Network Working Group                                        R. Housley
Request for Comments: 2630                                       SPYRUS
Category: Standards Track                                     June 1999


                     Cryptographic Message Syntax

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

  This document describes the Cryptographic Message Syntax.  This
  syntax is used to digitally sign, digest, authenticate, or encrypt
  arbitrary messages.

  The Cryptographic Message Syntax is derived from PKCS #7 version 1.5
  as specified in RFC 2315 [PKCS#7].  Wherever possible, backward
  compatibility is preserved; however, changes were necessary to
  accommodate attribute certificate transfer and key agreement
  techniques for key management.





















Housley                     Standards Track                     [Page 1]

RFC 2630              Cryptographic Message Syntax             June 1999


Table of Contents

  1   Introduction .................................................  4
  2   General Overview .............................................  4
  3   General Syntax ...............................................  5
  4   Data Content Type ............................................  5
  5   Signed-data Content Type .....................................  6
      5.1  SignedData Type .........................................  7
      5.2  EncapsulatedContentInfo Type ............................  8
      5.3  SignerInfo Type .........................................  9
      5.4  Message Digest Calculation Process ...................... 11
      5.5  Message Signature Generation Process .................... 12
      5.6  Message Signature Verification Process .................. 12
  6   Enveloped-data Content Type .................................. 12
      6.1  EnvelopedData Type ...................................... 14
      6.2  RecipientInfo Type ...................................... 15
           6.2.1  KeyTransRecipientInfo Type ....................... 16
           6.2.2  KeyAgreeRecipientInfo Type ....................... 17
           6.2.3  KEKRecipientInfo Type ............................ 19
      6.3  Content-encryption Process .............................. 20
      6.4  Key-encryption Process .................................. 20
  7   Digested-data Content Type ................................... 21
  8   Encrypted-data Content Type .................................. 22
  9   Authenticated-data Content Type .............................. 23
      9.1  AuthenticatedData Type .................................. 23
      9.2  MAC Generation .......................................... 25
      9.3  MAC Verification ........................................ 26
  10  Useful Types ................................................. 27
      10.1  Algorithm Identifier Types ............................. 27
            10.1.1  DigestAlgorithmIdentifier ...................... 27
            10.1.2  SignatureAlgorithmIdentifier ................... 27
            10.1.3  KeyEncryptionAlgorithmIdentifier ............... 28
            10.1.4  ContentEncryptionAlgorithmIdentifier ........... 28
            10.1.5  MessageAuthenticationCodeAlgorithm ............. 28
      10.2  Other Useful Types ..................................... 28
            10.2.1  CertificateRevocationLists ..................... 28
            10.2.2  CertificateChoices ............................. 29
            10.2.3  CertificateSet ................................. 29
            10.2.4  IssuerAndSerialNumber .......................... 30
            10.2.5  CMSVersion ..................................... 30
            10.2.6  UserKeyingMaterial ............................. 30
            10.2.7  OtherKeyAttribute .............................. 30









Housley                     Standards Track                     [Page 2]

RFC 2630              Cryptographic Message Syntax             June 1999


  11  Useful Attributes ............................................ 31
      11.1  Content Type ........................................... 31
      11.2  Message Digest ......................................... 32
      11.3  Signing Time ........................................... 32
      11.4  Countersignature ....................................... 34
  12  Supported Algorithms ......................................... 35
      12.1  Digest Algorithms ...................................... 35
            12.1.1  SHA-1 .......................................... 35
            12.1.2  MD5 ............................................ 35
      12.2  Signature Algorithms ................................... 36
            12.2.1  DSA ............................................ 36
            12.2.2  RSA ............................................ 36
      12.3  Key Management Algorithms .............................. 36
            12.3.1  Key Agreement Algorithms ....................... 36
                    12.3.1.1  X9.42 Ephemeral-Static Diffie-Hellman. 37
            12.3.2  Key Transport Algorithms ....................... 38
                    12.3.2.1  RSA .................................. 39
            12.3.3  Symmetric Key-Encryption Key Algorithms ........ 39
                    12.3.3.1  Triple-DES Key Wrap .................. 40
                    12.3.3.2  RC2 Key Wrap ......................... 41
     12.4  Content Encryption Algorithms ........................... 41
           12.4.1  Triple-DES CBC .................................. 42
           12.4.2  RC2 CBC ......................................... 42
     12.5  Message Authentication Code Algorithms .................. 42
           12.5.1  HMAC with SHA-1 ................................. 43
     12.6  Triple-DES and RC2 Key Wrap Algorithms .................. 43
           12.6.1  Key Checksum .................................... 44
           12.6.2  Triple-DES Key Wrap ............................. 44
           12.6.3  Triple-DES Key Unwrap ........................... 44
           12.6.4  RC2 Key Wrap .................................... 45
           12.6.5  RC2 Key Unwrap .................................. 46
  Appendix A:  ASN.1 Module ........................................ 47
  References ....................................................... 55
  Security Considerations .......................................... 56
  Acknowledgments .................................................. 58
  Author's Address ................................................. 59
  Full Copyright Statement ......................................... 60














Housley                     Standards Track                     [Page 3]

RFC 2630              Cryptographic Message Syntax             June 1999


1  Introduction

  This document describes the Cryptographic Message Syntax.  This
  syntax is used to digitally sign, digest, authenticate, or encrypt
  arbitrary messages.

  The Cryptographic Message Syntax describes an encapsulation syntax
  for data protection.  It supports digital signatures, message
  authentication codes, and encryption.  The syntax allows multiple
  encapsulation, so one encapsulation envelope can be nested inside
  another.  Likewise, one party can digitally sign some previously
  encapsulated data.  It also allows arbitrary attributes, such as
  signing time, to be signed along with the message content, and
  provides for other attributes such as countersignatures to be
  associated with a signature.

  The Cryptographic Message Syntax can support a variety of
  architectures for certificate-based key management, such as the one
  defined by the PKIX working group.

  The Cryptographic Message Syntax values are generated using ASN.1
  [X.208-88], using BER-encoding [X.209-88].  Values are typically
  represented as octet strings.  While many systems are capable of
  transmitting arbitrary octet strings reliably, it is well known that
  many electronic-mail systems are not.  This document does not address
  mechanisms for encoding octet strings for reliable transmission in
  such environments.

2  General Overview

  The Cryptographic Message Syntax (CMS) is general enough to support
  many different content types.  This document defines one protection
  content, ContentInfo.  ContentInfo encapsulates a single identified
  content type, and the identified type may provide further
  encapsulation.  This document defines six content types: data,
  signed-data, enveloped-data, digested-data, encrypted-data, and
  authenticated-data.  Additional content types can be defined outside
  this document.

  An implementation that conforms to this specification must implement
  the protection content, ContentInfo, and must implement the data,
  signed-data, and enveloped-data content types.  The other content
  types may be implemented if desired.

  As a general design philosophy, each content type permits single pass
  processing using indefinite-length Basic Encoding Rules (BER)
  encoding.  Single-pass operation is especially helpful if content is
  large, stored on tapes, or is "piped" from another process.  Single-



Housley                     Standards Track                     [Page 4]

RFC 2630              Cryptographic Message Syntax             June 1999


  pass operation has one significant drawback: it is difficult to
  perform encode operations using the Distinguished Encoding Rules
  (DER) [X.509-88] encoding in a single pass since the lengths of the
  various components may not be known in advance.  However, signed
  attributes within the signed-data content type and authenticated
  attributes within the authenticated-data content type require DER
  encoding.  Signed attributes and authenticated attributes must be
  transmitted in DER form to ensure that recipients can verify a
  content that contains one or more unrecognized attributes.  Signed
  attributes and authenticated attributes are the only CMS data types
  that require DER encoding.

3  General Syntax

  The Cryptographic Message Syntax (CMS) associates a content type
  identifier with a content.  The syntax shall have ASN.1 type
  ContentInfo:

     ContentInfo ::= SEQUENCE {
       contentType ContentType,
       content [0] EXPLICIT ANY DEFINED BY contentType }

     ContentType ::= OBJECT IDENTIFIER

  The fields of ContentInfo have the following meanings:

     contentType indicates the type of the associated content.  It is
     an object identifier; it is a unique string of integers assigned
     by an authority that defines the content type.

     content is the associated content.  The type of content can be
     determined uniquely by contentType.  Content types for data,
     signed-data, enveloped-data, digested-data, encrypted-data, and
     authenticated-data are defined in this document.  If additional
     content types are defined in other documents, the ASN.1 type
     defined should not be a CHOICE type.

4  Data Content Type

  The following object identifier identifies the data content type:

     id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs7(7) 1 }

  The data content type is intended to refer to arbitrary octet
  strings, such as ASCII text files; the interpretation is left to the
  application.  Such strings need not have any internal structure




Housley                     Standards Track                     [Page 5]

RFC 2630              Cryptographic Message Syntax             June 1999


  (although they could have their own ASN.1 definition or other
  structure).

  The data content type is generally encapsulated in the signed-data,
  enveloped-data, digested-data, encrypted-data, or authenticated-data
  content type.

5  Signed-data Content Type

  The signed-data content type consists of a content of any type and
  zero or more signature values.  Any number of signers in parallel can
  sign any type of content.

  The typical application of the signed-data content type represents
  one signer's digital signature on content of the data content type.
  Another typical application disseminates certificates and certificate
  revocation lists (CRLs).

  The process by which signed-data is constructed involves the
  following steps:

     1.  For each signer, a message digest, or hash value, is computed
     on the content with a signer-specific message-digest algorithm.
     If the signer is signing any information other than the content,
     the message digest of the content and the other information are
     digested with the signer's message digest algorithm (see Section
     5.4), and the result becomes the "message digest."

     2.  For each signer, the message digest is digitally signed using
     the signer's private key.

     3.  For each signer, the signature value and other signer-specific
     information are collected into a SignerInfo value, as defined in
     Section 5.3.  Certificates and CRLs for each signer, and those not
     corresponding to any signer, are collected in this step.

     4.  The message digest algorithms for all the signers and the
     SignerInfo values for all the signers are collected together with
     the content into a SignedData value, as defined in Section 5.1.

  A recipient independently computes the message digest.  This message
  digest and the signer's public key are used to verify the signature
  value.  The signer's public key is referenced either by an issuer
  distinguished name along with an issuer-specific serial number or by
  a subject key identifier that uniquely identifies the certificate
  containing the public key.  The signer's certificate may be included
  in the SignedData certificates field.




Housley                     Standards Track                     [Page 6]

RFC 2630              Cryptographic Message Syntax             June 1999


  This section is divided into six parts.  The first part describes the
  top-level type SignedData, the second part describes
  EncapsulatedContentInfo, the third part describes the per-signer
  information type SignerInfo, and the fourth, fifth, and sixth parts
  describe the message digest calculation, signature generation, and
  signature verification processes, respectively.

5.1  SignedData Type

  The following object identifier identifies the signed-data content
  type:

     id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }

  The signed-data content type shall have ASN.1 type SignedData:

     SignedData ::= SEQUENCE {
       version CMSVersion,
       digestAlgorithms DigestAlgorithmIdentifiers,
       encapContentInfo EncapsulatedContentInfo,
       certificates [0] IMPLICIT CertificateSet OPTIONAL,
       crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,
       signerInfos SignerInfos }

     DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

     SignerInfos ::= SET OF SignerInfo

  The fields of type SignedData have the following meanings:

     version is the syntax version number.  If no attribute
     certificates are present in the certificates field, the
     encapsulated content type is id-data, and all of the elements of
     SignerInfos are version 1, then the value of version shall be 1.
     Alternatively, if attribute certificates are present, the
     encapsulated content type is other than id-data, or any of the
     elements of SignerInfos are version 3, then the value of version
     shall be 3.

     digestAlgorithms is a collection of message digest algorithm
     identifiers.  There may be any number of elements in the
     collection, including zero.  Each element identifies the message
     digest algorithm, along with any associated parameters, used by
     one or more signer.  The collection is intended to list the
     message digest algorithms employed by all of the signers, in any
     order, to facilitate one-pass signature verification.  The message
     digesting process is described in Section 5.4.



Housley                     Standards Track                     [Page 7]

RFC 2630              Cryptographic Message Syntax             June 1999


     encapContentInfo is the signed content, consisting of a content
     type identifier and the content itself.  Details of the
     EncapsulatedContentInfo type are discussed in section 5.2.

     certificates is a collection of certificates.  It is intended that
     the set of certificates be sufficient to contain chains from a
     recognized "root" or "top-level certification authority" to all of
     the signers in the signerInfos field.  There may be more
     certificates than necessary, and there may be certificates
     sufficient to contain chains from two or more independent top-
     level certification authorities.  There may also be fewer
     certificates than necessary, if it is expected that recipients
     have an alternate means of obtaining necessary certificates (e.g.,
     from a previous set of certificates).  As discussed above, if
     attribute certificates are present, then the value of version
     shall be 3.

     crls is a collection of certificate revocation lists (CRLs).  It
     is intended that the set contain information sufficient to
     determine whether or not the certificates in the certificates
     field are valid, but such correspondence is not necessary.  There
     may be more CRLs than necessary, and there may also be fewer CRLs
     than necessary.

     signerInfos is a collection of per-signer information.  There may
     be any number of elements in the collection, including zero.  The
     details of the SignerInfo type are discussed in section 5.3.

