Network Working Group                                              L. Ong
Request for Comments: 2719                                Nortel Networks
Category: Informational                                         I. Rytina
                                                               M. Garcia
                                                                Ericsson
                                                         H. Schwarzbauer
                                                                L. Coene
                                                                 Siemens
                                                                  H. Lin
                                                               Telcordia
                                                               I. Juhasz
                                                                   Telia
                                                             M. Holdrege
                                                                  Lucent
                                                                C. Sharp
                                                           Cisco Systems
                                                            October 1999


            Framework Architecture for Signaling Transport

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

  This document defines an architecture framework and functional
  requirements for transport of signaling information over IP.  The
  framework describes relationships between functional and physical
  entities exchanging signaling information, such as Signaling Gateways
  and Media Gateway Controllers.  It identifies interfaces where
  signaling transport may be used and the functional and performance
  requirements that apply from existing Switched Circuit Network (SCN)
  signaling protocols.










Ong, et al.                  Informational                      [Page 1]

RFC 2719     Framework Architecture for Signaling Transport October 1999


Table of Contents

  1. Introduction..................................................2
  1.1 Overview.....................................................2
  1.2 Terminology..................................................3
  1.3  Scope.......................................................5
  2.  Signaling Transport Architecture.............................5
  2.1  Gateway Component Functions.................................5
  2.2  SS7 Interworking for Connection Control.....................6
  2.3  ISDN Interworking for Connection Control....................8
  2.4  Architecture for Database Access............................9
  3. Protocol Architecture........................................10
  3.1 Signaling Transport Components..............................10
  3.2 SS7 access for Media Gateway Control........................11
  3.3 Q.931 Access to MGC.........................................12
  3.4 SS7 Access to IP/SCP........................................12
  3.5 SG to SG....................................................14
  4. Functional Requirements......................................15
  4.1 Transport of SCN Signaling Protocols........................15
  4.2 Performance of SCN Signaling Protocols......................17
  4.2.1 SS7 MTP Requirements......................................17
  4.2.2 SS7 MTP Level 3 Requirements..............................17
  4.2.3 SS7 User Part Requirements................................18
  4.2.4 ISDN Signaling Requirements...............................18
  5. Management...................................................19
  6. Security Considerations......................................19
  6.1 Security Requirements.......................................19
  6.2 Security Mechanisms Currently Available in IP Networks......20
  7. Abbreviations................................................21
  8. Acknowledgements.............................................21
  9. References...................................................21
  Authors' Addresses..............................................22
  Full Copyright Statement........................................24

1. Introduction

1.1 Overview

  This document defines an architecture framework for transport of
  message-based signaling protocols over IP networks.  The scope of
  this work includes definition of encapsulation methods, end-to-end
  protocol mechanisms and use of existing IP capabilities to support
  the functional and performance requirements for signaling transport.

  The framework portion describes the relationships between functional
  and physical entities used in signaling transport, including the
  framework for control of Media Gateways, and other scenarios where
  signaling transport may be required.



Ong, et al.                  Informational                      [Page 2]

RFC 2719     Framework Architecture for Signaling Transport October 1999


  The requirements portion describes functional and performance
  requirements for signaling transport such as flow control, in-
  sequence delivery and other functions that may be required for
  specific SCN signaling protocols.

1.2 Terminology

  The following are general terms are used in this document:

  Backhaul:

  Backhaul refers to the transport of signaling from the point of
  interface for the associated data stream (i.e., SG function in the
  MGU) back to the point of call processing (i.e., the MGCU), if this
  is not local.

  Signaling Transport (SIG):

  SIG refers to a protocol stack for transport of SCN signaling
  protocols over an IP network. It will support standard primitives to
  interface with an unmodified SCN signaling application being
  transported, and supplements a standard IP transport protocol
  underneath with functions designed to meet transport requirements for
  SCN signaling.

  Switched Circuit Network (SCN):

  The term SCN is used to refer to a network that carries traffic
  within channelized bearers of pre-defined sizes.  Examples include
  Public Switched Telephone Networks (PSTNs) and Public Land Mobile
  Networks (PLMNs).  Examples of signaling protocols used in SCN
  include Q.931, SS7 MTP Level 3 and SS7 Application/User parts.

  The following are terms for functional entities relating to signaling
  transport in a distributed gateway model.

  Media Gateway (MG):

  A MG terminates SCN media streams, packetizes the media data,, if it
  is not already packetized, and delivers packetized traffic  to the
  packet network.  It performs these functions in reverse order for
  media streams flowing from the packet network to the SCN.









