Network Working Group                                          M. Daniele
Request for Comments: 2741                    Compaq Computer Corporation
Obsoletes: 2257                                                 B. Wijnen
Category: Standards Track          T.J. Watson Research Center, IBM Corp.
                                                         M. Ellison, Ed.
                                       Ellison Software Consulting, Inc.
                                                       D. Francisco. Ed.
                                                     Cisco Systems, Inc.
                                                            January 2000


                Agent Extensibility (AgentX) Protocol
                              Version 1

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

  This memo defines a standardized framework for extensible SNMP
  agents.  It defines processing entities called master agents and
  subagents, a protocol (AgentX) used to communicate between them, and
  the elements of procedure by which the extensible agent processes
  SNMP protocol messages. This memo obsoletes RFC 2257.

Table of Contents

  1. Introduction.....................................................4
  2. The SNMP Management Framework....................................4
    2.1. A Note on Terminology........................................5
  3. Extending the MIB................................................5
    3.1. Motivation for AgentX........................................6
  4. AgentX Framework.................................................6
    4.1. AgentX Roles.................................................7
    4.2. Applicability................................................8
    4.3. Design Features of AgentX....................................9
    4.4. Non-Goals...................................................10





Daniele, et al.             Standards Track                     [Page 1]

RFC 2741                         AgentX                     January 2000


  5. AgentX Encodings................................................11
    5.1. Object Identifier...........................................11
    5.2. SearchRange.................................................13
    5.3. Octet String................................................14
    5.4. Value Representation........................................15
  6. Protocol Definitions............................................17
    6.1. AgentX PDU Header...........................................17
      6.1.1. Context.................................................20
    6.2. AgentX PDUs.................................................20
      6.2.1. The agentx-Open-PDU.....................................20
      6.2.2. The agentx-Close-PDU....................................22
      6.2.3. The agentx-Register-PDU.................................23
      6.2.4. The agentx-Unregister-PDU...............................27
      6.2.5. The agentx-Get-PDU......................................29
      6.2.6. The agentx-GetNext-PDU..................................30
      6.2.7. The agentx-GetBulk-PDU..................................32
      6.2.8. The agentx-TestSet-PDU..................................34
      6.2.9. The agentx-CommitSet, -UndoSet, -CleanupSet PDUs........35
      6.2.10. The agentx-Notify-PDU..................................36
      6.2.11. The agentx-Ping-PDU....................................37
      6.2.12. The agentx-IndexAllocate-PDU...........................37
      6.2.13. The agentx-IndexDeallocate-PDU.........................38
      6.2.14. The agentx-AddAgentCaps-PDU............................39
      6.2.15. The agentx-RemoveAgentCaps-PDU.........................41
      6.2.16. The agentx-Response-PDU................................43
  7. Elements of Procedure...........................................45
    7.1. Processing AgentX Administrative Messages...................45
      7.1.1. Processing the agentx-Open-PDU..........................46
      7.1.2. Processing the agentx-IndexAllocate-PDU.................47
      7.1.3. Processing the agentx-IndexDeallocate-PDU...............49
      7.1.4. Processing the agentx-Register-PDU......................50
        7.1.4.1. Handling Duplicate and Overlapping Subtrees.........50
        7.1.4.2. Registering Stuff...................................51
          7.1.4.2.1. Registration Priority...........................51
          7.1.4.2.2. Index Allocation................................51
          7.1.4.2.3. Examples........................................53
      7.1.5. Processing the agentx-Unregister-PDU....................55
      7.1.6. Processing the agentx-AddAgentCaps-PDU..................55
      7.1.7. Processing the agentx-RemoveAgentCaps-PDU...............55
      7.1.8. Processing the agentx-Close-PDU.........................56
      7.1.9. Detecting Connection Loss...............................56
      7.1.10. Processing the agentx-Notify-PDU.......................56
      7.1.11. Processing the agentx-Ping-PDU.........................57
    7.2. Processing Received SNMP Protocol Messages..................58
      7.2.1. Dispatching AgentX PDUs.................................58
        7.2.1.1. agentx-Get-PDU......................................61
        7.2.1.2. agentx-GetNext-PDU..................................61
        7.2.1.3. agentx-GetBulk-PDU..................................62



Daniele, et al.             Standards Track                     [Page 2]

RFC 2741                         AgentX                     January 2000


        7.2.1.4. agentx-TestSet-PDU..................................63
        7.2.1.5. Dispatch............................................64
      7.2.2. Subagent Processing.....................................64
      7.2.3. Subagent Processing of agentx-Get, GetNext, GetBulk-PDUs65
        7.2.3.1. Subagent Processing of the agentx-Get-PDU...........65
        7.2.3.2. Subagent Processing of the agentx-GetNext-PDU.......66
        7.2.3.3. Subagent Processing of the agentx-GetBulk-PDU.......66
      7.2.4. Subagent Processing of agentx-TestSet, -CommitSet,
             -UndoSet, -CleanupSet-PDUs..............................67
        7.2.4.1. Subagent Processing of the agentx-TestSet-PDU.......68
        7.2.4.2. Subagent Processing of the agentx-CommitSet-PDU.....69
        7.2.4.3. Subagent Processing of the agentx-UndoSet-PDU.......69
        7.2.4.4. Subagent Processing of the agentx-CleanupSet-PDU....70
      7.2.5. Master Agent Processing of AgentX Responses.............70
        7.2.5.1. Common Processing of All AgentX Response PDUs.......70
        7.2.5.2. Processing of Responses to agentx-Get-PDUs..........70
        7.2.5.3. Processing of Responses to agentx-GetNext-PDU and
                 agentx-GetBulk-PDU..................................71
        7.2.5.4. Processing of Responses to agentx-TestSet-PDUs......72
        7.2.5.5. Processing of Responses to agentx-CommitSet-PDUs....73
        7.2.5.6. Processing of Responses to agentx-UndoSet-PDUs......74
      7.2.6. Sending the SNMP Response-PDU...........................74
      7.2.7. MIB Views...............................................74
    7.3. State Transitions...........................................75
      7.3.1. Set Transaction States..................................75
      7.3.2. Transport Connection States.............................77
      7.3.3. Session States..........................................78
  8. Transport Mappings..............................................79
    8.1. AgentX over TCP.............................................79
      8.1.1. Well-known Values.......................................79
      8.1.2. Operation...............................................79
    8.2. AgentX over UNIX-domain Sockets.............................80
      8.2.1. Well-known Values.......................................80
      8.2.2. Operation...............................................80
  9. Security Considerations.........................................81
  10. Acknowledgements...............................................82
  11. Authors' and Editor's Addresses................................83
  12. References.....................................................84
  13. Notices........................................................86
  Appendix A. Changes relative to RFC 2257 ..........................87
  Full Copyright Statement ..........................................91










Daniele, et al.             Standards Track                     [Page 3]

RFC 2741                         AgentX                     January 2000


1. Introduction

  This memo defines a standardized framework for extensible SNMP
  agents.  It defines processing entities called master agents and
  subagents, a protocol (AgentX) used to communicate between them, and
  the elements of procedure by which the extensible agent processes
  SNMP protocol messages.

  This memo obsoletes RFC 2257.  It is worth noting that most of the
  changes are for the purpose of clarification.  The only changes
  affecting AgentX protocol messages on the wire are:

     -  The agentx-Notify-PDU and agentx-Close-PDU now generate an
        agentx-Response-PDU

     -  Three new error codes are available: parseFailed(266),
        requestDenied(267), and processingError(268)

  Appendix A provides a detailed list of changes relative to RFC 2257.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [27].

2. The SNMP Management Framework

  The SNMP Management Framework presently consists of five major
  components:

  An overall architecture, described in RFC 2571 [1].

  Mechanisms for describing and naming objects and events for the
  purpose of management. The first version of this Structure of
  Management Information (SMI) is called SMIv1 and described in STD 16,
  RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The second
  version, called SMIv2, is described in STD 58, RFC 2578 [5], STD 58,
  RFC 2579 [6] and STD 58, RFC 2580 [7].

  Message protocols for transferring management information. The first
  version of the SNMP message protocol is called SNMPv1 and described
  in STD 15, RFC 1157 [8]. A second version of the SNMP message
  protocol, which is not an Internet standards track protocol, is
  called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10]. The
  third version of the message protocol is called SNMPv3 and described
  in RFC 1906 [10], RFC 2572 [11] and RFC 2574 [12].

  Protocol operations for accessing management information. The first
  set of protocol operations and associated PDU formats is described in



Daniele, et al.             Standards Track                     [Page 4]

RFC 2741                         AgentX                     January 2000


  STD 15, RFC 1157 [8]. A second set of protocol operations and
  associated PDU formats is described in RFC 1905 [13].

  A set of fundamental applications described in RFC 2573 [14] and the
  view-based access control mechanism described in RFC 2575 [15].

  A more detailed introduction to the current SNMP Management Framework
  can be found in RFC 2570 [16].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  Objects in the MIB are
  defined using the mechanisms defined in the SMI.

2.1. A Note on Terminology

  The term "variable" refers to an instance of a non-aggregate object
  type defined according to the conventions set forth in the SMIv2 (STD
  58, RFC 2578, [5]) or the textual conventions based on the SMIv2 (STD
  58, RFC 2579 [6]).  The term "variable binding" normally refers to
  the pairing of the name of a variable and its associated value.
  However, if certain kinds of exceptional conditions occur during
  processing of a retrieval request, a variable binding will pair a
  name and an indication of that exception.

  A variable-binding list is a simple list of variable bindings.

  The name of a variable is an OBJECT IDENTIFIER, which is the
  concatenation of the OBJECT IDENTIFIER of the corresponding object
  type together with an OBJECT IDENTIFIER fragment identifying the
  instance.  The OBJECT IDENTIFIER of the corresponding object-type is
  called the OBJECT IDENTIFIER prefix of the variable.

3. Extending the MIB

  New MIB modules that extend the Internet-standard MIB are
  continuously being defined by various IETF working groups.  It is
  also common for enterprises or individuals to create or extend
  enterprise-specific or experimental MIBs.

  As a result, managed devices are frequently complex collections of
  manageable components that have been independently installed on a
  managed node.  Each component provides instrumentation for the
  managed objects defined in the MIB module(s) it implements.

  The SNMP framework does not describe how the set of managed objects
  supported by a particular agent may be changed dynamically.





Daniele, et al.             Standards Track                     [Page 5]

RFC 2741                         AgentX                     January 2000


3.1. Motivation for AgentX

  This very real need to dynamically extend the management objects
  within a node has given rise to a variety of "extensible agents",
  which typically comprise

     -  a "master" agent that is available on the standard transport
        address and that accepts SNMP protocol messages

     -  a set of "subagents" that each contain management
        instrumentation

     -  a protocol that operates between the master agent and
        subagents, permitting subagents to "connect" to the master
        agent, and the master agent to multiplex received SNMP protocol
        messages amongst the subagents.

     -  a set of tools to aid subagent development, and a runtime (API)
        environment that hides much of the protocol operation between a
        subagent and the master agent.

  The wide deployment of extensible SNMP agents, coupled with the lack
  of Internet standards in this area, makes it difficult to field
  SNMP-manageable applications.  A vendor may have to support several
  different subagent environments (APIs) in order to support different
  target platforms.

  It can also become quite cumbersome to configure subagents and
  (possibly multiple) master agents on a particular managed node.

  Specifying a standard protocol for agent extensibility (AgentX)
  provides the technical foundation required to solve both of these
  problems.  Independently developed AgentX-capable master agents and
  subagents will be able to interoperate at the protocol level.
  Vendors can continue to differentiate their products in all other
  respects.

4. AgentX Framework

  Within the SNMP framework, a managed node contains a processing
  entity, called an agent, which has access to management information.

  Within the AgentX framework, an agent is further defined to consist
  of:







Daniele, et al.             Standards Track                     [Page 6]

RFC 2741                         AgentX                     January 2000


     -  a single processing entity called the master agent, which sends
        and receives SNMP protocol messages in an agent role (as
        specified by the SNMP framework documents) but typically has
        little or no direct access to management information.

     -  zero or more processing entities called subagents, which are
        "shielded" from the SNMP protocol messages processed by the
        master agent, but which have access to management information.

  The master and subagent entities communicate via AgentX protocol
  messages, as specified in this memo.  Other interfaces (if any) on
  these entities, and their associated protocols, are outside the scope
  of this document.  While some of the AgentX protocol messages appear
  similar in syntax and semantics to the SNMP, bear in mind that AgentX
  is not SNMP.

  The internal operations of AgentX are invisible to an SNMP entity
  operating in a manager role.  From a manager's point of view, an
  extensible agent behaves exactly as would a non-extensible
  (monolithic) agent that has access to the same management
  instrumentation.

  This transparency to managers is a fundamental requirement of AgentX,
  and is what differentiates AgentX subagents from SNMP proxy agents.

4.1. AgentX Roles

  An entity acting in a master agent role performs the following
  functions:

     -  Accepts AgentX session establishment requests from subagents.

     -  Accepts registration of MIB regions by subagents.

     -  Sends and accepts SNMP protocol messages on the agent's
        specified transport addresses.

     -  Implements the agent role Elements of Procedure specified for
        the administrative framework applicable to the SNMP protocol
        message, except where they specify performing management
        operations.  (The application of MIB views, and the access
        control policy for the managed node, are implemented by the
        master agent.)

     -  Provides instrumentation for the MIB objects defined in RFC
        1907 [17], and for any MIB objects relevant to any
        administrative framework it supports.




Daniele, et al.             Standards Track                     [Page 7]

RFC 2741                         AgentX                     January 2000


     -  Sends and receives AgentX protocol messages to access
        management information, based on the current registry of MIB
        regions.

     -  Forwards notifications on behalf of subagents.

  An entity acting in a subagent role performs the following functions:

     -  Initiates AgentX sessions with the master agent.

     -  Registers MIB regions with the master agent.

     -  Instantiates managed objects.

     -  Binds OIDs within its registered MIB regions to actual
        variables.

     -  Performs management operations on variables.

     -  Initiates notifications.

4.2. Applicability

  It is intended that this memo specify the smallest amount of required
  behavior necessary to achieve the largest benefit, that is, to cover
  a very large number of possible MIB implementations and
  configurations with minimum complexity and low "cost of entry".

  This section discusses several typical usage scenarios.

  1) Subagents implement separate MIB modules -- for example, subagent
     `A' implements "mib-2", subagent `B' implements "host-resources".

     It is anticipated that this will be the most common subagent
     configuration.

  2) Subagents implement rows in a "simple table".  A simple table is
     one in which row creation is not specified, and for which the MIB
     does not define an object that counts entries in the table.
     Examples of simple tables are rdbmsDbTable, udpTable, and
     hrSWRunTable.

     This is the most commonly defined type of MIB table, and probably
     represents the next most typical configuration that AgentX would
     support.






Daniele, et al.             Standards Track                     [Page 8]

RFC 2741                         AgentX                     January 2000


  3) Subagents share MIBs along non-row partitions.  Subagents register
     "chunks" of the MIB that represent multiple rows, due to the
     nature of the MIB's index structure.  Examples include registering
     ipNetToMediaEntry.n, where n represents the ifIndex value for an
     interface implemented by the subagent, and tcpConnEntry.a.b.c.d,
     where a.b.c.d represents an IP address on an interface implemented
     by the subagent.

  AgentX supports these three common configurations, and all
  permutations of them, completely.  The consensus is that they
  comprise a very large majority of current and likely future uses of
  multi-vendor extensible agent configurations.

  4) Subagents implement rows in tables that permit row creation, for
     example, the RMON historyControlTable.  To implement row creation
     in such tables, at least one AgentX subagent must register at a
     point "higher" in the OID tree than an individual row (per
     AgentX's dispatching procedure).

  5) Subagents implement rows in tables whose MIB also defines an
     object that counts entries in the table, for example the MIB-2
     ifTable (due to ifNumber).  The subagent that implements such a
     counter object (like ifNumber) must go beyond AgentX to correctly
     implement it.  This is an implementation issue (and most new MIB
     designs no longer include such objects).

  Scenarios in these latter 2 categories were thought to occur somewhat
  rarely in configurations where subagents are independently
  implemented by different vendors.  The focus of a standard protocol,
  however, must be in just those areas where multi-vendor
  interoperability must be assured.

