Network Working Group                                   C. Alaettinoglu
Request for Comments: 2622           USC/Information Sciences Institute
Obsoletes: 2280                                           C. Villamizar
Category: Standards Track                                 Avici Systems
                                                             E. Gerich
                                                       At Home Network
                                                            D. Kessens
                                                  Qwest Communications
                                                              D. Meyer
                                                  University of Oregon
                                                              T. Bates
                                                         Cisco Systems
                                                         D. Karrenberg
                                                              RIPE NCC
                                                           M. Terpstra
                                                          Bay Networks
                                                             June 1999


             Routing Policy Specification Language (RPSL)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

  RPSL allows a network operator to be able to specify routing policies
  at various levels in the Internet hierarchy; for example at the
  Autonomous System (AS) level.  At the same time, policies can be
  specified with sufficient detail in RPSL so that low level router
  configurations can be generated from them.  RPSL is extensible; new
  routing protocols and new protocol features can be introduced at any
  time.









Alaettinoglu, et al.        Standards Track                     [Page 1]

RFC 2622                          RPSL                         June 1999


Table of Contents

  1 Introduction                                                      3
  2 RPSL Names, Reserved Words, and Representation                    4
  3 Contact Information                                               7
    3.1 mntner Class . . . . . . . . . . . . . . . . . . . . . . . .  7
    3.2 person Class . . . . . . . . . . . . . . . . . . . . . . . . 10
    3.3 role Class . . . . . . . . . . . . . . . . . . . . . . . . . 11
  4 route Class                                                      12
  5 Set Classes                                                      13
    5.1 as-set Class . . . . . . . . . . . . . . . . . . . . . . . . 14
    5.2 route-set Class. . . . . . . . . . . . . . . . . . . . . . . 15
    5.3 Predefined Set Objects . . . . . . . . . . . . . . . . . . . 17
    5.4 Filters and filter-set Class . . . . . . . . . . . . . . . . 17
    5.5 rtr-set Class. . . . . . . . . . . . . . . . . . . . . . . . 22
    5.6 Peerings and peering-set Class . . . . . . . . . . . . . . . 24
  6 aut-num Class                                                    27
    6.1 import Attribute:  Import Policy Specification . . . . . . . 27
      6.1.1 Action Specification . . . . . . . . . . . . . . . . . . 28
    6.2 export Attribute:  Export Policy Specification . . . . . . . 29
     6.3 Other Routing Protocols, Multi-Protocol Routing Protocols,
      and Injecting Routes Between Protocols . . . . . . . . . . . . 29
    6.4 Ambiguity Resolution . . . . . . . . . . . . . . . . . . . . 31
    6.5 default Attribute: Default Policy Specification  . . . . . . 33
    6.6 Structured Policy Specification. . . . . . . . . . . . . . . 33
  7 dictionary Class                                                 37
    7.1 Initial RPSL Dictionary and Example Policy Actions and
      Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
  8 Advanced route Class                                             45
    8.1 Specifying Aggregate Routes. . . . . . . . . . . . . . . . . 45
      8.1.1Interaction with policies in aut-num class. . . . . . . . 49
      8.1.2Ambiguity resolution with overlapping aggregates. . . . . 50
    8.2 Specifying Static Routes . . . . . . . . . . . . . . . . . . 52
  9 inet-rtr Class                                                   52
  10 Extending RPSL                                                  54
    10.1 Extensions by changing the dictionary class . . . . . . . . 54
    10.2 Extensions by adding new attributes to existing classes . . 55
    10.3 Extensions by adding new classes  . . . . . . . . . . . . . 55
    10.4 Extensions by changing the syntax of existing RPSL
       attributes. . . . . . . . . . . . . . . . . . . . . . . . . . 55
  11 Security Considerations                                         56
  12 Acknowledgements                                                56
  References                                                         56
  A Routing Registry Sites                                           59
  B Grammar Rules                                                    59
  C Changes from RFC 2280                                            67
  D Authors' Addresses                                               68
  Full Copyright Statement                                           69



Alaettinoglu, et al.        Standards Track                     [Page 2]

RFC 2622                          RPSL                         June 1999


1 Introduction

  This memo is the reference document for the Routing Policy
  Specification Language (RPSL).  RPSL allows a network operator to be
  able to specify routing policies at various levels in the Internet
  hierarchy; for example at the Autonomous System (AS) level.  At the
  same time, policies can be specified with sufficient detail in RPSL
  so that low level router configurations can be generated from them.
  RPSL is extensible; new routing protocols and new protocol features
  can be introduced at any time.

  RPSL is a replacement for the current Internet policy specification
  language known as RIPE-181 [6] or RFC-1786 [7].  RIPE-81 [8] was the
  first language deployed in the Internet for specifying routing
  policies.  It was later replaced by RIPE-181 [6].  Through
  operational use of RIPE-181 it has become apparent that certain
  policies cannot be specified and a need for an enhanced and more
  generalized language is needed.  RPSL addresses RIPE-181's
  limitations.

  RPSL was designed so that a view of the global routing policy can be
  contained in a single cooperatively maintained distributed database
  to improve the integrity of Internet's routing.  RPSL is not designed
  to be a router configuration language.  RPSL is designed so that
  router configurations can be generated from the description of the
  policy for one autonomous system (aut-num class) combined with the
  description of a router (inet-rtr class), mainly providing router ID,
  autonomous system number of the router, interfaces and peers of the
  router, and combined with a global database mappings from AS sets to
  ASes (as-set class), and from origin ASes and route sets to route
  prefixes (route and route-set classes).  The accurate population of
  the RPSL database can help contribute toward such goals as router
  configurations that protect against accidental (or malicious)
  distribution of inaccurate routing information, verification of
  Internet's routing, and aggregation boundaries beyond a single AS.

  RPSL is object oriented; that is, objects contain pieces of policy
  and administrative information.  These objects are registered in the
  Internet Routing Registry (IRR) by the authorized organizations.  The
  registration process is beyond the scope of this document.  Please
  refer to [1, 17, 4] for more details on the IRR.

  In the following sections, we present the classes that are used to
  define various policy and administrative objects.  The "mntner" class
  defines entities authorized to add, delete and modify a set of
  objects.  The "person" and "role" classes describes technical and
  administrative contact personnel.  Autonomous systems (ASes) are
  specified using the "aut-num" class.  Routes are specified using the



Alaettinoglu, et al.        Standards Track                     [Page 3]

RFC 2622                          RPSL                         June 1999


  "route" class.  Sets of objects can be defined using the "as-set",
  "route-set", "filter-set", "peering-set", and "rtr-set" classes.  The
  "dictionary" class provides the extensibility to the language.  The
  "inet-rtr" class is used to specify routers.  Many of these classes
  were originally defined in earlier documents [6, 13, 16, 12, 5] and
  have all been enhanced.

  This document is self-contained.  However, the reader is encouraged
  to read RIPE-181 [7] and the associated documents [13, 16, 12, 5] as
  they provide significant background as to the motivation and
  underlying principles behind RIPE-181 and consequently, RPSL. For a
  tutorial on RPSL, the reader should read the RPSL applications
  document [4].

2 RPSL Names, Reserved Words, and Representation

  Each class has a set of attributes which store a piece of information
  about the objects of the class.  Attributes can be mandatory or
  optional: A mandatory attribute has to be defined for all objects of
  the class; optional attributes can be skipped.  Attributes can also
  be single or multiple valued.  Each object is uniquely identified by
  a set of attributes, referred to as the class "key".

  The value of an attribute has a type.  The following types are most
  widely used.  Note that RPSL is case insensitive and only the
  characters from the ASCII character set can be used.

  <object-name>
     Many objects in RPSL have a name.  An <object-name> is made up of
     letters, digits, the character underscore "_", and the character
     hyphen "-"; the first character of a name must be a letter, and
     the last character of a name must be a letter or a digit.  The
     following words are reserved by RPSL, and they can not be used as
     names:

         any as-any rs-any peeras
         and or not
         atomic from to at action accept announce except refine
         networks into inbound outbound

     Names starting with certain prefixes are reserved for certain
     object types.  Names starting with "as-" are reserved for as set
     names.  Names starting with "rs-" are reserved for route set
     names.  Names starting with "rtrs-" are reserved for router set
     names.  Names starting with "fltr-" are reserved for filter set
     names.  Names starting with "prng-" are reserved for peering set
     names.




Alaettinoglu, et al.        Standards Track                     [Page 4]

RFC 2622                          RPSL                         June 1999


  <as-number> An AS number x is represented as the string "ASx".  That
     is, the AS 226 is represented as AS226.

  <ipv4-address> An IPv4 address is represented as a sequence of four
     integers in the range from 0 to 255 separated by the character dot
     ".".  For example, 128.9.128.5 represents a valid IPv4 address.
     In the rest of this document, we may refer to IPv4 addresses as IP
     addresses.

  <address-prefix> An address prefix is represented as an IPv4 address
     followed by the character slash "/" followed by an integer in the
     range from 0 to 32.  The following are valid address prefixes:
     128.9.128.5/32, 128.9.0.0/16, 0.0.0.0/0; and the following address
     prefixes are invalid:  0/0, 128.9/16 since 0 or 128.9 are not
     strings containing four integers.

  <address-prefix-range> An address prefix range is an address prefix
     followed by an optional range operator.  The range operators are:

  ^- is the exclusive more specifics operator; it stands for the more
     specifics of the address prefix excluding the address prefix
     itself.  For example, 128.9.0.0/16^- contains all the more
     specifics of 128.9.0.0/16 excluding 128.9.0.0/16.

  ^+ is the inclusive more specifics operator; it stands for the more
     specifics of the address prefix including the address prefix
     itself.  For example, 5.0.0.0/8^+ contains all the more specifics
     of 5.0.0.0/8 including 5.0.0.0/8.

  ^n where n is an integer, stands for all the length n specifics of
     the address prefix.  For example, 30.0.0.0/8^16 contains all the
     more specifics of 30.0.0.0/8 which are of length 16 such as
     30.9.0.0/16.

  ^n-m where n and m are integers, stands for all the length n to
     length m specifics of the address prefix.  For example,
     30.0.0.0/8^24-32 contains all the more specifics of 30.0.0.0/8
     which are of length 24 to 32 such as 30.9.9.96/28.

  Range operators can also be applied to address prefix sets.  In this
  case, they distribute over the members of the set.  For example, for
  a route-set (defined later) rs-foo, rs-foo^+ contains all the
  inclusive more specifics of all the prefixes in rs-foo.

  It is an error to follow a range operator with another one (e.g.
  30.0.0.0/8^24-28^+ is an error).  However, a range operator can be
  applied to an address prefix set that has address prefix ranges in it
  (e.g. {30.0.0.0/8^24-28}^27-30 is not an error).  In this case, the



Alaettinoglu, et al.        Standards Track                     [Page 5]

RFC 2622                          RPSL                         June 1999


  outer operator ^n-m distributes over the inner operator ^k-l and
  becomes the operator ^max(n,k)-m if m is greater than or equal to
  max(n,k), or otherwise, the prefix is deleted from the set.  Note
  that the operator ^n is equivalent to ^n-n; prefix/l^+ is equivalent
  to prefix/l^l-32; prefix/l^- is equivalent to prefix/l^(l+1)-32;
  {prefix/l^n-m}^+ is equivalent to {prefix/l^n-32}; and {prefix/l^n-
  m}^- is equivalent to {prefix/l^(n+1)-32}.  For example,

               {128.9.0.0/16^+}^-     == {128.9.0.0/16^-}
               {128.9.0.0/16^-}^+     == {128.9.0.0/16^-}
               {128.9.0.0/16^17}^24   == {128.9.0.0/16^24}
               {128.9.0.0/16^20-24}^26-28 == {128.9.0.0/16^26-28}
               {128.9.0.0/16^20-24}^22-28 == {128.9.0.0/16^22-28}
               {128.9.0.0/16^20-24}^18-28 == {128.9.0.0/16^20-28}
               {128.9.0.0/16^20-24}^18-22 == {128.9.0.0/16^20-22}
               {128.9.0.0/16^20-24}^18-19 == {}

  <date>
     A date is represented as an eight digit integer of the form
     YYYYMMDD where YYYY represents the year, MM represents the month
     of the year (01 through 12), and DD represents the day of the
     month (01 through 31).  All dates are in UTC unless otherwise
     specified.  For example, June 24, 1996 is represented as 19960624.

  <email-address>is as described in RFC-822 [10].

  <dns-name>is as described in RFC-1034 [17].

  <nic-handle> is a uniquely assigned identifier word used by routing,
     address allocation, and other registries to unambiguously refer to
     contact information.  Person and role classes map NIC handles to
     actual person names, and contact information.

  <free-form>is a sequence of ASCII characters.

  <X-name> is a name of an object of type X. That is <mntner-name> is a
     name of a mntner object.

  <registry-name> is a name of an IRR registry.  The routing registries
     are listed in Appendix A.

  A value of an attribute may also be a list of one of these types.  A
  list is represented by separating the list members by commas ",".
  For example, "AS1, AS2, AS3, AS4" is a list of AS numbers.  Note that
  being list valued and being multiple valued are orthogonal.  A
  multiple valued attribute has more than one value, each of which may
  or may not be a list.  On the other hand a single valued attribute
  may have a list value.