5.2  EncapsulatedContentInfo Type

  The content is represented in the type EncapsulatedContentInfo:

     EncapsulatedContentInfo ::= SEQUENCE {
       eContentType ContentType,
       eContent [0] EXPLICIT OCTET STRING OPTIONAL }

     ContentType ::= OBJECT IDENTIFIER

  The fields of type EncapsulatedContentInfo have the following
  meanings:

     eContentType is an object identifier that uniquely specifies the
     content type.

     eContent is the content itself, carried as an octet string.  The
     eContent need not be DER encoded.





Housley                     Standards Track                     [Page 8]

RFC 2630              Cryptographic Message Syntax             June 1999


  The optional omission of the eContent within the
  EncapsulatedContentInfo field makes it possible to construct
  "external signatures."  In the case of external signatures, the
  content being signed is absent from the EncapsulatedContentInfo value
  included in the signed-data content type.  If the eContent value
  within EncapsulatedContentInfo is absent, then the signatureValue is
  calculated and the eContentType is assigned as though the eContent
  value was present.

  In the degenerate case where there are no signers, the
  EncapsulatedContentInfo value being "signed" is irrelevant.  In this
  case, the content type within the EncapsulatedContentInfo value being
  "signed" should be id-data (as defined in section 4), and the content
  field of the EncapsulatedContentInfo value should be omitted.

5.3  SignerInfo Type

  Per-signer information is represented in the type SignerInfo:

     SignerInfo ::= SEQUENCE {
       version CMSVersion,
       sid SignerIdentifier,
       digestAlgorithm DigestAlgorithmIdentifier,
       signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
       signatureAlgorithm SignatureAlgorithmIdentifier,
       signature SignatureValue,
       unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

     SignerIdentifier ::= CHOICE {
       issuerAndSerialNumber IssuerAndSerialNumber,
       subjectKeyIdentifier [0] SubjectKeyIdentifier }

     SignedAttributes ::= SET SIZE (1..MAX) OF Attribute

     UnsignedAttributes ::= SET SIZE (1..MAX) OF Attribute

     Attribute ::= SEQUENCE {
       attrType OBJECT IDENTIFIER,
       attrValues SET OF AttributeValue }

     AttributeValue ::= ANY

     SignatureValue ::= OCTET STRING

  The fields of type SignerInfo have the following meanings:

     version is the syntax version number.  If the SignerIdentifier is
     the CHOICE issuerAndSerialNumber, then the version shall be 1.  If



Housley                     Standards Track                     [Page 9]

RFC 2630              Cryptographic Message Syntax             June 1999


     the SignerIdentifier is subjectKeyIdentifier, then the version
     shall be 3.

     sid specifies the signer's certificate (and thereby the signer's
     public key).  The signer's public key is needed by the recipient
     to verify the signature.  SignerIdentifier provides two
     alternatives for specifying the signer's public key.  The
     issuerAndSerialNumber alternative identifies the signer's
     certificate by the issuer's distinguished name and the certificate
     serial number; the subjectKeyIdentifier identifies the signer's
     certificate by the X.509 subjectKeyIdentifier extension value.

     digestAlgorithm identifies the message digest algorithm, and any
     associated parameters, used by the signer.  The message digest is
     computed on either the content being signed or the content
     together with the signed attributes using the process described in
     section 5.4.  The message digest algorithm should be among those
     listed in the digestAlgorithms field of the associated SignerData.

     signedAttributes is a collection of attributes that are signed.
     The field is optional, but it must be present if the content type
     of the EncapsulatedContentInfo value being signed is not id-data.
     Each SignedAttribute in the SET must be DER encoded.  Useful
     attribute types, such as signing time, are defined in Section 11.
     If the field is present, it must contain, at a minimum, the
     following two attributes:

        A content-type attribute having as its value the content type
        of the EncapsulatedContentInfo value being signed.  Section
        11.1 defines the content-type attribute.  The content-type
        attribute is not required when used as part of a
        countersignature unsigned attribute as defined in section 11.4.

        A message-digest attribute, having as its value the message
        digest of the content.  Section 11.2 defines the message-digest
        attribute.

     signatureAlgorithm identifies the signature algorithm, and any
     associated parameters, used by the signer to generate the digital
     signature.

     signature is the result of digital signature generation, using the
     message digest and the signer's private key.

     unsignedAttributes is a collection of attributes that are not
     signed.  The field is optional.  Useful attribute types, such as
     countersignatures, are defined in Section 11.




Housley                     Standards Track                    [Page 10]

RFC 2630              Cryptographic Message Syntax             June 1999


  The fields of type SignedAttribute and UnsignedAttribute have the
  following meanings:

     attrType indicates the type of attribute.  It is an object
     identifier.

     attrValues is a set of values that comprise the attribute.  The
     type of each value in the set can be determined uniquely by
     attrType.

5.4  Message Digest Calculation Process

  The message digest calculation process computes a message digest on
  either the content being signed or the content together with the
  signed attributes.  In either case, the initial input to the message
  digest calculation process is the "value" of the encapsulated content
  being signed.  Specifically, the initial input is the
  encapContentInfo eContent OCTET STRING to which the signing process
  is applied.  Only the octets comprising the value of the eContent
  OCTET STRING are input to the message digest algorithm, not the tag
  or the length octets.

  The result of the message digest calculation process depends on
  whether the signedAttributes field is present.  When the field is
  absent, the result is just the message digest of the content as
  described above.  When the field is present, however, the result is
  the message digest of the complete DER encoding of the
  SignedAttributes value contained in the signedAttributes field.
  Since the SignedAttributes value, when present, must contain the
  content type and the content message digest attributes, those values
  are indirectly included in the result.  The content type attribute is
  not required when used as part of a countersignature unsigned
  attribute as defined in section 11.4.  A separate encoding of the
  signedAttributes field is performed for message digest calculation.
  The IMPLICIT [0] tag in the signedAttributes field is not used for
  the DER encoding, rather an EXPLICIT SET OF tag is used.  That is,
  the DER encoding of the SET OF tag, rather than of the IMPLICIT [0]
  tag, is to be included in the message digest calculation along with
  the length and content octets of the SignedAttributes value.

  When the signedAttributes field is absent, then only the octets
  comprising the value of the signedData encapContentInfo eContent
  OCTET STRING (e.g., the contents of a file) are input to the message
  digest calculation.  This has the advantage that the length of the
  content being signed need not be known in advance of the signature
  generation process.





Housley                     Standards Track                    [Page 11]

RFC 2630              Cryptographic Message Syntax             June 1999


  Although the encapContentInfo eContent OCTET STRING tag and length
  octets are not included in the message digest calculation, they are
  still protected by other means.  The length octets are protected by
  the nature of the message digest algorithm since it is
  computationally infeasible to find any two distinct messages of any
  length that have the same message digest.

5.5  Message Signature Generation Process

  The input to the signature generation process includes the result of
  the message digest calculation process and the signer's private key.
  The details of the signature generation depend on the signature
  algorithm employed.  The object identifier, along with any
  parameters, that specifies the signature algorithm employed by the
  signer is carried in the signatureAlgorithm field.  The signature
  value generated by the signer is encoded as an OCTET STRING and
  carried in the signature field.

5.6  Message Signature Verification Process

  The input to the signature verification process includes the result
  of the message digest calculation process and the signer's public
  key.  The recipient may obtain the correct public key for the signer
  by any means, but the preferred method is from a certificate obtained
  from the SignedData certificates field.  The selection and validation
  of the signer's public key may be based on certification path
  validation (see [PROFILE]) as well as other external context, but is
  beyond the scope of this document.  The details of the signature
  verification depend on the signature algorithm employed.

  The recipient may not rely on any message digest values computed by
  the originator.  If the signedData signerInfo includes
  signedAttributes, then the content message digest must be calculated
  as described in section 5.4.  For the signature to be valid, the
  message digest value calculated by the recipient must be the same as
  the value of the messageDigest attribute included in the
  signedAttributes of the signedData signerInfo.

6  Enveloped-data Content Type

  The enveloped-data content type consists of an encrypted content of
  any type and encrypted content-encryption keys for one or more
  recipients.  The combination of the encrypted content and one
  encrypted content-encryption key for a recipient is a "digital
  envelope" for that recipient.  Any type of content can be enveloped
  for an arbitrary number of recipients using any of the three key
  management techniques for each recipient.




Housley                     Standards Track                    [Page 12]

RFC 2630              Cryptographic Message Syntax             June 1999


  The typical application of the enveloped-data content type will
  represent one or more recipients' digital envelopes on content of the
  data or signed-data content types.

  Enveloped-data is constructed by the following steps:

     1.  A content-encryption key for a particular content-encryption
     algorithm is generated at random.

     2.  The content-encryption key is encrypted for each recipient.
     The details of this encryption depend on the key management
     algorithm used, but three general techniques are supported:

        key transport:  the content-encryption key is encrypted in the
        recipient's public key;

        key agreement:  the recipient's public key and the sender's
        private key are used to generate a pairwise symmetric key, then
        the content-encryption key is encrypted in the pairwise
        symmetric key; and

        symmetric key-encryption keys:  the content-encryption key is
        encrypted in a previously distributed symmetric key-encryption
        key.

     3.  For each recipient, the encrypted content-encryption key and
     other recipient-specific information are collected into a
     RecipientInfo value, defined in Section 6.2.

     4.  The content is encrypted with the content-encryption key.
     Content encryption may require that the content be padded to a
     multiple of some block size; see Section 6.3.

     5.  The RecipientInfo values for all the recipients are collected
     together with the encrypted content to form an EnvelopedData value
     as defined in Section 6.1.

  A recipient opens the digital envelope by decrypting one of the
  encrypted content-encryption keys and then decrypting the encrypted
  content with the recovered content-encryption key.

  This section is divided into four parts.  The first part describes
  the top-level type EnvelopedData, the second part describes the per-
  recipient information type RecipientInfo, and the third and fourth
  parts describe the content-encryption and key-encryption processes.






Housley                     Standards Track                    [Page 13]

RFC 2630              Cryptographic Message Syntax             June 1999


6.1  EnvelopedData Type

  The following object identifier identifies the enveloped-data content
  type:

     id-envelopedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs7(7) 3 }

  The enveloped-data content type shall have ASN.1 type EnvelopedData:

     EnvelopedData ::= SEQUENCE {
       version CMSVersion,
       originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
       recipientInfos RecipientInfos,
       encryptedContentInfo EncryptedContentInfo,
       unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }

     OriginatorInfo ::= SEQUENCE {
       certs [0] IMPLICIT CertificateSet OPTIONAL,
       crls [1] IMPLICIT CertificateRevocationLists OPTIONAL }

     RecipientInfos ::= SET OF RecipientInfo

     EncryptedContentInfo ::= SEQUENCE {
       contentType ContentType,
       contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
       encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL }

     EncryptedContent ::= OCTET STRING

     UnprotectedAttributes ::= SET SIZE (1..MAX) OF Attribute

  The fields of type EnvelopedData have the following meanings:

     version is the syntax version number.  If originatorInfo is
     present, then version shall be 2.  If any of the RecipientInfo
     structures included have a version other than 0, then the version
     shall be 2.  If unprotectedAttrs is present, then version shall be
     2.  If originatorInfo is absent, all of the RecipientInfo
     structures are version 0, and unprotectedAttrs is absent, then
     version shall be 0.

     originatorInfo optionally provides information about the
     originator.  It is present only if required by the key management
     algorithm.  It may contain certificates and CRLs:

        certs is a collection of certificates.  certs may contain
        originator certificates associated with several different key



Housley                     Standards Track                    [Page 14]

RFC 2630              Cryptographic Message Syntax             June 1999


        management algorithms.  certs may also contain attribute
        certificates associated with the originator.  The certificates
        contained in certs are intended to be sufficient to make chains
        from a recognized "root" or "top-level certification authority"
        to all recipients.  However, certs may contain more
        certificates than necessary, and there may be certificates
        sufficient to make chains from two or more independent top-
        level certification authorities.  Alternatively, certs may
        contain fewer certificates than necessary, if it is expected
        that recipients have an alternate means of obtaining necessary
        certificates (e.g., from a previous set of certificates).

        crls is a collection of CRLs.  It is intended that the set
        contain information sufficient to determine whether or not the
        certificates in the certs field are valid, but such
        correspondence is not necessary.  There may be more CRLs than
        necessary, and there may also be fewer CRLs than necessary.

     recipientInfos is a collection of per-recipient information.
     There must be at least one element in the collection.

     encryptedContentInfo is the encrypted content information.

     unprotectedAttrs is a collection of attributes that are not
     encrypted.  The field is optional.  Useful attribute types are
     defined in Section 11.