  Note that it would be inefficient (due to AgentX registration
  overhead) to share a table among AgentX subagents if the table
  contains very dynamic instances, and each subagent registers fully
  qualified instances.  ipRouteTable could be an example of such a
  table in some environments.

4.3. Design Features of AgentX

  The primary features of the design described in this memo are:

  1) A general architectural division of labor between master agent and
     subagent: The master agent is MIB ignorant and SNMP omniscient,
     while the subagent is SNMP ignorant and MIB omniscient (for the
     MIB variables it instantiates).  That is, master agents,
     exclusively, are concerned with SNMP protocol operations and the
     translations to and from AgentX protocol operations needed to



Daniele, et al.             Standards Track                     [Page 9]

RFC 2741                         AgentX                     January 2000


     carry them out; subagents are exclusively concerned with
     management instrumentation; and neither should intrude on the
     other's territory.

  2) A standard protocol and "rules of engagement" to enable
     interoperability between management instrumentation and extensible
     agents.

  3) Mechanisms for independently developed subagents to integrate into
     the extensible agent on a particular managed node in such a way
     that they need not be aware of any other existing subagents.

  4) A simple, deterministic registry and dispatching algorithm.  For a
     given extensible agent configuration, there is a single subagent
     who is "authoritative" for any particular region of the MIB (where
     "region" may extend from an entire MIB down to a single object-
     instance).

  5) Performance considerations.  It is likely that the master agent
     and all subagents will reside on the same host, and in such cases
     AgentX is more a form of inter-process communication than a
     traditional communications protocol.

     Some of the design decisions made with this in mind include:

        - 32-bit alignment of data within PDUs

        - Native byte-order encoding by subagents

        - Large AgentX PDU payload sizes.

4.4. Non-Goals

  1) Subagent-to-subagent communication.  This is out of scope, due to
     the security ramifications and complexity involved.

  2) Subagent access (via the master agent) to MIB variables.  This is
     not addressed, since various other mechanisms are available and it
     was not a fundamental requirement.

  3) The ability to accommodate every conceivable extensible agent
     configuration option. This was the most contentious aspect in the
     development of this protocol.  In essence, certain features
     currently available in some commercial extensible agent products
     are not included in AgentX.  Although useful or even vital in some
     implementation strategies, the rough consensus was that these
     features were not appropriate for an Internet Standard, or not




Daniele, et al.             Standards Track                    [Page 10]

RFC 2741                         AgentX                     January 2000


     typically required for independently developed subagents to
     coexist.  The set of supported extensible agent configurations is
     described above, in Section 4.2, "Applicability".

  Some possible future version of the AgentX protocol may provide
  coverage for one or more of these "non-goals" or for new goals that
  might be identified after greater deployment experience.

5. AgentX Encodings

  AgentX PDUs consist of a common header, followed by PDU-specific data
  of variable length.  Unlike SNMP PDUs, AgentX PDUs are not encoded
  using the BER (as specified in ISO 8824 [18]), but are transmitted as
  a contiguous byte stream.  The data within this stream is organized
  to provide natural alignment with respect to the start of the PDU,
  permitting direct (integer) access by the processing entities.

  The first four fields in the header are single-byte values.  A bit
  (NETWORK_BYTE_ORDER) in the third field (h.flags) is used to indicate
  the byte ordering of all multi-byte integer values in the PDU,
  including those which follow in the header itself.  This is described
  in more detail in Section 6.1, "AgentX PDU Header", below.

  PDUs are depicted in this memo using the following convention (where
  byte 1 is the first transmitted byte):

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  byte 1       |  byte 2       |  byte 3       |  byte 4       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  byte 5       |  byte 6       |  byte 7       |  byte 8       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Fields marked "<reserved>" are reserved for future use and must be
  zero-filled.

5.1. Object Identifier

  An object identifier is encoded as a 4-byte header, followed by a
  variable number of contiguous 4-byte fields representing sub-
  identifiers.  This representation (termed Object Identifier) is as
  follows:










Daniele, et al.             Standards Track                    [Page 11]

RFC 2741                         AgentX                     January 2000


  Object Identifier

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  n_subid      |  prefix       |  include      |  <reserved>   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       sub-identifier #1                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       sub-identifier #n_subid                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Object Identifier header fields:

     n_subid

        The number (0-128) of sub-identifiers in the object identifier.
        An ordered list of "n_subid" 4-byte sub-identifiers follows the
        4-byte header.

     prefix

        An unsigned value used to reduce the length of object
        identifier encodings.  A non-zero value "x" is interpreted as
        the first sub-identifier after "internet" (1.3.6.1), and
        indicates an implicit prefix "internet.x" to the actual sub-
        identifiers encoded in the Object Identifier.  For example, a
        prefix field value 2 indicates an implicit prefix "1.3.6.1.2".
        A value of 0 in the prefix field indicates there is no prefix
        to the sub-identifiers.

     include

        Used only when the Object Identifier is the start of a
        SearchRange, as described in section 5.2, "SearchRange".

     sub-identifier 1, 2, ... n_subid

        A 4-byte unsigned integer, encoded according to the header's
        NETWORK_BYTE_ORDER bit.

  A null Object Identifier consists of the 4-byte header with all bytes
  set to 0.









Daniele, et al.             Standards Track                    [Page 12]

RFC 2741                         AgentX                     January 2000


  Examples:

  sysDescr.0 (1.3.6.1.2.1.1.1.0)

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 4             | 2             | 0             | 0             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 1                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 1                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 1                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 0                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  1.2.3.4

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 4             | 0             | 0             | 0             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 1                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 2                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 3                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 4                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

5.2. SearchRange

  A SearchRange consists of two Object Identifiers.  In its
  communication with a subagent, the master agent uses a SearchRange to
  identify a requested variable binding, and, in GetNext and GetBulk
  operations, to set an upper bound on the names of managed object
  instances the subagent may send in reply.

  The first Object Identifier in a SearchRange (called the starting
  OID) indicates the beginning of the range.  It is frequently (but not
  necessarily) the name of a requested variable binding.

  The "include" field in this OID's header is a boolean value (0 or 1)
  indicating whether or not the starting OID is included in the range.

  The second object identifier (ending OID) indicates the non-inclusive
  end of the range, and its "include" field is always 0.  A null value
  for ending OID indicates an unbounded SearchRange.



Daniele, et al.             Standards Track                    [Page 13]

RFC 2741                         AgentX                     January 2000


  Example:  To indicate a search range from 1.3.6.1.2.1.25.2
  (inclusive) to 1.3.6.1.2.1.25.2.1 (exclusive), the SearchRange would
  be:

  (start)
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 3             | 2             | 1             |       0       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 1                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 25                                                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 2                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  (end)
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 4             | 2             | 0             |       0       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 1                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 25                                                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 2                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 1                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  A SearchRangeList is a contiguous list of SearchRanges.

5.3. Octet String

  An octet string is represented by a contiguous series of bytes,
  beginning with a 4-byte integer (encoded according to the header's
  NETWORK_BYTE_ORDER bit) whose value is the number of octets in the
  octet string, followed by the octets themselves.  This representation
  is termed an Octet String.  If the last octet does not end on a 4-
  byte offset from the start of the Octet String, padding bytes are
  appended to achieve alignment of following data.  This padding must
  be added even if the Octet String is the last item in the PDU.
  Padding bytes must be zero filled.










Daniele, et al.             Standards Track                    [Page 14]

RFC 2741                         AgentX                     January 2000


  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Octet String Length (L)                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Octet L - 1  |  Octet L      |       Padding (as required)   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  A null Octet String consists of a 4-byte length field set to 0.

5.4. Value Representation

  Variable bindings may be encoded within the variable-length portion
  of some PDUs.  The representation of a variable binding (termed a
  VarBind) consists of a 2-byte type field, a name (Object Identifier),
  and the actual value data.

  VarBind

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          v.type               |          <reserved>           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  (v.name)
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  n_subid      |  prefix       |      0        |       0       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       sub-identifier #1                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       sub-identifier #n_subid                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  (v.data)
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       data                                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       data                                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  VarBind fields:

     v.type

  Indicates the variable binding's syntax, and must be one of the
  following values:



Daniele, et al.             Standards Track                    [Page 15]

RFC 2741                         AgentX                     January 2000


             Integer                  (2),
             Octet String             (4),
             Null                     (5),
             Object Identifier        (6),
             IpAddress               (64),
             Counter32               (65),
             Gauge32                 (66),
             TimeTicks               (67),
             Opaque                  (68),
             Counter64               (70),
             noSuchObject           (128),
             noSuchInstance         (129),
             endOfMibView           (130)

     v.name

        The Object Identifier which names the variable.

     v.data

        The actual value, encoded as follows:

        -  Integer, Counter32, Gauge32, and TimeTicks are encoded as 4
           contiguous bytes, according to the header's
           NETWORK_BYTE_ORDER bit.

        -  Counter64 is encoded as 8 contiguous bytes, according to
           the header's NETWORK_BYTE_ORDER bit.

        -  Object Identifiers are encoded as described in section 5.1,
           Object Identifier.

        -  IpAddress, Opaque, and Octet String are all octet strings
           and are encoded as described in section 5.3, "Octet
           String", Octet String.  Note that the octets used to
           represent IpAddress are always ordered most significant to
           least significant.

           Value data always follows v.name whenever v.type is one of
           the above types.  These data bytes are present even if they
           will not be used (as, for example, in certain types of
           index allocation).

        -  Null, noSuchObject, noSuchInstance, and endOfMibView do not
           contain any encoded value.  Value data never follows v.name
           in these cases.





Daniele, et al.             Standards Track                    [Page 16]

RFC 2741                         AgentX                     January 2000


        Note that the VarBind itself does not contain the value size.
        That information is implied for the fixed-length types, and
        explicitly contained in the encodings of variable-length types
        Object Identifier and Octet String).

  A VarBindList is a contiguous list of VarBinds.  Within a
  VarBindList, a particular VarBind is identified by an index value.
  The first VarBind in a VarBindList has index value 1, the second has
  index value 2, and so on.

6. Protocol Definitions

6.1. AgentX PDU Header

  The AgentX PDU header is a fixed-format, 20-octet structure:

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   h.version   |    h.type     |    h.flags    |  <reserved>   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          h.sessionID                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        h.transactionID                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          h.packetID                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        h.payload_length                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  An AgentX PDU header contains the following fields:

     h.version

        The version of the AgentX protocol (1 for this memo).

     h.type

        The PDU type; one of the following values:

           agentx-Open-PDU             (1),
           agentx-Close-PDU            (2),
           agentx-Register-PDU         (3),
           agentx-Unregister-PDU       (4),
           agentx-Get-PDU              (5),
           agentx-GetNext-PDU          (6),
           agentx-GetBulk-PDU          (7),
           agentx-TestSet-PDU          (8),
           agentx-CommitSet-PDU        (9),
           agentx-UndoSet-PDU         (10),



Daniele, et al.             Standards Track                    [Page 17]

RFC 2741                         AgentX                     January 2000


           agentx-CleanupSet-PDU      (11),
           agentx-Notify-PDU          (12),
           agentx-Ping-PDU            (13),
           agentx-IndexAllocate-PDU   (14),
           agentx-IndexDeallocate-PDU (15),
           agentx-AddAgentCaps-PDU    (16),
           agentx-RemoveAgentCaps-PDU (17),
           agentx-Response-PDU        (18)

           The set of PDU types for "administrative processing" are 1-4
           and 12-17.  The set of PDU types for "SNMP request
           processing" are 5-11.

     h.flags

           A bitmask, with bit 0 the least significant bit.  The bit
           definitions are as follows:

                Bit             Definition
                ---             ----------
                0               INSTANCE_REGISTRATION
                1               NEW_INDEX
                2               ANY_INDEX
                3               NON_DEFAULT_CONTEXT
                4               NETWORK_BYTE_ORDER
                5-7             (reserved)

           The NETWORK_BYTE_ORDER bit applies to all multi-byte integer
           values in the entire AgentX packet, including the remaining
           header fields.  If set, then network byte order (most
           significant byte first; "big endian") is used.  If not set,
           then least significant byte first ("little endian") is used.

           The NETWORK_BYTE_ORDER bit applies to all AgentX PDUs.

           The NON_DEFAULT_CONTEXT bit is used only in the AgentX PDUs
           described in section 6.1.1, "Context".

           The NEW_INDEX and ANY_INDEX bits are used only within the
           agentx-IndexAllocate-, and -IndexDeallocate-PDUs.

           The INSTANCE_REGISTRATION bit is used only within the
           agentx-Register-PDU.








Daniele, et al.             Standards Track                    [Page 18]

RFC 2741                         AgentX                     January 2000


     h.sessionID

           The session ID uniquely identifies a session over which
           AgentX PDUs are exchanged between a subagent and the master
           agent.  The session ID has no significance and no defined
           value in the agentx-Open-PDU sent by a subagent to open a
           session with the master agent; in this case, the master
           agent will assign a unique session ID that it will pass back
           in the corresponding agentx-Response-PDU.  From that point
           on, that same session ID will appear in every AgentX PDU
           exchanged over that session between the master and the
           subagent.  A subagent may establish multiple AgentX sessions
           by sending multiple agentx-Open-PDUs to the master agent.

           In master agents that support multiple transport protocols,
           the sessionID should be globally unique rather than unique
           just to a particular transport.

     h.transactionID

           The transaction ID uniquely identifies, for a given session,
           the single SNMP management request (and single SNMP PDU)
           with which an AgentX PDU is associated.  If a single SNMP
           management request results in multiple AgentX PDUs being
           sent by the master agent with the same session ID, each of
           these AgentX PDUs must contain the same transaction ID;
           conversely, AgentX PDUs sent during a particular session,
           that result from distinct SNMP management requests, must
           have distinct transaction IDs within the limits of the 32-
           bit field).

           Note that the transaction ID is not the same as the SNMP
           PDU's request-id (as described in section 4.1 of RFC 1905
           [13], nor is it the same as the SNMP Message's msgID (as
           described in section 6.2 of RFC 2572 [11]), nor can it be,
           since a master agent might receive SNMP requests with the
           same request-ids or msgIDs from different managers.

           The transaction ID has no significance and no defined value
           in AgentX administrative PDUs, i.e., AgentX PDUs that are
           not associated with an SNMP management request.

     h.packetID

           A packet ID generated by the sender for all AgentX PDUs
           except the agentx-Response-PDU. In an agentx-Response-PDU,
           the packet ID must be the same as that in the received
           AgentX PDU to which it is a response.  A master agent might



Daniele, et al.             Standards Track                    [Page 19]

RFC 2741                         AgentX                     January 2000


           use this field to associate subagent response PDUs with
           their corresponding request PDUs.  A subagent might use this
           field to correlate responses to multiple (batched)
           registrations.

     h.payload_length

           The size in octets of the PDU contents, excluding the 20-
           byte header.  As a result of the encoding schemes and PDU
           layouts, this value will always be either 0, or a multiple
           of 4.

6.1.1. Context

  In the SNMPv1 or SNMPv2c, the community string may be used as an
  index into a local repository of configuration information that may
  include community profiles or more complex context information. In
  SNMPv3 this notion of "context" is formalized (see section 3.3.1 in
  RFC 2571 [1].

  AgentX provides a mechanism for transmitting a context specification
  within relevant PDUs, but does not place any constraints on the
  content of that specification.

  An optional context field may be present in the agentx-Register-,
  UnRegister-, AddAgentCaps-, RemoveAgentCaps-, Get-, GetNext-,
  GetBulk-, IndexAllocate-, IndexDeallocate-, Notify-, TestSet-, and
  Ping- PDUs.

  If the NON_DEFAULT_CONTEXT bit in the AgentX header field h.flags is
  clear, then there is no context field in the PDU, and the operation
  refers to the default context.  (This does not mean there is a zero-
  length Octet String, it means there is no Octet String present.)  If
  the NON_DEFAULT_CONTEXT bit is set, then a context field immediately
  follows the AgentX header, and the operation refers to that specific
  context.  The context is represented as an Octet String.  There are
  no constraints on its length or contents.

  Thus, all of these AgentX PDUs (that is, those listed immediately
  above) refer to, or "indicate" a context, which is either the default
  context, or a non-default context explicitly named in the PDU.

