value for this row."
   ::= { usmDHKickstartEntry 1 }

usmDHKickstartMyPublic OBJECT-TYPE
   SYNTAX      OCTET STRING
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
       "The agent's Diffie-Hellman public value for this row.  At



St. Johns                     Experimental                     [Page 11]

RFC 2786                 Diffie-Helman USM Key                March 2000


   initialization, the agent generates a random number and derives
   its public value from that number.  This public value is published
   here.  This public value 'y' equals g^r MOD p where g is the from
   the set of Diffie-Hellman parameters, p is the prime from those
   parameters, and r is a random integer selected by the agent in the
   interval 2^(l-1) <= r < p-1 < 2^l.  If l is unspecified, then r is
   a random integer selected in the interval 0 <= r < p-1

   The public value is expressed as an OCTET STRING 'PV' of length
   'k' which satisfies

             k
       y =  SUM   2^(8(k-i)) PV'i
            i = 1

       where PV1,...,PVk are the octets of PV from first to last, and
       where PV1 != 0.


   The following DH parameters (Oakley group #2, RFC 2409, sec 6.1,
   6.2) are used for this object:

   g = 2
   p = FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
       29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
       EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
       E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
       EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381
       FFFFFFFF FFFFFFFF
   l=1024
   "
   REFERENCE
       "-- Diffie-Hellman Key-Agreement Standard, PKCS#3v1.4;
           RSA Laboratories, November 1993
        -- The Internet Key Exchange, RFC2409;
           Harkins, D., Carrel, D.; November 1998"
   ::= { usmDHKickstartEntry 2 }

usmDHKickstartMgrPublic OBJECT-TYPE
   SYNTAX      OCTET STRING
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION

       "The manager's Diffie-Hellman public value for this row.  Note
   that this value is not set via the SNMP agent, but may be set via
   some out of band method, such as the device's configuration file.




St. Johns                     Experimental                     [Page 12]

RFC 2786                 Diffie-Helman USM Key                March 2000


   The manager calculates this value in the same manner and using the
   same parameter set as the agent does.  E.g. it selects a random
   number 'r', calculates y = g^r mod p and provides 'y' as the
   public number expressed as an OCTET STRING.  See
   usmDHKickstartMyPublic for details.

   When this object is set with a valid value during initialization,
   a row is created in the usmUserTable with the following values:

   usmUserEngineID             localEngineID
   usmUserName                 [value of usmDHKickstartSecurityName]
   usmUserSecurityName         [value of usmDHKickstartSecurityName]
   usmUserCloneFrom            ZeroDotZero
   usmUserAuthProtocol         usmHMACMD5AuthProtocol
   usmUserAuthKeyChange        -- derived from set value
   usmUserOwnAuthKeyChange     -- derived from set value
   usmUserPrivProtocol         usmDESPrivProtocol
   usmUserPrivKeyChange        -- derived from set value
   usmUserOwnPrivKeyChange     -- derived from set value
   usmUserPublic               ''
   usmUserStorageType          permanent
   usmUserStatus               active

   A shared secret 'sk' is calculated at the agent as sk =
   mgrPublic^r mod p where r is the agents random number and p is the
   DH prime from the common parameters.  The underlying privacy key
   for this row is derived from sk by applying the key derivation
   function PBKDF2 defined in PKCS#5v2.0 with a salt of 0xd1310ba6,
   and iterationCount of 500, a keyLength of 16 (for
   usmDESPrivProtocol), and a prf (pseudo random function) of
   'id-hmacWithSHA1'.  The underlying authentication key for this row
   is derived from sk by applying the key derivation function PBKDF2
   with a salt of 0x98dfb5ac , an interation count of 500, a
   keyLength of 16 (for usmHMAC5AuthProtocol), and a prf of
   'id-hmacWithSHA1'.  Note: The salts are the first two words in the
   ks0 [key schedule 0] of the BLOWFISH cipher from 'Applied
   Cryptography' by Bruce Schnier - they could be any relatively
   random string of bits.

   The manager can use its knowledge of its own random number and the
   agent's public value to kickstart its access to the agent in a
   secure manner.  Note that the security of this approach is
   directly related to the strength of the authorization security of
   the out of band provisioning of the managers public value
   (e.g. the configuration file), but is not dependent at all on the
   strength of the confidentiality of the out of band provisioning
   data."
   REFERENCE



St. Johns                     Experimental                     [Page 13]