  The fields of type EncryptedContentInfo have the following meanings:

     contentType indicates the type of content.

     contentEncryptionAlgorithm identifies the content-encryption
     algorithm, and any associated parameters, used to encrypt the
     content.  The content-encryption process is described in Section
     6.3.  The same content-encryption algorithm and content-encryption
     key is used for all recipients.

     encryptedContent is the result of encrypting the content.  The
     field is optional, and if the field is not present, its intended
     value must be supplied by other means.

  The recipientInfos field comes before the encryptedContentInfo field
  so that an EnvelopedData value may be processed in a single pass.

6.2  RecipientInfo Type

  Per-recipient information is represented in the type RecipientInfo.
  RecipientInfo has a different format for the three key management



Housley                     Standards Track                    [Page 15]

RFC 2630              Cryptographic Message Syntax             June 1999


  techniques that are supported: key transport, key agreement, and
  previously distributed symmetric key-encryption keys.  Any of the
  three key management techniques can be used for each recipient of the
  same encrypted content.  In all cases, the content-encryption key is
  transferred to one or more recipient in encrypted form.

     RecipientInfo ::= CHOICE {
       ktri KeyTransRecipientInfo,
       kari [1] KeyAgreeRecipientInfo,
       kekri [2] KEKRecipientInfo }

     EncryptedKey ::= OCTET STRING

6.2.1  KeyTransRecipientInfo Type

  Per-recipient information using key transport is represented in the
  type KeyTransRecipientInfo.  Each instance of KeyTransRecipientInfo
  transfers the content-encryption key to one recipient.

     KeyTransRecipientInfo ::= SEQUENCE {
       version CMSVersion,  -- always set to 0 or 2
       rid RecipientIdentifier,
       keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
       encryptedKey EncryptedKey }

     RecipientIdentifier ::= CHOICE {
       issuerAndSerialNumber IssuerAndSerialNumber,
       subjectKeyIdentifier [0] SubjectKeyIdentifier }

  The fields of type KeyTransRecipientInfo have the following meanings:

     version is the syntax version number.  If the RecipientIdentifier
     is the CHOICE issuerAndSerialNumber, then the version shall be 0.
     If the RecipientIdentifier is subjectKeyIdentifier, then the
     version shall be 2.

     rid specifies the recipient's certificate or key that was used by
     the sender to protect the content-encryption key.  The
     RecipientIdentifier provides two alternatives for specifying the
     recipient's certificate, and thereby the recipient's public key.
     The recipient's certificate must contain a key transport public
     key.  The content-encryption key is encrypted with the recipient's
     public key.  The issuerAndSerialNumber alternative identifies the
     recipient's certificate by the issuer's distinguished name and the
     certificate serial number; the subjectKeyIdentifier identifies the
     recipient's certificate by the X.509 subjectKeyIdentifier
     extension value.




Housley                     Standards Track                    [Page 16]

RFC 2630              Cryptographic Message Syntax             June 1999


     keyEncryptionAlgorithm identifies the key-encryption algorithm,
     and any associated parameters, used to encrypt the content-
     encryption key for the recipient.  The key-encryption process is
     described in Section 6.4.

     encryptedKey is the result of encrypting the content-encryption
     key for the recipient.

6.2.2  KeyAgreeRecipientInfo Type

  Recipient information using key agreement is represented in the type
  KeyAgreeRecipientInfo.  Each instance of KeyAgreeRecipientInfo will
  transfer the content-encryption key to one or more recipient that
  uses the same key agreement algorithm and domain parameters for that
  algorithm.

     KeyAgreeRecipientInfo ::= SEQUENCE {
       version CMSVersion,  -- always set to 3
       originator [0] EXPLICIT OriginatorIdentifierOrKey,
       ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
       keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
       recipientEncryptedKeys RecipientEncryptedKeys }

     OriginatorIdentifierOrKey ::= CHOICE {
       issuerAndSerialNumber IssuerAndSerialNumber,
       subjectKeyIdentifier [0] SubjectKeyIdentifier,
       originatorKey [1] OriginatorPublicKey }

     OriginatorPublicKey ::= SEQUENCE {
       algorithm AlgorithmIdentifier,
       publicKey BIT STRING }

     RecipientEncryptedKeys ::= SEQUENCE OF RecipientEncryptedKey

     RecipientEncryptedKey ::= SEQUENCE {
       rid KeyAgreeRecipientIdentifier,
       encryptedKey EncryptedKey }

     KeyAgreeRecipientIdentifier ::= CHOICE {
       issuerAndSerialNumber IssuerAndSerialNumber,
       rKeyId [0] IMPLICIT RecipientKeyIdentifier }

     RecipientKeyIdentifier ::= SEQUENCE {
       subjectKeyIdentifier SubjectKeyIdentifier,
       date GeneralizedTime OPTIONAL,
       other OtherKeyAttribute OPTIONAL }

     SubjectKeyIdentifier ::= OCTET STRING



Housley                     Standards Track                    [Page 17]

RFC 2630              Cryptographic Message Syntax             June 1999


  The fields of type KeyAgreeRecipientInfo have the following meanings:

     version is the syntax version number.  It shall always be 3.

     originator is a CHOICE with three alternatives specifying the
     sender's key agreement public key.  The sender uses the
     corresponding private key and the recipient's public key to
     generate a pairwise key.  The content-encryption key is encrypted
     in the pairwise key.  The issuerAndSerialNumber alternative
     identifies the sender's certificate, and thereby the sender's
     public key, by the issuer's distinguished name and the certificate
     serial number.  The subjectKeyIdentifier alternative identifies
     the sender's certificate, and thereby the sender's public key, by
     the X.509 subjectKeyIdentifier extension value.  The originatorKey
     alternative includes the algorithm identifier and sender's key
     agreement public key. Permitting originator anonymity since the
     public key is not certified.

     ukm is optional.  With some key agreement algorithms, the sender
     provides a User Keying Material (UKM) to ensure that a different
     key is generated each time the same two parties generate a
     pairwise key.

     keyEncryptionAlgorithm identifies the key-encryption algorithm,
     and any associated parameters, used to encrypt the content-
     encryption key in the key-encryption key.  The key-encryption
     process is described in Section 6.4.

     recipientEncryptedKeys includes a recipient identifier and
     encrypted key for one or more recipients.  The
     KeyAgreeRecipientIdentifier is a CHOICE with two alternatives
     specifying the recipient's certificate, and thereby the
     recipient's public key, that was used by the sender to generate a
     pairwise key-encryption key.  The recipient's certificate must
     contain a key agreement public key.  The content-encryption key is
     encrypted in the pairwise key-encryption key.  The
     issuerAndSerialNumber alternative identifies the recipient's
     certificate by the issuer's distinguished name and the certificate
     serial number; the RecipientKeyIdentifier is described below.  The
     encryptedKey is the result of encrypting the content-encryption
     key in the pairwise key-encryption key generated using the key
     agreement algorithm.

  The fields of type RecipientKeyIdentifier have the following
  meanings:

     subjectKeyIdentifier identifies the recipient's certificate by the
     X.509 subjectKeyIdentifier extension value.



Housley                     Standards Track                    [Page 18]

RFC 2630              Cryptographic Message Syntax             June 1999


     date is optional.  When present, the date specifies which of the
     recipient's previously distributed UKMs was used by the sender.

     other is optional.  When present, this field contains additional
     information used by the recipient to locate the public keying
     material used by the sender.

6.2.3  KEKRecipientInfo Type

  Recipient information using previously distributed symmetric keys is
  represented in the type KEKRecipientInfo.  Each instance of
  KEKRecipientInfo will transfer the content-encryption key to one or
  more recipients who have the previously distributed key-encryption
  key.

     KEKRecipientInfo ::= SEQUENCE {
       version CMSVersion,  -- always set to 4
       kekid KEKIdentifier,
       keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
       encryptedKey EncryptedKey }

     KEKIdentifier ::= SEQUENCE {
       keyIdentifier OCTET STRING,
       date GeneralizedTime OPTIONAL,
       other OtherKeyAttribute OPTIONAL }

  The fields of type KEKRecipientInfo have the following meanings:

     version is the syntax version number.  It shall always be 4.

     kekid specifies a symmetric key-encryption key that was previously
     distributed to the sender and one or more recipients.

     keyEncryptionAlgorithm identifies the key-encryption algorithm,
     and any associated parameters, used to encrypt the content-
     encryption key with the key-encryption key.  The key-encryption
     process is described in Section 6.4.

     encryptedKey is the result of encrypting the content-encryption
     key in the key-encryption key.

  The fields of type KEKIdentifier have the following meanings:

     keyIdentifier identifies the key-encryption key that was
     previously distributed to the sender and one or more recipients.

     date is optional.  When present, the date specifies a single key-
     encryption key from a set that was previously distributed.



Housley                     Standards Track                    [Page 19]

RFC 2630              Cryptographic Message Syntax             June 1999


     other is optional.  When present, this field contains additional
     information used by the recipient to determine the key-encryption
     key used by the sender.

6.3  Content-encryption Process

  The content-encryption key for the desired content-encryption
  algorithm is randomly generated.  The data to be protected is padded
  as described below, then the padded data is encrypted using the
  content-encryption key.  The encryption operation maps an arbitrary
  string of octets (the data) to another string of octets (the
  ciphertext) under control of a content-encryption key.  The encrypted
  data is included in the envelopedData encryptedContentInfo
  encryptedContent OCTET STRING.

  The input to the content-encryption process is the "value" of the
  content being enveloped.  Only the value octets of the envelopedData
  encryptedContentInfo encryptedContent OCTET STRING are encrypted; the
  OCTET STRING tag and length octets are not encrypted.

  Some content-encryption algorithms assume the input length is a
  multiple of k octets, where k is greater than one.  For such
  algorithms, the input shall be padded at the trailing end with
  k-(lth mod k) octets all having value k-(lth mod k), where lth is
  the length of the input.  In other words, the input is padded at
  the trailing end with one of the following strings:

                    01 -- if lth mod k = k-1
                 02 02 -- if lth mod k = k-2
                     .
                     .
                     .
           k k ... k k -- if lth mod k = 0

  The padding can be removed unambiguously since all input is padded,
  including input values that are already a multiple of the block size,
  and no padding string is a suffix of another.  This padding method is
  well defined if and only if k is less than 256.

6.4  Key-encryption Process

  The input to the key-encryption process -- the value supplied to the
  recipient's key-encryption algorithm -- is just the "value" of the
  content-encryption key.

  Any of the three key management techniques can be used for each
  recipient of the same encrypted content.




Housley                     Standards Track                    [Page 20]

RFC 2630              Cryptographic Message Syntax             June 1999


7  Digested-data Content Type

  The digested-data content type consists of content of any type and a
  message digest of the content.

  Typically, the digested-data content type is used to provide content
  integrity, and the result generally becomes an input to the
  enveloped-data content type.

  The following steps construct digested-data:

     1.  A message digest is computed on the content with a message-
     digest algorithm.

     2.  The message-digest algorithm and the message digest are
     collected together with the content into a DigestedData value.

  A recipient verifies the message digest by comparing the message
  digest to an independently computed message digest.

  The following object identifier identifies the digested-data content
  type:

     id-digestedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs7(7) 5 }

  The digested-data content type shall have ASN.1 type DigestedData:

     DigestedData ::= SEQUENCE {
       version CMSVersion,
       digestAlgorithm DigestAlgorithmIdentifier,
       encapContentInfo EncapsulatedContentInfo,
       digest Digest }

     Digest ::= OCTET STRING

  The fields of type DigestedData have the following meanings:

     version is the syntax version number.  If the encapsulated content
     type is id-data, then the value of version shall be 0; however, if
     the encapsulated content type is other than id-data, then the
     value of version shall be 2.

     digestAlgorithm identifies the message digest algorithm, and any
     associated parameters, under which the content is digested.  The
     message-digesting process is the same as in Section 5.4 in the
     case when there are no signed attributes.




Housley                     Standards Track                    [Page 21]

RFC 2630              Cryptographic Message Syntax             June 1999


     encapContentInfo is the content that is digested, as defined in
     section 5.2.

     digest is the result of the message-digesting process.

  The ordering of the digestAlgorithm field, the encapContentInfo
  field, and the digest field makes it possible to process a
  DigestedData value in a single pass.

8  Encrypted-data Content Type

  The encrypted-data content type consists of encrypted content of any
  type.  Unlike the enveloped-data content type, the encrypted-data
  content type has neither recipients nor encrypted content-encryption
  keys.  Keys must be managed by other means.

  The typical application of the encrypted-data content type will be to
  encrypt the content of the data content type for local storage,
  perhaps where the encryption key is a password.

  The following object identifier identifies the encrypted-data content
  type:

     id-encryptedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs7(7) 6 }

  The encrypted-data content type shall have ASN.1 type EncryptedData:

     EncryptedData ::= SEQUENCE {
       version CMSVersion,
       encryptedContentInfo EncryptedContentInfo,
       unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }

  The fields of type EncryptedData have the following meanings:

     version is the syntax version number.  If unprotectedAttrs is
     present, then version shall be 2.  If unprotectedAttrs is absent,
     then version shall be 0.

     encryptedContentInfo is the encrypted content information, as
     defined in Section 6.1.

     unprotectedAttrs is a collection of attributes that are not
     encrypted.  The field is optional.  Useful attribute types are
     defined in Section 11.