6.2. AgentX PDUs

6.2.1. The agentx-Open-PDU

  An agentx-Open-PDU is generated by a subagent to request
  establishment of an AgentX session with the master agent.



Daniele, et al.             Standards Track                    [Page 20]

RFC 2741                         AgentX                     January 2000


  (AgentX header)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (1)   |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  o.timeout    |                     <reserved>                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (o.id)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  n_subid      |  prefix       |       0       |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             subidentifier #1                                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...                                                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             subidentifier #n_subid                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (o.descr)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Padding (as required)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  An agentx-Open-PDU contains the following fields:

     o.timeout

           The length of time, in seconds, that a master agent should
           allow to elapse after dispatching a message on a session
           before it regards the subagent as not responding.  This is
           the default value for the session, and may be overridden by




Daniele, et al.             Standards Track                    [Page 21]

RFC 2741                         AgentX                     January 2000


           values associated with specific registered MIB regions.  The
           default value of 0 indicates that there is no session-wide
           default value.

     o.id

           An Object Identifier that identifies the subagent.
           Subagents that do not support such an notion may send a null
           Object Identifier.

     o.descr

           An Octet String containing a DisplayString describing the
           subagent.

6.2.2. The agentx-Close-PDU

  An agentx-Close-PDU issued by either a subagent or the master agent
  terminates an AgentX session.

  (AgentX header)
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | h.version (1) |  h.type (2)   |    h.flags    |  <reserved>   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          h.sessionID                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        h.transactionID                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           h.packetID                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        h.payload_length                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  c.reason     |                     <reserved>                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  An agentx-Close-PDU contains the following field:

          c.reason

           An enumerated value that gives the reason that the master
           agent or subagent closed the AgentX session.  This field may
           take one of the following values:







Daniele, et al.             Standards Track                    [Page 22]

RFC 2741                         AgentX                     January 2000


           reasonOther(1)
                None of the following reasons

           reasonParseError(2)
                Too many AgentX parse errors from peer

           reasonProtocolError(3)
                Too many AgentX protocol errors from peer


           reasonTimeouts(4)
                Too many timeouts waiting for peer

           reasonShutdown(5)
                Sending entity is shutting down

           reasonByManager(6)
                Due to Set operation; this reason code can be used only
                by the master agent, in response to an SNMP management
                request.

6.2.3. The agentx-Register-PDU

  An agentx-Register-PDU is generated by a subagent for each region of
  the MIB variable naming tree (within one or more contexts) that it
  wishes to support.

   (AgentX header)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (3)   |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+












Daniele, et al.             Standards Track                    [Page 23]

RFC 2741                         AgentX                     January 2000


   (r.context) (OPTIONAL)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Padding (as required)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  r.timeout    |  r.priority   | r.range_subid |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (r.subtree)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  n_subid      |  prefix       |      0        |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #1                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #n_subid                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (r.upper_bound)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             optional upper-bound sub-identifier               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  An agentx-Register-PDU contains the following fields:

     r.context

           An optional non-default context.

     r.timeout

           The length of time, in seconds, that a master agent should
           allow to elapse after dispatching a message on a session
           before it regards the subagent as not responding.  r.timeout
           applies only to messages that concern MIB objects within
           r.subtree.  It overrides both the session's default value
           (if any) indicated when the AgentX session with the master
           agent was established, and the master agent's default
           timeout.  The default value for r.timeout is 0 (no
           override).



Daniele, et al.             Standards Track                    [Page 24]

RFC 2741                         AgentX                     January 2000


     r.priority

           A value between 1 and 255, used to achieve a desired
           configuration when different sessions register identical or
           overlapping regions.  Subagents with no particular knowledge
           of priority should register with the default value of 127.

           In the master agent's dispatching algorithm, smaller values
           of r.priority take precedence over larger values, as
           described in section 7.1.4.1, "Handling Duplicate and
           Overlapping Subtrees".

     r.subtree

           An Object Identifier that names the basic subtree of a MIB
           region for which a subagent indicates its support. The term
           "subtree" is used generically here, it may represent a
           fully-qualified instance name, a partial instance name, a
           MIB table, an entire MIB, etc.

           The choice of what to register is implementation-specific;
           this memo does not specify permissible values.  Standard
           practice however is for a subagent to register at the
           highest level of the naming tree that makes sense.
           Registration of fully- qualified instances is typically done
           only when a subagent can perform management operations only
           on particular rows of a conceptual table.

           If r.subtree is in fact a fully qualified instance name, the
           INSTANCE_REGISTRATION bit in h.flags must be set, otherwise
           it must be cleared.  The master agent may save this
           information to optimize subsequent operational dispatching.

     r.range_subid

           Permits specifying a range in place of one of r.subtree's
           sub-identifiers.  If this value is 0, no range is being
           specified and there is no r.upper_bound field present in the
           PDU. In this case the MIB region being registered is the
           single subtree named by r.subtree.

           Otherwise the "r.range_subid"-th sub-identifier in r.subtree
           is a range lower bound, and the range upper bound sub-
           identifier (r.upper_bound) immediately follows r.subtree.
           In this case the MIB region being registered is the union of
           the subtrees formed by enumerating this range.





Daniele, et al.             Standards Track                    [Page 25]

RFC 2741                         AgentX                     January 2000


           Note that r.range_subid indicates the (1-based) index of
           this sub-identifier within the OID represented by r.subtree,
           regardless of whether or not r.subtree is encoded using a
           prefix. (See the example below.)

     r.upper_bound

           The upper bound of a sub-identifier's range.  This field is
           present only if r.range_subid is not 0.

           The use of r.range_subid and r.upper_bound provide a general
           shorthand mechanism for specifying a MIB region. For
           example, if r.subtree is the OID 1.3.6.1.2.1.2.2.1.1.7,
           r.range_subid is 10, and r.upper_bound is 22, the specified
           MIB region can be denoted 1.3.6.1.2.1.2.2.1.[1-22].7.
           Registering this region is equivalent to registering the
           union of subtrees

            1.3.6.1.2.1.2.2.1.1.7
            1.3.6.1.2.1.2.2.1.2.7
            1.3.6.1.2.1.2.2.1.3.7
            ...
            1.3.6.1.2.1.2.2.1.22.7

           One expected use of this mechanism is registering a
           conceptual row with a single PDU.  In the example above, the
           MIB region happens to be row 7 of the RFC 1573 ifTable.  The
           actual PDU would be:

  (AgentX header)
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | h.version (1) |  h.type (3)   |    h.flags    |  <reserved>   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          h.sessionID                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        h.transactionID                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           h.packetID                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        h.payload_length                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   r.timeout   |  r.priority   | 10            |  <reserved>   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Daniele, et al.             Standards Track                    [Page 26]

RFC 2741                         AgentX                     January 2000


  (r.subtree)
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 6             |  2            |  0            |  <reserved>   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 1                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 2                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 2                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 1                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 1                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 7                                                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  (r.upper_bound)
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 22                                                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Note again that here r.range_subid is 10, even though n_subid in
  r.subtree is only 6.

  r.range_subid may be used at any level within a subtree, it need not
  represent row-level registration.  This mechanism may be used in any
  way that is convenient for a subagent to achieve its registrations.

6.2.4. The agentx-Unregister-PDU

  The agentx-Unregister-PDU is sent by a subagent to remove a MIB
  region that was previously registered on this session.

   (AgentX header)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (4)   |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Daniele, et al.             Standards Track                    [Page 27]

RFC 2741                         AgentX                     January 2000


   (u.context) OPTIONAL
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Padding (as required)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    <reserved> |  u.priority   | u.range_subid |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (u.subtree)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  n_subid      |  prefix       |      0        |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #1                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #n_subid                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (u.upper_bound)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             optional upper-bound sub-identifier               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  An agentx-Unregister-PDU contains the following fields:

     u.context

           An optional non-default context.

     u.priority

           The priority at which this region was originally registered.

     u.subtree

           Indicates a previously-registered region of the MIB that a
           subagent no longer wishes to support.






Daniele, et al.             Standards Track                    [Page 28]

RFC 2741                         AgentX                     January 2000


     u.range_subid

           Indicates a sub-identifier in u.subtree is a range lower
           bound.

     u.upper_bound

           The upper bound of the range sub-identifier.  This field is
           present in the PDU only if u.range_subid is not 0.

6.2.5. The agentx-Get-PDU

   (AgentX header)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (5)   |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (g.context) OPTIONAL
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Padding (as required)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (g.sr)

   (start 1)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  n_subid      |  prefix       |  include      |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #1                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #n_subid                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Daniele, et al.             Standards Track                    [Page 29]

RFC 2741                         AgentX                     January 2000


   (end 1)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0             | 0             | 0             |       0       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   (start n)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  n_subid      |  prefix       |  include      |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #1                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #n_subid                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (end n)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | 0             | 0             | 0             |       0       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     An agentx-Get-PDU contains the following fields:

     g.context

           An optional non-default context.

     g.sr

           A SearchRangeList containing the requested variables for
           this session.  Within the agentx-Get-PDU, the Ending OIDs
           within SearchRanges are null-valued Object Identifiers.

6.2.6. The agentx-GetNext-PDU

   (AgentX header)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (6)   |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Daniele, et al.             Standards Track                    [Page 30]

RFC 2741                         AgentX                     January 2000


   (g.context) OPTIONAL
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Padding (as required)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (g.sr)

   (start 1)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  n_subid      |  prefix       |  include      |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #1                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #n_subid                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (end 1)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  n_subid      |  prefix       |      0        |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #1                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #n_subid                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...

   (start n)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  n_subid      |  prefix       |  include      |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #1                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #n_subid                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Daniele, et al.             Standards Track                    [Page 31]

RFC 2741                         AgentX                     January 2000


   (end n)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  n_subid      |  prefix       |      0        |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #1                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #n_subid                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...

    An agentx-GetNext-PDU contains the following fields:

     g.context

           An optional non-default context.

     g.sr

           A SearchRangeList containing the requested variables for
           this session.

6.2.7. The agentx-GetBulk-PDU

  (AgentX header)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (7)   |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+














Daniele, et al.             Standards Track                    [Page 32]

RFC 2741                         AgentX                     January 2000


   (g.context) OPTIONAL
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Padding (as required)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             g.non_repeaters   |     g.max_repetitions         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (g.sr)
   ...

  An agentx-GetBulk-PDU contains the following fields:

     g.context

           An optional non-default context.

     g.non_repeaters

           The number of variables in the SearchRangeList that are not
           repeaters.

     g.max_repetitions

           The maximum number of repetitions requested for repeating
           variables.

     g.sr

           A SearchRangeList containing the requested variables for
           this session.













Daniele, et al.             Standards Track                    [Page 33]

RFC 2741                         AgentX                     January 2000


6.2.8. The agentx-TestSet-PDU

   (AgentX header)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (8)   |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (t.context) OPTIONAL
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Padding (as required)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (t.vb)

   (VarBind 1)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          v.type               |        <reserved>             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  n_subid      |  prefix       |      0        |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       sub-identifier #1                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       sub-identifier #n_subid                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       data                                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       data                                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...




Daniele, et al.             Standards Track                    [Page 34]

RFC 2741                         AgentX                     January 2000


   (VarBind n)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          v.type               |        <reserved>             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  n_subid      |  prefix       |      0        |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       sub-identifier #1                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       sub-identifier #n_subid                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       data                                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       data                                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  An agentx-TestSet-PDU contains the following fields:

     t.context

           An optional non-default context.

     t.vb

           A VarBindList containing the requested VarBinds for this
           subagent.

6.2.9. The agentx-CommitSet, -UndoSet, -CleanupSet PDUs

  These PDUs consist of the AgentX header only.

  The agentx-CommitSet-, -UndoSet-, and -Cleanup-PDUs are used in
  processing an SNMP SetRequest operation.















Daniele, et al.             Standards Track                    [Page 35]

RFC 2741                         AgentX                     January 2000


6.2.10. The agentx-Notify-PDU

  An agentx-Notify-PDU is sent by a subagent to cause the master agent
  to forward a notification.

   (AgentX header)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (12)  |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (n.context) OPTIONAL
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Padding (as required)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (n.vb)
   ...

  An agentx-Notify-PDU contains the following fields:

     n.context

           An optional non-default context.

     n.vb

           A VarBindList whose contents define the actual PDU to be
           sent.  This memo places the following restrictions on its
           contents:

              -  If the subagent supplies sysUpTime.0, it must be
                 present as the first varbind.





Daniele, et al.             Standards Track                    [Page 36]

RFC 2741                         AgentX                     January 2000


              -  snmpTrapOID.0 must be present, as the second varbind
                 if sysUpTime.0 was supplied, as the first if it was
                 not.

6.2.11. The agentx-Ping-PDU

  The agentx-Ping-PDU is sent by a subagent to the master agent to
  monitor the master agent's ability to receive and send AgentX PDUs
  over their AgentX session.

   (AgentX header)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (13)  |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (p.context) OPTIONAL
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Padding (as required)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  An agentx-Ping-PDU may contain the following field:

     p.context

           An optional non-default context.

  Using p.context a subagent can retrieve the sysUpTime value for a
  specific context, if required.

6.2.12. The agentx-IndexAllocate-PDU

  An agentx-IndexAllocate-PDU is sent by a subagent to request
  allocation of a value for specific index objects.  Refer to section
  7.1.4.2, "Registering Stuff", for suggested usage.



Daniele, et al.             Standards Track                    [Page 37]

RFC 2741                         AgentX                     January 2000


   (AgentX header)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (14)  |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (i.context) OPTIONAL
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Padding (as required)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (i.vb)
   ...

  An agentx-IndexAllocate-PDU contains the following fields:

     i.context

           An optional non-default context.

     i.vb

           A VarBindList containing the index names and values
           requested for allocation.

6.2.13. The agentx-IndexDeallocate-PDU

  An agentx-IndexDeallocate-PDU is sent by a subagent to release
  previously allocated index values.









Daniele, et al.             Standards Track                    [Page 38]

RFC 2741                         AgentX                     January 2000


   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (15)  |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (i.context) OPTIONAL
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Padding (as required)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (i.vb)
   ...

  An agentx-IndexDeallocate-PDU contains the following fields:

     i.context

           An optional non-default context.

     i.vb

           A VarBindList containing the index names and values to be
           released.

6.2.14. The agentx-AddAgentCaps-PDU

  An agentx-AddAgentCaps-PDU is generated by a subagent to inform the
  master agent of agent capabilities for the specified session.










Daniele, et al.             Standards Track                    [Page 39]

RFC 2741                         AgentX                     January 2000


   (AgentX header)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (16)  |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (a.context) (OPTIONAL)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Optional Padding        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (a.id)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  n_subid      |  prefix       |      0        |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #1                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #n_subid                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (a.descr)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Optional Padding        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Daniele, et al.             Standards Track                    [Page 40]

RFC 2741                         AgentX                     January 2000


  An agentx-AddAgentCaps-PDU contains the following fields:

     a.context

           An optional non-default context.

     a.id

           An Object Identifier containing the value of an invocation
           of the AGENT-CAPABILITIES macro, which the master agent
           exports as a value of sysORID for the indicated context.
           (Recall that the value of an invocation of an AGENT-
           CAPABILITIES macro is an object identifier that describes a
           precise level of support with respect to implemented MIB
           modules.  A more complete discussion of the AGENT-
           CAPABILITIES macro and related sysORID values can be found
           in section 6 of STD 58, RFC 2580 [7].)

     a.descr

           An Octet String containing a DisplayString to be used as the
           value of sysORDescr corresponding to the sysORID value
           above.

6.2.15. The agentx-RemoveAgentCaps-PDU

  An agentx-RemoveAgentCaps-PDU is generated by a subagent to request
  that the master agent stop exporting a particular value of sysORID.
  This value must have previously been advertised by the subagent in an
  agentx-AddAgentCaps-PDU for this session.

   (AgentX header)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (17)  |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+








Daniele, et al.             Standards Track                    [Page 41]

RFC 2741                         AgentX                     January 2000


   (a.context) (OPTIONAL)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Octet String Length (L)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet 1      |  Octet 2      |   Octet 3     |   Octet 4     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Octet L - 1  |  Octet L      |       Optional Padding        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   (a.id)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  n_subid      |  prefix       |       0       |   <reserved>  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #1                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             sub-identifier #n_subid                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  An agentx-RemoveAgentCaps-PDU contains the following fields:

     a.context

           An optional non-default context.

     a.id

           An ObjectIdentifier containing the value of sysORID that
           should no longer be exported.



