RFC 2786                 Diffie-Helman USM Key                March 2000


       "-- Password-Based Cryptography Standard, PKCS#5v2.0;
           RSA Laboratories, March 1999
        -- Applied Cryptography, 2nd Ed.; B. Schneier,
           Counterpane Systems; John Wiley & Sons, 1996"
   ::= { usmDHKickstartEntry 3 }

usmDHKickstartSecurityName OBJECT-TYPE
   SYNTAX      SnmpAdminString
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
       "The usmUserName and usmUserSecurityName in the usmUserTable
   associated with this row.  This is provided in the same manner and
   at the same time as the usmDHKickstartMgrPublic value -
   e.g. possibly manually, or via the device's configuration file."
   ::= { usmDHKickstartEntry 4 }

-- Conformance Information

usmDHKeyMIBCompliances  OBJECT IDENTIFIER ::= { usmDHKeyConformance 1 }
usmDHKeyMIBGroups       OBJECT IDENTIFIER ::= { usmDHKeyConformance 2 }

-- Compliance statements

usmDHKeyMIBCompliance   MODULE-COMPLIANCE
   STATUS      current
   DESCRIPTION
       "The compliance statement for this module."
   MODULE
       GROUP usmDHKeyMIBBasicGroup
       DESCRIPTION
       "This group MAY be implemented by any agent which
       implements the usmUserTable and which wishes to provide the
       ability to change user and agent authentication and privacy
       keys via Diffie-Hellman key exchanges."

       GROUP usmDHKeyParamGroup
       DESCRIPTION
           "This group MUST be implemented by any agent which
       implements a MIB containing the DHKeyChange Textual
       Convention defined in this module."

       GROUP usmDHKeyKickstartGroup
       DESCRIPTION
           "This group MAY be implemented by any agent which
       implements the usmUserTable and which wishes the ability to
       populate the USM table based on out-of-band provided DH
       ignition values.



St. Johns                     Experimental                     [Page 14]

RFC 2786                 Diffie-Helman USM Key                March 2000


            Any agent implementing this group is expected to provide
       preinstalled entries in the vacm tables as follows:

            In the usmUserTable: This entry allows access to the
       system and dhKickstart groups

       usmUserEngineID         localEngineID
       usmUserName             'dhKickstart'
       usmUserSecurityName     'dhKickstart'
       usmUserCloneFrom        ZeroDotZero
       usmUserAuthProtocol     none
       usmUserAuthKeyChange    ''
       usmUserOwnAuthKeyChange ''
       usmUserPrivProtocol     none
       usmUserPrivKeyChange    ''
       usmUserOwnPrivKeyChange ''
       usmUserPublic           ''
       usmUserStorageType      permanent
       usmUserStatus           active

           In the vacmSecurityToGroupTable: This maps the initial
       user into the accessible objects.

       vacmSecurityModel               3 (USM)
       vacmSecurityName                'dhKickstart'
       vacmGroupName                   'dhKickstart'
       vacmSecurityToGroupStorageType  permanent
       vacmSecurityToGroupStatus       active

           In the vacmAccessTable: Group name to view name translation.

       vacmGroupName                   'dhKickstart'
   vacmAccessContextPrefix             ''
       vacmAccessSecurityModel         3 (USM)
       vacmAccessSecurityLevel         noAuthNoPriv
       vacmAccessContextMatch          exact
       vacmAccessReadViewName          'dhKickRestricted'
       vacmAccessWriteViewName         ''
       vacmAccessNotifyViewName        'dhKickRestricted'
       vacmAccessStorageType           permanent
       vacmAccessStatus                active

           In the vacmViewTreeFamilyTable: Two entries to allow the
       initial entry to access the system and kickstart groups.

       vacmViewTreeFamilyViewName      'dhKickRestricted'
       vacmViewTreeFamilySubtree       1.3.6.1.2.1.1  (system)
       vacmViewTreeFamilyMask          ''



St. Johns                     Experimental                     [Page 15]

RFC 2786                 Diffie-Helman USM Key                March 2000


       vacmViewTreeFamilyType          1
       vacmViewTreeFamilyStorageType   permanent
       vacmViewTreeFamilyStatus        active

       vacmViewTreeFamilyViewName      'dhKickRestricted'
       vacmViewTreeFamilySubtree         (usmDHKickstartTable OID)
       vacmViewTreeFamilyMask          ''
       vacmViewTreeFamilyType          1
       vacmViewTreeFamilyStorageType   permanent
       vacmViewTreeFamilyStatus        active
       "

       OBJECT usmDHParameters
       MIN-ACCESS      read-only
       DESCRIPTION
           "It is compliant to implement this object as read-only for
       any device."