Housley                     Standards Track                    [Page 22]

RFC 2630              Cryptographic Message Syntax             June 1999


9  Authenticated-data Content Type

  The authenticated-data content type consists of content of any type,
  a message authentication code (MAC), and encrypted authentication
  keys for one or more recipients.  The combination of the MAC and one
  encrypted authentication key for a recipient is necessary for that
  recipient to verify the integrity of the content.  Any type of
  content can be integrity protected for an arbitrary number of
  recipients.

  The process by which authenticated-data is constructed involves the
  following steps:

     1.  A message-authentication key for a particular message-
     authentication algorithm is generated at random.

     2.  The message-authentication key is encrypted for each
     recipient.  The details of this encryption depend on the key
     management algorithm used.

     3.  For each recipient, the encrypted message-authentication key
     and other recipient-specific information are collected into a
     RecipientInfo value, defined in Section 6.2.

     4.  Using the message-authentication key, the originator computes
     a MAC value on the content.  If the originator is authenticating
     any information in addition to the content (see Section 9.2), a
     message digest is calculated on the content, the message digest of
     the content and the other information are authenticated using the
     message-authentication key, and the result becomes the "MAC
     value."

9.1  AuthenticatedData Type

  The following object identifier identifies the authenticated-data
  content type:

     id-ct-authData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
         ct(1) 2 }











Housley                     Standards Track                    [Page 23]

RFC 2630              Cryptographic Message Syntax             June 1999


  The authenticated-data content type shall have ASN.1 type
  AuthenticatedData:

     AuthenticatedData ::= SEQUENCE {
       version CMSVersion,
       originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
       recipientInfos RecipientInfos,
       macAlgorithm MessageAuthenticationCodeAlgorithm,
       digestAlgorithm [1] DigestAlgorithmIdentifier OPTIONAL,
       encapContentInfo EncapsulatedContentInfo,
       authenticatedAttributes [2] IMPLICIT AuthAttributes OPTIONAL,
       mac MessageAuthenticationCode,
       unauthenticatedAttributes [3] IMPLICIT UnauthAttributes OPTIONAL }

     AuthAttributes ::= SET SIZE (1..MAX) OF Attribute

     UnauthAttributes ::= SET SIZE (1..MAX) OF Attribute

     MessageAuthenticationCode ::= OCTET STRING

  The fields of type AuthenticatedData have the following meanings:

     version is the syntax version number.  It shall be 0.

     originatorInfo optionally provides information about the
     originator.  It is present only if required by the key management
     algorithm.  It may contain certificates, attribute certificates,
     and CRLs, as defined in Section 6.1.

     recipientInfos is a collection of per-recipient information, as
     defined in Section 6.1.  There must be at least one element in the
     collection.

     macAlgorithm is a message authentication code (MAC) algorithm
     identifier.  It identifies the MAC algorithm, along with any
     associated parameters, used by the originator.  Placement of the
     macAlgorithm field facilitates one-pass processing by the
     recipient.

     digestAlgorithm identifies the message digest algorithm, and any
     associated parameters, used to compute a message digest on the
     encapsulated content if authenticated attributes are present.  The
     message digesting process is described in Section 9.2.  Placement
     of the digestAlgorithm field facilitates one-pass processing by
     the recipient.  If the digestAlgorithm field is present, then the
     authenticatedAttributes field must also be present.





Housley                     Standards Track                    [Page 24]

RFC 2630              Cryptographic Message Syntax             June 1999


     encapContentInfo is the content that is authenticated, as defined
     in section 5.2.

     authenticatedAttributes is a collection of authenticated
     attributes.  The authenticatedAttributes structure is optional,
     but it must be present if the content type of the
     EncapsulatedContentInfo value being authenticated is not id-data.
     If the authenticatedAttributes field is present, then the
     digestAlgorithm field must also be present.  Each
     AuthenticatedAttribute in the SET must be DER encoded.  Useful
     attribute types are defined in Section 11.  If the
     authenticatedAttributes field is present, it must contain, at a
     minimum, the following two attributes:

        A content-type attribute having as its value the content type
        of the EncapsulatedContentInfo value being authenticated.
        Section 11.1 defines the content-type attribute.

        A message-digest attribute, having as its value the message
        digest of the content.  Section 11.2 defines the message-digest
        attribute.

     mac is the message authentication code.

     unauthenticatedAttributes is a collection of attributes that are
     not authenticated.  The field is optional.  To date, no attributes
     have been defined for use as unauthenticated attributes, but other
     useful attribute types are defined in Section 11.

9.2  MAC Generation

  The MAC calculation process computes a message authentication code
  (MAC) on either the message being authenticated or a message digest
  of message being authenticated together with the originator's
  authenticated attributes.

  If authenticatedAttributes field is absent, the input to the MAC
  calculation process is the value of the encapContentInfo eContent
  OCTET STRING.  Only the octets comprising the value of the eContent
  OCTET STRING are input to the MAC algorithm; the tag and the length
  octets are omitted.  This has the advantage that the length of the
  content being authenticated need not be known in advance of the MAC
  generation process.

  If authenticatedAttributes field is present, the content-type
  attribute (as described in Section 11.1) and the message-digest
  attribute (as described in section 11.2) must be included, and the
  input to the MAC calculation process is the DER encoding of



Housley                     Standards Track                    [Page 25]

RFC 2630              Cryptographic Message Syntax             June 1999


  authenticatedAttributes.  A separate encoding of the
  authenticatedAttributes field is performed for message digest
  calculation.  The IMPLICIT [2] tag in the authenticatedAttributes
  field is not used for the DER encoding, rather an EXPLICIT SET OF tag
  is used.  That is, the DER encoding of the SET OF tag, rather than of
  the IMPLICIT [2] tag, is to be included in the message digest
  calculation along with the length and content octets of the
  authenticatedAttributes value.

  The message digest calculation process computes a message digest on
  the content being authenticated.  The initial input to the message
  digest calculation process is the "value" of the encapsulated content
  being authenticated.  Specifically, the input is the encapContentInfo
  eContent OCTET STRING to which the authentication process is applied.
  Only the octets comprising the value of the encapContentInfo eContent
  OCTET STRING are input to the message digest algorithm, not the tag
  or the length octets.  This has the advantage that the length of the
  content being authenticated need not be known in advance.  Although
  the encapContentInfo eContent OCTET STRING tag and length octets are
  not included in the message digest calculation, they are still
  protected by other means.  The length octets are protected by the
  nature of the message digest algorithm since it is computationally
  infeasible to find any two distinct messages of any length that have
  the same message digest.

  The input to the MAC calculation process includes the MAC input data,
  defined above, and an authentication key conveyed in a recipientInfo
  structure.  The details of MAC calculation depend on the MAC
  algorithm employed (e.g., HMAC).  The object identifier, along with
  any parameters, that specifies the MAC algorithm employed by the
  originator is carried in the macAlgorithm field.  The MAC value
  generated by the originator is encoded as an OCTET STRING and carried
  in the mac field.

9.3  MAC Verification

  The input to the MAC verification process includes the input data
  (determined based on the presence or absence of the
  authenticatedAttributes field, as defined in 9.2), and the
  authentication key conveyed in recipientInfo.  The details of the MAC
  verification process depend on the MAC algorithm employed.

  The recipient may not rely on any MAC values or message digest values
  computed by the originator.  The content is authenticated as
  described in section 9.2.  If the originator includes authenticated
  attributes, then the content of the authenticatedAttributes is
  authenticated as described in section 9.2.  For authentication to
  succeed, the message MAC value calculated by the recipient must be



Housley                     Standards Track                    [Page 26]

RFC 2630              Cryptographic Message Syntax             June 1999


  the same as the value of the mac field.  Similarly, for
  authentication to succeed when the authenticatedAttributes field is
  present, the content message digest value calculated by the recipient
  must be the same as the message digest value included in the
  authenticatedAttributes message-digest attribute.

10  Useful Types

  This section is divided into two parts.  The first part defines
  algorithm identifiers, and the second part defines other useful
  types.

10.1  Algorithm Identifier Types

  All of the algorithm identifiers have the same type:
  AlgorithmIdentifier.  The definition of AlgorithmIdentifier is
  imported from X.509 [X.509-88].

  There are many alternatives for each type of algorithm listed.  For
  each of these five types, Section 12 lists the algorithms that must
  be included in a CMS implementation.

10.1.1  DigestAlgorithmIdentifier

  The DigestAlgorithmIdentifier type identifies a message-digest
  algorithm.  Examples include SHA-1, MD2, and MD5.  A message-digest
  algorithm maps an octet string (the message) to another octet string
  (the message digest).

     DigestAlgorithmIdentifier ::= AlgorithmIdentifier

10.1.2  SignatureAlgorithmIdentifier

  The SignatureAlgorithmIdentifier type identifies a signature
  algorithm.  Examples include DSS and RSA.  A signature algorithm
  supports signature generation and verification operations.  The
  signature generation operation uses the message digest and the
  signer's private key to generate a signature value.  The signature
  verification operation uses the message digest and the signer's
  public key to determine whether or not a signature value is valid.
  Context determines which operation is intended.

     SignatureAlgorithmIdentifier ::= AlgorithmIdentifier








Housley                     Standards Track                    [Page 27]

RFC 2630              Cryptographic Message Syntax             June 1999


10.1.3  KeyEncryptionAlgorithmIdentifier

  The KeyEncryptionAlgorithmIdentifier type identifies a key-encryption
  algorithm used to encrypt a content-encryption key.  The encryption
  operation maps an octet string (the key) to another octet string (the
  encrypted key) under control of a key-encryption key.  The decryption
  operation is the inverse of the encryption operation.  Context
  determines which operation is intended.

  The details of encryption and decryption depend on the key management
  algorithm used.  Key transport, key agreement, and previously
  distributed symmetric key-encrypting keys are supported.

     KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

10.1.4  ContentEncryptionAlgorithmIdentifier

  The ContentEncryptionAlgorithmIdentifier type identifies a content-
  encryption algorithm.  Examples include Triple-DES and RC2.  A
  content-encryption algorithm supports encryption and decryption
  operations.  The encryption operation maps an octet string (the
  message) to another octet string (the ciphertext) under control of a
  content-encryption key.  The decryption operation is the inverse of
  the encryption operation.  Context determines which operation is
  intended.

     ContentEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

10.1.5  MessageAuthenticationCodeAlgorithm

  The MessageAuthenticationCodeAlgorithm type identifies a message
  authentication code (MAC) algorithm.  Examples include DES-MAC and
  HMAC.  A MAC algorithm supports generation and verification
  operations.  The MAC generation and verification operations use the
  same symmetric key.  Context determines which operation is intended.

     MessageAuthenticationCodeAlgorithm ::= AlgorithmIdentifier

10.2  Other Useful Types

  This section defines types that are used other places in the
  document.  The types are not listed in any particular order.

10.2.1  CertificateRevocationLists

  The CertificateRevocationLists type gives a set of certificate
  revocation lists (CRLs). It is intended that the set contain
  information sufficient to determine whether the certificates and



Housley                     Standards Track                    [Page 28]

RFC 2630              Cryptographic Message Syntax             June 1999


  attribute certificates with which the set is associated are revoked
  or not.  However, there may be more CRLs than necessary or there may
  be fewer CRLs than necessary.

  The CertificateList may contain a CRL, an Authority Revocation List
  (ARL), a Delta Revocation List, or an Attribute Certificate
  Revocation List.  All of these lists share a common syntax.

  CRLs are specified in X.509 [X.509-97], and they are profiled for use
  in the Internet in RFC 2459 [PROFILE].

  The definition of CertificateList is imported from X.509.

     CertificateRevocationLists ::= SET OF CertificateList

10.2.2  CertificateChoices

  The CertificateChoices type gives either a PKCS #6 extended
  certificate [PKCS#6], an X.509 certificate, or an X.509 attribute
  certificate [X.509-97].  The PKCS #6 extended certificate is
  obsolete.  PKCS #6 certificates are included for backward
  compatibility, and their use should be avoided.  The Internet profile
  of X.509 certificates is specified in the "Internet X.509 Public Key
  Infrastructure: Certificate and CRL Profile" [PROFILE].

  The definitions of Certificate and AttributeCertificate are imported
  from X.509.

     CertificateChoices ::= CHOICE {
        certificate Certificate,                 -- See X.509
        extendedCertificate [0] IMPLICIT ExtendedCertificate,
                                                 -- Obsolete
        attrCert [1] IMPLICIT AttributeCertificate }
                                                 -- See X.509 and X9.57

10.2.3  CertificateSet

  The CertificateSet type provides a set of certificates.  It is
  intended that the set be sufficient to contain chains from a
  recognized "root" or "top-level certification authority" to all of
  the sender certificates with which the set is associated.  However,
  there may be more certificates than necessary, or there may be fewer
  than necessary.

  The precise meaning of a "chain" is outside the scope of this
  document.  Some applications may impose upper limits on the length of
  a chain; others may enforce certain relationships between the
  subjects and issuers of certificates within a chain.