Ong, et al.                  Informational                      [Page 3]

RFC 2719     Framework Architecture for Signaling Transport October 1999


  Media Gateway Controller (MGC):

  An MGC handles the registration and management of resources at the
  MG. The MGC may have the ability to authorize resource usage based on
  local policy.  For signaling transport purposes, the MGC serves as a
  possible termination and origination point for SCN application
  protocols, such as SS7 ISDN User Part and Q.931/DSS1.

  Signaling Gateway (SG):

  An SG is a signaling agent that receives/sends SCN native signaling
  at the edge of the IP network. The SG function may relay, translate
  or terminate SS7 signaling in an SS7-Internet Gateway. The SG
  function may also be co-resident with the MG function to process SCN
  signaling associated with line or trunk terminations controlled by
  the MG (e.g., signaling backhaul).

  The following are terms for physical entities relating to signaling
  transport in a distributed gateway model:

  Media Gateway Unit (MGU)

  An MG-Unit is a physical entity that contains the MG function.  It
  may contain other functions, esp. an SG function for handling
  facility-associated signaling.

  Media Gateway Control Unit (MGCU)

  An MGC-Unit is a physical entity containing the MGC function.

  Signaling Gateway Unit (SGU)

  An SG-Unit is a physical entity containing the SG function.

  Signaling End Point (SEP):

  This is a node in an SS7 network that originates or terminates
  signaling messages.  One example is a central office switch.

  Signal Transfer Point (STP):

  This is a node in an SS7 network that routes signaling messages based
  on their destination point code in the SS7 network.








Ong, et al.                  Informational                      [Page 4]

RFC 2719     Framework Architecture for Signaling Transport October 1999


1.3  Scope

  Signaling transport provides transparent transport of message-based
  signaling protocols over IP networks.   The scope of this work
  includes definition of encapsulation methods, end-to-end protocol
  mechanisms and use of IP capabilities to support the functional and
  performance requirements for signaling.

  Signaling transport shall be used for transporting SCN signaling
  between a Signaling Gateway Unit and Media Gateway Controller Unit.
  Signaling transport may also be used for transport of message-based
  signaling between a Media Gateway Unit and Media Gateway Controller
  Unit, between dispersed Media Gateway Controller Units, and between
  two Signaling Gateway Units connecting signaling endpoints or signal
  transfer points in the SCN.

  Signaling transport will be defined in such a way as to support
  encapsulation and carriage of a variety of SCN protocols.  It is
  defined in such a way as to be independent of any SCN protocol
  translation functions taking place at the endpoints of the signaling
  transport, since its function is limited to the transport of the SCN
  protocol.

  Since the function being provided is transparent transport, the
  following areas are considered outside the scope of the signaling
  transport work:

  -  definition of the SCN protocols themselves.
  -  signaling interworking such as conversion from Channel Associated
     Signaling (CAS) to message signaling protocols.
  -  specification of the functions taking place within the SGU or MGU
  -  in particular, this work does not address whether the SGU provides
     mediation/interworking, as this is transparent to the transport
     function.
  -  similarly, some management and addressing functions taking place
     within the SGU or MGU are also considered out of scope, such as
     determination of the destination IP address for signaling, or
     specific procedures for assessing the performance of the transport
     session (i.e., testing and proving functions).

2.  Signaling Transport Architecture

2.1  Gateway Component Functions

  Figure 1 defines a commonly defined functional model that separates
  out the functions of SG, MGC and MG.  This model may be implemented
  in a number of ways, with functions implemented in separate devices
  or combined in single physical units.



Ong, et al.                  Informational                      [Page 5]

RFC 2719     Framework Architecture for Signaling Transport October 1999


  Where physical separation exists between functional entities,
  Signaling Transport can be applied to ensure that SCN signaling
  information is transported between entities with the required
  functionality and performance.

       +---------------+                      +--------------+
       |               |                      |              |
 SCN<-------->[SG]  <--+---------O------------+--> [SG]  <------> SCN
signal |       |       |                      |     |        |   signal
       +-------|-------+                      +-----|--------+
      Signaling|gateway                    Signaling|gateway (opt)
               O                                    O
               |                                    |
       +-------|-------+                      +-----|--------+
       |       |       |                      |     |        |
       |      [MGC] <--+--------O-------------+--> [MGC]     |
       |       |       |                      |     |        |
       |       |       |                      |     |        |
       +-------|-------+                      +-----|--------+
       Gateway | controller                 Gateway | controller (opt)
               O                                    O
               |                                    |
       +-------|-------+                      +-----|--------+
 Media |       |       |                      |     |        | Media
<------+---->[MG]  <---+-----RTP stream-------+-> [MG]  <----+-------->
 stream|               |                      |              | stream
       +---------------+                      +--------------+
       Media gateway                           Media gateway


                  Figure 1: Sigtran Functional Model

  As discussed above, the interfaces pertaining to signaling transport
  include SG to MGC, SG to SG.  Signaling transport may potentially be
  applied to the MGC to MGC or MG to MGC interfaces as well, depending
  on requirements for transport of the associated signaling protocol.