Daniele, et al.             Standards Track                    [Page 42]

RFC 2741                         AgentX                     January 2000


6.2.16. The agentx-Response-PDU

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | h.version (1) |  h.type (18)  |    h.flags    |  <reserved>   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          h.sessionID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.transactionID                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           h.packetID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        h.payload_length                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        res.sysUpTime                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             res.error         |     res.index                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ...

  An agentx-Response-PDU contains the following fields:

      h.sessionID

           If this is a response to an agentx-Open-PDU, then it
           contains the new and unique sessionID (as assigned by the
           master agent) for this session.

           Otherwise it must be identical to the h.sessionID value in
           the PDU to which this PDU is a response.

     h.transactionID

           Must be identical to the h.transactionID value in the PDU to
           which this PDU is a response.

           In an agentx response PDU from the master agent to the
           subagent, the value of h.transactionID has no significance
           and can be ignored by the subagent.

     h.packetID

           Must be identical to the h.packetID value in the PDU to
           which this PDU is a response.






Daniele, et al.             Standards Track                    [Page 43]

RFC 2741                         AgentX                     January 2000


     res.sysUpTime

           This field contains the current value of sysUpTime for the
           context indicated within the PDU to which this PDU is a
           response.   It is relevant only in agentx response PDUs sent
           from the master  agent to a subagent in response to the set
           of administrative PDUs listed in section 6.1, "AgentX PDU
           Header".

           In an agentx response PDU from the subagent to the master
           agent, the value of res.sysUpTime has no significance and is
           ignored by the master agent.

     res.error

           Indicates error status.  Within responses to the set of
           "administrative" PDU types listed in section 6.1, "AgentX
           PDU Header", values are limited to the following:

              noAgentXError              (0),
              openFailed                 (256),
              notOpen                    (257),
              indexWrongType             (258),
              indexAlreadyAllocated      (259),
              indexNoneAvailable         (260),
              indexNotAllocated          (261),
              unsupportedContext         (262),
              duplicateRegistration      (263),
              unknownRegistration        (264),
              unknownAgentCaps           (265),
              parseError                 (266),
              requestDenied              (267),
              processingError            (268)

           Within responses to the set of "SNMP request processing" PDU
           types listed in section 6.1, "AgentX PDU Header", values may
           also include those defined for errors in the SNMPv2 PDU (RFC
           1905 [13]).

     res.index

           In error cases, this is the index of the failed variable
           binding within a received request PDU.  (Note: As explained
           in section 5.4, "Value Representation", the index values of
           variable bindings within a variable binding list are 1-
           based.)





Daniele, et al.             Standards Track                    [Page 44]

RFC 2741                         AgentX                     January 2000


  A VarBindList may follow res.index, depending on which AgentX PDU is
  being responded to.  These data are specified in the subsequent
  elements of procedure.

7. Elements of Procedure

  This section describes the actions of protocol entities (master
  agents and subagents) implementing the AgentX protocol.  Note,
  however, that it is not intended to constrain the internal
  architecture of any conformant implementation.

  The actions of AgentX protocol entities can be broadly categorized
  under two headings, each of which is described separately:

  (1)  processing AgentX administrative messages (e.g., registration
       requests from a subagent to a master agent); and

  (2)  processing SNMP messages (the coordinated actions of a master
       agent and one or more subagents in processing, for example, a
       received SNMP GetRequest-PDU).

7.1. Processing AgentX Administrative Messages

  This subsection describes the actions of AgentX protocol entities in
  processing AgentX administrative messages.  Such messages include
  those involved in establishing and terminating an AgentX session
  between a subagent and a master agent, those by which a subagent
  requests allocation of instance index values, and those by which a
  subagent communicates to a master agent which MIB regions it
  supports.

  Processing is defined specifically for each PDU type in its own
  section.  For the master agent, many of these PDU types require the
  same initial processing steps.  This common processing is defined
  here, and referenced as needed in the PDU type-specific descriptions.

  Common Processing:

  The master agent initially processes a received AgentX PDU as
  follows:

     1) An agentx-Response-PDU is created, res.sysUpTime is set to the
        value of sysUpTime.0 for the default context, res.error is set
        to `noAgentXError', and res.index is set to 0.

     2) If the received PDU cannot be parsed, res.error is set to `
        parseError'.  Examples of a parse error are:




Daniele, et al.             Standards Track                    [Page 45]

RFC 2741                         AgentX                     January 2000


           - PDU length (h.payload) too short to contain current
              construct (Object Identifier header indicates more sub-
              identifiers, VarBind v.type indicates data follows, etc)

           - An unrecognized value is encountered for h.type, v.type,
              etc.

     3) Otherwise, if h.sessionID does not correspond to a currently
        established session with this subagent, res.error is set to
        `notOpen'.

     4) Otherwise, if the NON_DEFAULT_CONTEXT bit is set and the master
        agent does not support the indicated context, res.error is set
        to `unsupportedContext'.  If the master agent does support the
        indicated context, the value of res.sysUpTime is set to the
        value of sysUpTime.0 for that context.

     Note: Non-default contexts might be added on the fly by the master
           agent, or the master agent might require such non-default
           contexts to be pre-configured.  The choice is
           implementation-specific.

     5) If resources cannot be allocated or some other condition
        prevents processing, res.error is set to `processingError'.

     6) At this point, if res.error is not `noAgentXError', the
        received PDU is not processed further.  If the received PDU's
        header was successfully parsed, the AgentX-Response-PDU is sent
        in reply.  If the received PDU contained a VarBindList which
        was successfully parsed, the AgentX-Response-PDU contains the
        identical VarBindList.  If the received PDU's header was not
        successfully parsed or for some other reason the master agent
        cannot send a reply, processing is complete.

7.1.1.  Processing the agentx-Open-PDU

  When the master agent receives an agentx-Open-PDU, it processes it as
  follows:

  1) An agentx-Response-PDU is created, res.sysUpTime is set to the
     value of sysUpTime.0 for the default context, res.error is set to
     `noAgentXError', and res.index is set to 0.

  2) If the received PDU cannot be parsed, res.error is set to
     `parseError'.

  3) Otherwise, if the master agent is unable to open an AgentX session
     for any reason, res.error is set to `openFailed'.



Daniele, et al.             Standards Track                    [Page 46]

RFC 2741                         AgentX                     January 2000


  4) Otherwise:  The master agent assigns a sessionID to the new
     session and puts the value in the h.sessionID field of the
     agentx-Response-PDU.  This value must be unique among all existing
     open sessions.

     The master agent retains session-specific information from the PDU
     for this session:

     -  The NETWORK_BYTE_ORDER value in h.flags is retained.  All
        subsequent AgentX protocol operations initiated by the master
        agent for this session must use this byte ordering and set this
        bit accordingly.

     The subagent typically sets this bit to correspond to its native
     byte ordering, and typically does not vary byte ordering for an
     initiated session.  The master agent must be able to decode each
     PDU according to the h.flag NETWORK_BYTE_ORDER bit in the PDU, but
     does not need to toggle its retained value for the session if the
     subagent varies its byte ordering.

     -  The o.timeout value is used in calculating response timeout
        conditions for this session. This field is also referenced in
        the AgentX MIB (a work-in-progress) by the agentxSessionTimeout
        object.

     -  The o.id and o.descr fields are used for informational
        purposes.  These two fields are also referenced in the AgentX
        MIB (a work-in-progress) by the agentxSessionObjectID object,
        and by the agentxSessionDescr object.

  5) The agentx-Response-PDU is sent with the res.error field
     indicating the result of the session initiation.

  If processing was successful, an AgentX session is considered
  established between the master agent and the subagent.  An AgentX
  session is a distinct channel for the exchange of AgentX protocol
  messages between a master agent and one subagent, qualified by the
  session-specific attributes listed in 4) above.  AgentX session
  establishment is initiated by the subagent.  An AgentX session can be
  terminated by either the master agent or the subagent.

7.1.2. Processing the agentx-IndexAllocate-PDU

  When the master agent receives an agentx-IndexAllocate-PDU, it
  performs the common processing described in section 7.1, "Processing
  AgentX Administrative Messages".  If as a result res.error is
  `noAgentXError', processing continues as follows:




Daniele, et al.             Standards Track                    [Page 47]

RFC 2741                         AgentX                     January 2000


  1) Each VarBind in the VarBindList is processed until either all are
     successful, or one fails.  If any VarBind fails, the agentx-
     Response-PDU is sent in reply containing the original VarBindList,
     with res.index set to indicate the failed VarBind, and with
     res.error set as described subsequently.  All other VarBinds are
     ignored; no index values are allocated.

     VarBinds are processed as follows:

     -  v.name is the OID prefix of the MIB OBJECT-TYPE for which a
        value is to be allocated.

     - v.type is the syntax of the MIB OBJECT-TYPE for which a value is
        to be allocated.

     -  v.data indicates the specific index value requested.  If the
        NEW_INDEX or the ANY_INDEX bit is set, the actual value in
        v.data is ignored and an appropriate index value is generated.

     a) If there are no currently allocated index values for v.name in
        the indicated context, and v.type does not correspond to a
        valid index type value, the VarBind fails and res.error is set
        to `indexWrongType'.

     b) If there are currently allocated index values for v.name in the
        indicated context, but the syntax of those values does not
        match v.type, the VarBind fails and res.error is set to
        `indexWrongType'.

     c) Otherwise, if both the NEW_INDEX and ANY_INDEX bits are clear,
        allocation of a specific index value is being requested.  If
        the requested index is already allocated for v.name in the
        indicated context, the VarBind fails and res.error is set to
        `indexAlreadyAllocated'.

     d) Otherwise, if the NEW_INDEX bit is set, the master agent should
        generate the next available index value for v.name in the
        indicated context, with the constraint that this value must not
        have been allocated (even if subsequently released) to any
        subagent since the last re-initialization of the master agent.
        If no such value can be generated, the VarBind fails and
        res.error is set to `indexNoneAvailable'.

     e) Otherwise, if the ANY_INDEX bit is set, the master agent should
        generate an index value for v.name in the indicated context,
        with the constraint that this value is not currently allocated
        to any subagent.  If no such value can be generated, then the
        VarBind fails and res.error is set to `indexNoneAvailable'.



Daniele, et al.             Standards Track                    [Page 48]

RFC 2741                         AgentX                     January 2000


  2) If all VarBinds are processed successfully, the agentx-Response-
     PDU is sent in reply with res.error set to `noAgentXError'.  A
     VarBindList is included that is identical to the one sent in the
     agentx-IndexAllocate-PDU, except that VarBinds requesting a
     NEW_INDEX or ANY_INDEX value are generated with an appropriate
     value.

     See section 7.1.4.2, "Registering Stuff" for more information on
     how subagents should perform index allocations.

7.1.3. Processing the agentx-IndexDeallocate-PDU

  When the master agent receives an agentx-IndexDeallocate-PDU, it
  performs the common processing described in section 7.1, "Processing
  AgentX Administrative Messages".  If as a result res.error is
  `noAgentXError', processing continues as follows:

  1) Each VarBind in the VarBindList is processed until either all are
     successful, or one fails.  If any VarBind fails, the agentx-
     Response-PDU is sent in reply, containing the original
     VarBindList, with res.index set to indicate the failed VarBind,
     and with res.error set as described subsequently.  All other
     VarBinds are ignored; no index values are released.

     VarBinds are processed as follows:

     -  v.name is the name of the index for which a value is to be
        released

     -  v.type is the syntax of the index object

     -  v.data indicates the specific index value to be released.  The
        NEW_INDEX and ANY_INDEX bits are ignored.

     a) If the index value for the named index is not currently
        allocated to this session, the VarBind fails and res.error is
        set to `indexNotAllocated'.

  2) If all VarBinds are processed successfully, res.error is set to
     `noAgentXError' and the agentx-Response-PDU is sent.  A
     VarBindList is included which is identical to the one sent in the
     agentx-IndexDeallocate-PDU.

  All released index values are now available, and may be used in
  response to subsequent allocation requests for ANY_INDEX values and
  in response to subsequent allocation requests for the particular
  index value.




Daniele, et al.             Standards Track                    [Page 49]

RFC 2741                         AgentX                     January 2000


7.1.4. Processing the agentx-Register-PDU

  When the master agent receives an agentx-Register-PDU, it performs
  the common processing described in section 7.1, "Processing AgentX
  Administrative Messages".  If as a result res.error is
  `noAgentXError', processing continues as follows:

  If any of the union of subtrees defined by this MIB region is exactly
  the same as any subtree defined by a MIB region currently registered
  within the indicated context, those subtrees are termed "duplicate
  subtrees".

  If any of the union of subtrees defined by this MIB region overlaps,
  or is itself overlapped by, any subtree defined by a MIB region
  currently registered within the indicated context, those subtrees are
  termed "overlapping subtrees".

  1) If this registration would result in duplicate subtrees registered
     with the same value of r.priority, the request fails and an
     agentx-Response-PDU is returned with res.error set to
     `duplicateRegistration'.

  2) Otherwise, if the master agent does not wish to permit this
     registration for implementation-specific reasons, the request
     fails and an agentx-Response-PDU is returned with res.error set to
     `requestDenied'.

  3) Otherwise, the agentx-Response-PDU is returned with res.error set
     to `noAgentXError'.

     The master agent adds this MIB region to its registration data
     store for the indicated context, to be considered during the
     dispatching phase for subsequently received SNMP protocol
     messages.

7.1.4.1.  Handling Duplicate and Overlapping Subtrees

  As a result of this registration algorithm there are likely to be
  duplicate and/or overlapping subtrees within the registration data
  store of the master agent.  Whenever the master agent's dispatching
  algorithm (see section 7.2.1, "Dispatching AgentX PDUs") determines
  that there are multiple subtrees that could potentially contain the
  same MIB object instances, the master agent selects one to use,
  termed the 'authoritative region', as follows:







Daniele, et al.             Standards Track                    [Page 50]

RFC 2741                         AgentX                     January 2000


     1) Choose the one whose original agentx-Register-PDU r.subtree
        contained the most subids, i.e., the most specific r.subtree.
        Note: The presence or absence of a range subid has no bearing
        on how "specific" one object identifier is compared to another.

     2) If still ambiguous, there were duplicate subtrees.  Choose the
        one whose original agentx-Register-PDU specified the smaller
        value of r.priority.

7.1.4.2.  Registering Stuff

  This section describes more fully how AgentX subagents use the
  agentx-IndexAllocate-PDU and agentx-Register-PDU to achieve desired
  configurations.

7.1.4.2.1.     Registration Priority

  The r.priority field in the agentx-Register-PDU is intended to be
  manipulated by human administrators to achieve a desired subagent
  configuration.  Typically this would be needed where a legacy
  application registers a specific subtree, and a different
  (configurable) application may need to become authoritative for the
  identical subtree.

  The result of this configuration (the same subtree registered on
  different sessions with different priorities) is that the session
  using the better priority (see section 7.1.4.1, "Handling Duplicate
  and Overlapping Subtrees") will be authoritative.  The other session
  will simply never be dispatched to.

  This is useful in the case described above, but is NOT useful in
  other cases, particularly when subagents share tables indexed by
  arbitrary values (see below).  In general, subagents should register
  using the default priority (127).

7.1.4.2.2.     Index Allocation

  Index allocation is a service provided by an AgentX master agent.  It
  provides generic support for sharing MIB conceptual tables among
  subagents who are assumed to have no knowledge of each other.

  The master agent maintains a database of index objects (OIDs), and,
  for each index, the values that have been allocated for it.  It is
  unaware of what MIB variables (if any) the index objects represent.







Daniele, et al.             Standards Track                    [Page 51]

RFC 2741                         AgentX                     January 2000


  By convention, subagents use the MIB variable listed in the INDEX
  clause as the index object for which values must be allocated.  For
  tables indexed by multiple variables, values may be allocated for
  each index (although this is frequently unnecessary; see example 2
  below).  The subagent may request allocation of

         a) a specific index value
         b) an index value that is not currently allocated
         c) an index value that has never been allocated

  The last two alternatives reflect the uniqueness and constancy
  requirements present in many MIB specifications for arbitrary integer
  indexes (e.g., ifIndex in the IF-MIB (RFC 2233 [19]),
  snmpFddiSMTIndex in the FDDI MIB (RFC 1285 [20]), or
  sysApplInstallPkgIndex in the System Application MIB (RFC 2287
  [21])).  The need for subagents to share tables using such indexes is
  the main motivation for index allocation in AgentX.

