Network Working Group                                         A. Bhushan
Request for Comments: 264                                            MIT
NIC: 7812                                                      B. Braden
                                                                   UCLA
                                                            W. Crowther
                                                                    BBN
                                                             E. Harslem
                                                             J. Heafner
                                                                   Rand
                                                            A. McKenzie
                                                                    BBN
                                                              J. Melvin
                                                                    SRI
                                                            B. Sundberg
                                                                Harvard
                                                              D. Watson
                                                                    SRI
                                                               J. White
                                                                   UCSB
                                                       15 November 1971


                      THE DATA TRANSFER PROTOCOL

  This paper is a revision of RFC 171, NIC 6793.  The changes to RFC
  171 are given below.  The protocol is then restated for your
  convenience.

CHANGES TO RFC 171

  1) The sequence number field is changed to 16 bits in the error (Type
     B5) transactions, thus resolving the ambiguity in the previous
     specification.  In addition, the information separators (Type B4)
     transactions shall also contain a 16-bit sequence number field.

  2) The modes available (Type B3) transactions shall define only the
     modes available for receive, instead of both receive and send.  In
     simplex connections modes available transactions should not be
     sent as they are meaningless.  In full-duplex connections, the
     modes available transactions are still required.

  3) The code assignments for "End Code" in information separators and
     for "function" in abort transactions have been changed to reflect
     a numerical order rather than "bit-coding".

  4) Minor editorial changes.





Bhushan, et. al.                                                [Page 1]

RFC 264                The Data Transfer Protocol       15 November 1971


I.  INTRODUCTION

     A common protocol is desirable for data transfer in such diverse
     applications as remote job entry, file transfer, network mail
     system, graphics, remote program execution, and communication with
     block data terminals (such as printers, card, paper tape, and
     magnetic tape equipment, especially in context of terminal IMPs).
     Although it would be possible to include some or even all of the
     above applications in an all-inclusive file transfer protocol, a
     separation between data transfer and application functions may
     provide flexibility in implementation, and reduce complexity.
     Separating the data transfer function from the specific
     applications functions may also reduce proliferation of programs
     and protocols.

     We have therefore defined a data transfer protocol (DTP) which
     should be used for transfer of data in file transfer, remote job
     entry, and other applications protocols.  This paper concerns
     itself only with the data transfer protocol.  A companion paper
     (RFC 265) describes the file transfer protocol.

II.  DISCUSSION

     The data transfer protocol (DTP) serves three basic functions.  It
     provides for convenient separation of NCP messages into "logical"
     blocks (transactions, units, records, groups, and files), it
     allows for the separation of data and control information, and it
     includes some error control mechanisms.

Transfer Modes

     Three modes of separating messages into transactions [1] are
     allowed by DTP.  The first is an indefinite bit stream which
     terminates only when the connection is closed (i.e., the bit
     stream represents a single transaction for duration of
     connection).  This mode would be useful in data transfer between
     hosts and terminal IMPs (TIPs).

     The second mode utilizes a "transparent" block convention, similar
     to the ASCII DLE (Data Link Escape) convention.  In "transparent"
     mode, transactions (which may be arbitrarily long) end whenever
     the character sequence DLE ETX is encountered (DLE and ETX are 8-
     bit character codes).  To prevent the possibility of a DLE ETX
     sequence occurring within data stream, any occurrence of DLE is
     replaced by DLE DLE on transmission.  The extra DLE is stripped on
     reception.  A departure from the ASCII convention is that





Bhushan, et. al.                                                [Page 2]

RFC 264                The Data Transfer Protocol       15 November 1971


     "transparent" block does not begin with DLE STX, but with a
     transaction type byte.  This mode would be useful in data transfer
     between terminal IMPs.

     The third mode utilizes a count mechanism.  Each transaction
     begins with a fixed-length descriptor field containing separate
     binary counts of information bits and filler (i.e., not
     information) bits.  If a transaction has no filler bits, its
     filler count is zero.  This mode would be useful in most host-to-
     host data transfer applications.

     DTP allows for transfer modes to be intermixed over the same
     connection (i.e., the transfer mode is not associated with
     connection, but only with transaction).  The transfer modes can
     represent transfer of either data or control information.  The
     protocol allows for separating data and control information at a
     lower level, by providing different "type" codes (see
     SPECIFICATIONS) for data and control transactions.  This provision
     may simplify some implementations.

     The implementation of a subset of transfer modes is specifically
     permitted by DTP.  To provide compatibility between hosts using
     different subsets of transfer modes, an initial "handshake"
     procedure may be used.  The handshake involves exchanging
     information on modes available for receive.  This will enable host
     programs to agree on transfer modes acceptable for a connection.

Using DTP

     The manner in which DTP is used would depend largely on the
     applications protocol.  It is the applications protocol which
     defines the use of transfer modes and the use of information
     separator and abort functions provided in DTP (see
     SPECIFICATIONS).  For example, in a remote job entry protocol,
     aborts may be used to stop the execution of a job, while they may
     not cause any action in another applications protocol.