Alaettinoglu, et al.        Standards Track                     [Page 6]

RFC 2622                          RPSL                         June 1999


  An RPSL object is textually represented as a list of attribute-value
  pairs.  Each attribute-value pair is written on a separate line.  The
  attribute name starts at column 0, followed by character ":" and
  followed by the value of the attribute.  The attribute which has the
  same name as the object's class should be specified first.  The
  object's representation ends when a blank line is encountered.  An
  attribute's value can be split over multiple lines, by having a
  space, a tab or a plus ('+') character as the first character of the
  continuation lines.  The character "+" for line continuation allows
  attribute values to contain blank lines.  More spaces may optionally
  be used after the continuation character to increase readability.
  The order of attribute-value pairs is significant.

  An object's description may contain comments.  A comment can be
  anywhere in an object's definition, it starts at the first "#"
  character on a line and ends at the first end-of-line character.
  White space characters can be used to improve readability.

  An integer can be specified using (1) the C programming language
  notation (e.g. 1, 12345); (2) sequence of four 1-octet integers (in
  the range from 0 to 255) separated by the character dot "."  (e.g.
  1.1.1.1, 255.255.0.0), in this case a 4-octet integer is formed by
  concatenating these 1-octet integers in the most significant to least
  significant order; (3) sequence of two 2-octet integers (in the range
  from 0 to 65535) separated by the character colon ":" (e.g. 3561:70,
  3582:10), in this case a 4-octet integer is formed by concatenating
  these 2-octet integers in the most significant to least significant
  order.

3 Contact Information

  The mntner, person and role classes, admin-c, tech-c, mnt-by,
  changed, and source attributes of all classes describe contact
  information.  The mntner class also specifies authenticaiton
  information required to create, delete and update other objects.
  These classes do not specify routing policies and each registry may
  have different or additional requirements on them.  Here we present
  the common denominator for completeness which is the RIPE database
  implementation [16].  Please consult your routing registry for the
  latest specification of these classes and attributes.  The "Routing
  Policy System Security" document [20] describes the authenticaiton
  and authorization model in more detail.

3.1 mntner Class

  The mntner class specifies authenticaiton information required to
  create, delete and update RPSL objects.  A provider, before he/she
  can create RPSL objects, first needs to create a mntner object.  The



Alaettinoglu, et al.        Standards Track                     [Page 7]

RFC 2622                          RPSL                         June 1999


  attributes of the mntner class are shown in Figure 1.  The mntner
  class was first described in [13].

  The mntner attribute is mandatory and is the class key.  Its value is
  an RPSL name.  The auth attribute specifies the scheme that will be
  used to identify and authenticate update requests from this
  maintainer.  It has the following syntax:

  auth: <scheme-id> <auth-info>

  E.g.
         auth: NONE

 Attribute  Value                   Type
 mntner     <object-name>           mandatory, single-valued, class key
 descr      <free-form>             mandatory, single-valued
 auth       see description in text mandatory, multi-valued
 upd-to     <email-address>         mandatory, multi-valued
 mnt-nfy    <email-address>         optional, multi-valued
 tech-c     <nic-handle>            mandatory, multi-valued
 admin-c    <nic-handle>            optional, multi-valued
 remarks    <free-form>             optional, multi-valued
 notify     <email-address>         optional, multi-valued
 mnt-by     list of <mntner-name>   mandatory, multi-valued
 changed    <email-address> <date>  mandatory, multi-valued
 source     <registry-name>         mandatory, single-valued


                    Figure 1:  mntner Class Attributes


         auth: CRYPT-PW dhjsdfhruewf
         auth: MAIL-FROM .*@ripe\.net

  The <scheme-id>'s currently defined are: NONE, MAIL-FROM, PGP-KEY and
  CRYPT-PW. The <auth-info> is additional information required by a
  particular scheme: in the case of MAIL-FROM, it is a regular
  expression matching valid email addresses; in the case of CRYPT-PW,
  it is a password in UNIX crypt format; and in the case of PGP-KEY, it
  is a pointer to key-certif object [22] containing the PGP public key
  of the user.  If multiple auth attributes are specified, an update
  request satisfying any one of them is authenticated to be from the
  maintainer.

  The upd-to attribute is an email address.  On an unauthorized update
  attempt of an object maintained by this maintainer, an email message
  will be sent to this address.  The mnt-nfy attribute is an email
  address.  A notification message will be forwarded to this email



Alaettinoglu, et al.        Standards Track                     [Page 8]

RFC 2622                          RPSL                         June 1999


  address whenever an object maintained by this maintainer is added,
  changed or deleted.

  The descr attribute is a short, free-form textual description of the
  object.  The tech-c attribute is a technical contact NIC handle.
  This is someone to be contacted for technical problems such as
  misconfiguration.  The admin-c attribute is an administrative contact
  NIC handle.  The remarks attribute is a free text explanation or
  clarification.  The notify attribute is an email address to which
  notifications of changes to this object should be sent.  The mnt-by
  attribute is a list of mntner object names.  The authorization for
  changes to this object is governed by any of the maintainer objects
  referenced.  The changed attribute documents who last changed this
  object, and when this change was made.  Its syntax has the following
  form:

  changed: <email-address> <YYYYMMDD>

  E.g.
  changed: [email protected] 19900401

  The <email-address> identifies the person who made the last change.
  <YYYYMMDD> is the date of the change.  The source attribute specifies
  the registry where the object is registered.  Figure 2 shows an
  example mntner object.  In the example, UNIX crypt format password
  authentication is used.

  mntner:      RIPE-NCC-MNT
  descr:       RIPE-NCC Maintainer
  admin-c:     DK58
  tech-c:      OPS4-RIPE
  upd-to:      [email protected]
  mnt-nfy:     [email protected]
  auth:        CRYPT-PW lz1A7/JnfkTtI
  mnt-by:      RIPE-NCC-MNT
  changed:     [email protected] 19970820
  source:      RIPE


                   Figure 2:  An example mntner object.

  The descr, tech-c, admin-c, remarks, notify, mnt-by, changed and
  source attributes are attributes of all RPSL classes.  Their syntax,
  semantics, and mandatory, optional, multi-valued, or single-valued
  status are the same for for all RPSL classes.  Only exception to this
  is the admin-c attribute which is mandatory for the aut-num class.
  We do not further discuss them in other sections.




Alaettinoglu, et al.        Standards Track                     [Page 9]

RFC 2622                          RPSL                         June 1999


3.2 person Class

  A person class is used to describe information about people.  Even
  though it does not describe routing policy, we still describe it here
  briefly since many policy objects make reference to person objects.
  The person class was first described in [15].

  The attributes of the person class are shown in Figure 3.  The person
  attribute is the full name of the person.  The phone and the fax-no
  attributes have the following syntax:

     phone: +<country-code> <city> <subscriber> [ext. <extension>]

  E.g.:
     phone: +31 20 12334676

 Attribute  Value                   Type
 person     <free-form>             mandatory, single-valued
 nic-hdl    <nic-handle>            mandatory, single-valued, class key
 address    <free-form>             mandatory, multi-valued
 phone      see description in text mandatory, multi-valued
 fax-no     same as phone           optional, multi-valued
 e-mail     <email-address>         mandatory, multi-valued


                    Figure 3:  person Class Attributes


     phone: +44 123 987654 ext. 4711

  Figure 4 shows an example person object.

  person:      Daniel Karrenberg
  address:     RIPE Network Coordination Centre (NCC)
  address:     Singel 258
  address:     NL-1016 AB  Amsterdam
  address:     Netherlands
  phone:       +31 20 535 4444
  fax-no:      +31 20 535 4445
  e-mail:      [email protected]
  nic-hdl:     DK58
  changed:     [email protected] 19970616
  source:      RIPE


                   Figure 4:  An example person object.





Alaettinoglu, et al.        Standards Track                    [Page 10]

RFC 2622                          RPSL                         June 1999


3.3 role Class

  The role class is similar to the person object.  However, instead of
  describing a human being, it describes a role performed by one or
  more human beings.  Examples include help desks, network monitoring
  centers, system administrators, etc.  Role object is particularly
  useful since often a person performing a role may change, however the
  role itself remains.

  The attributes of the role class are shown in Figure 5.  The nic-hdl
  attributes of the person and role classes share the same name space.
  The trouble attribute of role object may contain additional contact
  information to be used when a problem arises in any object that
  references this role object.  Figure 6 shows an example role object.

 Attribute  Value                    Type
 role       <free-form>              mandatory, single-valued
 nic-hdl    <nic-handle>             mandatory, single-valued,
                                     class key
 trouble    <free-form>              optional, multi-valued
 address    <free-form>              mandatory, multi-valued
 phone      see description in text  mandatory, multi-valued
 fax-no     same as phone            optional, multi-valued
 e-mail     <email-address>          mandatory, multi-valued


                     Figure 5:  role Class Attributes


  role:        RIPE NCC Operations
  trouble:
  address:     Singel 258
  address:     1016 AB Amsterdam
  address:     The Netherlands
  phone:       +31 20 535 4444
  fax-no:      +31 20 545 4445
  e-mail:      [email protected]
  admin-c:     CO19-RIPE
  tech-c:      RW488-RIPE
  tech-c:      JLSD1-RIPE
  nic-hdl:     OPS4-RIPE
  notify:      [email protected]
  changed:     [email protected] 19970926
  source:      RIPE


                    Figure 6:  An example role object.




Alaettinoglu, et al.        Standards Track                    [Page 11]

RFC 2622                          RPSL                         June 1999


4 route Class

  Each interAS route (also referred to as an interdomain route)
  originated by an AS is specified using a route object.  The
  attributes of the route class are shown in Figure 7.  The route
  attribute is the address prefix of the route and the origin attribute
  is the AS number of the AS that originates the route into the interAS
  routing system.  The route and origin attribute pair is the class
  key.

  Figure 8 shows examples of four route objects (we do not include
  contact attributes such as admin-c, tech-c for brevity).  Note that
  the last two route objects have the same address prefix, namely
  128.8.0.0/16.  However, they are different route objects since they
  are originated by different ASes (i.e. they have different keys).

  Attribute     Value                      Type
  route         <address-prefix>           mandatory, single-valued,
                                           class key
  origin        <as-number>                mandatory, single-valued,
                                           class key
  member-of     list of <route-set-names>  optional, multi-valued
                see Section 5
  inject        see Section 8              optional, multi-valued
  components    see Section 8              optional, single-valued
  aggr-bndry    see Section 8              optional, single-valued
  aggr-mtd      see Section 8              optional, single-valued
  export-comps  see Section 8              optional, single-valued
  holes         see Section 8              optional, multi-valued


                       Figure 7:  route Class Attributes


     route: 128.9.0.0/16
     origin: AS226

     route: 128.99.0.0/16
     origin: AS226

     route: 128.8.0.0/16
     origin: AS1

     route: 128.8.0.0/16
     origin: AS2

                            Figure 8:  Route Objects




Alaettinoglu, et al.        Standards Track                    [Page 12]

RFC 2622                          RPSL                         June 1999


5 Set Classes

  To specify policies, it is often useful to define sets of objects.
  For this purpose we define as-set, route-set, rtr-set, filter-set,
  and peering-set classes.  These classes define a named set.  The
  members of these sets can be specified either directly by listing
  them in the sets' definition, or indirectly by having member objects
  refer to the sets' names, or a combination of both methods.

  A set's name is an rpsl word with the following restrictions: All
  as-set names start with prefix "as-".  All route-set names start with
  prefix "rs-".  All rtr-set names start with prefix "rtrs-".  All
  filter-set names start with prefix "fltr-".  All peering-set names
  start with prefix "prng-".  For example, as-foo is a valid as-set
  name.

  Set names can also be hierarchical.  A hierarchical set name is a
  sequence of set names and AS numbers separated by colons ":".  At
  least one component of such a name must be an actual set name (i.e.
  start with one of the prefixes above).  All the set name components
  of an hierarchical name has to be of the same type.  For example, the
  following names are valid: AS1:AS-CUSTOMERS, AS1:RS-EXPORT:AS2, RS-
  EXCEPTIONS:RS-BOGUS.

  The purpose of an hierarchical set name is to partition the set name
  space so that the maintainers of the set X1 controls the whole set
  name space underneath, i.e. X1:...:Xn-1.  Thus, a set object with
  name X1:...:Xn-1:Xn can only be created by the maintainer of the
  object with name X1:...:Xn-1.  That is, only the maintainer of AS1
  can create a set with name AS1:AS-FOO; and only the maintainer of
  AS1:AS-FOO can create a set with name AS1:AS-FOO:AS-BAR. Please see
  RPS Security Document [20] for details.



















Alaettinoglu, et al.        Standards Track                    [Page 13]

RFC 2622                          RPSL                         June 1999


5.1 as-set Class

  The attributes of the as-set class are shown in Figure 9.  The as-set
  attribute defines the name of the set.  It is an RPSL name that
  starts with "as-".  The members attribute lists the members of the
  set.  The members attribute is a list of AS numbers, or other as-set
  names.