2.2  SS7 Interworking for Connection Control

  Figure 2 below shows some example implementations of these functions
  in physical entities as used for interworking of SS7 and IP networks
  for Voice over IP, Voice over ATM, Network Access Servers, etc.  No
  recommendation is made as to functional distribution and many other
  examples are possible but are not shown to be concise.  The use of
  signaling transport is independent of the implementation.






Ong, et al.                  Informational                      [Page 6]

RFC 2719     Framework Architecture for Signaling Transport October 1999


  For interworking with SS7-controlled SCN networks, the SG terminates
  the SS7 link and transfers the signaling information to the MGC using
  signaling transport.  The MG terminates the interswitch trunk and
  controls the trunk based on the control signaling it receives from
  the MGC. As shown below in case (a), the SG, MGC and MG may be
  implemented in separate physical units, or as in case (b), the MGC
  and MG may be implemented in a single physical unit.

  In alternative case (c), a facility-associated SS7 link is terminated
  by the same device (i.e., the MGU) that terminates the interswitch
  trunk. In this case, the SG function is co-located with the MG
  function, as shown below, and signaling transport is used to
  "backhaul" control signaling to the MGCU.

  Note: SS7 links may also be terminated directly on the MGCU by
  cross-connecting at the physical level before or at the MGU.

           SGU
          +--------+
  SS7<------>[SG]  |
  (ISUP)  |   |    |
          +---|----+
           ST |                SGU                       MGCU
          +---|----+           +--------+                +--------+
          | [MGC]  |      SS7---->[SG]  |                | [MGC]  |
          |   |    |           |   |    |                |  | |   |
          +---|----+           +---|----+                +--|-|---+
         MGCU |                 ST |                        | |
              |                    |                     ST | |
    Media +---|----+     Media +---|----+                +--|-|---+
     ------->[MG]  |      ----->[MG/MGC]|      SS7 link-->[SG]|   |
   stream |        |    stream |        |       Media------> [MG] |
          +--------+           +--------+       stream   +--------+
          MGU                  MGU                       MGU

           (a)                     (b)                      (c)

  Notes: ST = Signaling Transport used to carry SCN signaling

                    Figure 2: Example Implementations











Ong, et al.                  Informational                      [Page 7]

RFC 2719     Framework Architecture for Signaling Transport October 1999


  In some implementations, the function of the SG may be divided into
  multiple physical entities to support scaling, signaling network
  management and addressing concerns.  Thus, Signaling Transport can be
  used between SGs as well as from SG to MGC. This is shown in Figure 3
  below.

              SGU                                 MGCU
            +---------+                         +---------+
            |         |          ST             |         |
            |  [SG2]------------------------------>[MGC]  |
            |   ^ ^   |                         |         |
            +---|-|---+                         +---------+
                | |
                | |             ST
              ST| +--------------------------------+
                |                                  |
                |                                  |
       SS7  +---|----------+             SS7  +----|---------+
  -----------> [SG1]       |        -----------> [SG1]       |
   media    |              |         media    |              |
  ------------------->[MG] |        ------------------->[MG] |
   stream   +--------------+         stream   +--------------+
             MGU                                MGU


                       Figure 3: Multiple SG Case

  In this configuration, there may be more than one MGU handling
  facility associated signaling (i.e. more than one containing it's own
  SG function), and only a single SGU. It will therefore be possible to
  transport one SS7 layer between SG1 and SG2, and another SS7 layer
  between SG2 and MGC. For example, SG1 could transport MTP3 to SG2,
  and SG2 could transport ISUP to MGC.

2.3  ISDN Interworking for Connection Control

  In ISDN access signaling, the signaling channel is carried along with
  data channels, so that the SG function for handling Q.931 signaling
  is co-located with the MG function for handling the data stream.
  Where Q.931 is then transported to the MGC for call processing,
  signaling transport would be used between the SG function and MGC.
  This is shown in Figure 3 below.









Ong, et al.                  Informational                      [Page 8]

RFC 2719     Framework Architecture for Signaling Transport October 1999


                            MGCU
                            +-------------+
                            |    [MGC]    |
                            |     | |     |
                            +-----|-|-----+
                                  | |
                                  | O device control
                                  | |
                         Q.931/ST O |
                                  | |
                            +-----|-|-----+
                            |     | |     |
                      Q.931---->[SG]|     |
                     signals|       |     |
                            |       |     |
                   Media---->[MG]   |
                   stream   |             |
                            +-------------+
                            MGU


                  Figure 4: Q.931 transport model

2.4  Architecture for Database Access

  Transaction Capabilities (TCAP) is the application part within SS7
  that is used for non-circuit-related signaling.