Housley                     Standards Track                    [Page 29]

RFC 2630              Cryptographic Message Syntax             June 1999


     CertificateSet ::= SET OF CertificateChoices

10.2.4  IssuerAndSerialNumber

  The IssuerAndSerialNumber type identifies a certificate, and thereby
  an entity and a public key, by the distinguished name of the
  certificate issuer and an issuer-specific certificate serial number.

  The definition of Name is imported from X.501 [X.501-88], and the
  definition of CertificateSerialNumber is imported from X.509
  [X.509-97].

     IssuerAndSerialNumber ::= SEQUENCE {
       issuer Name,
       serialNumber CertificateSerialNumber }

     CertificateSerialNumber ::= INTEGER

10.2.5  CMSVersion

  The Version type gives a syntax version number, for compatibility
  with future revisions of this document.

     CMSVersion ::= INTEGER  { v0(0), v1(1), v2(2), v3(3), v4(4) }

10.2.6  UserKeyingMaterial

  The UserKeyingMaterial type gives a syntax for user keying material
  (UKM).  Some key agreement algorithms require UKMs to ensure that a
  different key is generated each time the same two parties generate a
  pairwise key.  The sender provides a UKM for use with a specific key
  agreement algorithm.

     UserKeyingMaterial ::= OCTET STRING

10.2.7  OtherKeyAttribute

  The OtherKeyAttribute type gives a syntax for the inclusion of other
  key attributes that permit the recipient to select the key used by
  the sender.  The attribute object identifier must be registered along
  with the syntax of the attribute itself.  Use of this structure
  should be avoided since it may impede interoperability.

     OtherKeyAttribute ::= SEQUENCE {
       keyAttrId OBJECT IDENTIFIER,
       keyAttr ANY DEFINED BY keyAttrId OPTIONAL }





Housley                     Standards Track                    [Page 30]

RFC 2630              Cryptographic Message Syntax             June 1999


11  Useful Attributes

  This section defines attributes that may be used with signed-data,
  enveloped-data, encrypted-data, or authenticated-data.  The syntax of
  Attribute is compatible with X.501 [X.501-88] and RFC 2459 [PROFILE].
  Some of the attributes defined in this section were originally
  defined in PKCS #9 [PKCS#9], others were not previously defined.  The
  attributes are not listed in any particular order.

  Additional attributes are defined in many places, notably the S/MIME
  Version 3 Message Specification [MSG] and the Enhanced Security
  Services for S/MIME [ESS], which also include recommendations on the
  placement of these attributes.

11.1  Content Type

  The content-type attribute type specifies the content type of the
  ContentInfo value being signed in signed-data.  The content-type
  attribute type is required if there are any authenticated attributes
  present.

  The content-type attribute must be a signed attribute or an
  authenticated attribute; it cannot be an unsigned attribute, an
  unauthenticated attribute, or an unprotectedAttribute.

  The following object identifier identifies the content-type
  attribute:

     id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs9(9) 3 }

  Content-type attribute values have ASN.1 type ContentType:

     ContentType ::= OBJECT IDENTIFIER

  A content-type attribute must have a single attribute value, even
  though the syntax is defined as a SET OF AttributeValue.  There must
  not be zero or multiple instances of AttributeValue present.

  The SignedAttributes and AuthAttributes syntaxes are each defined as
  a SET OF Attributes.  The SignedAttributes in a signerInfo must not
  include multiple instances of the content-type attribute.  Similarly,
  the AuthAttributes in an AuthenticatedData must not include multiple
  instances of the content-type attribute.







Housley                     Standards Track                    [Page 31]

RFC 2630              Cryptographic Message Syntax             June 1999


11.2  Message Digest

  The message-digest attribute type specifies the message digest of the
  encapContentInfo eContent OCTET STRING being signed in signed-data
  (see section 5.4) or authenticated in authenticated-data (see section
  9.2).  For signed-data, the message digest is computed using the
  signer's message digest algorithm.  For authenticated-data, the
  message digest is computed using the originator's message digest
  algorithm.

  Within signed-data, the message-digest signed attribute type is
  required if there are any attributes present.  Within authenticated-
  data, the message-digest authenticated attribute type is required if
  there are any attributes present.

  The message-digest attribute must be a signed attribute or an
  authenticated attribute; it cannot be an unsigned attribute or an
  unauthenticated attribute.

  The following object identifier identifies the message-digest
  attribute:

     id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }

  Message-digest attribute values have ASN.1 type MessageDigest:

     MessageDigest ::= OCTET STRING

  A message-digest attribute must have a single attribute value, even
  though the syntax is defined as a SET OF AttributeValue.  There must
  not be zero or multiple instances of AttributeValue present.

  The SignedAttributes syntax is defined as a SET OF Attributes.  The
  SignedAttributes in a signerInfo must not include multiple instances
  of the message-digest attribute.

11.3  Signing Time

  The signing-time attribute type specifies the time at which the
  signer (purportedly) performed the signing process.  The signing-time
  attribute type is intended for use in signed-data.

  The signing-time attribute may be a signed attribute; it cannot be an
  unsigned attribute, an authenticated attribute, or an unauthenticated
  attribute.





Housley                     Standards Track                    [Page 32]

RFC 2630              Cryptographic Message Syntax             June 1999


  The following object identifier identifies the signing-time
  attribute:

     id-signingTime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs9(9) 5 }

  Signing-time attribute values have ASN.1 type SigningTime:

     SigningTime ::= Time

     Time ::= CHOICE {
       utcTime          UTCTime,
       generalizedTime  GeneralizedTime }

  Note: The definition of Time matches the one specified in the 1997
  version of X.509 [X.509-97].

  Dates between 1 January 1950 and 31 December 2049 (inclusive) must be
  encoded as UTCTime.  Any dates with year values before 1950 or after
  2049 must be encoded as GeneralizedTime.

  UTCTime values must be expressed in Greenwich Mean Time (Zulu) and
  must include seconds (i.e., times are YYMMDDHHMMSSZ), even where the
  number of seconds is zero.  Midnight (GMT) must be represented as
  "YYMMDD000000Z".  Century information is implicit, and the century
  must be determined as follows:

     Where YY is greater than or equal to 50, the year shall be
     interpreted as 19YY; and

     Where YY is less than 50, the year shall be interpreted as 20YY.

  GeneralizedTime values shall be expressed in Greenwich Mean Time
  (Zulu) and must include seconds (i.e., times are YYYYMMDDHHMMSSZ),
  even where the number of seconds is zero.  GeneralizedTime values
  must not include fractional seconds.

  A signing-time attribute must have a single attribute value, even
  though the syntax is defined as a SET OF AttributeValue.  There must
  not be zero or multiple instances of AttributeValue present.

  The SignedAttributes syntax is defined as a SET OF Attributes.  The
  SignedAttributes in a signerInfo must not include multiple instances
  of the signing-time attribute.

  No requirement is imposed concerning the correctness of the signing
  time, and acceptance of a purported signing time is a matter of a
  recipient's discretion.  It is expected, however, that some signers,



Housley                     Standards Track                    [Page 33]

RFC 2630              Cryptographic Message Syntax             June 1999


  such as time-stamp servers, will be trusted implicitly.

11.4  Countersignature

  The countersignature attribute type specifies one or more signatures
  on the contents octets of the DER encoding of the signatureValue
  field of a SignerInfo value in signed-data.  Thus, the
  countersignature attribute type countersigns (signs in serial)
  another signature.

  The countersignature attribute must be an unsigned attribute; it
  cannot be a signed attribute, an authenticated attribute, or an
  unauthenticated attribute.

  The following object identifier identifies the countersignature
  attribute:

     id-countersignature OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs9(9) 6 }

  Countersignature attribute values have ASN.1 type Countersignature:

     Countersignature ::= SignerInfo

  Countersignature values have the same meaning as SignerInfo values
  for ordinary signatures, except that:

     1.  The signedAttributes field must contain a message-digest
     attribute if it contains any other attributes, but need not
     contain a content-type attribute, as there is no content type for
     countersignatures.

     2.  The input to the message-digesting process is the contents
     octets of the DER encoding of the signatureValue field of the
     SignerInfo value with which the attribute is associated.

  A countersignature attribute can have multiple attribute values.  The
  syntax is defined as a SET OF AttributeValue, and there must be one
  or more instances of AttributeValue present.

  The UnsignedAttributes syntax is defined as a SET OF Attributes.  The
  UnsignedAttributes in a signerInfo may include multiple instances of
  the countersignature attribute.

  A countersignature, since it has type SignerInfo, can itself contain
  a countersignature attribute.  Thus it is possible to construct
  arbitrarily long series of countersignatures.




Housley                     Standards Track                    [Page 34]

RFC 2630              Cryptographic Message Syntax             June 1999


12  Supported Algorithms

  This section lists the algorithms that must be implemented.
  Additional algorithms that should be implemented are also included.

12.1  Digest Algorithms

  CMS implementations must include SHA-1.  CMS implementations should
  include MD5.

  Digest algorithm identifiers are located in the SignedData
  digestAlgorithms field, the SignerInfo digestAlgorithm field, the
  DigestedData digestAlgorithm field, and the AuthenticatedData
  digestAlgorithm field.

  Digest values are located in the DigestedData digest field, and
  digest values are located in the Message Digest authenticated
  attribute.  In addition, digest values are input to signature
  algorithms.

12.1.1  SHA-1

  The SHA-1 digest algorithm is defined in FIPS Pub 180-1 [SHA1]. The
  algorithm identifier for SHA-1 is:

     sha-1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
         oiw(14) secsig(3) algorithm(2) 26 }

  The AlgorithmIdentifier parameters field is optional.  If present,
  the parameters field must contain an ASN.1 NULL.  Implementations
  should accept SHA-1 AlgorithmIdentifiers with absent parameters as
  well as NULL parameters.  Implementations should generate SHA-1
  AlgorithmIdentifiers with NULL parameters.

12.1.2  MD5

  The MD5 digest algorithm is defined in RFC 1321 [MD5].  The algorithm
  identifier for MD5 is:

     md5 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
         rsadsi(113549) digestAlgorithm(2) 5 }

  The AlgorithmIdentifier parameters field must be present, and the
  parameters field must contain NULL.  Implementations may accept the
  MD5 AlgorithmIdentifiers with absent parameters as well as NULL
  parameters.





Housley                     Standards Track                    [Page 35]

RFC 2630              Cryptographic Message Syntax             June 1999


12.2  Signature Algorithms

  CMS implementations must include DSA.  CMS implementations may
  include RSA.

  Signature algorithm identifiers are located in the SignerInfo
  signatureAlgorithm field.  Also, signature algorithm identifiers are
  located in the SignerInfo signatureAlgorithm field of
  countersignature attributes.

  Signature values are located in the SignerInfo signature field.
  Also, signature values are located in the SignerInfo signature field
  of countersignature attributes.

12.2.1  DSA

  The DSA signature algorithm is defined in FIPS Pub 186 [DSS].  DSA is
  always used with the SHA-1 message digest algorithm.  The algorithm
  identifier for DSA is:

     id-dsa-with-sha1 OBJECT IDENTIFIER ::=  { iso(1) member-body(2)
         us(840) x9-57 (10040) x9cm(4) 3 }

  The AlgorithmIdentifier parameters field must not be present.

12.2.2  RSA

  The RSA signature algorithm is defined in RFC 2347 [NEWPKCS#1]. RFC
  2347 specifies the use of the RSA signature algorithm with the SHA-1
  and MD5 message digest algorithms.  The algorithm identifier for RSA
  is:

     rsaEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

12.3  Key Management Algorithms

  CMS accommodates three general key management techniques: key
  agreement, key transport, and previously distributed symmetric key-
  encryption keys.

12.3.1  Key Agreement Algorithms

  CMS implementations must include key agreement using X9.42
  Ephemeral-Static Diffie-Hellman.

  Any symmetric encryption algorithm that a CMS implementation includes
  as a content-encryption algorithm must also be included as a key-



Housley                     Standards Track                    [Page 36]

RFC 2630              Cryptographic Message Syntax             June 1999


  encryption algorithm.  CMS implementations must include key agreement
  of Triple-DES pairwise key-encryption keys and Triple-DES wrapping of
  Triple-DES content-encryption keys.  CMS implementations should
  include key agreement of RC2 pairwise key-encryption keys and RC2
  wrapping of RC2 content-encryption keys.  The key wrap algorithm for
  Triple-DES and RC2 is described in section 12.3.3.

  A CMS implementation may support mixed key-encryption and content-
  encryption algorithms.  For example, a 128-bit RC2 content-encryption
  key may be wrapped with 168-bit Triple-DES key-encryption key.
  Similarly, a 40-bit RC2 content-encryption key may be wrapped with
  128-bit RC2 key-encryption key.

  For key agreement of RC2 key-encryption keys, 128 bits must be
  generated as input to the key expansion process used to compute the
  RC2 effective key [RC2].

  Key agreement algorithm identifiers are located in the EnvelopedData
  RecipientInfos KeyAgreeRecipientInfo keyEncryptionAlgorithm and
  AuthenticatedData RecipientInfos KeyAgreeRecipientInfo
  keyEncryptionAlgorithm fields.