     Attribute    Value                    Type
     as-set       <object-name>            mandatory, single-valued,
                                           class key
     members      list of <as-numbers> or  optional, multi-valued
                  <as-set-names>
     mbrs-by-ref  list of <mntner-names>   optional, multi-valued


                    Figure 9:  as-set Class Attributes

  Figure 10 presents two as-set objects.  The set as-foo contains two
  ASes, namely AS1 and AS2.  The set as-bar contains the members of the
  set as-foo and AS3, that is it contains AS1, AS2, AS3.  The set as-
  empty contains no members.

as-set: as-foo           as-set: as-bar                as-set: as-empty
members: AS1, AS2        members: AS3, as-foo


                       Figure 10:  as-set objects.

  The mbrs-by-ref attribute is a list of maintainer names or the
  keyword ANY.  If this attribute is used, the AS set also includes
  ASes whose aut-num objects are registered by one of these maintainers
  and whose member-of attribute refers to the name of this AS set.  If
  the value of a mbrs-by-ref attribute is ANY, any AS object referring
  to the AS set is a member of the set.  If the mbrs-by-ref attribute
  is missing, only the ASes listed in the members attribute are members
  of the set.

   as-set: as-foo
   members: AS1, AS2
   mbrs-by-ref: MNTR-ME

   aut-num: AS3                          aut-num: AS4
   member-of: as-foo                     member-of: as-foo
   mnt-by: MNTR-ME                       mnt-by: MNTR-OTHER


                          Figure 11:  as-set objects.



Alaettinoglu, et al.        Standards Track                    [Page 14]

RFC 2622                          RPSL                         June 1999


  Figure 11 presents an example as-set object that uses the mbrs-by-ref
  attribute.  The set as-foo contains AS1, AS2 and AS3.  AS4 is not a
  member of the set as-foo even though the aut-num object references
  as-foo.  This is because MNTR-OTHER is not listed in the as-foo's
  mbrs-by-ref attribute.

5.2 route-set Class

  The attributes of the route-set class are shown in Figure 12.  The
  route-set attribute defines the name of the set.  It is an RPSL name
  that starts with "rs-".  The members attribute lists the members of
  the set.  The members attribute is a list of address prefixes or
  other route-set names.  Note that, the route-set class is a set of
  route prefixes, not of RPSL route objects.

Attribute    Value                              Type
route-set    <object-name>                      mandatory,
                                                single-valued,
                                                class key
members      list of <address-prefix-range> or  optional, multi-valued
             <route-set-name> or
             <route-set-name><range-operator>
mbrs-by-ref  list of <mntner-names>             optional, multi-valued


                  Figure 12:  route-set Class Attributes

  Figure 13 presents some example route-set objects.  The set rs-foo
  contains two address prefixes, namely 128.9.0.0/16 and 128.9.0.0/24.
  The set rs-bar contains the members of the set rs-foo and the address
  prefix 128.7.0.0/16.

  An address prefix or a route-set name in a members attribute can be
  optionally followed by a range operator.  For example, the following
  set:

  route-set: rs-foo
  members: 128.9.0.0/16, 128.9.0.0/24

  route-set: rs-bar
  members: 128.7.0.0/16, rs-foo


                      Figure 13:  route-set Objects







Alaettinoglu, et al.        Standards Track                    [Page 15]

RFC 2622                          RPSL                         June 1999


  route-set: rs-bar
  members: 5.0.0.0/8^+, 30.0.0.0/8^24-32, rs-foo^+

  contains all the more specifics of 5.0.0.0/8 including 5.0.0.0/8, all
  the more specifics of 30.0.0.0/8 which are of length 24 to 32 such as
  30.9.9.96/28, and all the more specifics of address prefixes in route
  set rs-foo.

  The mbrs-by-ref attribute is a list of maintainer names or the
  keyword ANY.  If this attribute is used, the route set also includes
  address prefixes whose route objects are registered by one of these
  maintainers and whose member-of attribute refers to the name of this
  route set.  If the value of a mbrs-by-ref attribute is ANY, any route
  object referring to the route set name is a member.  If the mbrs-by-
  ref attribute is missing, only the address prefixes listed in the
  members attribute are members of the set.


  route-set: rs-foo
  mbrs-by-ref: MNTR-ME, MNTR-YOU

  route-set: rs-bar
  members: 128.7.0.0/16
  mbrs-by-ref: MNTR-YOU

  route: 128.9.0.0/16
  origin: AS1
  member-of: rs-foo
  mnt-by: MNTR-ME

  route: 128.8.0.0/16
  origin: AS2
  member-of: rs-foo, rs-bar
  mnt-by: MNTR-YOU


                      Figure 14:  route-set objects.

  Figure 14 presents example route-set objects that use the mbrs-by-ref
  attribute.  The set rs-foo contains two address prefixes, namely
  128.8.0.0/16 and 128.9.0.0/16 since the route objects for
  128.8.0.0/16 and 128.9.0.0/16 refer to the set name rs-foo in their
  member-of attribute.  The set rs-bar contains the address prefixes
  128.7.0.0/16 and 128.8.0.0/16.  The route 128.7.0.0/16 is explicitly
  listed in the members attribute of rs-bar, and the route object for
  128.8.0.0/16 refer to the set name rs-bar in its member-of attribute.





Alaettinoglu, et al.        Standards Track                    [Page 16]

RFC 2622                          RPSL                         June 1999


  Note that, if an address prefix is listed in a members attribute of a
  route set, it is a member of that route set.  The route object
  corresponding to this address prefix does not need to contain a
  member-of attribute referring to this set name.  The member-of
  attribute of the route class is an additional mechanism for
  specifying the members indirectly.

5.3 Predefined Set Objects

  In a context that expects a route set (e.g.  members attribute of the
  route-set class), an AS number ASx defines the set of routes that are
  originated by ASx; and an as-set AS-X defines the set of routes that
  are originated by the ASes in AS-X. A route p is said to be
  originated by ASx if there is a route object for p with ASx as the
  value of the origin attribute.  For example, in Figure 15, the route
  set rs-special contains 128.9.0.0/16, routes of AS1 and AS2, and
  routes of the ASes in AS set AS-FOO.

  route-set: rs-special
  members: 128.9.0.0/16, AS1, AS2, AS-FOO


         Figure 15:  Use of AS numbers and AS sets in route sets.

  The set rs-any contains all routes registered in IRR. The set as-any
  contains all ASes registered in IRR.

5.4 Filters and filter-set Class

  The attributes of the filter-set class are shown in Figure 16.  A
  filter-set object defines a set of routes that are matched by its
  filter.  The filter-set attribute defines the name of the filter.  It
  is an RPSL name that starts with "fltr-".

      Attribute   Value         Type
      filter-set  <object-name> mandatory, single-valued, class key
      filter      <filter>      mandatory, single-valued

                   Figure 16:  filter Class Attributes

     filter-set: fltr-foo
     filter: { 5.0.0.0/8, 6.0.0.0/8 }

     filter-set: fltr-bar
     filter: (AS1 or fltr-foo) and <AS2>

                     Figure 17:  filter-set objects.




Alaettinoglu, et al.        Standards Track                    [Page 17]

RFC 2622                          RPSL                         June 1999


  The filter attribute defines the set's policy filter.  A policy
  filter is a logical expression which when applied to a set of routes
  returns a subset of these routes.  We say that the policy filter
  matches the subset returned.  The policy filter can match routes
  using any BGP path attribute, such as the destination address prefix
  (or NLRI), AS-path, or community attributes.

  The policy filters can be composite by using the operators AND, OR,
  and NOT.  The following policy filters can be used to select a subset
  of routes:

  ANY
     The keyword ANY matches all routes.

  Address-Prefix Set This is an explicit list of address prefixes
     enclosed in braces '{' and '}'.  The policy filter matches the set
     of routes whose destination address-prefix is in the set.  For
     example:

       { 0.0.0.0/0 }
       { 128.9.0.0/16, 128.8.0.0/16, 128.7.128.0/17, 5.0.0.0/8 }
       { }


  An address prefix can be optionally followed by a range operator
  (i.e.

     { 5.0.0.0/8^+, 128.9.0.0/16^-, 30.0.0.0/8^16, 30.0.0.0/8^24-32 }


  contains all the more specifics of 5.0.0.0/8 including 5.0.0.0/8, all
  the more specifics of 128.9.0.0/16 excluding 128.9.0.0/16, all the
  more specifics of 30.0.0.0/8 which are of length 16 such as
  30.9.0.0/16, and all the more specifics of 30.0.0.0/8 which are of
  length 24 to 32 such as 30.9.9.96/28.

  Route Set Name  A route set name matches the set of routes that are
  members of the set.  A route set name may be a name of a route-set
  object, an AS number, or a name of an as-set object (AS numbers and
  as-set names implicitly define route sets; please see Section 5.3).
  For example:

     aut-num: AS1
     import: from AS2 accept AS2
     import: from AS2 accept AS-FOO
     import: from AS2 accept RS-FOO





Alaettinoglu, et al.        Standards Track                    [Page 18]

RFC 2622                          RPSL                         June 1999


  The keyword PeerAS can be used instead of the AS number of the peer
  AS.  PeerAS is particularly useful when the peering is specified
  using an AS expression.  For example:

     as-set: AS-FOO
     members: AS2, AS3

     aut-num: AS1
     import: from AS-FOO accept PeerAS

  is same as:

     aut-num: AS1
     import: from AS2 accept AS2
     import: from AS3 accept AS3

  A route set name can also be followed by one of the operators '^-',
  '^+', example, { 5.0.0.0/8, 6.0.0.0/8 }^+ equals { 5.0.0.0/8^+,
  6.0.0.0/8^+ }, and AS1^- equals all the exclusive more specifics of
  routes originated by AS1.

  AS Path Regular Expressions
     An AS-path regular expression can be used as a policy filter by
     enclosing the expression in `<' and `>'.  An AS-path policy filter
     matches the set of routes which traverses a sequence of ASes
     matched by the AS-path regular expression.  A router can check
     this using the AS_PATH attribute in the Border Gateway Protocol
     [19], or the RD_PATH attribute in the Inter-Domain Routing
     Protocol [18].

     AS-path Regular Expressions are POSIX compliant regular
     expressions over the alphabet of AS numbers.  The regular
     expression constructs are as follows:

  ASN
     where ASN is an AS number.  ASN matches the AS-path that is of
     length 1 and contains the corresponding AS number (e.g.  AS-path
     regular expression AS1 matches the AS-path "1").

     The keyword PeerAS can be used instead of the AS number of the
     peer AS.

  AS-set
     where AS-set is an AS set name.  AS-set matches the AS-paths that
     is matched by one of the ASes in the AS-set.

  .
     matches the AS-paths matched by any AS number.



Alaettinoglu, et al.        Standards Track                    [Page 19]

RFC 2622                          RPSL                         June 1999


  [...]
     is an AS number set.  It matches the AS-paths matched by the AS
     numbers listed between the brackets.  The AS numbers in the set
     are separated by white space characters.  If a `-' is used between
     two AS numbers in this set, all AS numbers between the two AS
     numbers are included in the set.  If an as-set name is listed, all
     AS numbers in the as-set are included.

  [^...]
     is a complemented AS number set.  It matches any AS-path which is
     not matched by the AS numbers in the set.

  ^
     Matches the empty string at the beginning of an AS-path.

  $
     Matches the empty string at the end of an AS-path.

  We next list the regular expression operators in the decreasing order
  of evaluation.  These operators are left associative, i.e. performed
  left to right.

  Unary postfix operators * + ?  {m} {m,n} {m,}
     For a regular expression A, A* matches zero or more occurrences of
     A; A+ matches one or more occurrences of A; A?  matches zero or
     one occurrence of A; A{m} matches m occurrence of A; A{m,n}
     matches m to n occurrence of A; A{m,} matches m or more occurrence
     of A. For example, [AS1 AS2]{2} matches AS1 AS1, AS1 AS2, AS2 AS1,
     and AS2 AS2.

  Unary postfix operators ~* ~+ ~{m} ~{m,n} ~{m,}
     These operators have similar functionality as the corresponding
     operators listed above, but all occurrences of the regular
     expression has to match the same pattern.  For example, [AS1
     AS2]~{2} matches AS1 AS1 and AS2 AS2, but it does not match AS1
     AS2 and AS2 AS1.

  Binary catenation operator
     This is an implicit operator and exists between two regular
     expressions A and B when no other explicit operator is specified.
     The resulting expression A B matches an AS-path if A matches some
     prefix of the AS-path and B matches the rest of the AS-path.

  Binary alternative (or) operator |
     For a regular expressions A and B, A | B matches any AS-path that
     is matched by A or B.





Alaettinoglu, et al.        Standards Track                    [Page 20]

RFC 2622                          RPSL                         June 1999


  Parenthesis can be used to override the default order of evaluation.
  White spaces can be used to increase readability.

  The following are examples of AS-path filters:

  <AS3>
  <^AS1>
  <AS2$>
  <^AS1 AS2 AS3$>
  <^AS1 .* AS2$>.

  The first example matches any route whose AS-path contains AS3, the
  second matches routes whose AS-path starts with AS1, the third
  matches routes whose AS-path ends with AS2, the fourth matches routes
  whose AS-path is exactly "1 2 3", and the fifth matches routes whose
  AS-path starts with AS1 and ends in AS2 with any number of AS numbers
  in between.

  Composite Policy Filters The following operators (in decreasing order
  of evaluation) can be used to form composite policy filters:


  NOT Given a policy filter x, NOT x matches the set of routes that
      are not matched by x.  That is it is the negation of policy
      filter x.