  TCAP signaling within IP networks may be used for cross-access
  between entities in the SS7 domain and the IP domain, such as, for
  example:

  -  access from an SS7 network to a Service Control Point (SCP) in IP.
  -  access from an SS7 network to an MGC.
  -  access from an MGC to an SS7 network element.
  -  access from an IP SCP to an SS7 network element.

  A basic functional model for TCAP over IP is shown in Figure 5.













Ong, et al.                  Informational                      [Page 9]

RFC 2719     Framework Architecture for Signaling Transport October 1999


                           +--------------+
                           | IP SCP       |
                           +--|----|------+
                              |    |
           SGU                |    |                SGU
          +--------------+    |    |    +--------------+
          |              |    |    |    |              |
  SS7<--------->[SG] ---------+    |    |     [SG]<---------> SS7
  (TCAP)  |      |       |         |    |      |       |
          +------|-------+         |    +------|-------+
                 |                 |           |
                 O    +------------+           O
         MGCU    |    |                        | MGCU
         +-------|----|--+               +-----|--------+
         |       |    |  |               |     |        |
         |      [MGC]    |               |    [MGC]     |
         |       |       |               |     |        |
         +-------|-------+               +-----|--------+
                 |                             |
         +-------|-------+               +-----|------+
   Media |       |       |               |     |      | Media
  <------+---->[MG]  <---+--RTP stream---+--> [MG]  <-+-------->
   stream|               |               |            | stream
         +---------------+               +------------+
         MGU                             MGU


                    Figure 5: TCAP Signaling over IP

3. Protocol Architecture

  This section provides a series of examples of protocol architecture
  for the use of Signaling Transport (SIG).

3.1 Signaling Transport Components

  Signaling Transport in the protocol architecture figures below is
  assumed to consist of three components (see Figure 6):

  1) an adaptation sub-layer that supports specific primitives, e.g.,
     management indications, required by a particular SCN signaling
     application protocol.
  2) a Common Signaling Transport Protocol that supports a common set
     of reliable transport functions for signaling transport.
  3) a standard, unmodified IP transport protocol.






Ong, et al.                  Informational                     [Page 10]

RFC 2719     Framework Architecture for Signaling Transport October 1999


                +-- +--------------------------------+
                |   |      SCN adaptation module     |
                |   +--------------------------------+
                |                  |
              S |   +--------------------------------+
              I |   | Common Signaling Transport     |
              G |   +--------------------------------+
                |                  |
                |   +--------------------------------+
                |   |     standard IP transport      |
                +-- +--------------------------------+


               Figure 6: Signaling Transport Components

3.2. SS7 access for Media Gateway Control

  This section provides a protocol architecture for signaling transport
  supporting SS7 access for Media Gateway Control.

         ******   SS7  ******* SS7  ******     IP     *******
         *SEP *--------* STP *------* SG *------------* MGC *
         ******        *******      ******            *******

         +----+                                       +-----+
         |ISUP|                                       | ISUP|
         +----+        +-----+      +---------+       +-----+
         |MTP |        |MTP  |      |MTP | SIG|       | SIG |
         |L1-3|        |L1-3 |      |L1-3+----+       +-----+
         |    |        |     |      |    | IP |       | IP  |
         +----+        +-----+      +---------+       +-----+


         STP - Signal Transfer Point    SEP - Signaling End Point
         SG - Signaling Gateway         SIG - Signaling Transport
         MGC - Media Gateway Controller


                     Figure 7: SS7 Access to MGC












Ong, et al.                  Informational                     [Page 11]

RFC 2719     Framework Architecture for Signaling Transport October 1999


3.3. Q.931 Access to MGC

  This section provides a protocol architecture for signaling transport
  supporting ISDN point-to-point access (Q.931) for Media Gateway
  Control.

           ******    ISDN      *********     IP     *******
           * EP *--------------* SG/MG *------------* MGC *
           ******              *********            *******

           +----+                                   +-----+
           |Q931|                                   | Q931|
           +----+              +---------+          +-----+
           |Q921|              |Q921| SIG|          | SIG |
           +    +              +    +----+          +-----+
           |    |              |    | IP |          | IP  |
           +----+              +---------+          +-----+

           MG/SG - Media Gateway with SG function for backhaul
           EP - ISDN End Point


                        Figure 8: ISDN Access

3.4. SS7 Access to IP/SCP

  This section provides a protocol architecture for database access,
  for example providing signaling between two IN nodes or two mobile
  network nodes. There are a number of scenarios for the protocol
  stacks and the functionality contained in the SIG, depending on the
  SS7 application.