  Key wrap algorithm identifiers are located in the KeyWrapAlgorithm
  parameters within the EnvelopedData RecipientInfos
  KeyAgreeRecipientInfo keyEncryptionAlgorithm and AuthenticatedData
  RecipientInfos KeyAgreeRecipientInfo keyEncryptionAlgorithm fields.

  Wrapped content-encryption keys are located in the EnvelopedData
  RecipientInfos KeyAgreeRecipientInfo RecipientEncryptedKeys
  encryptedKey field.  Wrapped message-authentication keys are located
  in the AuthenticatedData RecipientInfos KeyAgreeRecipientInfo
  RecipientEncryptedKeys encryptedKey field.

12.3.1.1  X9.42 Ephemeral-Static Diffie-Hellman

  Ephemeral-Static Diffie-Hellman key agreement is defined in RFC 2631
  [DH-X9.42].  When using Ephemeral-Static Diffie-Hellman, the
  EnvelopedData RecipientInfos KeyAgreeRecipientInfo and
  AuthenticatedData RecipientInfos KeyAgreeRecipientInfo fields are
  used as follows:

     version must be 3.

     originator must be the originatorKey alternative.  The
     originatorKey algorithm fields must contain the dh-public-number
     object identifier with absent parameters.  The originatorKey
     publicKey field must contain the sender's ephemeral public key.
     The dh-public-number object identifier is:



Housley                     Standards Track                    [Page 37]

RFC 2630              Cryptographic Message Syntax             June 1999


        dh-public-number OBJECT IDENTIFIER ::= { iso(1) member-body(2)
            us(840) ansi-x942(10046) number-type(2) 1 }

     ukm may be absent.  When present, the ukm is used to ensure that a
     different key-encryption key is generated when the ephemeral
     private key might be used more than once.

     keyEncryptionAlgorithm must be the id-alg-ESDH algorithm
     identifier.  The algorithm identifier parameter field for id-alg-
     ESDH is KeyWrapAlgorihtm, and this parameter must be present.  The
     KeyWrapAlgorithm denotes the symmetric encryption algorithm used
     to encrypt the content-encryption key with the pairwise key-
     encryption key generated using the Ephemeral-Static Diffie-Hellman
     key agreement algorithm.  Triple-DES and RC2 key wrap algorithms
     are discussed in section 12.3.3.  The id-alg-ESDH algorithm
     identifier and parameter syntax is:

      id-alg-ESDH OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
          rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 5 }

      KeyWrapAlgorithm ::= AlgorithmIdentifier

     recipientEncryptedKeys contains an identifier and an encrypted key
     for each recipient.  The RecipientEncryptedKey
     KeyAgreeRecipientIdentifier must contain either the
     issuerAndSerialNumber identifying the recipient's certificate or
     the RecipientKeyIdentifier containing the subject key identifier
     from the recipient's certificate.  In both cases, the recipient's
     certificate contains the recipient's static public key.
     RecipientEncryptedKey EncryptedKey must contain the content-
     encryption key encrypted with the Ephemeral-Static Diffie-Hellman
     generated pairwise key-encryption key using the algorithm
     specified by the KeyWrapAlgortihm.

12.3.2  Key Transport Algorithms

  CMS implementations should include key transport using RSA.  RSA
  implementations must include key transport of Triple-DES content-
  encryption keys.  RSA implementations should include key transport of
  RC2 content-encryption keys.

  Key transport algorithm identifiers are located in the EnvelopedData
  RecipientInfos KeyTransRecipientInfo keyEncryptionAlgorithm and
  AuthenticatedData RecipientInfos KeyTransRecipientInfo
  keyEncryptionAlgorithm fields.

  Key transport encrypted content-encryption keys are located in the
  EnvelopedData RecipientInfos KeyTransRecipientInfo encryptedKey



Housley                     Standards Track                    [Page 38]

RFC 2630              Cryptographic Message Syntax             June 1999


  field.  Key transport encrypted message-authentication keys are
  located in the AuthenticatedData RecipientInfos KeyTransRecipientInfo
  encryptedKey field.

12.3.2.1  RSA

  The RSA key transport algorithm is the RSA encryption scheme defined
  in RFC 2313 [PKCS#1], block type is 02, where the message to be
  encrypted is the content-encryption key.  The algorithm identifier
  for RSA is:

     rsaEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

  The AlgorithmIdentifier parameters field must be present, and the
  parameters field must contain NULL.

  When using a Triple-DES content-encryption key, adjust the parity
  bits for each DES key comprising the Triple-DES key prior to RSA
  encryption.

  The use of RSA encryption, as defined in RFC 2313 [PKCS#1], to
  provide confidentiality has a known vulnerability concerns.  The
  vulnerability is primarily relevant to usage in interactive
  applications rather than to store-and-forward environments.  Further
  information and proposed countermeasures are discussed in the
  Security Considerations section of this document.

  Note that the same encryption scheme is also defined in RFC 2437
  [NEWPKCS#1].  Within RFC 2437, this scheme is called
  RSAES-PKCS1-v1_5.

12.3.3  Symmetric Key-Encryption Key Algorithms

  CMS implementations may include symmetric key-encryption key
  management.  Such CMS implementations must include Triple-DES key-
  encryption keys wrapping Triple-DES content-encryption keys, and such
  CMS implementations should include RC2 key-encryption keys wrapping
  RC2 content-encryption keys.  Only 128-bit RC2 keys may be used as
  key-encryption keys, and they must be used with the
  RC2ParameterVersion parameter set to 58.  A CMS implementation may
  support mixed key-encryption and content-encryption algorithms.  For
  example, a 40-bit RC2 content-encryption key may be wrapped with
  168-bit Triple-DES key-encryption key or with a 128-bit RC2 key-
  encryption key.






Housley                     Standards Track                    [Page 39]

RFC 2630              Cryptographic Message Syntax             June 1999


  Key wrap algorithm identifiers are located in the EnvelopedData
  RecipientInfos KEKRecipientInfo keyEncryptionAlgorithm and
  AuthenticatedData RecipientInfos KEKRecipientInfo
  keyEncryptionAlgorithm fields.

  Wrapped content-encryption keys are located in the EnvelopedData
  RecipientInfos KEKRecipientInfo encryptedKey field.  Wrapped
  message-authentication keys are located in the AuthenticatedData
  RecipientInfos KEKRecipientInfo encryptedKey field.

  The output of a key agreement algorithm is a key-encryption key, and
  this key-encryption key is used to encrypt the content-encryption
  key.  In conjunction with key agreement algorithms, CMS
  implementations must include encryption of content-encryption keys
  with the pairwise key-encryption key generated using a key agreement
  algorithm.  To support key agreement, key wrap algorithm identifiers
  are located in the KeyWrapAlgorithm parameter of the EnvelopedData
  RecipientInfos KeyAgreeRecipientInfo keyEncryptionAlgorithm and
  AuthenticatedData RecipientInfos KeyAgreeRecipientInfo
  keyEncryptionAlgorithm fields.  Wrapped content-encryption keys are
  located in the EnvelopedData RecipientInfos KeyAgreeRecipientInfo
  RecipientEncryptedKeys encryptedKey field, wrapped message-
  authentication keys are located in the AuthenticatedData
  RecipientInfos KeyAgreeRecipientInfo RecipientEncryptedKeys
  encryptedKey field.

12.3.3.1  Triple-DES Key Wrap

  Triple-DES key encryption has the algorithm identifier:

     id-alg-CMS3DESwrap OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 6 }

  The AlgorithmIdentifier parameter field must be NULL.

  The key wrap algorithm used to encrypt a Triple-DES content-
  encryption key with a Triple-DES key-encryption key is specified in
  section 12.6.

  Out-of-band distribution of the Triple-DES key-encryption key used to
  encrypt the Triple-DES content-encryption key is beyond of the scope
  of this document.









Housley                     Standards Track                    [Page 40]

RFC 2630              Cryptographic Message Syntax             June 1999


12.3.3.2  RC2 Key Wrap

  RC2 key encryption has the algorithm identifier:

     id-alg-CMSRC2wrap OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 7 }

  The AlgorithmIdentifier parameter field must be RC2wrapParameter:

     RC2wrapParameter ::= RC2ParameterVersion

     RC2ParameterVersion ::= INTEGER

  The RC2 effective-key-bits (key size) greater than 32 and less than
  256 is encoded in the RC2ParameterVersion.  For the effective-key-
  bits of 40, 64, and 128, the rc2ParameterVersion values are 160, 120,
  and 58 respectively.  These values are not simply the RC2 key length.
  Note that the value 160 must be encoded as two octets (00 A0),
  because the one octet (A0) encoding represents a negative number.

  Only 128-bit RC2 keys may be used as key-encryption keys, and they
  must be used with the RC2ParameterVersion parameter set to 58.

  The key wrap algorithm used to encrypt a RC2 content-encryption key
  with a RC2 key-encryption key is specified in section 12.6.

  Out-of-band distribution of the RC2 key-encryption key used to
  encrypt the RC2 content-encryption key is beyond of the scope of this
  document.

12.4  Content Encryption Algorithms

  CMS implementations must include Triple-DES in CBC mode.  CMS
  implementations should include RC2 in CBC mode.

  Content encryption algorithms identifiers are located in the
  EnvelopedData EncryptedContentInfo contentEncryptionAlgorithm and the
  EncryptedData EncryptedContentInfo contentEncryptionAlgorithm fields.

  Content encryption algorithms are used to encipher the content
  located in the EnvelopedData EncryptedContentInfo encryptedContent
  field and the EncryptedData EncryptedContentInfo encryptedContent
  field.








Housley                     Standards Track                    [Page 41]

RFC 2630              Cryptographic Message Syntax             June 1999


12.4.1  Triple-DES CBC

  The Triple-DES algorithm is described in ANSI X9.52 [3DES].  The
  Triple-DES is composed from three sequential DES [DES] operations:
  encrypt, decrypt, and encrypt.  Three-Key Triple-DES uses a different
  key for each DES operation.  Two-Key Triple-DES uses one key for the
  two encrypt operations and different key for the decrypt operation.
  The same algorithm identifiers are used for Three-Key Triple-DES and
  Two-Key Triple-DES.  The algorithm identifier for Triple-DES in
  Cipher Block Chaining (CBC) mode is:

     des-ede3-cbc OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) encryptionAlgorithm(3) 7 }

  The AlgorithmIdentifier parameters field must be present, and the
  parameters field must contain a CBCParameter:

     CBCParameter ::= IV

     IV ::= OCTET STRING  -- exactly 8 octets

12.4.2  RC2 CBC

  The RC2 algorithm is described in RFC 2268 [RC2].  The algorithm
  identifier for RC2 in CBC mode is:

     rc2-cbc OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
         rsadsi(113549) encryptionAlgorithm(3) 2 }

  The AlgorithmIdentifier parameters field must be present, and the
  parameters field must contain a RC2CBCParameter:

     RC2CBCParameter ::= SEQUENCE {
       rc2ParameterVersion INTEGER,
       iv OCTET STRING  }  -- exactly 8 octets

  The RC2 effective-key-bits (key size) greater than 32 and less than
  256 is encoded in the rc2ParameterVersion.  For the effective-key-
  bits of 40, 64, and 128, the rc2ParameterVersion values are 160, 120,
  and 58 respectively.  These values are not simply the RC2 key length.
  Note that the value 160 must be encoded as two octets (00 A0), since
  the one octet (A0) encoding represents a negative number.

12.5  Message Authentication Code Algorithms

  CMS implementations that support authenticatedData must include HMAC
  with SHA-1.




Housley                     Standards Track                    [Page 42]

RFC 2630              Cryptographic Message Syntax             June 1999


  MAC algorithm identifiers are located in the AuthenticatedData
  macAlgorithm field.

  MAC values are located in the AuthenticatedData mac field.

12.5.1  HMAC with SHA-1

  The HMAC with SHA-1 algorithm is described in RFC 2104 [HMAC].  The
  algorithm identifier for HMAC with SHA-1 is:

     hMAC-SHA1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
         dod(6) internet(1) security(5) mechanisms(5) 8 1 2 }

  The AlgorithmIdentifier parameters field must be absent.

12.6  Triple-DES and RC2 Key Wrap Algorithms

  CMS implementations must include encryption of a Triple-DES content-
  encryption key with a Triple-DES key-encryption key using the
  algorithm specified in Sections 12.6.2 and 12.6.3.  CMS
  implementations should include encryption of a RC2 content-encryption
  key with a RC2 key-encryption key using the algorithm specified in
  Sections 12.6.4 and 12.6.5.  Triple-DES and RC2 content-encryption
  keys are encrypted in Cipher Block Chaining (CBC) mode [MODES].

  Key Transport algorithms allow for the content-encryption key to be
  directly encrypted; however, key agreement and symmetric key-
  encryption key algorithms encrypt the content-encryption key with a
  second symmetric encryption algorithm.  This section describes how
  the Triple-DES or RC2 content-encryption key is formatted and
  encrypted.