  AND Given two policy filters x and y, x AND y matches the intersection
      of the routes that are matched by x and that are matched by y.

  OR  Given two policy filters x and y, x OR y matches the union of the
      routes that are matched by x and that are matched by y.

  Note that an OR operator can be implicit, that is `x y' is equivalent
  to `x OR y'.

 E.g.
   NOT {128.9.0.0/16, 128.8.0.0/16}
   AS226 AS227 OR AS228
   AS226 AND NOT {128.9.0.0/16}
   AS226 AND {0.0.0.0/0^0-18}

  The first example matches any route except 128.9.0.0/16 and
  128.8.0.0/16.  The second example matches the routes of AS226, AS227
  and AS228.  The third example matches the routes of AS226 except
  128.9.0.0/16.  The fourth example matches the routes of AS226 whose
  length are not longer than 18.





Alaettinoglu, et al.        Standards Track                    [Page 21]

RFC 2622                          RPSL                         June 1999


  Routing Policy Attributes Policy filters can also use the values of
  other attributes for comparison.  The attributes whose values can be
  used in policy filters are specified in the RPSL dictionary.  Please
  refer to Section 7 for details.  An example using the the BGP
  community attribute is shown below:

   aut-num: AS1
   export: to AS2 announce AS1 AND NOT community(NO_EXPORT)

  Filters using the routing policy attributes defined in the dictionary
  are evaluated before evaluating the operators AND, OR and NOT.

  Filter Set Name
     A filter set name matches the set of routes that are matched by
     its filter attribute.  Note that the filter attribute of a filter
     set, can recursively refer to other filter set names.  For example
     in Figure 17, fltr-foo matches { 5.0.0.0/8, 6.0.0.0/8 }, and
     fltr-bar matches AS1'S routes or { 5.0.0.0/8, 6.0.0.0/8 } if their
     as path contained AS2.

5.5 rtr-set Class

  The attributes of the rtr-set class are shown in Figure 18.  The
  rtr-set attribute defines the name of the set.  It is an RPSL name
  that starts with "rtrs-".  The members attribute lists the members of
  the set.  The members attribute is a list of inet-rtr names,
  ipv4_addresses or other rtr-set names.

   Attribute    Value                        Type
   rtr-set      <object-name>                mandatory, single-valued,
                                             class key
   members      list of <inet-rtr-names> or  optional, multi-valued
                <rtr-set-names>
                or <ipv4_addresses>
   mbrs-by-ref  list of <mntner-names>       optional, multi-valued


                   Figure 18:  rtr-set Class Attributes













Alaettinoglu, et al.        Standards Track                    [Page 22]

RFC 2622                          RPSL                         June 1999


  Figure 19 presents two rtr-set objects.  The set rtrs-foo contains
  two routers, namely rtr1.isp.net and rtr2.isp.net.  The set rtrs-bar
  contains the members of the set rtrs-foo and rtr3.isp.net, that is it
  contains rtr1.isp.net, rtr2.isp.net, rtr3.isp.net.

rtr-set: rtrs-foo                     rtr-set: rtrs-bar
members: rtr1.isp.net, rtr2.isp.net   members: rtr3.isp.net, rtrs-foo


                       Figure 19:  rtr-set objects.

  The mbrs-by-ref attribute is a list of maintainer names or the
  keyword ANY.  If this attribute is used, the router set also includes
  routers whose inet-rtr objects are registered by one of these
  maintainers and whose member-of attribute refers to the name of this
  router set.  If the value of a mbrs-by-ref attribute is ANY, any
  inet-rtr object referring to the router set is a member of the set.
  If the mbrs-by-ref attribute is missing, only the routers listed in
  the members attribute are members of the set.

      rtr-set: rtrs-foo
      members: rtr1.isp.net, rtr2.isp.net
      mbrs-by-ref: MNTR-ME

      inet-rtr: rtr3.isp.net
      local-as: as1
      ifaddr: 1.1.1.1 masklen 30
      member-of: rtrs-foo
      mnt-by: MNTR-ME


                             Figure 20:  rtr-set objects.

  Figure 20 presents an example rtr-set object that uses the mbrs-by-
  ref attribute.  The set rtrs-foo contains rtr1.isp.net, rtr2.isp.net
  and rtr3.isp.net.















Alaettinoglu, et al.        Standards Track                    [Page 23]

RFC 2622                          RPSL                         June 1999


5.6 Peerings and peering-set Class

  The attributes of the peering-set class are shown in Figure 21.  A
  peering-set object defines a set of peerings that are listed in its
  peering attributes.  The peering-set attribute defines the name of
  the set.  It is an RPSL name that starts with "prng-".

     Attribute    Value          Type
     peering-set  <object-name>  mandatory, single-valued, class key
     peering      <peering>      mandatory, multi-valued

                   Figure 21:  filter Class Attributes

  The peering attribute defines a peering that can be used for
  importing or

    ----------------------                   ----------------------
    |            7.7.7.1 |-------|   |-------| 7.7.7.2            |
    |                    |     ========      |                    |
    |   AS1              |      EX1  |-------| 7.7.7.3     AS2    |
    |                    |                   |                    |
    |            9.9.9.1 |------       ------| 9.9.9.2            |
    ----------------------     |       |     ----------------------
                              ===========
                                  |    EX2
    ----------------------        |
    |            9.9.9.3 |---------
    |                    |
    |   AS3              |
    ----------------------

 Figure 22: Example topology consisting of three ASes, AS1, AS2, and
       AS3; two exchange points, EX1 and EX2; and six routers.

  exporting routes.
     In describing peerings, we are going to use the topology of Figure
     22.  In this topology, there are three ASes, AS1, AS2, and AS3;
     two exchange points, EX1 and EX2; and six routers.  Routers
     connected to the same exchange point peer with each other and
     exchange routing information.  That is, 7.7.7.1, 7.7.7.2 and
     7.7.7.3 peer with each other; 9.9.9.1, 9.9.9.2 and 9.9.9.3 peer
     with each other.

     The syntax of a peering specification is:

     <as-expression> [<router-expression-1>] [at <router-expression-2>]
    | <peering-set-name>




Alaettinoglu, et al.        Standards Track                    [Page 24]

RFC 2622                          RPSL                         June 1999


     where <as-expression> is an expression over AS numbers and AS sets
     using operators AND, OR, and EXCEPT, and <router-expression-1> and
     <router-expression-2> are expressions over router IP addresses,
     inet-rtr names, and rtr-set names using operators AND, OR, and
     EXCEPT.  The binary "EXCEPT" operator is the set subtraction
     operator and has the same precedence as the operator AND (it is
     semantically equivalent to "AND NOT" combination).  That is "(AS1
     OR AS2) EXCEPT AS2" equals "AS1".

     This form identifies all the peerings between any local router in
     <router-expression-2> to any of their peer routers in <router-
     expression-1> in the ASes in <as-expression>.  If <router-
     expression-2> is not specified, it defaults to all routers of the
     local AS that peer with ASes in <as-expression>.  If <router-
     expression-1> is not specified, it defaults to all routers of the
     peer ASes in <as-expression> that peer with the local AS.

     If a <peering-set-name> is used, the peerings are listed in the
     corresponding peering-set object.  Note that the peering-set
     objects can be recursive.

     Many special forms of this general peering specification is
     possible.  The following examples illustrate the most common
     cases, using the import attribute of the aut-num class.  In the
     following example 7.7.7.1 imports 128.9.0.0/16 from 7.7.7.2.

(1) aut-num: AS1
    import: from AS2 7.7.7.2 at 7.7.7.1 accept { 128.9.0.0/16 }

  In the following example 7.7.7.1 imports 128.9.0.0/16 from 7.7.7.2
  and 7.7.7.3.

(2) aut-num: AS1
    import: from AS2 at 7.7.7.1 accept { 128.9.0.0/16 }


  In the following example 7.7.7.1 imports 128.9.0.0/16 from 7.7.7.2
  and 7.7.7.3, and 9.9.9.1 imports 128.9.0.0/16 from 9.9.9.2.

(3) aut-num: AS1
    import: from AS2 accept { 128.9.0.0/16 }

  In the following example 9.9.9.1 imports 128.9.0.0/16 from 9.9.9.2
  and 9.9.9.3.







Alaettinoglu, et al.        Standards Track                    [Page 25]

RFC 2622                          RPSL                         June 1999


(4) as-set: AS-FOO
    members: AS2, AS3

    aut-num: AS1
    import: from AS-FOO      at 9.9.9.1 accept { 128.9.0.0/16 }

  In the following example 9.9.9.1 imports 128.9.0.0/16 from 9.9.9.2
  and 9.9.9.3, and 7.7.7.1 imports 128.9.0.0/16 from 7.7.7.2 and
  7.7.7.3.

(5) aut-num: AS1
    import: from AS-FOO                 accept { 128.9.0.0/16 }

  In the following example AS1 imports 128.9.0.0/16 from AS3 at router
  9.9.9.1

(6) aut-num: AS1
    import: from AS-FOO and not AS2 at not 7.7.7.1
            accept { 128.9.0.0/16 }

  This is because "AS-FOO and not AS2" equals AS3 and "not 7.7.7.1"
  equals 9.9.9.1.

  In the following example 9.9.9.1 imports 128.9.0.0/16 from 9.9.9.2
  and 9.9.9.3.

(7) peering-set: prng-bar
    peering: AS1 at 9.9.9.1

    peering-set: prng-foo
    peering: prng-bar
    peering: AS2 at 9.9.9.1

    aut-num: AS1
    import: from prng-foo accept { 128.9.0.0/16 }
















Alaettinoglu, et al.        Standards Track                    [Page 26]

RFC 2622                          RPSL                         June 1999


6 aut-num Class

  Routing policies are specified using the aut-num class.  The
  attributes of the aut-num class are shown in Figure 23.  The value of
  the aut-num attribute is the AS number of the AS described by this
  object.  The as-name attribute is a symbolic name (in RPSL name
  syntax) of the AS. The import, export and default routing policies of
  the AS are specified using import, export and default attributes
  respectively.

  Attribute  Value                  Type
  aut-num    <as-number>            mandatory, single-valued, class key
  as-name    <object-name>          mandatory, single-valued
  member-of  list of <as-set-names> optional, multi-valued
  import     see Section 6.1        optional, multi valued
  export     see Section 6.2        optional, multi valued
  default    see Section 6.5        optional, multi valued

                   Figure 23:  aut-num Class Attributes

6.1 import Attribute:  Import Policy Specification

  In RPSL, an import policy is divided into import policy expressions.
  Each import policy expression is specified using an import attribute.
  The import attribute has the following syntax (we will extend this
  syntax later in Sections 6.3 and 6.6):

  import: from <peering-1> [action <action-1>]
           . . .
           from <peering-N> [action <action-N>]
           accept <filter>

  The action specification is optional.  The semantics of an import
  attribute is as follows: the set of routes that are matched by
  <filter> are imported from all the peers in <peerings>; while
  importing routes at <peering-M>, <action-M> is executed.

 E.g.
   aut-num: AS1
   import: from AS2 action pref = 1; accept { 128.9.0.0/16 }

  This example states that the route 128.9.0.0/16 is accepted from AS2
  with preference 1.  We already presented how peerings (see Section
  5.6) and filters (see Section 5.4) are specified.  We next present
  how to specify actions.






Alaettinoglu, et al.        Standards Track                    [Page 27]

RFC 2622                          RPSL                         June 1999


6.1.1 Action Specification

  Policy actions in RPSL either set or modify route attributes, such as
  assigning a preference to a route, adding a BGP community to the BGP
  community path attribute, or setting the MULTI-EXIT-DISCRIMINATOR
  attribute.  Policy actions can also instruct routers to perform
  special operations, such as route flap damping.

  The routing policy attributes whose values can be modified in policy
  actions are specified in the RPSL dictionary.  Please refer to
  Section 7 for a list of these attributes.  Each action in RPSL is
  terminated by the semicolon character (';').  It is possible to form
  composite policy actions by listing them one after the other.  In a
  composite policy action, the actions are executed left to right.  For
  example,

aut-num: AS1
import: from AS2
        action pref = 10; med = 0; community.append(10250, 3561:10);
        accept { 128.9.0.0/16 }

  sets pref to 10, med to 0, and then appends 10250 and 3561:10 to the
  BGP community path attribute.  The pref attribute is the inverse of
  the local-pref attribute (i.e. local-pref == 65535 - pref).  A route
  with a local-pref attribute is always preferred over a route without
  one.

aut-num: AS1
import: from AS2 action pref = 1;
        from AS3 action pref = 2;
        accept AS4

  The above example states that AS4's routes are accepted from AS2 with
  preference 1, and from AS3 with preference 2 (routes with lower
  integer preference values are preferred over routes with higher
  integer preference values).

aut-num: AS1
import: from AS2 7.7.7.2 at 7.7.7.1 action pref = 1;
        from AS2                    action pref = 2;
        accept AS4

  The above example states that AS4's routes are accepted from AS2 on
  peering 7.7.7.1-7.7.7.2 with preference 1, and on any other peering
  with AS2 with preference 2.