   ::= { usmDHKeyMIBCompliances 1 }

-- Units of Compliance

usmDHKeyMIBBasicGroup OBJECT-GROUP
   OBJECTS     {
                 usmDHUserAuthKeyChange,
                 usmDHUserOwnAuthKeyChange,
                 usmDHUserPrivKeyChange,
                 usmDHUserOwnPrivKeyChange
               }
   STATUS      current
   DESCRIPTION
       ""
   ::= { usmDHKeyMIBGroups 1 }

usmDHKeyParamGroup OBJECT-GROUP
   OBJECTS     {
                 usmDHParameters
               }
   STATUS      current
   DESCRIPTION
       "The mandatory object for all MIBs which use the DHKeyChange
   textual convention."
   ::= { usmDHKeyMIBGroups 2 }

usmDHKeyKickstartGroup OBJECT-GROUP
   OBJECTS     {
                 usmDHKickstartMyPublic,
                 usmDHKickstartMgrPublic,



St. Johns                     Experimental                     [Page 16]

RFC 2786                 Diffie-Helman USM Key                March 2000


                 usmDHKickstartSecurityName
               }
   STATUS      current
   DESCRIPTION
       "The objects used for kickstarting one or more SNMPv3 USM
   associations via a configuration file or other out of band,
   non-confidential access."
   ::= { usmDHKeyMIBGroups 3 }


END

4.  References

  [1]  Harrington, D., Presuhn, R. and B. Wijnen, "An Architecture for
       Describing SNMP Management Frameworks", RFC 2571, April 1999.

  [2]  Rose, M. and K. McCloghrie, "Structure and Identification of
       Management Information for TCP/IP-based Internets", STD 16, RFC
       1155, May 1990.

  [3]  Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,
       RFC 1212, March 1991.

  [4]  Rose, M., "A Convention for Defining Traps for use with the
       SNMP", RFC 1215, March 1991.

  [5]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,  J.,
       Rose, M. and S. Waldbusser, "Structure of Management Information
       Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

  [6]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,  J.,
       Rose, M. and S. Waldbusser, "Textual Conventions for SMIv2", STD
       58, RFC 2579, April 1999.

  [7]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
       M. and S. Waldbusser, "Conformance Statements for SMIv2", STD
       58, RFC 2580, April 1999.

  [8]  Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
       Network Management Protocol", STD 15, RFC 1157, May 1990.

  [9]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
       "Introduction to Community-based SNMPv2", RFC 1901, January
       1996.






St. Johns                     Experimental                     [Page 17]

RFC 2786                 Diffie-Helman USM Key                March 2000


  [10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Transport
       Mappings for Version 2 of the Simple Network Management Protocol
       (SNMPv2)", RFC 1906, January 1996.

  [11] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
       Processing and Dispatching for the Simple Network Management
       Protocol (SNMP)", RFC 2572, April 1999.

  [12] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
       for version 3 of the Simple Network Management Protocol
       (SNMPv3)", RFC 2574, April 1999.

  [13] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
       Operations for Version 2 of the Simple Network Management
       Protocol (SNMPv2)", RFC 1905, January 1996.

  [14] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC
       2573, April 1999.

  [15] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
       Control Model (VACM) for the Simple Network Management Protocol
       (SNMP)", RFC 2575, April 1999.

  [16] Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [17] "Diffie-Hellman Key-Agreement Standard, Version 1.4", PKCS #3,
       RSA Laboratories, November 1993.

  [18] Harkins, D. and D. Carrel, "The Internet Key Exchange", RFC
       2409, November 1988.

  [19] Eastlake, D., Crocker, S. and J. Schiller, "Randomness
       Recommendations for Security", RFC 1750, December 1994.

5.  Security Considerations

  Objects in the usmDHUserKeyTable should be considered to have the
  same security sensitivity as the objects of the KeyChange type in
  usmUserTable and should be afforded the same level of protection.
  Specifically, the VACM should not grant more or less access to these
  objects than it grants to the usmUserTable KeyChange object.

  The improper selection of parameters for use with Diffie-Hellman key
  changes may adversely affect the security of the agent.  Please see
  the body of the MIB for specific recommendations or requirements on
  the selection of the DH parameters.




St. Johns                     Experimental                     [Page 18]

RFC 2786                 Diffie-Helman USM Key                March 2000


  An unauthenticated DH exchange is subject to "man-in-the-middle"
  attacks.  The use of the DH exchange in any specific environment
  should balance risk versus threat.

  Good security from a DH exchange requires a good source of random
  numbers.  If your application cannot provide a reasonable source of
  randomness, do not use a DH exchange.  For more information, see
  "Randomness Recommendations for Security" [19].

6.  Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.

7.  Author's Address

  Michael C. StJohns
  Excite@Home
  450 Broadway
  Redwood City, CA 94063
  USA

  Phone: +1-650-556-5368
  EMail: [email protected]










St. Johns                     Experimental                     [Page 19]

RFC 2786                 Diffie-Helman USM Key                March 2000


9.  Full Copyright Statement

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















St. Johns                     Experimental                     [Page 20]