  It is important to note that index allocation and MIB region
  registration are not coupled in the master agent. The current state
  of index allocations is not considered when processing registration
  requests, and the current registry is not considered when processing
  index allocation requests.  (This is mainly to accommodate non-AgentX
  subagents.)

  AgentX subagents should follow the model of "first request allocation
  of an index, then register the corresponding region".  Then a
  successful index allocation request gives a subagent a good hint (but
  no guarantee) of what it should be able to register.  The
  registration may fail (with `duplicateRegistration') because some
  other subagent session has already registered that row of the table.

  The recommended mechanism for subagents to register conceptual rows
  in a shared table is

  1) Successfully allocate an index value.

  2) Use that value to fully qualify the MIB region(s), and attempt to
     register using the default priority.

  3) If the registration fails with `duplicateRegistration' deallocate
     the previously allocated index value(s) for this row and go to
     step 1).








Daniele, et al.             Standards Track                    [Page 52]

RFC 2741                         AgentX                     January 2000


  Note that index allocation is necessary only when the index in
  question is an arbitrary value, and hence the subagent has no other
  reasonable way to determine which index values to use.  When index
  values have intrinsic meaning it is not expected that subagents will
  allocate their index values.

  For example, RFC 1514's table of running software processes
  (hrSWRunTable) is indexed by the system's native process identifier
  (pid).  A subagent implementing the row of hrSWRunTable corresponding
  to its own process would simply register the region defining that
  row's object instances without allocating index values.

7.1.4.2.3.     Examples

  Example 1:

     A subagent implements an interface, and wishes to register a
     single row of the RFC 2233 ifTable.  It requests an allocation for
     the index object "ifIndex", for a value that has never been
     allocated (since ifIndex values must be unique).  The master agent
     returns the value "7".

     The subagent now attempts to register row 7 of ifTable, by
     specifying a MIB region in the agentx-Register-PDU of
     1.3.6.1.2.1.2.2.1.[1-22].7.  If the registration succeeds, no
     further processing is required.  The master agent will dispatch to
     this subagent correctly.

     If the registration failed with `duplicateRegistration', the
     subagent should deallocate the failed index, request allocation of
     a new index i, and attempt to register ifTable.[1-22].i, until
     successful.

  Example 2:

     This same subagent wishes to register ipNetToMediaTable rows
     corresponding to its interface (ifIndex i).  Due to the structure
     of this table, no further index allocation need be done.  The
     subagent can register the MIB region ipNetToMediaTable.[1-4].i, It
     is claiming responsibility for all rows of the table whose value
     of ipNetToMediaIfIndex is i.










Daniele, et al.             Standards Track                    [Page 53]

RFC 2741                         AgentX                     January 2000


  Example 3:

     A network device consists of a set of processors, each of which
     accepts network connections for a unique set of IP addresses.
     Further, each processor contains a subagent that implements
     tcpConnTable.  In order to represent tcpConnTable for the entire
     managed device, the subagents need to share tcpConnTable.

     In this case, no index allocation need be done at all.  Each
     subagent can register a MIB region of tcpConnTable.[1-5].a.b.c.d,
     where a.b.c.d represents an unique IP address of the individual
     processor.

     Each subagent is claiming responsibility for the region of
     tcpConnTable where the value of tcpConnLocalAddress is a.b.c.d.

  Example 4:

     The Application Management MIB (RFC 2564 [22]) uses two objects to
     index several tables.  A partial description of them is:

     applSrvIndex     OBJECT-TYPE
            SYNTAX      Unsigned32 (1..'ffffffff'h)
            MAX-ACCESS  read-only
            STATUS      current
            DESCRIPTION
               "An applSrvIndex is the system-unique identifier
               of an instance of a service.  The value is unique
               not only across all instances of a given service,
               but also across all services in a system."

     applSrvName     OBJECT-TYPE
            SYNTAX     SnmpAdminString
            MAX-ACCESS read-only
            STATUS     current
            DESCRIPTION
               "The human-readable name of a service.  Where
               appropriate, as in the case where a service can
               be identified in terms of a single protocol, the
               strings should be established names such as those
               assigned by IANA and found in STD 2 [23], or
               defined by some other authority.  In some cases
               private conventions apply and the string should
               in these cases be consistent with these
               non-standard conventions. An applicability
               statement may specify the service name(s) to be
               used."




Daniele, et al.             Standards Track                    [Page 54]

RFC 2741                         AgentX                     January 2000


     Since applSrvIndex is an arbitrary value, it would be reasonable
     for subagents to allocate values for this index.  applSrvName
     however has intrinsic meaning and any values a subagent would use
     should be known a priori, hence it is not reasonable for subagents
     to allocate values of this index.

7.1.5. Processing the agentx-Unregister-PDU

  When the master agent receives an agentx-Unregister-PDU, it performs
  the common processing described in section 7.1, "Processing AgentX
  Administrative Messages".  If as a result res.error is `
  noAgentXError', processing continues as follows:

  1) If u.subtree, u.priority, u.range_subid (and if u.range_subid is
     not 0, u.upper_bound), and the indicated context do not match an
     existing registration made during this session, the agentx-
     Response-PDU is returned with res.error set to `
     unknownRegistration'.

  2) Otherwise, the agentx-Response-PDU is sent in reply with res.error
     set to `noAgentXError', and the previous registration is removed
     from the registration data store.

7.1.6. Processing the agentx-AddAgentCaps-PDU

  When the master agent receives an agentx-AddAgentCaps-PDU, it
  performs the common processing described in section 7.1, "Processing
  AgentX Administrative Messages".  If as a result res.error is `
  noAgentXError', processing continues as follows:

  1) The master agent adds this agent capabilities information to the
     sysORTable for the indicated context.  An agentx-Response-PDU is
     sent in reply with res.error set to `noAgentXError'.

7.1.7. Processing the agentx-RemoveAgentCaps-PDU

  When the master agent receives an agentx-RemoveAgentCaps-PDU, it
  performs the common processing described in section 7.1, "Processing
  AgentX Administrative Messages".  If as a result res.error is
  `noAgentXError', processing continues as follows:

  1) If the combination of a.id and the optional a.context does not
     represent a sysORTable entry that was added by this subagent
     during this session, the agentx-Response-PDU is returned with
     res.error set to `unknownAgentCaps'.






Daniele, et al.             Standards Track                    [Page 55]

RFC 2741                         AgentX                     January 2000


  2) Otherwise the master agent deletes the corresponding sysORTable
     entry and sends in reply the agentx-Response-PDU, with res.error
     set to `noAgentXError'.

7.1.8. Processing the agentx-Close-PDU

  When the master agent receives an agentx-Close-PDU, it performs the
  common processing described in section 7.1, "Processing AgentX
  Administrative Messages", with the exception that step 4) is not
  performed since the agentx-Close-PDU does may not contain a context
  field. If as a result res.error is `noAgentXError', processing
  continues as follows:

  1) The master agent closes the AgentX session as described below, and
     sends in reply the agentx-Response-PDU with res.error set to
     `noAgentXError':

     -  All MIB regions that have been registered during this session
        are unregistered, as described in section 7.1.5, "Processing
        the agentx-Unregister-PDU".

     -  All index values allocated during this session are freed, as
        described in section 7.1.3, "Processing the agentx-
        IndexDeallocate-PDU".

     -  All sysORID values that were registered during this session are
        removed, as described in section 7.1.7, "Processing the
        agentx-RemoveAgentCaps-PDU".

  The master agent does not maintain state for closed sessions.  If a
  subagent wishes to re-establish a session after it has been closed,
  it needs to re-register MIB regions, agent capabilities, etc.

7.1.9. Detecting Connection Loss

  If a master agent is able to detect (from the underlying transport)
  that a subagent cannot receive AgentX PDUs, it should close all
  affected AgentX sessions as described in section 7.1.8, "Processing
  the agentx-Close-PDU", step 1).

7.1.10. Processing the agentx-Notify-PDU

  A subagent sending SNMPv1 trap information must map this into
  (minimally) a value of snmpTrapOID.0, as described in 3.1.2 of RFC
  1908 [24].






Daniele, et al.             Standards Track                    [Page 56]

RFC 2741                         AgentX                     January 2000


  When the master agent receives an agentx-Notify-PDU, it performs the
  common processing described in section 7.1, "Processing AgentX
  Administrative Messages".  If as a result res.error is
  `noAgentXError',  processing continues as follows:

  1) If the first VarBind is sysUpTime.0;

     (a)  if the second VarBind is not snmpTrapOID.0, res.error is set
          to `processingError' and res.index to 2

     (b)  otherwise these two VarBinds are used as the first two
          VarBinds within the generated notification.

  2) If the first VarBind is not sysUpTime.0;

     (a)  if the first VarBind is not snmpTrapOID.0, res.error is set
          to `processingError' and res.index to 1

     (b)  otherwise this VarBind is used for snmpTrapOID.0 within the
          generated notification, and the master agent uses the current
          value of sysUpTime.0 for the indicated context as sysUpTime.0
          within the notification.

  3) An agentx-Response-PDU is sent containing the original
     VarBindList, and with res.error and res.index set as described
     above.  If res.error is `noAgentXError', notifications are sent
     according to the implementation-specific configuration of the
     master agent.  If SNMPv1 Trap PDUs are generated, the recommended
     mapping is as described in RFC 2089 [25].  If res.error indicates
     an error in processing, no notifications are generated.

     Note that the master agent's successful response indicates the
     agentx-Notify-PDU was received and validated.  It does not
     indicate that any particular notifications were actually generated
     or received by notification targets.

7.1.11. Processing the agentx-Ping-PDU

  When the master agent receives an agentx-Ping-PDU, it performs the
  common processing described in section 7.1, "Processing AgentX
  Administrative Messages".     If as a result res.error is `
  noAgentXError', processing continues as follows:









Daniele, et al.             Standards Track                    [Page 57]

RFC 2741                         AgentX                     January 2000


     1) An agentx-Response-PDU is sent in reply.

  If a subagent does not receive a response to its pings, or if it is
  able to detect (from the underlying transport) that the master agent
  is not able to receive AgentX messages, then it eventually must
  initiate a new AgentX session, re-register its MIB regions, etc.

7.2. Processing Received SNMP Protocol Messages

  When an SNMP GetRequest, GetNextRequest, GetBulkRequest, or
  SetRequest protocol message is received by the master agent, the
  master agent applies its access control policy.

  In particular, for SNMPv1 or SNMPv2c protocol messages, the master
  agent applies the Elements of Procedure defined in section 4.1 of STD
  15, RFC 1157 [8] that apply to receiving entities.  For SNMPv3, the
  master agent applies an Access Control Model, possibly the View-based
  Access Control Model (see RFC 2575 [15]), as described in section
  3.1.2 and section 4.3 of RFC 2571 [1].

  For SNMPv1 and SNMPv2c, the master agent uses the community string as
  an index into a local repository of configuration information that
  may include community profiles or more complex context information.
  For SNMPv3, the master agent uses the SNMP Context (see section 3.3.1
  of RFC 2571 [1]) for these purposes.

  If application of the access control policy results in a valid SNMP
  request PDU, then an SNMP Response-PDU is constructed from
  information gathered in the exchange of AgentX PDUs between the
  master agent and one or more subagents.  Upon receipt and initial
  validation of an SNMP request PDU, a master agent uses the procedures
  described below to dispatch AgentX PDUs to the proper subagents,
  marshal the subagent responses, and construct an SNMP response PDU.

7.2.1. Dispatching AgentX PDUs

  Upon receipt and initial validation of an SNMP request PDU, a master
  agent uses the procedures described below to dispatch AgentX PDUs to
  the proper subagents.

  General Rules of Procedure

  While processing a particular SNMP request, the master agent may send
  one or more AgentX PDUs on one or more subagent sessions.  The
  following rules of procedure apply in general to the AgentX master
  agent.  PDU-specific rules are listed in the applicable sections.





Daniele, et al.             Standards Track                    [Page 58]

RFC 2741                         AgentX                     January 2000


  1) Honoring the registry

     Because AgentX supports registration of duplicate and overlapping
     regions, it is possible for the master agent to obtain a value for
     a requested varbind from within multiple registered MIB regions.

     The master agent must ensure that the value (or exception)
     actually returned in the SNMP response PDU is taken from the
     authoritative region (as defined in section 7.1.4.1, "Handling
     Duplicate and Overlapping Subtrees").

  2) GetNext and GetBulk Processing

     The master agent may choose to send agentx-Get-PDUs while
     servicing an SNMP GetNextRequest-PDU.  The master agent may choose
     to send agentx-Get-PDUs or agentx-GetNext-PDUs while servicing an
     SNMP GetBulkRequest-PDU.  One possible reason for this would be if
     the current iteration has targeted instance-level registrations.

     The master agent may choose to "scope" the possible instances
     returned by a subagent by specifying an ending OID in the
     SearchRange.  If such scoping is used, typically the ending OID
     would be the first lexicographical successor to the target region
     that was registered on a session other than the target session.
     Regardless of this choice, rule (1) must be obeyed.

     The master agent may require multiple request-response iterations
     on the same subagent session, to determine the final value of all
     requested variables.

     All AgentX PDUs sent on the session while processing a given SNMP
     request must contain identical values of transactionID.  Each
     different SNMP request processed by the master agent must present
     a unique value of transactionID (within the limits of the 32-bit
     field) to the session.

  3) Number and order of variables sent per AgentX PDU

     For Get/GetNext/GetBulk operations, at any stage of the possibly
     iterative process, the master agent may need to dispatch several
     SearchRanges to a particular subagent session.  The master agent
     may send one, some, or all of the SearchRanges in a single AgentX
     PDU.

     The master agent must ensure that the correct contents and
     ordering of the VarBindList in the SNMP Response-PDU are
     maintained.




Daniele, et al.             Standards Track                    [Page 59]

RFC 2741                         AgentX                     January 2000


     The following rules govern the number of VarBinds in a given
     AgentX PDU:

        a) The subagent must support processing of AgentX PDUs with
           multiple VarBinds.

        b) When processing an SNMP Set request, the master agent must
           send all of the VarBinds applicable to a particular subagent
           session in a single agentx-TestSet-PDU.

        c) When processing an SNMP Get, GetNext, or GetBulk request,
           the master agent may send a single AgentX PDU on the session
           with all applicable VarBinds, or multiple PDUs with single
           VarBinds, or something in between those extremes. The
           determination of which method to use in a particular case is
           implementation-specific.

  4) Timeout Values

     The master agent chooses a timeout value for each MIB region being
     queried, which is

        a) the value specified during registration of the MIB region,
           if it was non-zero

        b) otherwise, the value specified during establishment of the
           session in which this region was subsequently registered, if
           that value was non-zero

        c) otherwise, or, if the specified value is not practical, the
           master agent's implementaton-specific default value

     When an AgentX PDU that references multiple MIB regions is
     dispatched, the timeout value used for the PDU is the maximum
     value of the timeouts so determined for each of the referenced MIB
     regions.

  5) Context

     If the master agent has determined that a specific non-default
     context is associated with the SNMP request PDU, that context is
     encoded into the AgentX PDU's context field and the
     NON_DEFAULT_CONTEXT bit is set in h.flags.

     Otherwise, no context Octet String is added to the PDU, and the
     NON_DEFAULT_CONTEXT bit is cleared.





Daniele, et al.             Standards Track                    [Page 60]

RFC 2741                         AgentX                     January 2000


7.2.1.1.  agentx-Get-PDU

  Each variable binding in the SNMP request PDU is processed as
  follows:

  (1)  Identify the target MIB region.

       Within a lexicographically ordered set of registered MIB
       regions, valid for the indicated context, locate the
       authoritative region (according to section 7.1.4.1, "Handling
       Duplicate and Overlapping Subtrees") that contains the binding's
       name.

  (2)  If no such region exists, the variable binding is not processed
       further, and its value is set to `noSuchObject'.

  (3)  Identify the subagent session in which this region was
       registered, termed the target session.