Alaettinoglu, et al.        Standards Track                    [Page 28]

RFC 2622                          RPSL                         June 1999


6.2 export Attribute:  Export Policy Specification

  Similarly, an export policy expression is specified using an export
  attribute.  The export attribute has the following syntax:

   export: to <peering-1> [action <action-1>]
           . . .
           to <peering-N> [action <action-N>]
           announce <filter>

  The action specification is optional.  The semantics of an export
  attribute is as follows:  the set of routes that are matched by
  <filter> are exported to all the peers specified in <peerings>; while
  exporting routes at <peering-M>, <action-M> is executed.

 E.g.
   aut-num: AS1
   export: to AS2 action med = 5; community .= { 70 };
           announce AS4

  In this example, AS4's routes are announced to AS2 with the med
  attribute's value set to 5 and community 70 added to the community
  list.

  Example:

   aut-num: AS1
   export: to AS-FOO announce ANY

  In this example, AS1 announces all of its routes to the ASes in the
  set AS-FOO.

6.3 Other Routing Protocols, Multi-Protocol Routing Protocols, and
  Injecting Routes Between Protocols

  The more complete syntax of the import and export attributes are as
  follows:

   import: [protocol <protocol-1>] [into <protocol-2>]
           from <peering-1> [action <action-1>]
           . . .
           from <peering-N> [action <action-N>]
           accept <filter>
   export: [protocol <protocol-1>] [into <protocol-2>]
           to <peering-1> [action <action-1>]
           . . .
           to <peering-N> [action <action-N>]
           announce <filter>



Alaettinoglu, et al.        Standards Track                    [Page 29]

RFC 2622                          RPSL                         June 1999


  Where the optional protocol specifications can be used for specifying
  policies for other routing protocols, or for injecting routes of one
  protocol into another protocol, or for multi-protocol routing
  policies.  The valid protocol names are defined in the dictionary.
  The <protocol-1> is the name of the protocol whose routes are being
  exchanged.  The <protocol-2> is the name of the protocol which is
  receiving these routes.  Both <protocol-1> and <protocol-2> default
  to the Internet Exterior Gateway Protocol, currently BGP.

  In the following example, all interAS routes are injected into RIP.

aut-num: AS1
import: from AS2 accept AS2
export: protocol BGP4 into RIP
        to AS1 announce ANY

  In the following example, AS1 accepts AS2's routes including any more
  specifics of AS2's routes, but does not inject these extra more
  specific routes into OSPF.

aut-num: AS1
import: from AS2 accept AS2^+
export: protocol BGP4 into OSPF
        to AS1 announce AS2

  In the following example, AS1 injects its static routes (routes which
  are members of the set AS1:RS-STATIC-ROUTES) to the interAS routing
  protocol and appends AS1 twice to their AS paths.

aut-num: AS1
import: protocol STATIC into BGP4
        from AS1 action aspath.prepend(AS1, AS1);
        accept AS1:RS-STATIC-ROUTES

  In the following example, AS1 imports different set of unicast routes
  for multicast reverse path forwarding from AS2:

aut-num: AS1
import: from AS2 accept AS2
import: protocol IDMR
        from AS2 accept AS2:RS-RPF-ROUTES










Alaettinoglu, et al.        Standards Track                    [Page 30]

RFC 2622                          RPSL                         June 1999


6.4 Ambiguity Resolution

  It is possible that the same peering can be covered by more that one
  peering specification in a policy expression.  For example:

aut-num: AS1
import: from AS2 7.7.7.2 at 7.7.7.1 action pref = 2;
        from AS2 7.7.7.2 at 7.7.7.1 action pref = 1;
        accept AS4

  This is not an error, though definitely not desirable.  To break the
  ambiguity, the action corresponding to the first peering
  specification is used.  That is the routes are accepted with
  preference 2.  We call this rule as the specification-order rule.

  Consider the example:

aut-num: AS1
import: from AS2                    action pref = 2;
        from AS2 7.7.7.2 at 7.7.7.1 action pref = 1; dpa = 5;
        accept AS4

  where both peering specifications cover the peering 7.7.7.1-7.7.7.2,
  though the second one covers it more specifically.  The specification
  order rule still applies, and only the action "pref = 2" is executed.
  In fact, the second peering-action pair has no use since the first
  peering-action pair always covers it.  If the intended policy was to
  accept these routes with preference 1 on this particular peering and
  with preference 2 in all other peerings, the user should have
  specified:

aut-num: AS1
import: from AS2 7.7.7.2 at 7.7.7.1 action pref = 1; dpa = 5;
        from AS2                    action pref = 2;
        accept AS4

  It is also possible that more than one policy expression can cover
  the same set of routes for the same peering.  For example:

aut-num: AS1
import: from AS2 action pref = 2; accept AS4
import: from AS2 action pref = 1; accept AS4

  In this case, the specification-order rule is still used.  That is,
  AS4's routes are accepted from AS2 with preference 2.  If the filters
  were overlapping but not exactly the same:





Alaettinoglu, et al.        Standards Track                    [Page 31]

RFC 2622                          RPSL                         June 1999


aut-num: AS1
import: from AS2 action pref = 2; accept AS4
import: from AS2 action pref = 1; accept AS4 OR AS5

  the AS4's routes are accepted from AS2 with preference 2 and however
  AS5's routes are also accepted, but with preference 1.

  We next give the general specification order rule for the benefit of
  the RPSL implementors.  Consider two policy expressions:

aut-num: AS1
import: from peerings-1 action action-1 accept filter-1
import: from peerings-2 action action-2 accept filter-2

  The above policy expressions are equivalent to the following three
  expressions where there is no ambiguity:

aut-num: AS1
import: from peerings-1 action action-1 accept filter-1
import: from peerings-3 action action-2 accept filter-2 AND NOT filter-1
import: from peerings-4 action action-2 accept filter-2

  where peerings-3 are those that are covered by both peerings-1 and
  peerings-2, and peerings-4 are those that are covered by peerings-2
  but not by peerings-1 ("filter-2 AND NOT filter-1" matches the routes
  that are matched by filter-2 but not by filter-1).

  Example:

aut-num: AS1
import: from AS2 7.7.7.2 at 7.7.7.1
        action pref = 2;
        accept {128.9.0.0/16}
import: from AS2
        action pref = 1;
        accept {128.9.0.0/16, 75.0.0.0/8}

  Lets consider two peerings with AS2, 7.7.7.1-7.7.7.2 and 9.9.9.1-
  9.9.9.2.  Both policy expressions cover 7.7.7.1-7.7.7.2.  On this
  peering, the route 128.9.0.0/16 is accepted with preference 2, and
  the route 75.0.0.0/8 is accepted with preference 1.  The peering
  9.9.9.1-9.9.9.2 is only covered by the second policy expressions.
  Hence, both the route 128.9.0.0/16 and the route 75.0.0.0/8 are
  accepted with preference 1 on peering 9.9.9.1-9.9.9.2.

  Note that the same ambiguity resolution rules also apply to export
  and default policy expressions.




Alaettinoglu, et al.        Standards Track                    [Page 32]

RFC 2622                          RPSL                         June 1999


6.5 default Attribute:  Default Policy Specification

  Default routing policies are specified using the default attribute.
  The default attribute has the following syntax:

   default: to <peering> [action <action>] [networks <filter>]

  The <action> and <filter> specifications are optional.  The semantics
  are as follows:  The <peering> specification indicates the AS (and
  the router if present) is being defaulted to; the <action>
  specification, if present, indicates various attributes of
  defaulting, for example a relative preference if multiple defaults
  are specified; and the <filter> specifications, if present, is a
  policy filter.  A router only uses the default policy if it received
  the routes matched by <filter> from this peer.

  In the following example, AS1 defaults to AS2 for routing.

aut-num: AS1
default: to AS2

  In the following example, router 7.7.7.1 in AS1 defaults to router
  7.7.7.2 in AS2.

aut-num: AS1
default: to AS2 7.7.7.2 at 7.7.7.1

  In the following example, AS1 defaults to AS2 and AS3, but prefers
  AS2 over AS3.

aut-num: AS1
default: to AS2 action pref = 1;
default: to AS3 action pref = 2;

  In the following example, AS1 defaults to AS2 and uses 128.9.0.0/16
  as the default network.

aut-num: AS1
default: to AS2 networks { 128.9.0.0/16 }

6.6 Structured Policy Specification

  The import and export policies can be structured.  We only reccomend
  structured policies to advanced RPSL users.  Please feel free to skip
  this section.

  The syntax for a structured policy specification is the following:




Alaettinoglu, et al.        Standards Track                    [Page 33]

RFC 2622                          RPSL                         June 1999


  <import-factor> ::= from <peering-1> [action <action-1>]
                      . . .
                      from <peering-N> [action <action-N>]
                      accept <filter>;

  <import-term> ::=  <import-factor> |
                     LEFT-BRACE
                     <import-factor>
                     . . .
                     <import-factor>
                     RIGHT-BRACE

  <import-expression> ::= <import-term>                            |
                          <import-term> EXCEPT <import-expression> |
                          <import-term> REFINE <import-expression>

  import: [protocol <protocol1>] [into <protocol2>]
          <import-expression>

  Please note the semicolon at the end of an <import-factor>.  If the
  policy specification is not structured (as in all the examples in
  other sections), this semicolon is optional.  The syntax and
  semantics for an <import-factor> is already defined in Section 6.1.

  An <import-term> is either a sequence of <import-factor>'s enclosed
  within matching braces (i.e. `{' and `}') or just a single <import-
  factor>.  The semantics of an <import-term> is the union of <import-
  factor>'s using the specification order rule.  An <import-expression>
  is either a single <import-term> or an <import-term> followed by one
  of the keywords "except" and "refine", followed by another <import-
  expression>.  Note that our definition allows nested expressions.
  Hence there can be exceptions to exceptions, refinements to
  refinements, or even refinements to exceptions, and so on.

  The semantics for the except operator is as follows: The result of an
  except operation is another <import-term>.  The resulting policy set
  contains the policies of the right hand side but their filters are
  modified to only include the routes also matched by the left hand
  side.  The policies of the left hand side are included afterwards and
  their filters are modified to exclude the routes matched by the right
  hand side.  Please note that the filters are modified during this
  process but the actions are copied verbatim.  When there are multiple
  levels of nesting, the operations (both except and refine) are
  performed right to left.







Alaettinoglu, et al.        Standards Track                    [Page 34]

RFC 2622                          RPSL                         June 1999


  Consider the following example:

import: from AS1 action pref = 1; accept as-foo;
        except {
           from AS2 action pref = 2; accept AS226;
           except {
              from AS3 action pref = 3; accept {128.9.0.0/16};
           }
        }

  where the route 128.9.0.0/16 is originated by AS226, and AS226 is a
  member of the as set as-foo.  In this example, the route 128.9.0.0/16
  is accepted from AS3, any other route (not 128.9.0.0/16) originated
  by AS226 is accepted from AS2, and any other ASes' routes in as-foo
  is accepted from AS1.

  We can come to the same conclusion using the algebra defined above.
  Consider the inner exception specification:

  from AS2 action pref = 2; accept AS226;
  except {
     from AS3 action pref = 3; accept {128.9.0.0/16};
  }


is equivalent to


 {
  from AS3 action pref = 3; accept AS226 AND {128.9.0.0/16};
  from AS2 action pref = 2; accept AS226 AND NOT {128.9.0.0/16};
 }


Hence, the original expression is equivalent to:


import: from AS1 action pref = 1; accept as-foo;
        except {
           from AS3 action pref = 3; accept AS226 AND {128.9.0.0/16};
           from AS2 action pref = 2; accept AS226 AND NOT {128.9.0.0/16};
        }


which is equivalent to


import: {



Alaettinoglu, et al.        Standards Track                    [Page 35]

RFC 2622                          RPSL                         June 1999


  from AS3 action pref = 3;
           accept as-foo AND AS226 AND {128.9.0.0/16};
  from AS2 action pref = 2;
           accept as-foo AND AS226 AND NOT {128.9.0.0/16};
  from AS1 action pref = 1;
           accept as-foo AND NOT
             (AS226 AND NOT {128.9.0.0/16} OR AS226 AND {128.9.0.0/16});
  }


Since AS226 is in as-foo and 128.9.0.0/16 is in AS226, it simplifies
to:


import: {
         from AS3 action pref = 3; accept {128.9.0.0/16};
         from AS2 action pref = 2; accept AS226 AND NOT {128.9.0.0/16};
         from AS1 action pref = 1; accept as-foo AND NOT AS226;
       }

  In the case of the refine operator, the resulting set is constructed
  by taking the cartasian product of the two sides as follows:  for
  each policy l in the left hand side and for each policy r in the
  right hand side, the peerings of the resulting policy are the
  peerings common to both r and l; the filter of the resulting policy
  is the intersection of l's filter and r's filter; and action of the
  resulting policy is l's action followed by r's action.  If there are
  no common peerings, or if the intersection of filters is empty, a
  resulting policy is not generated.