  Key agreement algorithms generate a pairwise key-encryption key, and
  a key wrap algorithm is used to encrypt the content-encryption key
  with the pairwise key-encryption key.  Similarly, a key wrap
  algorithm is used to encrypt the content-encryption key in a
  previously distributed key-encryption key.

  The key-encryption key is generated by the key agreement algorithm or
  distributed out of band.  For key agreement of RC2 key-encryption
  keys, 128 bits must be generated as input to the key expansion
  process used to compute the RC2 effective key [RC2].

  The same algorithm identifier is used for both 2-key and 3-key
  Triple-DES.  When the length of the content-encryption key to be
  wrapped is a 2-key Triple-DES key, a third key with the same value as
  the first key is created.  Thus, all Triple-DES content-encryption
  keys are wrapped like 3-key Triple-DES keys.



Housley                     Standards Track                    [Page 43]

RFC 2630              Cryptographic Message Syntax             June 1999


12.6.1  Key Checksum

  The CMS Checksum Algorithm is used to provide a content-encryption
  key integrity check value.  The algorithm is:

  1.  Compute a 20 octet SHA-1 [SHA1] message digest on the
      content-encryption key.
  2.  Use the most significant (first) eight octets of the message
      digest value as the checksum value.

12.6.2  Triple-DES Key Wrap

  The Triple-DES key wrap algorithm encrypts a Triple-DES content-
  encryption key with a Triple-DES key-encryption key.  The Triple-DES
  key wrap algorithm is:

  1.  Set odd parity for each of the DES key octets comprising
      the content-encryption key, call the result CEK.
  2.  Compute an 8 octet key checksum value on CEK as described above
      in Section 12.6.1, call the result ICV.
  3.  Let CEKICV = CEK || ICV.
  4.  Generate 8 octets at random, call the result IV.
  5.  Encrypt CEKICV in CBC mode using the key-encryption key.  Use
      the random value generated in the previous step as the
      initialization vector (IV).  Call the ciphertext TEMP1.
  6.  Let TEMP2 = IV || TEMP1.
  7.  Reverse the order of the octets in TEMP2.  That is, the most
      significant (first) octet is swapped with the least significant
      (last) octet, and so on.  Call the result TEMP3.
  8.  Encrypt TEMP3 in CBC mode using the key-encryption key.  Use
      an initialization vector (IV) of 0x4adda22c79e82105.
      The ciphertext is 40 octets long.

  Note:  When the same content-encryption key is wrapped in different
  key-encryption keys, a fresh initialization vector (IV) must be
  generated for each invocation of the key wrap algorithm.

12.6.3  Triple-DES Key Unwrap

  The Triple-DES key unwrap algorithm decrypts a Triple-DES content-
  encryption key using a Triple-DES key-encryption key.  The Triple-DES
  key unwrap algorithm is:

  1.  If the wrapped content-encryption key is not 40 octets, then
      error.
  2.  Decrypt the wrapped content-encryption key in CBC mode using
      the key-encryption key.  Use an initialization vector (IV)
      of 0x4adda22c79e82105.  Call the output TEMP3.



Housley                     Standards Track                    [Page 44]

RFC 2630              Cryptographic Message Syntax             June 1999


  3.  Reverse the order of the octets in TEMP3.  That is, the most
      significant (first) octet is swapped with the least significant
      (last) octet, and so on.  Call the result TEMP2.
  4.  Decompose the TEMP2 into IV and TEMP1.  IV is the most
      significant (first) 8 octets, and TEMP1 is the least significant
      (last) 32 octets.
  5.  Decrypt TEMP1 in CBC mode using the key-encryption key.  Use
      the IV value from the previous step as the initialization vector.
      Call the ciphertext CEKICV.
  6.  Decompose the CEKICV into CEK and ICV. CEK is the most significant
      (first) 24 octets, and ICV is the least significant (last) 8 octets.
  7.  Compute an 8 octet key checksum value on CEK as described above
      in Section 12.6.1.  If the computed key checksum value does not
      match the decrypted key checksum value, ICV, then error.
  8.  Check for odd parity each of the DES key octets comprising CEK.
      If parity is incorrect, then there is an error.
  9.  Use CEK as the content-encryption key.

12.6.4  RC2 Key Wrap

  The RC2 key wrap algorithm encrypts a RC2 content-encryption key with
  a RC2 key-encryption key.  The RC2 key wrap algorithm is:

  1.  Let the content-encryption key be called CEK, and let the length
      of the content-encryption key in octets be called LENGTH.  LENGTH
      is a single octet.
  2.  Let LCEK = LENGTH || CEK.
  3.  Let LCEKPAD = LCEK || PAD.  If the length of LCEK is a multiple
      of 8, the PAD has a length of zero.  If the length of LCEK is
      not a multiple of 8, then PAD contains the fewest number of
      random octets to make the length of LCEKPAD a multiple of 8.
  4.  Compute an 8 octet key checksum value on LCEKPAD as described
      above in Section 12.6.1, call the result ICV.
  5.  Let LCEKPADICV = LCEKPAD || ICV.
  6.  Generate 8 octets at random, call the result IV.
  7.  Encrypt LCEKPADICV in CBC mode using the key-encryption key.
      Use the random value generated in the previous step as the
      initialization vector (IV).  Call the ciphertext TEMP1.
  8.  Let TEMP2 = IV || TEMP1.
  9.  Reverse the order of the octets in TEMP2.  That is, the most
      significant (first) octet is swapped with the least significant
      (last) octet, and so on.  Call the result TEMP3.
  10. Encrypt TEMP3 in CBC mode using the key-encryption key.  Use
      an initialization vector (IV) of 0x4adda22c79e82105.

  Note:  When the same content-encryption key is wrapped in different
  key-encryption keys, a fresh initialization vector (IV) must be
  generated for each invocation of the key wrap algorithm.



Housley                     Standards Track                    [Page 45]

RFC 2630              Cryptographic Message Syntax             June 1999


12.6.5  RC2 Key Unwrap

  The RC2 key unwrap algorithm decrypts a RC2 content-encryption key
  using a RC2 key-encryption key.  The RC2 key unwrap algorithm is:

  1.  If the wrapped content-encryption key is not a multiple of 8
      octets, then error.
  2.  Decrypt the wrapped content-encryption key in CBC mode using
      the key-encryption key.  Use an initialization vector (IV)
      of 0x4adda22c79e82105.  Call the output TEMP3.
  3.  Reverse the order of the octets in TEMP3.  That is, the most
      significant (first) octet is swapped with the least significant
      (last) octet, and so on.  Call the result TEMP2.
  4.  Decompose the TEMP2 into IV and TEMP1.  IV is the most
      significant (first) 8 octets, and TEMP1 is the remaining octets.

  5.  Decrypt TEMP1 in CBC mode using the key-encryption key.  Use
      the IV value from the previous step as the initialization vector.
      Call the plaintext LCEKPADICV.
  6.  Decompose the LCEKPADICV into LCEKPAD, and ICV.  ICV is the
      least significant (last) octet 8 octets.  LCEKPAD is the
      remaining octets.
  7.  Compute an 8 octet key checksum value on LCEKPAD as described
      above in Section 12.6.1.  If the computed key checksum value
      does not match the decrypted key checksum value, ICV, then error.
  8.  Decompose the LCEKPAD into LENGTH, CEK, and PAD.  LENGTH is the
      most significant (first) octet.  CEK is the following LENGTH
      octets.  PAD is the remaining octets, if any.
  9.  If the length of PAD is more than 7 octets, then error.
  10. Use CEK as the content-encryption key.





















Housley                     Standards Track                    [Page 46]

RFC 2630              Cryptographic Message Syntax             June 1999


Appendix A:  ASN.1 Module

CryptographicMessageSyntax
   { iso(1) member-body(2) us(840) rsadsi(113549)
     pkcs(1) pkcs-9(9) smime(16) modules(0) cms(1) }

DEFINITIONS IMPLICIT TAGS ::=
BEGIN

-- EXPORTS All
-- The types and values defined in this module are exported for use in
-- the other ASN.1 modules.  Other applications may use them for their
-- own purposes.

IMPORTS

 -- Directory Information Framework (X.501)
       Name
          FROM InformationFramework { joint-iso-itu-t ds(5) modules(1)
               informationFramework(1) 3 }

 -- Directory Authentication Framework (X.509)
       AlgorithmIdentifier, AttributeCertificate, Certificate,
       CertificateList, CertificateSerialNumber
          FROM AuthenticationFramework { joint-iso-itu-t ds(5)
               module(1) authenticationFramework(7) 3 } ;


-- Cryptographic Message Syntax

ContentInfo ::= SEQUENCE {
 contentType ContentType,
 content [0] EXPLICIT ANY DEFINED BY contentType }

ContentType ::= OBJECT IDENTIFIER

SignedData ::= SEQUENCE {
 version CMSVersion,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,
 signerInfos SignerInfos }

DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

SignerInfos ::= SET OF SignerInfo




Housley                     Standards Track                    [Page 47]

RFC 2630              Cryptographic Message Syntax             June 1999


EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType,
 eContent [0] EXPLICIT OCTET STRING OPTIONAL }

SignerInfo ::= SEQUENCE {
 version CMSVersion,
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

SignerIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier }

SignedAttributes ::= SET SIZE (1..MAX) OF Attribute

UnsignedAttributes ::= SET SIZE (1..MAX) OF Attribute

Attribute ::= SEQUENCE {
 attrType OBJECT IDENTIFIER,
 attrValues SET OF AttributeValue }

AttributeValue ::= ANY

SignatureValue ::= OCTET STRING

EnvelopedData ::= SEQUENCE {
 version CMSVersion,
 originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 encryptedContentInfo EncryptedContentInfo,
 unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }

OriginatorInfo ::= SEQUENCE {
 certs [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL }

RecipientInfos ::= SET OF RecipientInfo

EncryptedContentInfo ::= SEQUENCE {
 contentType ContentType,
 contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
 encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL }

EncryptedContent ::= OCTET STRING



Housley                     Standards Track                    [Page 48]

RFC 2630              Cryptographic Message Syntax             June 1999


UnprotectedAttributes ::= SET SIZE (1..MAX) OF Attribute

RecipientInfo ::= CHOICE {
 ktri KeyTransRecipientInfo,
 kari [1] KeyAgreeRecipientInfo,
 kekri [2] KEKRecipientInfo }

EncryptedKey ::= OCTET STRING

KeyTransRecipientInfo ::= SEQUENCE {
 version CMSVersion,  -- always set to 0 or 2
 rid RecipientIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

RecipientIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier }

KeyAgreeRecipientInfo ::= SEQUENCE {
 version CMSVersion,  -- always set to 3
 originator [0] EXPLICIT OriginatorIdentifierOrKey,
 ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 recipientEncryptedKeys RecipientEncryptedKeys }

OriginatorIdentifierOrKey ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier,
 originatorKey [1] OriginatorPublicKey }

OriginatorPublicKey ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 publicKey BIT STRING }

RecipientEncryptedKeys ::= SEQUENCE OF RecipientEncryptedKey

RecipientEncryptedKey ::= SEQUENCE {
 rid KeyAgreeRecipientIdentifier,
 encryptedKey EncryptedKey }

KeyAgreeRecipientIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 rKeyId [0] IMPLICIT RecipientKeyIdentifier }







Housley                     Standards Track                    [Page 49]

RFC 2630              Cryptographic Message Syntax             June 1999


RecipientKeyIdentifier ::= SEQUENCE {
 subjectKeyIdentifier SubjectKeyIdentifier,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL }

SubjectKeyIdentifier ::= OCTET STRING

KEKRecipientInfo ::= SEQUENCE {
 version CMSVersion,  -- always set to 4
 kekid KEKIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

KEKIdentifier ::= SEQUENCE {
 keyIdentifier OCTET STRING,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL }

DigestedData ::= SEQUENCE {
 version CMSVersion,
 digestAlgorithm DigestAlgorithmIdentifier,
 encapContentInfo EncapsulatedContentInfo,
 digest Digest }

Digest ::= OCTET STRING

EncryptedData ::= SEQUENCE {
 version CMSVersion,
 encryptedContentInfo EncryptedContentInfo,
 unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }

AuthenticatedData ::= SEQUENCE {
 version CMSVersion,
 originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 macAlgorithm MessageAuthenticationCodeAlgorithm,
 digestAlgorithm [1] DigestAlgorithmIdentifier OPTIONAL,
 encapContentInfo EncapsulatedContentInfo,
 authenticatedAttributes [2] IMPLICIT AuthAttributes OPTIONAL,
 mac MessageAuthenticationCode,
 unauthenticatedAttributes [3] IMPLICIT UnauthAttributes OPTIONAL }

AuthAttributes ::= SET SIZE (1..MAX) OF Attribute

UnauthAttributes ::= SET SIZE (1..MAX) OF Attribute

MessageAuthenticationCode ::= OCTET STRING




Housley                     Standards Track                    [Page 50]