  (4)  If this is the first variable binding to be dispatched over the
       target session in a request-response exchange entailed in the
       processing of this management request:

        -  Create an agentx-Get-PDU for this session, with the header
           fields initialized as described above (see section 6.1,
           "AgentX PDU Header").

  (5)  Add a SearchRange to the end of the target session's PDU for
       this variable binding.

       - The variable binding's name is encoded into the starting OID.

       - The ending OID is encoded as null.

7.2.1.2.  agentx-GetNext-PDU

  Each variable binding in the SNMP request PDU is processed as
  follows:

  (1)  Identify the target MIB region.

       Within a lexicographically ordered set of registered MIB
       regions, valid for the indicated context, locate the
       authoritative region (according to section 7.1.4.1, "Handling
       Duplicate and Overlapping Subtrees") that

       a) contains the variable binding's name and is not a fully
          qualified instance, or



Daniele, et al.             Standards Track                    [Page 61]

RFC 2741                         AgentX                     January 2000


       b) is the first lexicographical successor to the variable
          binding's name.

  (2)  If no such region exists, the variable binding is not processed
       further, and its value is set to `endOfMibView'.

  (3)  Identify the subagent session in which this region was
       registered, termed the target session.

  (4)  If this is the first variable binding to be dispatched over the
       target session in a request-response exchange entailed in the
       processing of this management request:

       -  Create an agentx-GetNext-PDU for the session, with the header
          fields initialized as described above (see section 6.1,
          "AgentX PDU Header").

  (5)  Add a SearchRange to the end of the target session's agentx-
       GetNext-PDU for this variable binding.

       -  if (1a) applies, the variable binding's name is encoded into
          the starting OID, and the OID's "include" field is set to 0.

       -  if (1b) applies, the target region's r.subtree is encoded
          into the starting OID, and its "include" field is set to 1.
          (This is the recommended method.  An implementation may
          choose to use a Starting OID value that precedes r.subtree,
          in which case the include bit must be 0.  A starting OID
          value that succeeds r.subtree is not permitted.)

       -  the Ending OID for the SearchRange is encoded to be either
          NULL, or a value that lexicographically succeeds the Starting
          OID.  This is an implementation-specific choice depending on
          how the master agent wishes to "scope" the possible returned
          instances.

7.2.1.3.  agentx-GetBulk-PDU

  (Note: The outline of the following procedure is based closely on
  section 4.2.3, "The GetBulkRequest-PDU" of RFC 1905 [13].  Please
  refer to it for details on the format of the SNMP GetBulkRequest-PDU
  itself.)









Daniele, et al.             Standards Track                    [Page 62]

RFC 2741                         AgentX                     January 2000


  Each variable binding in the request PDU is processed as follows:

  (1)  Identify the authoritative target region and target session,
       exactly as described for the agentx-GetNext-PDU (see section
       7.2.1.2, "agentx-GetNext-PDU").

  (2)  If this is the first variable binding to be dispatched over the
       target session in a request-response exchange entailed in the
       processing of this management request:

       -  Create an agentx-GetBulk-PDU for the session, with the header
          fields initialized as described above (see section 6.1,
          "AgentX PDU Header").

  (3)  Add a SearchRange to the end of the target session's agentx-
       GetBulk-PDU for this variable binding, as described for the
       agentx-GetNext-PDU.  If the variable binding was a non-repeater
       in the original request PDU, it must be a non-repeater in the
       agentx-GetBulk-PDU.

  The value of g.max_repetitions in the agentx-GetBulk-PDU may be less
  than (but not greater than) the value in the original request PDU.

  The master agent may make such alterations due to simple sanity
  checking, optimizations for the current iteration based on the
  registry, the maximum possible size of a potential Response-PDU,
  known constraints of the AgentX transport, or any other
  implementation-specific constraint.

7.2.1.4.  agentx-TestSet-PDU

  AgentX employs test-commit-undo-cleanup phases to achieve "as if
  simultaneous" semantics of the SNMP SetRequest-PDU within the
  extensible agent.  The initial phase involves the agentx-TestSet-PDU.

  Each variable binding in the SNMP request PDU is processed in order,
  as follows:

  (1)  Identify the target MIB region and target session exactly as
       described in section 7.2.1.1, "agentx-Get-PDU", step 1).

       Within a lexicographically ordered set of OID ranges, valid for
       the indicated context, locate the authoritative range that
       contains the variable binding's name.

  (2)  If no such target region exists, this variable binding fails
       with an error of `notWritable'.  Processing is complete for this
       request.



Daniele, et al.             Standards Track                    [Page 63]

RFC 2741                         AgentX                     January 2000


  (3)  If this is the first variable binding to be dispatched over the
       target session in a request-response exchange entailed in the
       processing of this management request:

       -  create an agentx-TestSet-PDU for the session, with the header
          fields initialized as described above (see section 6.1,
          "AgentX PDU Header").

  (4)  Add a VarBind to the end of the target session's PDU for this
       variable binding, as described in section 5.4, "Value
       Representation".

  Note that all VarBinds applicable to a given session must be sent in
  a single agentx-TestSet-PDU.

7.2.1.5.  Dispatch

  A timeout value is calculated for each PDU to be sent, which is the
  maximum value of the timeouts determined for each of the PDU's
  SearchRanges (as described above in section 7.2.1, "Dispatching
  AgentX PDUs", item 4). Each pending PDU is mapped (via its
  h.sessionID value) to a particular transport domain/endpoint, as
  described in section 8 (Transport Mappings).

7.2.2. Subagent Processing

  A subagent initially processes a received AgentX PDU as follows:

  -  If the received PDU is an agentx-Response-PDU:

  1) If there are any errors parsing or interpreting the PDU, it is
     silently dropped.

  2) Otherwise the response is matched to the original request via
     h.packetID, and handled in an implementation-specific manner.  For
     example, if this response indicates an error attempting to
     register a MIB region, the subagent may wish to register a
     different region, or log an error and halt, etc.

  -  If the received PDU is any other type:

  1) an agentx-Response-PDU is created whose header fields are
     identical to the received request PDU except that h.type is set to
     Response, res.error to `noError', res.index to 0, and the
     VarBindList to null.

  2) If the received PDU cannot be parsed, res.error is set to
     `parseError'.



Daniele, et al.             Standards Track                    [Page 64]

RFC 2741                         AgentX                     January 2000


  3) Otherwise, if h.sessionID does not correspond to a currently
     established session, res.error is set to `notOpen'.

  4) At this point, if res.error is not `noError', the received PDU is
     not processed further.  If the received PDU's header was
     successfully parsed, the AgentX-Response-PDU is sent in reply.  If
     the received PDU's header was not successfully parsed or for some
     other reason the subagent cannot send a reply, processing is
     complete.

7.2.3. Subagent Processing of agentx-Get, GetNext, GetBulk-PDUs

  A conformant AgentX subagent must support the agentx-Get, -GetNext,
  and -GetBulk PDUs, and must support multiple variables being supplied
  in each PDU.

  When a subagent receives an agentx-Get-, GetNext-, or GetBulk-PDU, it
  performs the indicated management operations and returns an agentx-
  Response-PDU.

  Each SearchRange in the request PDU's SearchRangeList is processed as
  described below, and a VarBind is added in the corresponding location
  of the agentx-Response-PDU's  VarbindList.  If processing should fail
  for any reason not described below, res.error is set to `genErr',
  res.index to the index of the failed SearchRange, the VarBindList is
  reset to null, and this agentx-Response-PDU is returned to the master
  agent.

7.2.3.1.  Subagent Processing of the agentx-Get-PDU

  Upon the subagent's receipt of an agentx-Get-PDU, each SearchRange in
  the request is processed as follows:

  (1)  The starting OID is copied to v.name.

  (2)  If the starting OID exactly matches the name of a variable
       instantiated by this subagent within the indicated context and
       session, v.type and v.data are encoded to represent the
       variable's syntax and value, as described in section 5.4, "Value
       Representation".

  (3)  Otherwise, if the starting OID does not match the object
       identifier prefix of any variable instantiated within the
       indicated context and session, the VarBind is set to
       `noSuchObject', in the manner described in section 5.4, "Value
       Representation".





Daniele, et al.             Standards Track                    [Page 65]

RFC 2741                         AgentX                     January 2000


  (4)  Otherwise, the VarBind is set to `noSuchInstance' in the manner
       described in section 5.4, "Value Representation".

7.2.3.2.  Subagent Processing of the agentx-GetNext-PDU

  Upon the subagent's receipt of an agentx-GetNext-PDU, each
  SearchRange in the request is processed as follows:

  (1)  The subagent searches for a variable within the
       lexicographically ordered list of variable names for all
       variables it instantiates (without regard to registration of
       regions) within the indicated context and session, as follows:

       -  if the "include" field of the starting OID is 0, the
          variable's name is the closest lexicographical successor to
          the starting OID.

       -  if the "include" field of the starting OID is 1, the
          variable's name is either equal to, or the closest
          lexicographical successor to, the starting OID.

       -  If the ending OID is not null, the variable's name
          lexicographically precedes the ending OID.

       If a variable is successfully located, v.name is set to that
       variable's name.  v.type and v.data are encoded to represent the
       variable's syntax and value, as described in section 5.4, "Value
       Representation".

  (2)  If the subagent cannot locate an appropriate variable, v.name is
       set to the starting OID, and the VarBind is set to `
       endOfMibView', in the manner described in section 5.4, "Value
       Representation".

7.2.3.3.  Subagent Processing of the agentx-GetBulk-PDU

  A maximum of N + (M * R) VarBinds are returned, where

     N equals g.non_repeaters,
     M equals g.max_repetitions, and
     R is (number of SearchRanges in the GetBulk request) - N.

  The first N SearchRanges are processed exactly as for the agentx-
  GetNext-PDU.

  If M and R are both non-zero, the remaining R SearchRanges are
  processed iteratively to produce potentially many VarBinds.  For each
  iteration i, such that i is greater than zero and less than or equal



Daniele, et al.             Standards Track                    [Page 66]

RFC 2741                         AgentX                     January 2000


  to M, and for each repeated SearchRange s, such that s is greater
  than zero and less than or equal to R, the (N+((i-1)*R)+s)-th VarBind
  is added to the agentx-Response-PDU as follows:

     1) The subagent searches for a variable within the
        lexicographically ordered list of variable names for all
        variables it instantiates (without regard to registration of
        regions) within the indicated context and session, for which
        the following are all true:

        -  The variable's name is the (i)-th lexicographical successor
           to the (N+s)-th requested OID.

           (Note that if i is 0 and the "include" field is 1, the
           variable's name may be equivalent to, or the first
           lexicographical successor to, the (N+s)-th requested OID.)

        -  If the ending OID is not null, the variable's name
           lexicographically precedes the ending OID.

     If all of these conditions are met, v.name is set to the located
     variable's name.  v.type and v.data are encoded to represent the
     variable's syntax and value, as described in section 5.4, "Value
     Representation".

     2) If no such variable exists, the VarBind is set to `
        endOfMibView' as described in section 5.4, "Value
        Representation".  v.name is set to v.name of the (N+((i-
        2)*R)+s)-th VarBind unless i is currently 1, in which case it
        is set to the value of the starting OID in the (N+s)-th
        SearchRange.

  Note that further iterative processing should stop if

        -  For any iteration i, all s values of v.type are `
           endOfMibView'.

        -  An AgentX transport constraint or other implementation-
           specific constraint is reached.

7.2.4. Subagent Processing of agentx-TestSet, -CommitSet, -UndoSet,
                  -CleanupSet-PDUs

  A conformant AgentX subagent must support the agentx-TestSet,
  -CommitSet, -UndoSet, and -CleanupSet PDUs, and must support multiple
  variables being supplied in the agentx-TestSet-PDU.





Daniele, et al.             Standards Track                    [Page 67]

RFC 2741                         AgentX                     January 2000


  These four PDUs are used to collectively perform the indicated
  management operation.  An agentx-Response-PDU is sent in reply to
  each of the PDUs (except -CleanupSet), to inform the master agent of
  the state of the operation.

  The master agent must serialize Set transactions for each session.
  That is, a session need not handle multiple concurrent Set
  transactions.

  These Response-PDUs do not contain a VarBindList.

7.2.4.1.  Subagent Processing of the agentx-TestSet-PDU

  Upon the subagent's receipt of an agentx-TestSet-PDU, each VarBind in
  the PDU is validated until they are all successful, or until one
  fails, as described in section 4.2.5 of RFC 1905 [13]. The subagent
  validates variables with respect to the context and session indicated
  in the testSet-PDU.

  If each VarBind is successful, the subagent has a further
  responsibility to ensure the availability of all resources (memory,
  write access, etc.) required for successfully carrying out a
  subsequent agentx-CommitSet operation.  If this cannot be guaranteed,
  the subagent should set res.error to `resourceUnavailable'.  As a
  result of this validation step, an agentx-Response-PDU is sent in
  reply whose res.error field is set to one of the following SNMPv2 PDU
  error-status values (see section 3, "Definitions", in RFC 1905 [13]):

           noError                    (0),
           genErr                     (5),
           noAccess                   (6),
           wrongType                  (7),
           wrongLength                (8),
           wrongEncoding              (9),
           wrongValue                (10),
           noCreation                (11),
           inconsistentValue         (12),
           resourceUnavailable       (13),
           notWritable               (17),
           inconsistentName          (18)

  If this value is not `noError', the res.index field must be set to
  the index of the VarBind for which validation failed.








Daniele, et al.             Standards Track                    [Page 68]

RFC 2741                         AgentX                     January 2000


  Implementation of rigorous validation code may be one of the most
  demanding aspects of subagent development.  Implementors are strongly
  encouraged to do this right, so as to avoid if at all possible the
  extensible agent's having to return `commitFailed' or `undoFailed'
  during subsequent processing.

7.2.4.2.  Subagent Processing of the agentx-CommitSet-PDU

  The agentx-CommitSet-PDU indicates that the subagent should actually
  perform (as described in the post-validation sections of 4.2.5 of RFC
  1905 [13]) the management operation indicated by the previous
  TestSet-PDU.  After carrying out the management operation, the
  subagent sends in reply an agentx-Response-PDU whose res.error field
  is set to one of the following SNMPv2 PDU error-status values (see
  section 3, "Definitions", in RFC 1905 [13]):

           noError                    (0),
           commitFailed              (14)

  If this value is `commitFailed', the res.index field must be set to
  the index of the VarBind (as it occurred in the agentx-TestSet-PDU)
  for which the operation failed.  Otherwise res.index is set to 0.

7.2.4.3.  Subagent Processing of the agentx-UndoSet-PDU

  The agentx-UndoSet-PDU indicates that the subagent should undo the
  management operation requested in a preceding CommitSet-PDU.  The
  undo process is as described in section 4.2.5 of RFC 1905 [13].

  After carrying out the undo process, the subagent sends in reply an
  agentx-Response-PDU whose res.error field is set to one of the
  following SNMPv2 PDU error-status values (see section 3,
  "Definitions", in RFC 1905 [13]):

           noError                    (0),
           undoFailed                (15)

  If this value is `undoFailed', the res.index field must be set to the
  index of the VarBind (as it occurred in the agentx-TestSet-PDU) for
  which the operation failed.  Otherwise res.index is set to 0.

  This PDU also signals the end of processing of the management
  operation initiated by the previous TestSet-PDU.  The subagent should
  release resources, etc. as described in section 7.2.4.4, "Subagent
  Processing of the agentx-CleanupSet-PDU".






Daniele, et al.             Standards Track                    [Page 69]

RFC 2741                         AgentX                     January 2000


7.2.4.4.  Subagent Processing of the agentx-CleanupSet-PDU

  The agentx-CleanupSet-PDU signals the end of processing of the
  management operation requested in the previous TestSet-PDU.  This is
  an indication to the subagent that it may now release any resources
  it may have reserved in order to carry out the management request.
  No response is sent by the subagent.

7.2.5. Master Agent Processing of AgentX Responses

  The master agent now marshals all subagent AgentX response PDUs and
  builds an SNMP response PDU.  In the next several subsections, the
  initial processing of all subagent AgentX response PDUs is described,
  followed by descriptions of subsequent processing for each specific
  subagent Response.

7.2.5.1.  Common Processing of All AgentX Response PDUs

  1) If a response is not received on a session within the timeout
     interval for this dispatch, it is treated as if the subagent had
     returned `genErr' and processed as described below.