  Consider the following example:

import: { from AS-ANY action pref = 1; accept community(3560:10);
          from AS-ANY action pref = 2; accept community(3560:20);
        } refine {
           from AS1 accept AS1;
           from AS2 accept AS2;
           from AS3 accept AS3;
        }

  Here, any route with community 3560:10 is assigned a preference of 1
  and any route with community 3560:20 is assigned a preference of 2
  regardless of whom they are imported from.  However, only AS1's
  routes are imported from AS1, and only AS2's routes are imported from
  AS2, and only AS3's routes are imported form AS3, and no routes are
  imported from any other AS. We can reach the same conclusion using
  the above algebra.  That is, our example is equivalent to:




Alaettinoglu, et al.        Standards Track                    [Page 36]

RFC 2622                          RPSL                         June 1999


import: {
  from AS1 action pref = 1; accept community(3560:10) AND AS1;
  from AS1 action pref = 2; accept community(3560:20) AND AS1;
  from AS2 action pref = 1; accept community(3560:10) AND AS2;
  from AS2 action pref = 2; accept community(3560:20) AND AS2;
  from AS3 action pref = 1; accept community(3560:10) AND AS3;
  from AS3 action pref = 2; accept community(3560:20) AND AS3;
}

  Note that the common peerings between "from AS1" and "from AS-ANY"
  are those peerings in "from AS1".  Even though we do not formally
  define "common peerings", it is straight forward to deduce the
  definition from the definitions of peerings (please see Section 5.6).

  Consider the following example:

import: {
  from AS-ANY action med = 0; accept {0.0.0.0/0^0-18};
  } refine {
       from AS1 at 7.7.7.1 action pref = 1; accept AS1;
       from AS1            action pref = 2; accept AS1;
    }

  where only routes of length 0 to 18 are accepted and med's value is
  set to 0 to disable med's effect for all peerings; In addition, from
  AS1 only AS1's routes are imported, and AS1's routes imported at
  7.7.7.1 are preferred over other peerings.  This is equivalent to:

import: {
     from AS1 at 7.7.7.1 action med=0; pref=1; accept {0.0.0.0/0^0-
18} AND AS1;
   from  AS1             action med=0; pref=2; accept {0.0.0.0/0^0-
18} AND AS1;
}

  The above syntax and semantics also apply equally to structured
  export policies with "from" replaced with "to" and "accept" is
  replaced with "announce".

7 dictionary Class

  The dictionary class provides extensibility to RPSL. Dictionary
  objects define routing policy attributes, types, and routing
  protocols.  Routing policy attributes, henceforth called rp-
  attributes, may correspond to actual protocol attributes, such as the
  BGP path attributes (e.g. community, dpa, and AS-path), or they may
  correspond to router features (e.g. BGP route flap damping).  As new
  protocols, new protocol attributes, or new router features are



Alaettinoglu, et al.        Standards Track                    [Page 37]

RFC 2622                          RPSL                         June 1999


  introduced, the dictionary object is updated to include appropriate
  rp-attribute and protocol definitions.

  An rp-attribute is an abstract class; that is a data representation
  is not available.  Instead, they are accessed through access methods.
  For example, the rp-attribute for the BGP AS-path attribute is called
  aspath; and it has an access method called prepend which stuffs extra
  AS numbers to the AS-path attributes.  Access methods can take
  arguments.  Arguments are strongly typed.  For example, the method
  prepend above takes AS numbers as arguments.

  Once an rp-attribute is defined in the dictionary, it can be used to
  describe policy filters and actions.  Policy analysis tools are
  required to fetch the dictionary object and recognize newly defined
  rp-attributes, types, and protocols.  The analysis tools may
  approximate policy analyses on rp-attributes that they do not
  understand:  a filter method may always match, and an action method
  may always perform no-operation.  Analysis tools may even download
  code to perform appropriate operations using mechanisms outside the
  scope of RPSL.

  We next describe the syntax and semantics of the dictionary class.
  This description is not essential for understanding dictionary
  objects (but it is essential for creating one).  Please feel free to
  skip to the RPSL Initial Dictionary subsection (Section 7.1).

  The attributes of the dictionary class are shown in Figure 24.  The
  dictionary attribute is the name of the dictionary object, obeying
  the RPSL naming rules.  There can be many dictionary objects, however
  there is always one well-known dictionary object "RPSL". All tools
  use this dictionary by default.

Attribute     Value                   Type
dictionary    <object-name>           mandatory, single-valued,
                                      class key
rp-attribute  see description in text optional, multi valued
typedef       see description in text optional, multi valued
protocol      see description in text optional, multi valued

                 Figure 24:  dictionary Class Attributes

  The rp-attribute attribute has the following syntax:

  rp-attribute: <name>
     <method-1>(<type-1-1>, ..., <type-1-N1> [, "..."])
     ...
     <method-M>(<type-M-1>, ..., <type-M-NM> [, "..."])




Alaettinoglu, et al.        Standards Track                    [Page 38]

RFC 2622                          RPSL                         June 1999


  where <name> is the name of the rp-attribute; and <method-i> is the
  name of an access method for the rp-attribute, taking Ni arguments
  where the j-th argument is of type <type-i-j>.  A method name is
  either an RPSL name or one of the operators defined in Figure 25.
  The operator methods with the exception of operator() and operator[]
  can take only one argument.

  operator=           operator==
  operator<<=         operator<
  operator>>=         operator>
  operator+=          operator>=
  operator-=          operator<=
  operator*=          operator!=
  operator/=          operator()
  operator.=          operator[]


                          Figure 25:  Operators

  An rp-attribute can have many methods defined for it.  Some of the
  methods may even have the same name, in which case their arguments
  are of different types.  If the argument list is followed by "...",
  the method takes a variable number of arguments.  In this case, the
  actual arguments after the Nth argument are of type <type-N>.

  Arguments are strongly typed.  A <type> in RPSL is either a
  predefined type, a union type, a list type, or a dictionary defined
  type.  The predefined types are listed in Figure 26.

  integer[lower, upper]              ipv4_address
  real[lower, upper]                 address_prefix
  enum[name, name, ...]              address_prefix_range
  string                             dns_name
  boolean                            filter
  rpsl_word                          as_set_name
  free_text                          route_set_name
  email                              rtr_set_name
  as_number                          filter_set_name
                                     peering_set_name


                       Figure 26:  Predefined Types

  The integer and the real predefined types can be followed by a lower
  and an upper bound to specify the set of valid values of the
  argument.  The range specification is optional.  We use the ANSI C
  language conventions for representing integer, real and string
  values.  The enum type is followed by a list of RPSL names which are



Alaettinoglu, et al.        Standards Track                    [Page 39]

RFC 2622                          RPSL                         June 1999


  the valid values of the type.  The boolean type can take the values
  true or false.  as_number, ipv4_address, address_prefix and dns_name
  types are as in Section 2.  filter type is a policy filter as in
  Section 6.  The value of filter type is suggested to be enclosed in
  parenthesis.

  The syntax of a union type is as follows:

   union <type-1>, ... , <type-N>

  where <type-i> is an RPSL type.  The union type is either of the
  types <type-1> through <type-N> (analogous to unions in C[14]).

  The syntax of a list type is as follows:

  list [<min_elems>:<max_elems>] of <type>

  In this case, the list elements are of <type> and the list contains
  at least <min_elems> and at most <max_elems> elements.  The size
  specification is optional.  If it is not specified, there is no
  restriction in the number of list elements.  A value of a list type
  is represented as a sequence of elements separated by the character
  "," and enclosed by the characters "{" and "}".

  The typedef attribute in the dictionary defines named types as
  follows:

  typedef: <name> <type>

  where <name> is a name for type <type>.  typedef attribute is
  paticularly useful when the type defined is not a predefined type
  (e.g. list of unions, list of lists, etc.).

  A protocol attribute of the dictionary class defines a protocol and a
  set of peering parameters for that protocol (which are used in inet-
  rtr class in Section 9).  Its syntax is as follows:

  protocol: <name>
   MANDATORY | OPTIONAL <parameter-1>(<type-1-1>,...,
                        <type-1-N1> [,"..."])
     ...
   MANDATORY | OPTIONAL <parameter-M>(<type-M-1>,...,
                        <type-M-NM> [,"..."])

  where <name> is the name of the protocol; MANDATORY and OPTIONAL are
  keywords; and <parameter-i> is a peering parameter for this protocol,
  taking Ni many arguments.  The syntax and semantics of the arguments
  are as in the rp-attribute.  If the keyword MANDATORY is used, the



Alaettinoglu, et al.        Standards Track                    [Page 40]

RFC 2622                          RPSL                         June 1999


  parameter is mandatory and needs to be specified for each peering of
  this protocol.  If the keyword OPTIONAL is used, the parameter can be
  skipped.

7.1 Initial RPSL Dictionary and Example Policy Actions and Filters

dictionary:   RPSL
rp-attribute: # preference, smaller values represent higher preferences
             pref
             operator=(integer[0, 65535])
rp-attribute: # BGP multi_exit_discriminator attribute
             med
             # to set med to 10: med = 10;
             # to set med to the IGP metric: med = igp_cost;
             operator=(union integer[0, 65535], enum[igp_cost])
rp-attribute: # BGP destination preference attribute (dpa)
             dpa
             operator=(integer[0, 65535])
rp-attribute: # BGP aspath attribute
             aspath
             # prepends AS numbers from last to first order
             prepend(as_number, ...)
typedef:      # a community value in RPSL is either
             #  - a 4 byte integer (ok to use 3561:70 notation)
             #  - internet, no_export, no_advertise (see RFC-1997)
             community_elm union
                 integer[1, 4294967295],
                 enum[internet, no_export, no_advertise],
typedef:      # list of community values { 40, no_export, 3561:70 }
             community_list list of community_elm
rp-attribute: # BGP community attribute
             community
             # set to a list of communities
             operator=(community_list)
             # append community values
             operator.=(community_list)
             append(community_elm, ...)
             # delete community values
             delete(community_elm, ...)
             # a filter: true if one of community values is contained
             contains(community_elm, ...)
             # shortcut to contains: community(no_export, 3561:70)
             operator()(community_elm, ...)
             # order independent equality comparison
             operator==(community_list)
rp-attribute: # next hop router in a static route
             next-hop
             # to set to 7.7.7.7: next-hop = 7.7.7.7;



Alaettinoglu, et al.        Standards Track                    [Page 41]

RFC 2622                          RPSL                         June 1999


             # to set to router's own address: next-hop = self;
             operator=(union ipv4_address, enum[self])
rp-attribute: # cost of a static route
             cost
             operator=(integer[0, 65535])
protocol: BGP4
         # as number of the peer router
         MANDATORY asno(as_number)
         # enable flap damping
         OPTIONAL flap_damp()
         OPTIONAL flap_damp(integer[0,65535],
                            # penalty per flap
                            integer[0,65535],
                            # penalty value for supression
                            integer[0,65535],
                            # penalty value for reuse
                            integer[0,65535],
                            # halflife in secs when up
                            integer[0,65535],
                            # halflife in secs when down
                            integer[0,65535])
                            # maximum penalty
protocol: OSPF
protocol: RIP
protocol: IGRP
protocol: IS-IS
protocol: STATIC
protocol: RIPng
protocol: DVMRP
protocol: PIM-DM
protocol: PIM-SM
protocol: CBT
protocol: MOSPF


                       Figure 27:  RPSL Dictionary

  Figure 27 shows the initial RPSL dictionary.  It has seven rp-
  attributes:  pref to assign local preference to the routes accepted;
  med to assign a value to the MULTI_EXIT_DISCRIMINATOR BGP attribute;
  dpa to assign a value to the DPA BGP attribute; aspath to prepend a
  value to the AS_PATH BGP attribute; community to assign a value to or
  to check the value of the community BGP attribute; next-hop to assign
  next hop routers to static routes; and cost to assign a cost to
  static routes.  The dictionary defines two types:  community_elm and
  community_list.  community_elm type is either a 4-byte unsigned
  integer, or one of the keywords internet, no_export or no_advertise
  (defined in [9]).  An integer can be specified using two 2-byte



Alaettinoglu, et al.        Standards Track                    [Page 42]

RFC 2622                          RPSL                         June 1999


  integers seperated by ":"  to partition the community number space so
  that a provider can use its AS number as the first two bytes, and
  assigns a semantics of its choice to the last two bytes.

  The initial dictionary (Figure 27) defines only options for the
  Border Gateway Protocol:  asno and flap_damp.  The mandatory asno
  option is the AS number of the peer router.  The optional flap_damp
  option instructs the router to damp route flaps [21] when importing
  routes from the peer router.

  It can be specified with or without parameters.  If parameters are
  missing, they default to:

  flap_damp(1000, 2000, 750, 900, 900, 20000)

  That is, a penalty of 1000 is assigned at each route flap, the route
  is suppressed when penalty reaches 2000.  The penalty is reduced in
  half after 15 minutes (900 seconds) of stability regardless of
  whether the route is up or down.  A supressed route is reused when
  the penalty falls below 750.  The maximum penalty a route can be
  assigned is 20,000 (i.e. the maximum suppress time after a route
  becomes stable is about 75 minutes).  These parameters are consistent
  with the default flap damping parameters in several routers.

Policy Actions and Filters Using RP-Attributes

  The syntax of a policy action or a filter using an rp-attribute x is
  as follows:

   x.method(arguments)
   x "op" argument

  where method is a method and "op" is an operator method of the rp-
  attribute x.  If an operator method is used in specifying a composite
  policy filter, it evaluates earlier than the composite policy filter
  operators (i.e. AND, OR, NOT, and implicit or operator).