  In the diagrams, SS7 Application Part (S7AP) is used for generality
  to cover all Application Parts (e.g. MAP, IS-41, INAP, etc).
  Depending on the protocol being transported, S7AP may or may not
  include TCAP. The interface to the SS7 layer below S7AP can be either
  the TC-user interface or the SCCP-user interface.

  Figure 9a shows the scenario where SCCP is the signaling protocol
  being transported between the SG and an IP Signaling Endpoint (ISEP),
  that is, an IP destination supporting some SS7 application protocols.










Ong, et al.                  Informational                     [Page 12]

RFC 2719     Framework Architecture for Signaling Transport October 1999


         ******   SS7  ******* SS7  ******     IP      *******
         *SEP *--------* STP *------* SG *-------------* ISEP*
         ******        *******      ******             *******

         +-----+                                       +-----+
         |S7AP |                                       |S7AP |
         +-----+                                       +-----+
         |SCCP |                                       |SCCP |
         +-----+        +-----+      +---------+       +-----+
         |MTP  |        |MTP  |      |MTP |SIG |       |SIG  |
         +     +        +     +      +    +----+       +-----+
         |     |        |     |      |    | IP |       |IP   |
         +-----+        +-----+      +---------+       +-----+


       Figure 9a: SS7 Access to IP node - SCCP being transported

  Figure 9b shows the scenario where S7AP is the signaling protocol
  being transported between SG and ISEP. Depending on the protocol
  being transported, S7AP may or may not include TCAP, which implies
  that SIG must be able to support both the TC-user and the SCCP-user
  interfaces.

         ******   SS7  ******* SS7  ******     IP      *******
         *SEP *--------* STP *------* SG *-------------* ISEP*
         ******        *******      ******             *******

         +-----+                                       +-----+
         |S7AP |                                       |S7AP |
         +-----+                     +----+----+       +-----+
         |SCCP |                     |SCCP|    |       |     |
         +-----+        +-----+      +----|SIG |       |SIG  |
         |MTP  |        |MTP  |      |MTP |    |       |     |
         +     +        +     +      +    +----+       +-----+
         |     |        |     |      |    |IP  |       |IP   |
         +-----+        +-----+      +---------+       +-----+


       Figure 9b: SS7 Access to IP node - S7AP being transported












Ong, et al.                  Informational                     [Page 13]

RFC 2719     Framework Architecture for Signaling Transport October 1999


3.5. SG to SG

  This section identifies a protocol architecture for support of
  signaling between two endpoints in an SCN signaling network, using
  signaling transport directly between two SGs.

  The following figure describes protocol architecture for a scenario
  with two SGs providing different levels of function for interworking
  of SS7 and IP. This corresponds to the scenario given in Figure 3.

  The SS7 User Part (S7UP) shown is an SS7 protocol using MTP directly
  for transport within the SS7 network, for example, ISUP.

  In this scenario, there are two different usage cases of SIG, one
  which transports MTP3 signaling, the other which transports ISUP
  signaling.

           ******  SS7  ******   IP     ******  IP   ******
           *SEP *-------* SG1*----------* SG2*-------*MGC *
           ******       ******          ******       ******

           +----+                                    +----+
           |S7UP|                                    |S7UP|
           +----+                     +----+----+    +----+
           |MTP3|                     |MTP3|    |    |    |
           +----+    +---------+      +----+ SIG|    |SIG |
           |MTP2|    |MTP2|SIG |      |SIG |    |    |    |
           +    +    +    +----+      +----+----+    +----+
           |    |    |    | IP |      |   IP    |    | IP |
           +----+    +----+----+      +----+----+    +----+

           S7UP - SS7 User Part

                     Figure 10: SG to SG Case 1

  The following figure describes a more generic use of SS7-IP
  interworking for transport of SS7 upper layer signaling across an IP
  network, where the endpoints are both SS7 SEPs.













Ong, et al.                  Informational                     [Page 14]

RFC 2719     Framework Architecture for Signaling Transport October 1999


           ******   SS7  ******    IP     ******  SS7   ******
           *SEP *--------* SG *-----------* SG *--------*SEP *
           ******        ******           ******        ******

           +----+                                       +-----+
           |S7UP|                                       | S7UP|
           +----+                                       +-----+
           |MTP3|                                       | MTP3|
           +----+        +---------+     +---------+    +-----+
           |MTP2|        |MTP2| SIG|     |SIG |MTP2|    | MTP2|
           +    +        +    +----+     +----+    +    +     +
           |    |        |    | IP |     | IP |    |    |     |
           +----+        +----+----+     +----+----+    +-----+

                     Figure 11: SG to SG Case 2

4. Functional Requirements

4.1 Transport of SCN Signaling Protocols

  Signaling transport provides for the transport of native SCN protocol
  messages over a packet switched network.