RFC 2630              Cryptographic Message Syntax             June 1999


DigestAlgorithmIdentifier ::= AlgorithmIdentifier

SignatureAlgorithmIdentifier ::= AlgorithmIdentifier

KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

ContentEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

MessageAuthenticationCodeAlgorithm ::= AlgorithmIdentifier

CertificateRevocationLists ::= SET OF CertificateList

CertificateChoices ::= CHOICE {
 certificate Certificate,  -- See X.509
 extendedCertificate [0] IMPLICIT ExtendedCertificate,  -- Obsolete
 attrCert [1] IMPLICIT AttributeCertificate }  -- See X.509 & X9.57

CertificateSet ::= SET OF CertificateChoices

IssuerAndSerialNumber ::= SEQUENCE {
 issuer Name,
 serialNumber CertificateSerialNumber }

CMSVersion ::= INTEGER  { v0(0), v1(1), v2(2), v3(3), v4(4) }

UserKeyingMaterial ::= OCTET STRING

OtherKeyAttribute ::= SEQUENCE {
 keyAttrId OBJECT IDENTIFIER,
 keyAttr ANY DEFINED BY keyAttrId OPTIONAL }


-- CMS Attributes

MessageDigest ::= OCTET STRING

SigningTime  ::= Time

Time ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }

Countersignature ::= SignerInfo








Housley                     Standards Track                    [Page 51]

RFC 2630              Cryptographic Message Syntax             June 1999


-- Algorithm Identifiers

sha-1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
   oiw(14) secsig(3) algorithm(2) 26 }

md5 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
   rsadsi(113549) digestAlgorithm(2) 5 }

id-dsa-with-sha1 OBJECT IDENTIFIER ::=  { iso(1) member-body(2)
   us(840) x9-57 (10040) x9cm(4) 3 }

rsaEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

dh-public-number OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) ansi-x942(10046) number-type(2) 1 }

id-alg-ESDH OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
   rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 5 }

id-alg-CMS3DESwrap OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 6 }

id-alg-CMSRC2wrap OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 7 }

des-ede3-cbc OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) encryptionAlgorithm(3) 7 }

rc2-cbc OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
   rsadsi(113549) encryptionAlgorithm(3) 2 }

hMAC-SHA1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
   dod(6) internet(1) security(5) mechanisms(5) 8 1 2 }


-- Algorithm Parameters

KeyWrapAlgorithm ::= AlgorithmIdentifier

RC2wrapParameter ::= RC2ParameterVersion

RC2ParameterVersion ::= INTEGER

CBCParameter ::= IV

IV ::= OCTET STRING  -- exactly 8 octets




Housley                     Standards Track                    [Page 52]

RFC 2630              Cryptographic Message Syntax             June 1999


RC2CBCParameter ::= SEQUENCE {
 rc2ParameterVersion INTEGER,
 iv OCTET STRING  }  -- exactly 8 octets


-- Content Type Object Identifiers

id-ct-contentInfo OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
   ct(1) 6 }

id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs7(7) 1 }

id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }

id-envelopedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs7(7) 3 }

id-digestedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs7(7) 5 }

id-encryptedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs7(7) 6 }

id-ct-authData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
   ct(1) 2 }


-- Attribute Object Identifiers

id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs9(9) 3 }

id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }

id-signingTime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs9(9) 5 }

id-countersignature OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   us(840) rsadsi(113549) pkcs(1) pkcs9(9) 6 }







Housley                     Standards Track                    [Page 53]

RFC 2630              Cryptographic Message Syntax             June 1999


-- Obsolete Extended Certificate syntax from PKCS#6

ExtendedCertificate ::= SEQUENCE {
 extendedCertificateInfo ExtendedCertificateInfo,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature Signature }

ExtendedCertificateInfo ::= SEQUENCE {
 version CMSVersion,
 certificate Certificate,
 attributes UnauthAttributes }

Signature ::= BIT STRING


END -- of CryptographicMessageSyntax



































Housley                     Standards Track                    [Page 54]

RFC 2630              Cryptographic Message Syntax             June 1999


References

  3DES       American National Standards Institute.  ANSI X9.52-1998,
             Triple Data Encryption Algorithm Modes of Operation. 1998.

  DES        American National Standards Institute.  ANSI X3.106,
             "American National Standard for Information Systems - Data
             Link Encryption".  1983.

  DH-X9.42   Rescorla, E., "Diffie-Hellman Key Agreement Method",
             RFC 2631, June 1999.

  DSS        National Institute of Standards and Technology.
             FIPS Pub 186: Digital Signature Standard.  19 May 1994.

  ESS        Hoffman, P., Editor, "Enhanced Security Services for
             S/MIME", RFC 2634, June 1999.

  HMAC       Krawczyk, H., "HMAC: Keyed-Hashing for Message
             Authentication", RFC 2104, February 1997.

  MD5        Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
             April 1992.

  MODES      National Institute of Standards and Technology.
             FIPS Pub 81: DES Modes of Operation.  2 December 1980.

  MSG        Ramsdell, B., Editor, "S/MIME Version 3 Message
             Specification", RFC 2633, June 1999.

  NEWPKCS#1  Kaliski, B., "PKCS #1: RSA Encryption, Version 2.0",
             RFC 2347, October 1998.

  PROFILE    Housley, R., Ford, W., Polk, W. and D. Solo, "Internet
             X.509 Public Key Infrastructure: Certificate and CRL
             Profile", RFC 2459, January 1999.

  PKCS#1     Kaliski, B., "PKCS #1: RSA Encryption, Version 1.5.",
             RFC 2313, March 1998.

  PKCS#6     RSA Laboratories.  PKCS #6: Extended-Certificate Syntax
             Standard, Version 1.5.  November 1993.

  PKCS#7     Kaliski, B., "PKCS #7: Cryptographic Message Syntax,
             Version 1.5.", RFC 2315, March 1998.

  PKCS#9     RSA Laboratories.  PKCS #9: Selected Attribute Types,
             Version 1.1.  November 1993.



Housley                     Standards Track                    [Page 55]

RFC 2630              Cryptographic Message Syntax             June 1999


  RANDOM     Eastlake, D., Crocker, S. and J. Schiller, "Randomness
             Recommendations for Security", RFC 1750, December 1994.

  RC2        Rivest, R., "A Description of the RC2 (r) Encryption
             Algorithm", RFC 2268, March 1998.

  SHA1       National Institute of Standards and Technology.
             FIPS Pub 180-1: Secure Hash Standard.  17 April 1995.

  X.208-88   CCITT.  Recommendation X.208: Specification of Abstract
             Syntax Notation One (ASN.1).  1988.

  X.209-88   CCITT.  Recommendation X.209: Specification of Basic
             Encoding Rules for Abstract Syntax Notation One (ASN.1).
             1988.

  X.501-88   CCITT.  Recommendation X.501: The Directory - Models.
             1988.

  X.509-88   CCITT.  Recommendation X.509: The Directory -
             Authentication Framework.  1988.

  X.509-97   ITU-T.  Recommendation X.509: The Directory -
             Authentication Framework.  1997.

Security Considerations

  The Cryptographic Message Syntax provides a method for digitally
  signing data, digesting data, encrypting data, and authenticating
  data.

  Implementations must protect the signer's private key.  Compromise of
  the signer's private key permits masquerade.

  Implementations must protect the key management private key, the
  key-encryption key, and the content-encryption key.  Compromise of
  the key management private key or the key-encryption key may result
  in the disclosure of all messages protected with that key.
  Similarly, compromise of the content-encryption key may result in
  disclosure of the associated encrypted content.

  Implementations must protect the key management private key and the
  message-authentication key.  Compromise of the key management private
  key permits masquerade of authenticated data.  Similarly, compromise
  of the message-authentication key may result in undetectable
  modification of the authenticated content.





Housley                     Standards Track                    [Page 56]

RFC 2630              Cryptographic Message Syntax             June 1999


  Implementations must randomly generate content-encryption keys,
  message-authentication keys, initialization vectors (IVs), and
  padding.  Also, the generation of public/private key pairs relies on
  a random numbers.  The use of inadequate pseudo-random number
  generators (PRNGs) to generate cryptographic keys can result in
  little or no security.  An attacker may find it much easier to
  reproduce the PRNG environment that produced the keys, searching the
  resulting small set of possibilities, rather than brute force
  searching the whole key space.  The generation of quality random
  numbers is difficult.  RFC 1750 [RANDOM] offers important guidance in
  this area, and Appendix 3 of FIPS Pub 186 [DSS] provides one quality
  PRNG technique.

  When using key agreement algorithms or previously distributed
  symmetric key-encryption keys, a key-encryption key is used to
  encrypt the content-encryption key.  If the key-encryption and
  content-encryption algorithms are different, the effective security
  is determined by the weaker of the two algorithms.  If, for example,
  a message content is encrypted with 168-bit Triple-DES and the
  Triple-DES content-encryption key is wrapped with a 40-bit RC2 key,
  then at most 40 bits of protection is provided.  A trivial search to
  determine the value of the 40-bit RC2 key can recover Triple-DES key,
  and then the Triple-DES key can be used to decrypt the content.
  Therefore, implementers must ensure that key-encryption algorithms
  are as strong or stronger than content-encryption algorithms.

  Section 12.6 specifies key wrap algorithms used to encrypt a Triple-
  DES [3DES] content-encryption key with a Triple-DES key-encryption
  key or to encrypt a RC2 [RC2] content-encryption key with a RC2 key-
  encryption key.  The key wrap algorithms make use of CBC mode
  [MODES].  These key wrap algorithms have been reviewed for use with
  Triple and RC2.  They have not been reviewed for use with other
  cryptographic modes or other encryption algorithms.  Therefore, if a
  CMS implementation wishes to support ciphers in addition to Triple-
  DES or RC2, then additional key wrap algorithms need to be defined to
  support the additional ciphers.

  Implementers should be aware that cryptographic algorithms become
  weaker with time.  As new cryptoanalysis techniques are developed and
  computing performance improves, the work factor to break a particular
  cryptographic algorithm will reduce.  Therefore, cryptographic
  algorithm implementations should be modular allowing new algorithms
  to be readily inserted.  That is, implementers should be prepared for
  the set of mandatory to implement algorithms to change over time.

  The countersignature unauthenticated attribute includes a digital
  signature that is computed on the content signature value, thus the
  countersigning process need not know the original signed content.



Housley                     Standards Track                    [Page 57]

RFC 2630              Cryptographic Message Syntax             June 1999


  This structure permits implementation efficiency advantages; however,
  this structure may also permit the countersigning of an inappropriate
  signature value.  Therefore, implementations that perform
  countersignatures should either verify the original signature value
  prior to countersigning it (this verification requires processing of
  the original content), or implementations should perform
  countersigning in a context that ensures that only appropriate
  signature values are countersigned.

  Users of CMS, particularly those employing CMS to support interactive
  applications, should be aware that PKCS #1 Version 1.5 as specified
  in RFC 2313 [PKCS#1] is vulnerable to adaptive chosen ciphertext
  attacks when applied for encryption purposes.  Exploitation of this
  identified vulnerability, revealing the result of a particular RSA
  decryption, requires access to an oracle which will respond to a
  large number of ciphertexts (based on currently available results,
  hundreds of thousands or more), which are constructed adaptively in
  response to previously-received replies providing information on the
  successes or failures of attempted decryption operations.  As a
  result, the attack appears significantly less feasible to perpetrate
  for store-and-forward S/MIME environments than for directly
  interactive protocols.  Where CMS constructs are applied as an
  intermediate encryption layer within an interactive request-response
  communications environment, exploitation could be more feasible.

  An updated version of PKCS #1 has been published, PKCS #1 Version 2.0
  [NEWPKCS#1].  This new document will supersede RFC 2313.  PKCS #1
  Version 2.0 preserves support for the encryption padding format
  defined in PKCS #1 Version 1.5 [PKCS#1], and it also defines a new
  alternative.  To resolve the adaptive chosen ciphertext
  vulnerability, the PKCS #1 Version 2.0 specifies and recommends use
  of Optimal Asymmetric Encryption Padding (OAEP) when RSA encryption
  is used to provide confidentiality.  Designers of protocols and
  systems employing CMS for interactive environments should either
  consider usage of OAEP, or should ensure that information which could
  reveal the success or failure of attempted PKCS #1 Version 1.5
  decryption operations is not provided.  Support for OAEP will likely
  be added to a future version of the CMS specification.

Acknowledgments

  This document is the result of contributions from many professionals.
  I appreciate the hard work of all members of the IETF S/MIME Working
  Group.  I extend a special thanks to Rich Ankney, Tim Dean, Steve
  Dusse, Carl Ellison, Peter Gutmann, Bob Jueneman, Stephen Henson,
  Paul Hoffman, Scott Hollenbeck, Don Johnson, Burt Kaliski, John Linn,
  John Pawling, Blake Ramsdell, Francois Rousseau, Jim Schaad, and Dave
  Solo for their efforts and support.



Housley                     Standards Track                    [Page 58]

RFC 2630              Cryptographic Message Syntax             June 1999


Author's Address

  Russell Housley
  SPYRUS
  381 Elden Street
  Suite 1120
  Herndon, VA 20170
  USA

  EMail: [email protected]









































Housley                     Standards Track                    [Page 59]

RFC 2630              Cryptographic Message Syntax             June 1999


Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Housley                     Standards Track                    [Page 60]