     It should also be noted that DTP does not define a data transfer
     service.  There is no standard server socket, or initial
     connection protocol defined for DTP.  What DTP defines is a
     mechanism for data transfer which can be used to provide services
     for block data transfers, file transfers, remote job entry,
     network mail and other applications.

     There are to be no restrictions on the manner in which DTP is
     implemented at various sites.  For example, DTP may be imbedded in
     an applications program such as for file transfer, or it may be a
     separate service program or subroutine used by several



Bhushan, et. al.                                                [Page 3]

RFC 264                The Data Transfer Protocol       15 November 1971


     applications programs.  Another implementation may employ macros
     or UUO's (unimplemented user operations on PDP-10's), to achieve
     the functions specified in DTP.  It is also possible that in
     implementation, the separation between the DTP and applications
     protocols be only at a conceptual level.

III.  SPECIFICATIONS

  1.    Byte Size for Network Connection

        The standard byte size for network connections using DTP is 8
        bits.  However, other byte sizes specified by applications
        protocols are also allowed by DTP.  For the purpose of this
        document bytes are assumed to be 8-bits, unless otherwise
        stated.

  2.    Transactions

        At DTP level, all information transmitted over a connection is
        a sequence of transactions.  DTP defines the rules for
        delimiting transactions.

  2A.   Types

        The first 8-bit byte of each transaction shall define a
        transaction type, as shown below.  (Note that code assignments
        do not conflict with assignments in TELNET protocol.)  The
        transaction types will be referred to by the hexadecimal code
        assigned to them.  (The transaction types are discussed in more
        detail in Section 2B.)

           Code                    Transaction Type
        Hex     Octal

        B0      260             Indefinite bit stream -- data.
        B1      261             Transparent (DLE) block--data.
        B2      262             Descriptor and counts--data.
        B3      263             Modes available (handshake).
        B4      264             Information Separators.
        B5      265             Error codes.
        B6      266             Abort.
        B7      267             No operation (NoOp).
        B8      270             Indefinite bit stream--control.
        B9      271             Transparent (DLE) block--control.
        BA      272             Descriptor and counts--control.
        BB      273
        through through         Unassigned but reserved for DTP.
        BF      277



Bhushan, et. al.                                                [Page 4]

RFC 264                The Data Transfer Protocol       15 November 1971


  2B.  Syntax and Semantics

  2B.1  Type B0 and B8 (indefinite bitstream modes) transactions
        terminate only when the NCP connection is "closed".  There is
        no other escape convention defined in DTP at this level.  It
        should be noted that the closing of a connection in bitstream
        mode is an implicit file separator (see Section 2B.5).

  2B.2  Type B1 and B9 (transparent block modes) transactions terminate
        when the byte sequence DLE ETX is encountered.  The sender
        shall replace any occurrence of DLE in data stream by the
        sequence DLE DLE.  The receiver shall strip the extra DLE.  The
        transaction is assumed to be byte-oriented.  The code for DLE
        is Hex '90' or Octal '220' (this is different from the ASCII
        DLE which is Hex '10' or Octal '020).  [2] ETX is Hex '03' or
        Octal '03' (the same as ASCII ETX).

  2B.3  Type B2 and BA (descriptor and counts modes) transactions have
        three fields, a 9-byte (72-bit) descriptor field (as shown
        below) and variable length (including zero) info and filler
        fields.  The total length of a transaction is (72+info+filler)
        bits.

 |<B2 or BA>|<Info count>| <NUL> <Sequence #>| <NUL> |<filler count>|
 |<-8-bit-> |<--24-bit-->|<8-bit><--16-bit-->|<8-bit>|<---8-bit---->|
 |<--------------------72-bit descriptor field--------------------->|

        _Info count_ is a binary count of the number of bits in the
        info field, not including descriptor or filler bits.  The
        number of info bits is limited to (2**24 - 1), as there are 24
        bits in info count field.

        _Sequence #_ is a sequential count in round-robin manner of B2,
        BA, and B4 type transactions.  The inclusion of sequence
        numbers will help in debugging and error control, as sequence
        numbers may be used to check for missing transactions and aid
        in locating errors.  Hosts not wishing to implement this
        mechanism should have all 1's in the field.  The count shall
        start from zero and continue sequentially to all 1's, after
        which it is reset to all zeros.  The permitted sequence numbers
        are one greater than the previous, all 1's, and zero for the
        first transaction only.

        _Filler count_ is a binary count of bits used as fillers (i.e.,
        not information) after the end of meaningful data.  Number of
        filler bits is limited to 255, as there are 8 bits in filler
        count field.




Bhushan, et. al.                                                [Page 5]

RFC 264                The Data Transfer Protocol       15 November 1971


        The NUL bytes must contain all 0's.

  2B.4  Type B3 (modes available) transactions have a fixed length of
        two bytes, as shown below.  First byte defines the transaction
        type B3, and second byte defines the transfer modes available
        for receive.

        +-----------------+---------------------+
        |Type             |     I receive       |
        |        B3       |                     |
        |                 |0|0|BA|B2|B9|B1|B8|B0|
        +-----------------+---------------------+

        The modes are indicated by bit-coding, as shown above.  The
        particular bits, if set to logical "1", indicate that the
        corresponding modes are handled by the sender's receive side.
        The two most significant bits should be set to logical "0".
        Mode available transactions have no significance in a simplex
        connection.  The use of type B3 transactions is discussed in
        section 3B.