  Signaling transport shall:

  1) Transport of a variety of SCN protocol types, such as the
  application and user parts of SS7 (including MTP Level 3, ISUP, SCCP,
  TCAP, MAP, INAP, IS-41, etc.) and layer 3 of the DSS1/PSS1 protocols
  (i.e. Q.931 and QSIG).

  2) Provide a means to identify the particular SCN protocol being
  transported.

  3) Provide a common base protocol defining header formats, security
  extensions and procedures for signaling transport, and support
  extensions as necessary to add individual SCN protocols if and when
  required.

  4) In conjunction with the underlying network protocol (IP), provide
  the relevant functionality as defined by the appropriate SCN lower
  layer.

  Relevant functionality may include (according to the protocol being
  transported):

  -  flow control
  -  in sequence delivery of signaling messages within a control stream




Ong, et al.                  Informational                     [Page 15]

RFC 2719     Framework Architecture for Signaling Transport October 1999


  -  logical identification of the entities on which the signaling
     messages originate or terminate
  -  logical identification of the physical interface controlled by the
     signaling message
  -  error detection
  -  recovery from failure of components in the transit path
  -  retransmission and other error correcting methods
  -  detection of unavailability of peer entities.

  For example:

  -  if the native SCN protocol is ISUP or SCCP, the relevant
     functionality provided by MTP2/3 shall be provided.
  -  if the native SCN protocol is TCAP, the relevant functionality
     provided by SCCP connectionless classes and MTP 2/3 shall be
     supported.
  -  if the native SCN protocol is Q.931, the relevant functionality
     provided by Q.921 shall be supported.
  -  if the native SCN protocol is MTP3, the relevant functionality of
     MTP2 shall be supported.

  5) Support the ability to multiplex several higher layer SCN sessions
  on one underlying signaling transport session.  This allows, for
  example, several DSS1 D-Channel sessions to be carried in one
  signaling transport session.

  In general, in-sequence delivery is required for signaling messages
  within a single control stream, but is not necessarily required for
  messages that belong to different control streams.  The protocol
  should if possible take advantage of this property to avoid blocking
  delivery of messages in one control stream due to sequence error
  within another control stream.  The protocol should also allow the SG
  to send different control streams to different destination ports if
  desired.

  6) Be able to transport complete messages of greater length than the
  underlying SCN segmentation/reassembly limitations.  For example,
  signaling transport should not be constrained by the length
  limitations defined for SS7 lower layer protocol (e.g. 272 bytes in
  the case of narrowband SS7) but should be capable of carrying longer
  messages without requiring segmentation.

  7) Allow for a range of suitably robust security schemes to protect
  signaling information being carried across networks. For example,
  signaling transport shall be able to operate over proxyable sessions,
  and be able to be transported through firewalls.





Ong, et al.                  Informational                     [Page 16]

RFC 2719     Framework Architecture for Signaling Transport October 1999


  8) Provide for congestion avoidance on the Internet, by supporting
  appropriate controls on signaling traffic generation (including
  signaling generated in SCN) and reaction to network congestion.

4.2 Performance of SCN Signaling Protocols

  This section provides basic values regarding performance requirements
  of key SCN protocols to be transported. Currently only message-based
  SCN protocols are considered.  Failure to meet these requirements is
  likely to result in adverse and undesirable signaling and call
  behavior.

4.2.1 SS7 MTP requirements

  The performance requirements below have been specified for transport
  of MTP Level 3 network management messages. The requirements given
  here are only applicable if all MTP Level 3 messages are to be
  transported over the IP network.

  -  Message Delay
     -  MTP Level 3 peer-to-peer procedures require response within 500
        to 1200 ms.  This value includes round trip time and processing
        at the remote end.
        Failure to meet this limitation will result in the initiation
        of error procedures for specific timers, e.g., timer T4 of
        ITU-T Recommendation Q.704.

4.2.2 SS7 MTP Level 3 requirements

  The performance requirements below have been specified for transport
  of MTP Level 3 user part messages as part of ITU-T SS7
  Recommendations [SS7].

  -  Message Loss
     -  no more than 1 in 10E+7 messages will be lost due to transport
        failure

  -  Sequence Error
     -  no more than 1 in 10E+10 messages will be delivered out-of-
        sequence (including duplicated messages) due to transport
        failure

  -  Message Errors
     -  no more than 1 in 10E+10 messages will contain an error that is
        undetected by the transport protocol (requirement is 10E+9 for
        ANSI specifications)





Ong, et al.                  Informational                     [Page 17]

RFC 2719     Framework Architecture for Signaling Transport October 1999


  -  Availability
     -  availability of any signaling route set is 99.9998% or better,
        i.e., downtime 10 min/year or less.  A signaling route set is
        the complete set of allowed signaling paths from a given
        signaling point towards a specific destination.