  The pref rp-attribute can be assigned a positive integer as follows:

  pref = 10;

  The med rp-attribute can be assigned either a positive integer or the
  word "igp_cost" as follows:

  med = 0;
  med = igp_cost;

  The dpa rp-attribute can be assigned a positive integer as follows:



Alaettinoglu, et al.        Standards Track                    [Page 43]

RFC 2622                          RPSL                         June 1999


  dpa = 100;

  The BGP community attribute is list-valued, that is it is a list of
  4-byte integers each representing a "community".  The following
  examples demonstrate how to add communities to this rp-attribute:

  community .= { 100 };
  community .= { NO_EXPORT };
  community .= { 3561:10 };

  In the last case, a 4-byte integer is constructed where the more
  significant two bytes equal 3561 and the less significant two bytes
  equal 10.  The following examples demonstrate how to delete
  communities from the community rp-attribute:

  community.delete(100, NO_EXPORT, 3561:10);

  Filters that use the community rp-attribute can be defined as
  demonstrated by the following examples:

  community.contains(100, NO_EXPORT, 3561:10);
  community(100, NO_EXPORT, 3561:10);             # shortcut

  The community rp-attribute can be set to a list of communities as
  follows:

  community = {100, NO_EXPORT, 3561:10, 200};
  community = {};

  In this first case, the community rp-attribute contains the
  communities 100, NO_EXPORT, 3561:10, and 200.  In the latter case,
  the community rp-attribute is cleared.  The community rp-attribute
  can be compared against a list of communities as follows:

  community == {100, NO_EXPORT, 3561:10, 200};   # exact match

  To influence the route selection, the BGP as_path rp-attribute can be
  made longer by prepending AS numbers to it as follows:

  aspath.prepend(AS1);
  aspath.prepend(AS1, AS1, AS1);

  The following examples are invalid:

  med = -50;                     # -50 is not in the range
  med = igp;                     # igp is not one of the enum values
  med.assign(10);                # method assign is not defined
  community.append(AS3561:20);   # the first argument should be 3561



Alaettinoglu, et al.        Standards Track                    [Page 44]

RFC 2622                          RPSL                         June 1999


  Figure 28 shows a more advanced example using the rp-attribute
  community.  In this example, AS3561 bases its route selection
  preference on the community attribute.  Other ASes may indirectly
  affect AS3561's route selection by including the appropriate
  communities in their route announcements.

   aut-num: AS1
   export: to AS2 action community.={3561:90};
           to AS3 action community.={3561:80};
           announce AS1

   as-set: AS3561:AS-PEERS
   members: AS2, AS3

   aut-num: AS3561
   import: from AS3561:AS-PEERS
           action pref = 10;
           accept community(3561:90)
   import: from AS3561:AS-PEERS
           action pref = 20;
           accept community(3561:80)
   import: from AS3561:AS-PEERS
           action pref = 20;
           accept community(3561:70)
   import: from AS3561:AS-PEERS
           action pref = 0;
           accept ANY


          Figure 28:  Policy example using the community rp-attribute.

8 Advanced route Class

8.1 Specifying Aggregate Routes

  The components, aggr-bndry, aggr-mtd, export-comps, inject, and holes
  attributes are used for specifying aggregate routes [11].  A route
  object specifies an aggregate route if any of these attributes, with
  the exception of inject, is specified.  The origin attribute for an
  aggregate route is the AS performing the aggregation, i.e. the
  aggregator AS. In this section, we used the term "aggregate" to refer
  to the route generated, the term "component" to refer to the routes
  used to generate the path attributes of the aggregate, and the term
  "more specifics" to refer to any route which is a more specific of
  the aggregate regardless of whether it was used to form the path
  attributes.





Alaettinoglu, et al.        Standards Track                    [Page 45]

RFC 2622                          RPSL                         June 1999


  The components attribute defines what component routes are used to
  form the aggregate.  Its syntax is as follows:

  components: [ATOMIC] [[<filter>] [protocol <protocol> <filter> ...]]

  where <protocol> is a routing protocol name such as BGP4, OSPF or RIP
  (valid names are defined in the dictionary) and <filter> is a policy
  expression.  The routes that match one of these filters and are
  learned from the corresponding protocol are used to form the
  aggregate.  If <protocol> is omitted, it defaults to any protocol.
  <filter> implicitly contains an "AND" term with the more specifics of
  the aggregate so that only the component routes are selected.  If the
  keyword ATOMIC is used, the aggregation is done atomically [11].  If
  a <filter> is not specified it defaults to more specifics.  If the
  components attribute is missing, all more specifics without the
  ATOMIC keyword is used.

  route: 128.8.0.0/15
  origin: AS1
  components: <^AS2>

  route: 128.8.0.0/15
  origin: AS1
  components: protocol BGP4 {128.8.0.0/16^+}
              protocol OSPF {128.9.0.0/16^+}


                 Figure 29:  Two aggregate route objects.

  Figure 29 shows two route objects.  In the first example, more
  specifics of 128.8.0.0/15 with AS paths starting with AS2 are
  aggregated.  In the second example, some routes learned from BGP and
  some routes learned form OSPF are aggregated.

  The aggr-bndry attribute is an AS expression over AS numbers and sets
  (see Section 5.6).  The result defines the set of ASes which form the
  aggregation boundary.  If the aggr-bndry attribute is missing, the
  origin AS is the sole aggregation boundary.  Outside the aggregation
  boundary, only the aggregate is exported and more specifics are
  suppressed.  However, within the boundary, the more specifics are
  also exchanged.

  The aggr-mtd attribute specifies how the aggregate is generated.  Its
  syntax is as follows:

 aggr-mtd: inbound
         | outbound [<as-expression>]




Alaettinoglu, et al.        Standards Track                    [Page 46]

RFC 2622                          RPSL                         June 1999


  where <as-expression> is an expression over AS numbers and sets (see
  Section 5.6).  If <as-expression> is missing, it defaults to AS-ANY.
  If outbound aggregation is specified, the more specifics of the
  aggregate will be present within the AS and the aggregate will be
  formed at all inter-AS boundaries with ASes in <as-expression> before
  export, except for ASes that are within the aggregating boundary
  (i.e. aggr-bndry is enforced regardless of <as-expression>).  If
  inbound aggregation is specified, the aggregate is formed at all
  inter-AS boundaries prior to importing routes into the aggregator AS.
  Note that <as-expression> can not be specified with inbound
  aggregation.  If aggr-mtd attribute is missing, it defaults to
  "outbound AS-ANY".

  route:      128.8.0.0/15            route:      128.8.0.0/15
  origin:     AS1                     origin:     AS2
  components: {128.8.0.0/15^-}        components: {128.8.0.0/15^-}
  aggr-bndry: AS1 OR AS2              aggr-bndry: AS1 OR AS2
  aggr-mtd:   outbound AS-ANY         aggr-mtd:   outbound AS-ANY


            Figure 30:  Outbound multi-AS aggregation example.

  Figure 30 shows an example of an outbound aggregation.  In this
  example, AS1 and AS2 are coordinating aggregation and announcing only
  the less specific 128.8.0.0/15 to outside world, but exchanging more
  specifics between each other.  This form of aggregation is useful
  when some of the components are within AS1 and some are within AS2.

  When a set of routes are aggregated, the intent is to export only the
  aggregate route and suppress exporting of the more specifics outside
  the aggregation boundary.  However, to satisfy certain policy and
  topology constraints (e.g. a multi-homed component), it is often
  required to export some of the components.  The export-comps
  attribute equals an RPSL filter that matches the more specifics that
  need to be exported outside the aggregation boundary.  If this
  attribute is missing, more specifics are not exported outside the
  aggregation boundary.  Note that, the export-comps filter contains an
  implicit "AND" term with the more specifics of the aggregate.

  Figure 31 shows an example of an outbound aggregation.  In this
  example, the more specific 128.8.8.0/24 is exported outside AS1 in
  addition to the aggregate.  This is useful, when 128.8.8.0/24 is
  multi-homed site to AS1 with some other AS.








Alaettinoglu, et al.        Standards Track                    [Page 47]

RFC 2622                          RPSL                         June 1999


     route:      128.8.0.0/15
     origin:     AS1
     components: {128.8.0.0/15^-}
     aggr-mtd:   outbound AS-ANY
     export-comps: {128.8.8.0/24}


            Figure 31:  Outbound aggregation with export exception.

  The inject attribute specifies which routers perform the aggregation
  and when they perform it.  Its syntax is as follow:

 inject: [at <router-expression>] ...
         [action <action>]
         [upon <condition>]

  where <action> is an action specification (see Section 6.1.1),
  <condition> is a boolean expression described below, and <router-
  expression> is as described in Section 5.6.

  All routers in <router-expression> and in the aggregator AS perform
  the aggregation.  If a <router-expression> is not specified, all
  routers inside the aggregator AS perform the aggregation.  The
  <action> specification may set path attributes of the aggregate, such
  as assign a preferences to the aggregate.

  The upon clause is a boolean condition.  The aggregate is generated
  if and only if this condition is true.  <condition> is a boolean
  expression using the logical operators AND and OR (i.e. operator NOT
  is not allowed) over:

  HAVE-COMPONENTS { list of prefixes }
  EXCLUDE { list of prefixes }
  STATIC

  The list of prefixes in HAVE-COMPONENTS can only be more specifics of
  the aggregate.  It evaluates to true when all the prefixes listed are
  present in the routing table of the aggregating router.  The list can
  also include prefix ranges (i.e. using operators ^-, ^+, ^n, and ^n-
  m).  In this case, at least one prefix from each prefix range needs
  to be present in the routing table for the condition to be true.  The
  list of prefixes in EXCLUDE can be arbitrary.  It evaluates to true
  when none of the prefixes listed is present in the routing table.
  The list can also include prefix ranges, and no prefix in that range
  should be present in the routing table.  The keyword static always
  evaluates to true.  If no upon clause is specified the aggregate is
  generated if an only if there is a component in the routing table
  (i.e. a more specific that matches the filter in the components



Alaettinoglu, et al.        Standards Track                    [Page 48]

RFC 2622                          RPSL                         June 1999


  attribute).

  route:      128.8.0.0/15
  origin:     AS1
  components: {128.8.0.0/15^-}
  aggr-mtd:   outbound AS-ANY
  inject:     at 1.1.1.1 action dpa = 100;
  inject:     at 1.1.1.2 action dpa = 110;

  route:      128.8.0.0/15
  origin:     AS1
  components: {128.8.0.0/15^-}
  aggr-mtd:   outbound AS-ANY
  inject:     upon HAVE-COMPONENTS {128.8.0.0/16, 128.9.0.0/16}
  holes:      128.8.8.0/24


                     Figure 32:  Examples of inject.

  Figure 32 shows two examples.  In the first case, the aggregate is
  injected at two routers each one setting the dpa path attribute
  differently.  In the second case, the aggregate is generated only if
  both 128.8.0.0/16 and 128.9.0.0/16 are present in the routing table,
  as opposed to the first case where the presence of just one of them
  is sufficient for injection.

  The holes attribute lists the component address prefixes which are
  not reachable through the aggregate route (perhaps that part of the
  address space is unallocated).  The holes attribute is useful for
  diagnosis purposes.  In Figure 32, the second example has a hole,
  namely 128.8.8.0/24.  This may be due to a customer changing
  providers and taking this part of the address space with it.

8.1.1 Interaction with policies in aut-num class

  An aggregate formed is announced to other ASes only if the export
  policies of the AS allows exporting the aggregate.  When the
  aggregate is formed, the more specifics are suppressed from being
  exported except to the ASes in aggr-bndry and except the components
  in export-comps.  For such exceptions to happen, the export policies
  of the AS should explicitly allow exporting of these exceptions.

  If an aggregate is not formed (due to the upon clause), then the more
  specifics of the aggregate can be exported to other ASes, but only if
  the export policies of the AS allows it.  In other words, before a
  route (aggregate or more specific) is exported it is filtered twice,
  once based on the route objects, and once based on the export
  policies of the AS.



Alaettinoglu, et al.        Standards Track                    [Page 49]

RFC 2622                          RPSL                         June 1999


  route:        128.8.0.0/16
  origin:       AS1

  route:        128.9.0.0/16
  origin:       AS1

  route:        128.8.0.0/15
  origin:       AS1
  aggr-bndry:   AS1 or AS2 or AS3
  aggr-mtd:     outbound AS3 or AS4 or AS5
  components:   {128.8.0.0/16, 128.9.0.0/16}
  inject:       upon HAVE-COMPONENTS {128.9.0.0/16, 128.8.0.0/16}

  aut-num: AS1
  export:  to AS2 announce AS1
  export:  to AS3 announce AS1 and not {128.9.0.0/16}
  export:  to AS4 announce AS1
  export:  to AS5 announce AS1
  export:  to AS6 announce AS1


         Figure 33:  Interaction with policies in aut-num class.

  In Figure 33 shows an interaction example.  By examining the route
  objects, the more specifics 128.8.0.0/16 and 128.9.0.0/16 should be
  exchanged between AS1, AS2 and AS3 (i.e. the aggregation boundary).
  Outbound aggregation is done to AS4 and AS5 and not to AS3, since AS3
  is in the aggregation boundary.  The aut-num object allows exporting
  both components to AS2, but only the component 128.8.0.0/16 to AS3.
  The aggregate can only be formed if both components are available.
  In this case, only the aggregate is announced to AS4 and AS5.
  However, if one of the components is not available the aggregate will
  not be formed, and any available component or more specific will be
  exported to AS4 and AS5.  Regardless of aggregation is performed or
  not, only the more specifics will be exported to AS6 (it is not
  listed in the aggr-mtd attribute).