     A timeout may be due to a variety of reasons, and does not
     necessarily denote a failed or malfunctioning subagent.  As such,
     the master agent's response to a subagent timeout is
     implementation-specific, but with the following constraint:

     A session that times out on three consecutive AgentX requests is
     considered unable to respond, and the master agent must close the
     AgentX session as described in section 7.1.8, "Processing the
     agentx-Close-PDU", step (2).

  2) Otherwise, the h.packetID, h.sessionID, and h.transactionID fields
     of the AgentX response PDU are used to correlate subagent
     responses.  If the response does not pertain to this SNMP
     operation, it is ignored.

  3) Otherwise, the responses are processed jointly to form the SNMP
     response PDU.

7.2.5.2.  Processing of Responses to agentx-Get-PDUs

  After common processing of the subagent's response to an agentx-Get-
  PDU (see section 7.2.5.1, "Common Processing of All AgentX Response
  PDUs", above), processing continues with the following steps:






Daniele, et al.             Standards Track                    [Page 70]

RFC 2741                         AgentX                     January 2000


  1) For any received AgentX response PDU, if res.error is not
     `noError', the SNMP response PDU's error code is set to this
     value.  If res.error contains an AgentX specific value (e.g.
     `parseError'), the SNMP response PDU's error code is set to a
     value of genErr instead.  Also, the SNMP response PDU's error
     index is set to the index of the variable binding corresponding to
     the failed VarBind in the subagent's AgentX response PDU.

     All other AgentX response PDUs received due to processing this
     SNMP request are ignored.  Processing is complete; the SNMP
     Response PDU is ready to be sent (see section 7.2.6, "Sending the
     SNMP Response-PDU").

  2) Otherwise, the content of each VarBind in the AgentX response PDU
     is used to update the corresponding variable binding in the SNMP
     Response-PDU.

7.2.5.3.  Processing of Responses to agentx-GetNext-PDU and
               agentx-GetBulk-PDU

  After common processing of the subagent's response to an agentx-
  GetNext-PDU or agentx-GetBulk-PDU (see section 7.2.5.1, "Common
  Processing of All AgentX Response PDUs", above), processing continues
  with the following steps:

  1) For any received AgentX response PDU, if res.error is not
     `noError', the SNMP response PDU's error code is set to this
     value.  If res.error contains an AgentX specific value (e.g.
     `parseError'), the SNMP response PDU's error code is set to a
     value of genErr instead.  Also, the SNMP response PDU's error
     index is set to the index of the variable binding corresponding to
     the failed VarBind in the subagent's AgentX response PDU.

     All other AgentX response PDUs received due to processing this
     SNMP request are ignored.  Processing is complete; the SNMP
     response PDU is ready to be sent (see section 7.2.6, "Sending the
     SNMP Response-PDU").

  2) Otherwise, the content of each VarBind in the AgentX response PDU
     is used to update the corresponding VarBind in the SNMP response
     PDU.

  After all expected AgentX response PDUs have been processed, if any
  VarBinds still contain the value `endOfMibView' in their v.type
  fields, processing must continue:






Daniele, et al.             Standards Track                    [Page 71]

RFC 2741                         AgentX                     January 2000


  3) A new iteration of AgentX request dispatching is initiated (as
     described in section 7.2.1.2, "agentx-GetNext-PDU"), in which only
     those VarBinds whose v.type is `endOfMibView' are processed.

  4) For each such VarBind, an authoritative target MIB region is
     identified in which the master agent expects to find suitable MIB
     variables.  The target session is the one on which this new target
     region was registered.

     The starting OID in each SearchRange is set to the value of v.name
     for the corresponding VarBind, and its "include" field is set to
     0.

  5) The value of transactionID must be identical to the value used
     during the previous iteration.

  6) The AgentX PDUs are sent on the target session(s), and the
     responses are received and processed according to the steps
     described in section 7.2.5, "Master Agent Processing of AgentX
     Responses".

  7) This process continues iteratively until a complete SNMP
     Response-PDU has been built, or until there remain no
     authoritative MIB regions to query.

  Note that r.subtree for the new target region identified in step 4)
  may not lexicographically succeed r.subtree for the region that has
  returned `endOfMibView'.  For example, consider the following
  registry:

       session A   `mib-2' (1.3.6.1.2.1)
       session B   `ip'    (1.3.6.1.2.1.4)
       session C   `tcp'   (1.3.6.1.2.1.6)

  If while processing a GetNext-Request-PDU session B returns
  `endOfMibView' for a variable name within 1.3.6.1.2.1.4, the target
  MIB region identified in step 4) would be 1.3.6.1.2.1 (since it may
  contain variables whose names precede 1.3.6.1.2.1.6).

  Note also that if session A returned variables from within
  1.3.6.1.2.1.6, they must be discarded since session A is NOT
  authoritative for that region.

7.2.5.4.  Processing of Responses to agentx-TestSet-PDUs

  After common processing of the subagent's response to an agentx-
  TestSet-PDU (see section 7.2.5.1, "Common Processing of All AgentX
   Response PDUs", above), processing continues with the further



Daniele, et al.             Standards Track                    [Page 72]

RFC 2741                         AgentX                     January 2000


  exchange of AgentX PDUs.  The value of h.transactionID in the
  agentx-CommitSet, -UndoSet, and -CleanupSet-PDUs must be identical to
  the value sent in the testSet-PDU.

  The state transitions and PDU sequences are depicted in section 7.3,
  "State Transitions".

  The set of all sessions who have been sent an agentx-TestSet-PDU for
  this particular transaction are referred to below as "involved
  sessions".

  1) If any target session's response is not `noError', all other
     agentx-Response-PDUs received due to processing this SNMP request
     are ignored.

     An agentx-CleanupSet-PDU is sent to all involved sessions.
     Processing is complete; the SNMP response PDU is constructed as
     described below in 7.2.6, "Sending the SNMP Response-PDU".

  2) Otherwise an agentx-CommitSet-PDU is sent to all involved
     sessions.

7.2.5.5.  Processing of Responses to agentx-CommitSet-PDUs

  After common processing of the subagent's response to an agentx-
  CommitSet-PDU (see section 7.2.5.1, "Common Processing of All AgentX
  Response PDUs", above), processing continues with the following
  steps:

  1) If any response is not `noError', the SNMP response PDU's error
     code is set to this value.  If res.error contains an AgentX
     specific value (e.g. `parseError'), the SNMP response PDU's error
     code is set to a value of genErr instead.  Also, the SNMP response
     PDU's error index is set to the index of the VarBind corresponding
     to the failed VarBind in the agentx-TestSet-PDU.

     An agentx-UndoSet-PDU is sent to each target session that has been
     sent an agentx-CommitSet-PDU.  An agentx-CleanupSet-PDU is sent to
     the remainder of the involved sessions.

  2) Otherwise an agentx-CleanupSet-PDU is sent to all involved
     sessions.  Processing is complete; the SNMP response PDU is
     constructed as described below in section 7.2.6, "Sending the SNMP
     Response-PDU".







Daniele, et al.             Standards Track                    [Page 73]

RFC 2741                         AgentX                     January 2000


7.2.5.6.  Processing of Responses to agentx-UndoSet-PDUs

  After common processing of the subagent's response to an agentx-
  UndoSet-PDU (see section 7.2.5.1, "Common Processing of All AgentX
  Response PDUs", above), processing continues with the following
  steps:

  1) If any response is `undoFailed' the SNMP response PDU's error code
     is set to this value.  Also, the SNMP response PDU's error index
     is set to 0.

  2) Otherwise, if any response is not `noError' the SNMP response
     PDU's error code is set to this value.  Also, the SNMP response
     PDU's error index is set to the index of the VarBind corresponding
     to the failed VarBind in the agentx-TestSet-PDU. If res.error is
     an AgentX specific value (e.g. `parseError'), the SNMP response
     PDU's error code is set to a value of genErr instead.

  3) Otherwise the SNMP response PDU's error code and error index were
     set in section 7.2.5.5 step 1)

7.2.6. Sending the SNMP Response-PDU

  Once the processing described in section 7.2.5, "Master Agent
  Processing of AgentX Responses" is complete, there is an SNMP
  response PDU available.  The master agent now implements the Elements
  of Procedure for the applicable version of the SNMP protocol in order
  to encapsulate the PDU into a message, and transmit it to the
  originator of the SNMP management request.  Note that this may
  involve altering the PDU contents (for instance, to replace the
  original VarBinds if an error condition is to be returned).

  The response PDU may also be altered in order to support the SNMPv1
  PDU.  In such cases the required PDU mapping is that defined in RFC
  2089 [25].  (Note in particular that the rules for handling Counter64
  syntax may require re-sending AgentX GetBulk or GetNext PDUs until a
  VarBind of suitable syntax is returned.)

7.2.7. MIB Views

  AgentX subagents are not aware of MIB views, since view information
  is not contained in AgentX PDUs.

  As stated above, the descriptions of procedures in section 7,
  "Elements of Procedure", of this memo are not intended to constrain
  the internal architecture of any conformant implementation.  In
  particular, the master agent procedures described in section 7.2.1,




Daniele, et al.             Standards Track                    [Page 74]

RFC 2741                         AgentX                     January 2000


  "Dispatching AgentX PDUs" and in section 7.2.5, "Master Agent
  Processing of AgentX Responses" may be altered so as to optimize
  AgentX exchanges when implementing MIB views.

  Such optimizations are beyond the scope of this memo.  But note that
  section 7.2.3, "Subagent Processing of agentx-Get, GetNext, GetBulk-
  PDUs",  defines subagent behavior in such a way that alteration of
  SearchRanges may be used in such optimizations.

7.3. State Transitions

  State diagrams are presented from the master agent's perspective for
  transport connection and session establishment, and from the
  subagent's perspective for Set transaction processing.

7.3.1. Set Transaction States

  The following table presents, from the subagent's perspective, the
  state transitions involved in Set transaction processing:
































Daniele, et al.             Standards Track                    [Page 75]

RFC 2741                         AgentX                     January 2000


                                      STATE
           +---------------+--------------+---------+--------+--------
           |       A       |      B       |   C     |   D    |   E
           |   (Initial    |    TestOK    | Commit  | Test   | Commit
           |     State)    |              |  OK     | Fail   |  Fail
           |               |              |         |        |
   EVENT   |               |              |         |        |
  ---------+---------------+--------------+---------+--------+--------
           | 7.2.4.1       |              |         |        |
  Receive  | All varbinds  |              |         |        |
  TestSet  | OK?           |      X       |    X    |   X    |    X
  PDU      |   Yes ->B     |              |         |        |
           |   No  ->D     |              |         |        |
  ---------+---------------+--------------+---------+--------+--------
           |               |  7.2.4.2     |         |        |
  Receive  |               |  NoError?    |         |        |
  Commit-  |       X       |   Yes ->C    |    X    |   X    |    X
  Set PDU  |               |   No  ->E    |         |        |
  ---------+---------------+--------------+---------+--------+--------
  Receive  |               |              | 7.2.4.3 |        |7.2.4.3
  UndoSet  |       X       |       X      | ->done  |   X    | ->done
  PDU      |               |              |         |        |
  ---------+---------------+--------------+---------+--------+--------
  Receive  |               |  7.2.4.4     | 7.2.4.4 |7.2.4.4 |
  Cleanup- |       X       |   ->done     | ->done  | ->done |   X
  Set PDU  |               |              |         |        |
  ---------+---------------+--------------+---------+--------+--------
  Session  |               | rollback     | undo    |        |
  Loss     |  ->done       |  ->done      |  ->done | ->done | ->done
  ---------+---------------+--------------+---------+--------+--------

  There are three possible sequences that a subagent may follow for a
  particular set transaction:

     1) TestSet CommitSet CleanupSet
     2) TestSet CommitSet UndoSet
     3) TestSet           CleanupSet

  Note that a single PDU sequence may result in multiple paths through
  the finite state machine (FSM).  For example, the sequence

     TestSet CommitSet UndoSet

  may walk through either of these two state sequences:

     (initial) TestOK CommitOK   (done)
     (initial) TestOK CommitFail (done)




Daniele, et al.             Standards Track                    [Page 76]

RFC 2741                         AgentX                     January 2000


7.3.2. Transport Connection States

  The following table presents, from the master agent's perspective,
  the state transitions involved in transport connection setup and
  teardown:
                   STATE
                  +--------------+--------------
                  |      A       |      B
                  | No transport |  Transport
                  |              |  connected
                  |              |
  EVENT           |              |
  ----------------+--------------+--------------
  Transport       |              |
  connect         |     ->B      |      X
  indication      |              |
  ----------------+--------------+--------------
  Receive         |              | if no resources
  Open-PDU        |              | available
                  |              | reject, else
                  |      X       | establish
                  |              | session
                  |              |
                  |              |     ->B
  ----------------+--------------+--------------
  Receive         |              | if matching
  Response-PDU    |              | session id,
                  |              | feed to that
                  |      X       | session's FSM
                  |              | else ignore
                  |              |
                  |              |     ->B
  ----------------+--------------+--------------
  Receive other   |              | if matching
  PDUs            |              | session id,
                  |              | feed to that
                  |      X       | session's FSM
                  |              | else reject
                  |              |
                  |              |     ->B
  ----------------+--------------+--------------
  Transport       |              |notify all
  disconnect      |              |sessions on
  indication      |      X       |this transport
                  |              |
                  |              |     ->A
  ----------------+--------------+--------------




Daniele, et al.             Standards Track                    [Page 77]

RFC 2741                         AgentX                     January 2000


7.3.3. Session States

  The following table presents, from the master agent's perspective,
  the state transitions involved in session setup and teardown:

                             STATE
                 +-------------+----------------
                 |     A       |      B
                 |  No session |  Session
                 |             |  established
  EVENT          |             |
  ---------------+-------------+----------------
                 |  7.1.1      |
  Receive        |             |      X
  Open PDU       |    ->B      |
  ---------------+-------------+----------------
                 |             |  7.1.8
  Receive        |      X      |
  Close PDU      |             |    ->A
  ---------------+-------------+----------------
  Receive        |             |  7.1.4
  Register PDU   |      X      |
                 |             |    ->B
  ---------------+-------------+----------------
  Receive        |             |  7.1.5
  Unregister     |      X      |
  PDU            |             |    ->B
  ---------------+-------------+----------------
  Receive        |             |
  Get PDU        |             |
  GetNext PDU    |             |
  GetBulk PDU    |      X      |       X
  TestSet PDU    |             |
  CommitSet PDU  |             |
  UndoSet PDU    |             |
  CleanupSet PDU |             |
  ---------------+-------------+----------------
  Receive        |             |  7.1.10
  Notify PDU     |      X      |
                 |             |    ->B
  ---------------+-------------+----------------
  Receive Ping   |             |  7.1.11
  PDU            |      X      |
                 |             |    ->B
  ---------------+-------------+----------------
  (continued next page)





Daniele, et al.             Standards Track                    [Page 78]

RFC 2741                         AgentX                     January 2000


  ---------------+-------------+----------------
  Receive        |             |  7.1.2
  IndexAllocate  |      X      |
  PDU            |             |    ->B
  ---------------+-------------+----------------
  Receive        |             |  7.1.3
  IndexDeallocate|      X      |
  PDU            |             |    ->B
  ---------------+-------------+----------------
  Receive        |             |  7.1.6
  AddAgentxCaps  |      X      |
  PDU            |             |    ->B
  ---------------+-------------+----------------
  Receive        |             |  7.1.7
  RemoveAgentxCap|      X      |
  PDU            |             |    ->B
  ---------------+-------------+----------------
  Receive        |             |  7.2.5
  Response PDU   |      X      |
                 |             |    ->B
  ---------------+-------------+----------------
  Receive        |             |
  Other PDU      |      X      |       X
  ---------------+-------------+----------------

8. Transport Mappings

  The same AgentX PDU formats, encodings, and elements of procedure are
  used regardless of the underlying transport.

8.1. AgentX over TCP

8.1.1. Well-known Values

  The master agent accepts TCP connection requests for the well-known
  port 705.  Subagents connect to the master agent using this port
  number.

8.1.2. Operation

  Once a TCP connection has been established, the AgentX peers use this
  connection to carry all AgentX PDUs. Multiple AgentX sessions may be
  established using the same TCP connection.  AgentX PDUs are sent
  within an AgentX session.  AgentX peers are responsible for mapping
  the h.sessionID to a particular TCP connection.