  -  Message length (payload accepted from SS7 user parts)
     -  272 bytes for narrowband SS7, 4091 bytes for broadband SS7

4.2.3 SS7 User Part Requirements

  More detailed analysis of SS7 User Part Requirements can be found in
  [Lin].

     ISUP Message Delay - Protocol Timer Requirements

     -  one example of ISUP timer requirements is the Continuity Test
        procedure, which requires that a tone generated at the sending
        end be returned from the receiving end within 2 seconds of
        sending an IAM indicating continuity test.  This implies that
        one way signaling message transport, plus accompanying nodal
        functions need to be accomplished within 2 seconds.

     ISUP Message Delay - End-to-End Requirements

     -  the requirement for end-to-end call setup delay in ISUP is that
        an end-to-end response message be received within 20-30 seconds
        of the sending of the IAM.  Note: while this is the protocol
        guard timer value, users will generally expect faster response
        time.

     TCAP Requirements - Delay Requirements

     -  TCAP does not itself define a set of delay requirements.  Some
        work has been done [Lin2] to identify application-based delay
        requirements for TCAP applications.

4.2.4 ISDN Signaling Requirements

     Q.931 Message Delay

     -  round-trip delay should not exceed 4 seconds.  A Timer of this
        length is used for a number of procedures, esp.  RELASE/RELEASE
        COMPLETE and CONNECT/CONNECT ACK where excessive delay may
        result in management action on the channel, or release of a
        call being set up.  Note: while this value is indicated by
        protocol timer specifications, faster response time is normally
        expected by the user.



Ong, et al.                  Informational                     [Page 18]

RFC 2719     Framework Architecture for Signaling Transport October 1999


        -  12 sec. timer (T309) is used to maintain an active call in
        case of loss of the data link, pending re-establishment.  The
        related ETSI documents specify a maximum value of 4 seconds
        while ANSI specifications [T1.607] default to 90 seconds.

5. Management

  Operations, Administration & Management (OA&M) of IP networks or SCN
  networks is outside the scope of SIGTRAN. Examples of OA&M include
  legacy telephony management systems or IETF SNMP managers. OA&M
  implementors and users should be aware of the functional interactions
  of the SG, MGC and MG and the physical units they occupy.

6. Security Considerations

6.1 Security Requirements

  When SCN related signaling is transported over an IP network two
  possible network scenarios can be distinguished:

  -  Signaling transported only within an Intranet;
     Security measures are applied at the discretion of the network
     owner.

  -  Signaling transported, at least to some extent, in the public
     Internet;
     The public Internet should be regarded generally as an "insecure"
     network and usage of security measures is  required.

  Generally security comprises several aspects

  -  Authentication:
     It is required to ensure that the information is sent to/from a
     known and trusted partner.

  -  Integrity:
     It is required to ensure that the information hasn't been modified
     while in transit.

  -  Confidentiality:
     It might be sometimes required to ensure that the transported
     information is encrypted to avoid illegal use.

  -  Availability:
     It is required that the communicating endpoints remain in service
     for authorized use even if under attack.





Ong, et al.                  Informational                     [Page 19]

RFC 2719     Framework Architecture for Signaling Transport October 1999


6.2 Security Mechanisms Currently Available in IP Networks

  Several security mechanisms are currently available for use in IP
  networks.

  -  IPSEC ([RFC2401]):
     IPSEC provides security services at the IP layer that address the
     above mentioned requirements. It defines the two protocols AH and
     ESP respectively that essentially provide data integrity and data
     confidentiality services.

     The ESP mechanism can be used in two different modes:
     - Transport mode;
     - Tunnel mode.

  In Transport mode IPSEC protects the higher layer protocol data
  portion of an IP packet, while in Tunnel mode a complete IP packet is
  encapsulated in a secure IP tunnel.

  If the SIG embeds any IP addresses outside of the SA/DA in the IP
  header, passage through a NAT function will cause problems. The same
  is true for using IPsec in general, unless an IPsec ready RSIP
  function is used as described in RFC 2663 [NAT].

  The use of IPSEC does not hamper the use of TCP or UDP as the
  underlying basis of SIG.  If automated distribution of keys is
  required the IKE protocol ([RFC2409]) can be applied.

  -  SSL, TLS ([RFC2246]):
     SSL and TLS also provide appropriate security services but operate
     on top of TCP/IP only.