  2B.5  Type B4 (information separator) transactions have a fixed
        length of four bytes, as shown below.  First byte defines the
        transaction type B4, second byte defines the separator, and
        third and fourth bytes contain a 16-bit sequence number.

        +------------+------------+-------------------------+
        |Type        |  End Code  |      Sequence Number    |
        |     B4     |            |            |            |
        |            |            |            |            |
        +------------+------------+------------+------------+

        The following separator codes are assigned:

              Code                      Meaning
        Hex             Octal

        01              001             Unit separator
        02              002             Record separator
        03              003             Group separator
        04              004             File separator

        Files, groups, records, and units may be data blocks that a
        user defines to be so.  The only restriction is that of the
        hierarchical relationship File>Groups>Records>Units (where '>'
        means 'contains').  Thus a file separator marks not only the
        end of file, but also the end of group, record, and unit.




Bhushan, et. al.                                                [Page 6]

RFC 264                The Data Transfer Protocol       15 November 1971


        These separators may provide a convenient "logical" separation
        of data at the data transfer level.  Their use is governed by
        the applications protocol.

  2B.6  Type B5 (error codes) transactions have a fixed length of four
        bytes, as shown below.  First byte defines the transaction type
        B5, second byte indicates an error code, and third and fourth
        bytes may indicate the sequence number of a transaction in
        which an error occurred.

        +------------+------------+-------------------------+
        |Type        |  End Code  |      Sequence Number    |
        |     B5     |            |            |            |
        |            |            |            |            |
        +------------+------------+------------+------------+

        The following error codes are assigned:

            Error Code            Meaning
        Hex             Octal

        00              000       Undefined error
        01              001       Out of sync. (type code other
                                  than B0 through BF).
        02              002       Broken sequence (the sequence # field
                                  contains the first expected but not
                                  received sequence number).
        03              003       Illegal DLF sequence (other than DLE
                                  DLE or DLE FTX).
        B0              260
        through         through   The transaction type (indicated by
        BF              277       by error code) is not implemented.

        The error code transaction is defined only for the purpose of
        error control.  DTP does not require the receiver of an error
        code to take any recovery action.  The receiver may discard the
        error code transaction.  In addition, DTP does not require that
        sequence numbers be remembered or transmitted.

  2B.7  Type B6 (abort) transactions have a fixed length of two bytes,
        as shown below.  First byte defines the transaction type B6,
        and second byte defines the abort function.

        +------------+------------+
        |Type        |  Function  |
        |     B6     |            |
        |            |            |
        +------------+------------+



Bhushan, et. al.                                                [Page 7]

RFC 264                The Data Transfer Protocol       15 November 1971


        The following abort codes are assigned:

            Abort Code                  Meaning
        Hex             Octal

        00              000             Abort preceding transaction
        01              001             Abort preceding unit
        02              002             Abort preceding record
        03              003             Abort preceding group
        04              004             Abort preceding file

        DTP does not require the receiver of an abort to take specific
        action, therefore a sender should not make any assumptions
        thereof.  The manner in which abort is handled is to be
        specified by higher-level applications protocols.

  2B.8  Type B7 (NoOp) transactions are one byte (8-bit) long, and
        indicate no operation.  These may be useful as fillers when the
        byte size used for network connections is other than 8-bits.

  3.    Initial Connection, Handshake and Error Recovery

  3A.   DTP does not specify the mechanism used in establishing
        connections.  It is up to the applications protocol (e.g., file
        transfer protocol) to choose the mechanism which suits its
        requirements. [3]

  3B.   The first transaction after a full-duplex connection is made
        will be type B3 (modes available) indicating the transfer modes
        available for receive.  The modes available (Type B3)
        transaction is not applicable in simplex connections.  It is
        the sender's responsibility to choose a mode acceptable to the
        receiver. [4]  If an acceptable mode is not available or if
        mode chosen is not acceptable, the connection may be closed.

  3C.   No error recovery mechanisms are specified by DTP.  The
        applications protocol may implement error recovery and further
        error control mechanisms.













Bhushan, et. al.                                                [Page 8]

RFC 264                The Data Transfer Protocol       15 November 1971


Endnotes

  [1]  The term transaction is used here to mean a block of data
  defined by the transfer mode.

  [2]  This assignment was made to be consistent with the TELNET
  philosophy of maintaining the integrity of the 128 Network ASCII
  characters.

  [3]  It is, however, recommended that the standard Initial Connection
  Protocol as specified in RFC 165 or any subsequent standard document
  be adopted where feasible.

  [4]  It is suggested that when available, the sender should choose
  'descriptor and count' mode (Type B2 or BA).  The 'indefinite
  bitstream' mode (Type B0 or B8) should be chosen only when the other
  two modes are not available.









        [ This RFC was put into machine readable form for entry ]
           [ into the online RFC archives by Ryan Kato 6/01 ]























Bhushan, et. al.                                                [Page 9]