Daniele, et al.             Standards Track                    [Page 79]

RFC 2741                         AgentX                     January 2000


  The AgentX entity must not "interleave" AgentX PDUs within the TCP
  byte stream.  All the bytes of one PDU must be sent before any bytes
  of a different PDU.  The receiving entity must be prepared for TCP to
  deliver byte sequences that do not coincide with AgentX PDU
  boundaries.

8.2. AgentX over UNIX-domain Sockets

  Many (BSD-derived) implementations of the UNIX operating system
  support the UNIX pathname address family (AF_UNIX) for socket
  communications.  This provides a convenient method of sending and
  receiving data between processes on the same host.

  Mapping AgentX to this transport is useful for environments that

     -  wish to guarantee subagents are running on the same managed
        node as the master agent, and where

     -  sockets provide better performance than TCP or UDP, especially
        in the presence of heavy network I/O

8.2.1. Well-known Values

  The master agent creates a well-known UNIX-domain socket endpoint
  called "/var/agentx/master".  (It may create other, implementation-
  specific endpoints.)

  This endpoint name uses the character set encoding native to the
  managed node, and represents a UNIX-domain stream (SOCK_STREAM)
  socket.

8.2.2. Operation

  Once a connection has been established, the AgentX peers use this
  connection to carry all AgentX PDUs.

  Multiple AgentX sessions may be established using the same
  connection.  AgentX PDUs are sent within an AgentX session.  AgentX
  peers are responsible for mapping the h.sessionID to a particular
  connection.

  The AgentX entity must not "interleave" AgentX PDUs within the socket
  byte stream.  All the bytes of one PDU must be sent before any bytes
  of a different PDU.  The receiving entity must be prepared for the
  socket to deliver byte sequences that do not coincide with AgentX PDU
  boundaries.





Daniele, et al.             Standards Track                    [Page 80]

RFC 2741                         AgentX                     January 2000


9. Security Considerations

  This memo defines a protocol between two processing entities, one of
  which (the master agent) is assumed to perform authentication of
  received SNMP requests and to control access to management
  information.  The master agent performs these security operations
  independently of the other processing entity (the subagent).

  Security considerations require three questions to be answered:

     1. Is a particular subagent allowed to initiate a session with a
        particular master agent?

     2. During an AgentX session, is any SNMP security-related
        information (for example, community names) passed from the
        master agent to the subagent?

     3. During an AgentX session, what part of the MIB tree is this
        subagent allowed to register?

  The answer to the third question is: A subagent can register any
  subtree (subject to AgentX elements of procedure, section 7.1.4,
  "Processing the agentx-Register-PDU").  Currently there is no access
  control mechanism defined in AgentX. A concern here is that a
  malicious subagent that registers an unauthorized "sensitive"
  subtree, could see modification requests to those objects, or by
  giving its own clever answer to NMS queries, could cause the NMS to
  do something that leads to information disclosure or other damage.

  The answer to the second question is: No.

  Now we can answer the first question.  AgentX does not contain a
  mechanism for authorizing/refusing session initiations.  Thus,
  controlling subagent access to the master agent may only be done at a
  lower layer (e.g., transport).

  An AgentX subagent can connect to a master agent using either a
  network transport mechanism (e.g., TCP), or a "local" mechanism
  (e.g., shared memory, named pipes).

  In the case where a local transport mechanism is used and both
  subagent and master agent are running on the same host, connection
  authorization can be delegated to the operating system features.  The
  answer to the first security question then becomes: "If and only if
  the subagent has sufficient privileges, then the operating system
  will allow the connection".





Daniele, et al.             Standards Track                    [Page 81]

RFC 2741                         AgentX                     January 2000


  If a network transport is used, currently there is no inherent
  security.  Transport Layer Security, SSL, or IPsec SHOULD be used to
  control and protect subagent connections in this mode of operation.

  However, we RECOMMEND that subagents always run on the same host as
  the master agent and that operating system features be used to ensure
  that only properly authorized subagents can establish connections to
  the master agent.

10. Acknowledgements

  The initial development of this memo was heavily influenced by the
  DPI 2.0 specification RFC 1592 [26].

  This document was produced by the IETF Agent Extensibility (AgentX)
  Working Group, and benefited especially from the contributions of the
  following working group members:

     David Battle, Uri Blumenthal, Jeff Case, Maria Greene, Lauren
     Heintz, Dave Keeney, Harmen van der Linde, Bob Natale, Aleksey
     Romanov, Don Ryan, and Juergen Schoenwaelder.

  An honorable mention is extended to Randy Presuhn in recognition for
  his numerous technical contributions to this specification; for his
  many answers provided on (and hosting of) the AgentX e-mail list and
  ftp site, and, for the valued support and guidance Randy provided to
  the Working Group chair.

  The AgentX Working Group is chaired by:

  Bob Natale
  ACE*COMM Corporation
  704 Quince Orchard Road
  Gaithersburg, MD  20878

  Phone: +1-301-721-3000
  Fax:   +1-301-721-3001
  EMail: [email protected]













Daniele, et al.             Standards Track                    [Page 82]

RFC 2741                         AgentX                     January 2000


11. Authors' and Editor's Addresses

  Mike Daniele
  Compaq Computer Corporation
  110 Spit Brook Rd
  Nashua, NH 03062

  Phone: +1-603-881-1423
  EMail: [email protected]


  Bert Wijnen
  IBM T.J.Watson Research
  Schagen 33
  3461 GL Linschoten
  Netherlands

  Phone: +31-348-432-794
  EMail: [email protected]


  Mark Ellison (WG editor)
  Ellison Software Consulting, Inc.
  38 Salem Road
  Atkinson, NH  03811

  Phone: +1-603-362-9270
  EMail: [email protected]


  Dale Francisco (editor)
  Cisco Systems
  150 Castilian Dr
  Goleta CA 93117

  Phone: +1-805-961-3642
  Fax:   +1-805-961-3600
  EMail: [email protected]













Daniele, et al.             Standards Track                    [Page 83]

RFC 2741                         AgentX                     January 2000


12. References

  [1]   Harrington, D., Presuhn, R. and B. Wijnen, "An Architecture for
        Describing SNMP Management Frameworks", RFC 2571, April 1999.

  [2]   Rose, M. and K. McCloghrie, "Structure and Identification of
        Management Information for TCP/IP-based Internets", STD 16, RFC
        1155, May 1990.

  [3]   Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,
        RFC 1212, March 1991.

  [4]   Rose, M., "A Convention for Defining Traps for use with the
        SNMP", RFC 1215, March 1991.

  [5]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
        M. and S. Waldbusser, "Structure of Management Information
        Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

  [6]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
        M. and S. Waldbusser, "Textual Conventions for SMIv2", STD 58,
        RFC 2579, April 1999.

  [7]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
        M. and S. Waldbusser, "Conformance Statements for SMIv2", STD
        58, RFC 2580, April 1999.

  [8]   Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
        Network Management Protocol", STD 15, RFC 1157, May 1990.

  [9]   Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
        "Introduction to Community-based SNMPv2", RFC 1901, January
        1996.

  [10]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
        "Transport Mappings for Version 2 of the Simple Network
        Management Protocol (SNMPv2)", RFC 1906, January 1996.

  [11]  Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
        Processing and Dispatching for the Simple Network Management
        Protocol (SNMP)", RFC 2572, April 1999.

  [12]  Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
        for version 3 of the Simple Network Management Protocol
        (SNMPv3)", RFC 2574, April 1999.






Daniele, et al.             Standards Track                    [Page 84]

RFC 2741                         AgentX                     January 2000


  [13]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
        Operations for Version 2 of the Simple Network Management
        Protocol (SNMPv2)", RFC 1905, January 1996.

  [14]  Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC
        2573, April 1999.

  [15]  Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
        Control Model (VACM) for the Simple Network Management Protocol
        (SNMP)", RFC 2575, April 1999.

  [16]  Case, J., Mundy, R., Partain, D. and B. Stewart, "Introduction
        to Version 3 of the Internet-standard Network Management
        Framework", RFC 2570, April 1999.

  [17]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
        "Management Information Base for Version 2 of the Simple
        Network Management Protocol (SNMPv2)", RFC 1907, January 1996.

  [18]  Information processing systems - Open Systems Interconnection -
        Specification of Abstract Syntax Notation One (ASN.1),
        International Organization for Standardization.  International
        Standard 8824, (December, 1987).

  [19]  McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB
        using SMIv2", RFC 2233, November 1997.

  [20]  Case, J., "FDDI Management Information Base", RFC 1285, January
        1992.

  [21]  Krupczak, C. and J. Saperia, "Definitions of System-Level
        Managed Objects for Applications", RFC 2287, April 1997.

  [22]  Kalbfleisch, C., Krupczak, C., Presuhn, R. and J. Saperia,
        "Application Management MIB", RFC 2564, May 1999.

  [23]  Reynolds, J. and J. Postel, "Assigned Numbers", STD 2, RFC
        1700, October 1994.

  [24]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
        "Coexistence between Version 1 and Version 2 of the Internet-
        standard Network Management Framework", RFC 1908, January 1996.

  [25]  Wijnen, B. and D. Levi, "V2ToV1: Mapping SNMPv2 onto SNMPv1
        Within a Bilingual SNMP Agent", RFC 2089, January 1997.






Daniele, et al.             Standards Track                    [Page 85]

RFC 2741                         AgentX                     January 2000


  [26]  Wijnen, B., Carpenter, G., Curran, K., Sehgal, A. and G.
        Waters, "Simple Network Management Protocol: Distributed
        Protocol Interface, Version 2.0", RFC 1592, March 1994.

  [27]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

13. Notices

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.























Daniele, et al.             Standards Track                    [Page 86]

RFC 2741                         AgentX                     January 2000


A. Changes relative to RFC 2257

  Changes on the wire:

     -  The agentx-Notify-PDU and agentx-Close-PDU now generate an
        agentx-Response-PDU.

     -  The res.error field may contain three new error codes:
        parseFailed(266), requestDenied(267), and processingError(268).

  Clarifications to the text of the memo:

     -  Modified the text of step (4) in section 4.2, "Applicability"
        to separate the two concerns of row creation, and counters that
        count rows.

     -  The use of the r.range_subid field is more clearly defined in
        section 6.2.3, "The agentx-Register-PDU".

     -  Default priority (127) for registration added to the
        description of r.priority in section 6.2.3, "The agentx-
        Register-PDU".

     -  Made the distinction of "administrative processing" PDUs and
        "SNMP request processing" PDUs in section 6.1, "AgentX PDU
        Header" description of h.type.  This distinction is used in the
        Elements of Procedure relative to the res.sysuptime and
        res.error fields.

     -  Rewrote portions of text in section 6.2.3, "The agentx-
        Register-PDU" to be more explicit about the following points:

           -  There is a default registration priority of 127.
           -  Improved the description of r.range_subid, independent of
              the prefix in r.region.
           -  Improved description and examples of how to use the
              registration mechanism.
           -  Added a description for r.upper_bound.
           -  changed r.region to r.subtree (because the text used the
              terms "region", "range", and "OID range" in too loose a
              fashion.  r.subtree can not represent anything more by
              itself than a simple subtree.  In conjunction with
              r.range_subid and r.upper_bound, it can represent a
              "region", that is, a union of subtrees)

  -  Modified the text in section 6.2.4, "The agentx-Unregister-PDU" to
     include a description of u.range_subid and u.upper_bound




Daniele, et al.             Standards Track                    [Page 87]

RFC 2741                         AgentX                     January 2000


  -  Added use of the `requestDenied' error code in section 7.1.4,
     "Processing the agentx-Register-PDU".

  -  Removed text in section 7, "Elements of Procedure" on parse errors
     and protocol errors.

  -  Added a new section, 7.1, "Processing AgentX Administrative
     Messages" which defines common processing and how to use the
     `parseError' and `processingError' instead of closing a session,
     and how to handle context.

  -  Removed the common processing text from the other administrative
     processing Elements of Procedure sections, and added a reference
     to section 7.1, "Processing AgentX Administrative Messages".  The
     affected sections are:

           -  7.1.2,  "Processing the agentx-IndexAllocate-PDU"
           -  7.1.3,  "Processing the agentx-IndexDeallocate-PDU"
           -  7.1.4,  "Processing the agentx-Register-PDU"
           -  7.1.5,  "Processing the agentx-Unregister-PDU"
           -  7.1.6,  "Processing the agentx-AddAgentCaps-PDU"
           -  7.1.7,  "Processing the agentx-RemoveAgentCaps-PDU"
           -  7.1.8,  "Processing the agentx-Close-PDU"
           -  7.1.10, "Processing the agentx-Notify-PDU"
           -  7.1.11, "Processing the agentx-Ping-PDU"

  -  Reworked the text in section 7.1.1, "Processing the
     agentx-Open-PDU" to include new error codes, and, to eliminate
     reference to an indicated context.

  -  Modified the text in Section 7.1.10, "Processing the
     agentx-Notify-PDU" to state that context checking is performed.

  -  Substantially modified the text in section 7.1.4.1, "Handling
     Duplicate and Overlapping Subtrees".

  -  Removed the section on "Using the agentx-IndexAllocate-PDU" and
     added section 7.1.4.2, "Registering Stuff".  This change is
     intended to provide a more concise and a more cohesive
     description of how things are supposed to work.

  -  Modified the test in section 7.1.5, "Processing the
     agentx-Unregister-PDU" to require a match on u.range_subid and
     on u.upper_bound when these fields were applicable in the
     corresponding agentx-Register-PDU.






Daniele, et al.             Standards Track                    [Page 88]

RFC 2741                         AgentX                     January 2000


  -  Removed all references to "splitting", and all uses of the term
     "OID range".  The text now refers to regions or subtrees
     directly, and relies on rule (1), "Honoring the Registry", in
     section 7.2.1, "Dispatching AgentX PDUs".

  -  Modified text in clause 4(c) of section 7.2.1, "Dispatching
     AgentX PDUs", clarifying that the master agent can use its
     implementation-specific default timeout value when the timeout
     value registered by the subagent is impractical.

  -  Added text in section 7.2.2, "Subagent Processing" describing
     common processing.

  -  Added an example to the text in section 7.2.5.3, "Processing of
     Responses to agentx-GetNext-PDU and       agentx-GetBulk-PDU",
     and, removed the definition of "contains" from this section.

  -  Modified text in step (1) of section 7.2.5.5, "Processing of
     Responses to agentx-CommitSet-PDUs", eliminating directive for
     master agent to ignore additional responses to
     agentx-CommitSet-PDUs after the first error response.

  -  Modified text in section 7.2.5.6, "Processing of Responses to
     agentx-UndoSet-PDUs", cleaning up commit/undo elements of
     procedure per feedback received on the AgentX email list.

  -  Modified the text in section 8.1.2, "Operation" to explicitly
     prohibit interleaved sends, and, added a caution about
     exchanging AgentX messages via TCP.

  -  Modified text to be more explicit that the OID in the
     agentx-Allocate-PDU is an OBJECT-TYPE and does not contain any
     instance sub-identifiers.

  -  Replaced the term "subagent" with the term "session" in many
     places throughout the text.

  -  Modified the text relative to master agent processing of the
     agentx-TestSet-PDU, agentx-CommitSet-PDU, and the
     agentx-UndoSet-PDU to explicitly state that only "involved"
     sessions receive an agentx-CommitSet-PDU, and possibly, an
     agentx-UndoSet-PDU.

  -  Modified the text to use the term "transaction", instead of
     "packet" (and others), where appropriate.  This helps
     distinguish the overall transaction from a particular sequence
     of packets or PDUs.




Daniele, et al.             Standards Track                    [Page 89]

RFC 2741                         AgentX                     January 2000


  -  Modified the text to explicitly state that a session is not
     required to support concurrent sets.

  -  Added section 13, "Notices".

  -  Added text to section 1, Introduction, relative to BCP 14 key
     words.

  -  Modified text to section 9, Security Considerations, to include
     use of BCP 14 key words.

  -  Modified text to section 9, Security Considerations, to include
     IPSEC as a suggested Transport Layer Security.






































Daniele, et al.             Standards Track                    [Page 90]

RFC 2741                         AgentX                     January 2000


Full Copyright Statement

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Daniele, et al.             Standards Track                    [Page 91]