  It is not required to define new security mechanisms in SIG, as the
  use of currently available mechanisms is sufficient to provide the
  necessary security.  It is recommended that IPSEC or some equivalent
  method be used, especially when transporting SCN signaling over
  public Internet.














Ong, et al.                  Informational                     [Page 20]

RFC 2719     Framework Architecture for Signaling Transport October 1999


7. Abbreviations

  CAS   Channel-Associated Signaling
  DSS1  Digital Subscriber Signaling
  INAP  Intelligent Network Application Part
  ISEP  IP Signaling End Point
  ISUP  Signaling System 7 ISDN User Part
  MAP   Mobile Application Part
  MG    Media Gateway
  MGU   Media Gateway Unit
  MGC   Media Gateway Controller
  MGCU  Media Gateway Controller Unit
  MTP   Signaling System 7 Message Transfer Part
  PLMN  Public Land Mobile Network
  PSTN  Public Switched Telephone Network
  S7AP  SS7 Application Part
  S7UP  SS7 User Part
  SCCP  SS7 Signaling Connection Control Part
  SCN   Switched Circuit Network
  SEP   Signaling End Point
  SG    Signaling Gateway
  SIG   Signaling Transport protocol stack
  SS7   Signaling System No. 7
  TCAP  Signaling System 7 Transaction Capabilities Part

8. Acknowledgements

  The authors would like to thank K. Chong, I. Elliott, Ian Spiers, Al
  Varney, Goutam Shaw, C. Huitema, Mike McGrew and Greg Sidebottom for
  their valuable comments and suggestions.

9. References

  [NAT]        Srisuresh P. and M. Holdrege, "IP Network Address
               Translator (NAT) Terminology and Considerations", RFC
               2663, August 1999.

  [PSS1/QSIG]   ISO/IEC 11572 Ed. 2 (1997-06), "Information technology
               - Telecommunications and information exchange between
               systems - Private Integrated Services Network - Circuit
               mode bearer services - Inter-exchange signalling
               procedures and protocol"

  [Q.931/DSS1] ITU-T Recommendation Q.931, ISDN user-network interface
               layer 3 specification (5/98)

  [SS7]        ITU-T Recommendations Q.700-775, Signalling System No. 7




Ong, et al.                  Informational                     [Page 21]

RFC 2719     Framework Architecture for Signaling Transport October 1999


  [SS7 MTP]    ITU-T Recommendations Q.701-6, Message Transfer Part of
               SS7

  [T1.607]     ANSI T1.607-1998, Digital Subscriber Signaling System
               Number 1 (DSS1) - Layer 3 Signaling Specification for
               Circuit-Switched Bearer Services

  [Lin]        Lin, H., Seth, T., et al., "Performance Requirements for
               Signaling in Internet Telephony", Work in Progress.

  [Lin2]       Lin, H., et al., "Performance Requirements for TCAP
               Signaling in Internet Telephony", Work in Progress.

  [RFC2246]    Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
               RFC 2246, January 1999.

  [RFC2409]    Harkins, D. and C. Carrel, "The Internet Key Exchange
               (IKE)", RFC 2409, November 1998.

  [RFC2401]    Kent, S. and R. Atkinson, "Security Architecture for the
               Internet Protocol", RFC 2401, November 1998.

Authors' Addresses

  Lyndon Ong
  Nortel Networks
  4401 Great America Parkway
  Santa Clara, CA 95054, USA

  EMail: [email protected]


  Ian Rytina
  Ericsson Australia
  37/360 Elizabeth Street
  Melbourne, Victoria 3000, Australia

  EMail: [email protected]


  Matt Holdrege
  Lucent Technologies
  1701 Harbor Bay Parkway
  Alameda, CA 94502  USA

  EMail: [email protected]





Ong, et al.                  Informational                     [Page 22]

RFC 2719     Framework Architecture for Signaling Transport October 1999


  Lode Coene
  Siemens Atea
  Atealaan 34
  Herentals, Belgium

  EMail: [email protected]


  Miguel-Angel Garcia
  Ericsson Espana
  Retama 7
  28005 Madrid, Spain

  EMail: [email protected]


  Chip Sharp
  Cisco Systems
  7025 Kit Creek Road
  Res Triangle Pk, NC 27709, USA

  EMail: [email protected]


  Imre Juhasz
  Telia
  Sweden

  EMail: [email protected]


  Haui-an Paul Lin
  Telcordia Technologies
  Piscataway, NJ, USA

  EMail: [email protected]


  HannsJuergen Schwarzbauer
  SIEMENS AG
  Hofmannstr. 51
  81359 Munich,  Germany

  EMail: [email protected]







Ong, et al.                  Informational                     [Page 23]

RFC 2719     Framework Architecture for Signaling Transport October 1999


Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Ong, et al.                  Informational                     [Page 24]