  When doing an inbound aggregation, configuration generators may
  eliminating the aggregation statements on routers where import policy
  of the AS prohibits importing of any more specifics.

8.1.2 Ambiguity resolution with overlapping aggregates

  When several aggregate routes are specified and they overlap, i.e.
  one is less specific of the other, they must be evaluated more
  specific to less specific order.  When an outbound aggregation is
  performed for a peer, the aggregate and the components listed in the
  export-comps attribute for that peer are available for generating the



Alaettinoglu, et al.        Standards Track                    [Page 50]

RFC 2622                          RPSL                         June 1999


  next less specific aggregate.  The components that are not specified
  in the export-comps attribute are not available.  A route is
  exportable to an AS if it is the least specific aggregate exportable
  to that AS or it is listed in the export-comps attribute of an
  exportable route.  Note that this is a recursive definition.

  route:        128.8.0.0/15
  origin:       AS1
  aggr-bndry:   AS1 or AS2
  aggr-mtd:     outbound
  inject:       upon HAVE-COMPONENTS {128.8.0.0/16, 128.9.0.0/16}

  route:        128.10.0.0/15
  origin:       AS1
  aggr-bndry:   AS1 or AS3
  aggr-mtd:     outbound
  inject:       upon HAVE-COMPONENTS {128.10.0.0/16, 128.11.0.0/16}
  export-comps: {128.11.0.0/16}

  route:        128.8.0.0/14
  origin:       AS1
  aggr-bndry:   AS1 or AS2 or AS3
  aggr-mtd:     outbound
  inject:       upon HAVE-COMPONENTS {128.8.0.0/15, 128.10.0.0/15}
  export-comps: {128.10.0.0/15}


                  Figure 34:  Overlapping aggregations.

  In Figure 34, AS1 together with AS2 aggregates 128.8.0.0/16 and
  128.9.0.0/16 into 128.8.0.0/15.  Together with AS3, AS1 aggregates
  128.10.0.0/16 and 128.11.0.0/16 into 128.10.0.0/15.  But altogether
  they aggregate these four routes into 128.8.0.0/14.  Assuming all
  four components are available, a router in AS1 for an outside AS, say
  AS4, will first generate 128.8.0.0/15 and 128.10.0.0/15.  This will
  make 128.8.0.0/15, 128.10.0.0/15 and its exception 128.11.0.0/16
  available for generating 128.8.0.0/14.  The router will then generate
  128.8.0.0/14 from these three routes.  Hence for AS4, 128.8.0.0/14
  and its exception 128.10.0.0/15 and its exception 128.11.0.0/16 will
  be exportable.

  For AS2, a router in AS1 will only generate 128.10.0.0/15.  Hence,
  128.10.0.0/15 and its exception 128.11.0.0/16 will be exportable.
  Note that 128.8.0.0/16 and 128.9.0.0/16 are also exportable since
  they did not participate in an aggregate exportable to AS2.






Alaettinoglu, et al.        Standards Track                    [Page 51]

RFC 2622                          RPSL                         June 1999


  Similarly, for AS3, a router in AS1 will only generate 128.8.0.0/15.
  In this case 128.8.0.0/15, 128.10.0.0/16, 128.11.0.0/16 are
  exportable.

8.2 Specifying Static Routes

  The inject attribute can be used to specify static routes by using
  "upon static" as the condition:

 inject: [at <router-expression>] ...
         [action <action>]
         upon static

  In this case, the routers in <router-expression> executes the
  <action> and injects the route to the interAS routing system
  statically.  <action> may set certain route attributes such as a
  next-hop router or a cost.

  In the following example, the router 7.7.7.1 injects the route
  128.7.0.0/16.  The next-hop routers (in this example, there are two
  next-hop routers) for this route are 7.7.7.2 and 7.7.7.3 and the
  route has a cost of 10 over 7.7.7.2 and 20 over 7.7.7.3.

  route:  128.7.0.0/16
  origin: AS1
  inject: at 7.7.7.1 action next-hop = 7.7.7.2; cost = 10; upon static
  inject: at 7.7.7.1 action next-hop = 7.7.7.3; cost = 20; upon static

9 inet-rtr Class

Routers are specified using the inet-rtr class.  The attributes of the
inet-rtr class are shown in Figure 35.  The inet-rtr attribute is a valid
DNS name of the router described.  Each alias attribute, if present, is a
canonical DNS name for the router.  The local-as attribute specifies the AS
number of the AS which owns/operates this router.

 Attribute  Value                    Type
 inet-rtr   <dns-name>               mandatory, single-valued, class key
 alias      <dns-name>               optional, multi-valued
 local-as   <as-number>              mandatory, single-valued
 ifaddr     see description in text  mandatory, multi-valued
 peer       see description in text  optional, multi-valued
 member-of  list of <rtr-set-names>  optional, multi-valued


                  Figure 35:  inet-rtr Class Attributes





Alaettinoglu, et al.        Standards Track                    [Page 52]

RFC 2622                          RPSL                         June 1999


  The value of an ifaddr attribute has the following syntax:

  <ipv4-address> masklen <integer> [action <action>]

  The IP address and the mask length are mandatory for each interface.
  Optionally an action can be specified to set other parameters of this
  interface.

  Figure 36 presents an example inet-rtr object.  The name of the
  router is "amsterdam.ripe.net".  "amsterdam1.ripe.net" is a canonical
  name for the router.  The router is connected to 4 networks.  Its IP
  addresses and mask lengths in those networks are specified in the
  ifaddr attributes.

   inet-rtr: Amsterdam.ripe.net
   alias:    amsterdam1.ripe.net
   local-as: AS3333
   ifaddr:   192.87.45.190 masklen 24
   ifaddr:   192.87.4.28   masklen 24
   ifaddr:   193.0.0.222   masklen 27
   ifaddr:   193.0.0.158   masklen 27
   peer:     BGP4 192.87.45.195 asno(AS3334), flap_damp()


                          Figure 36:  inet-rtr Objects

  Each peer attribute, if present, specifies a protocol peering with
  another router.  The value of a peer attribute has the following
  syntax:

    <protocol> <ipv4-address>      <options>
  | <protocol> <inet-rtr-name>     <options>
  | <protocol> <rtr-set-name>      <options>
  | <protocol> <peering-set-name>  <options>

  where <protocol> is a protocol name, <ipv4-address> is the IP address
  of the peer router, and <options> is a comma separated list of
  peering options for <protocol>.  Instead of the peer's IP address,
  its inet-rtr-name can be used.  Possible protocol names and
  attributes are defined in the dictionary (please see Section 7).  In
  the above example, the router has a BGP peering with the router
  192.87.45.195 in AS3334 and turns the flap damping on when importing
  routes from this router.

  Instead of a single peer, a group of peers can be specified by using
  the <rtr-set-name> and <peering-set-name> forms.  If <peering-set-
  name> form is being used only the peerings in the corresponding
  peering set that are with this router are included.  Figure 37 shows



Alaettinoglu, et al.        Standards Track                    [Page 53]

RFC 2622                          RPSL                         June 1999


  an example inet-rtr object with peering groups.

   rtr-set: rtrs-ibgp-peers
   members: 1.1.1.1, 2.2.2.2, 3.3.3.3

   peering-set: prng-ebgp-peers
   peering: AS3334 192.87.45.195
   peering: AS3335 192.87.45.196

   inet-rtr: Amsterdam.ripe.net
   alias:    amsterdam1.ripe.net
   local-as: AS3333
   ifaddr:   192.87.45.190 masklen 24
   ifaddr:   192.87.4.28   masklen 24
   ifaddr:   193.0.0.222   masklen 27
   ifaddr:   193.0.0.158   masklen 27
   peer:     BGP4 rtrs-ibgp-peers asno(AS3333), flap_damp()
   peer:     BGP4 prng-ebgp-peers asno(PeerAS), flap_damp()


                Figure 37:  inet-rtr Object with peering groups

10 Extending RPSL

  Our experience with earlier routing policy languages and data formats
  (PRDB [2], RIPE-81 [8], and RIPE-181 [7]) taught us that RPSL had to
  be extensible.  As a result, extensibility was a primary design goal
  for RPSL.  New routing protocols or new features to existing routing
  protocols can be easily handled using RPSL's dictionary class.  New
  classes or new attributes to the existing classes can also be added.

  This section provides guidelines for extending RPSL. These guidelines
  are designed with an eye toward maintaining backward compatibility
  with existing tools and databases.  We next list the available
  options for extending RPSL from the most preferred to the least
  preferred order.

10.1 Extensions by changing the dictionary class

  The dictionary class is the primary mechanism provided to extend
  RPSL.  Dictionary objects define routing policy attributes, types,
  and routing protocols.

  We recommend updating the RPSL dictionary to include appropriate rp-
  attribute and protocol definitions as new path attributes or router
  features are introduced.  For example, in an earlier version of the
  RPSL document, it was only possible to specify that a router performs
  route flap damping on a peer, but it was not possible to specify the



Alaettinoglu, et al.        Standards Track                    [Page 54]

RFC 2622                          RPSL                         June 1999


  parameters of route flap damping.  Later the parameters were added by
  changing the dictionary.

  When changing the dictionary, full compatibility should be
  maintained.  For example, in our flap damping case, we made the
  parameter specification optional in case this level of detail was not
  desired by some ISPs.  This also achieved compatibility.  Any object
  registered without the parameters will continue to be valid.  Any
  tool based on RPSL is expected to do a default action on routing
  policy attributes that they do not understand (e.g. issue a warning
  and otherwise ignore).  Hence, old tools upon encountering a flap
  damping specification with parameters will ignore the parameters.

10.2 Extensions by adding new attributes to existing classes

  New attributes can be added to any class.  To ensure full
  compatibility, new attributes should not contradict the semantics of
  the objects they are attached to.  Any tool that uses the IRR should
  be designed so that it ignores attributes that it doesn't understand.
  Most existing tools adhere to this design principle.

  We recommend adding new attributes to existing classes when a new
  aspect of a class is discovered.  For example, RPSL route class
  extends its RIPE-181 predecessor by including several new attributes
  that enable aggregate and static route specification.

10.3 Extensions by adding new classes

  New classes can be added to RPSL to store new types of policy data.
  Providing full compatibility is straight forward as long as existing
  classes are still understood.  Since a tool should only query the IRR
  for the classes that it understand, full compatibility should not be
  a problem in this case.

  Before adding a new class, one should question if the information
  contained in the objects of the new class could have better belonged
  to some other class.  For example, if the geographic location of a
  router needs to be stored in IRR, it may be tempting to add a new
  class called, say router-location class.  However, the information
  better belongs to the inet-rtr class, perhaps in a new attribute
  called location.

10.4 Extensions by changing the syntax of existing RPSL attributes

  If all of the methods described above fail to provide the desired
  extension, it may be necessary to change the syntax of RPSL. Any
  change in RPSL syntax must provide backwards compatibility, and
  should be considered only as a last resort since full compatibility



Alaettinoglu, et al.        Standards Track                    [Page 55]

RFC 2622                          RPSL                         June 1999


  may not be achievable.  However, we require that the old syntax to be
  still valid.

11 Security Considerations

  This document describes RPSL, a language for expressing routing
  policies.  The language defines a maintainer (mntner class) object
  which is the entity which controls or "maintains" the objects stored
  in a database expressed by RPSL. Requests from maintainers can be
  authenticated with various techniques as defined by the "auth"
  attribute of the maintainer object.

  The exact protocols used by IRR's to communicate RPSL objects is
  beyond the scope of this document, but it is envisioned that several
  techniques may be used, ranging from interactive query/update
  protocols to store and forward protocols similar to or based on
  electronic mail (or even voice telephone calls).  Regardless of which
  protocols are used in a given situation, it is expected that
  appropriate security techniques such as IPSEC, TLS or PGP/MIME will
  be utilized.

12 Acknowledgements

  We would like to thank Jessica Yu, Randy Bush, Alan Barrett, Bill
  Manning, Sue Hares, Ramesh Govindan, Kannan Varadhan, Satish Kumar,
  Craig Labovitz, Rusty Eddy, David J. LeRoy, David Whipple, Jon
  Postel, Deborah Estrin, Elliot Schwartz, Joachim Schmitz, Mark Prior,
  Tony Przygienda, David Woodgate, Rob Coltun, Sanjay Wadhwa, Ardas
  Cilingiroglu, and the participants of the IETF RPS Working Group for
  various comments and suggestions.

References

  [1] Internet routing registry. procedures.
      http://www.ra.net/RADB.tools.docs/,
      http://www.ripe.net/db/doc.html.

  [2] Nsfnet policy routing database (prdb). Maintained by MERIT
      Network Inc., Ann Arbor, Michigan. Contents available from
      nic.merit.edu.:/nsfnet/announced.networks/nets.tag.now by
      anonymous ftp.

  [3] Alaettinouglu, C., Bates, T., Gerich, E., Karrenberg, D., Meyer,
      D., Terpstra, M. and C. Villamizer, "Routing Policy Specification
      Language (RPSL)", RFC 2280, January 1998.






Alaettinoglu, et al.        Standards Track                    [Page 56]

RFC 2622                          RPSL                         June 1999


  [4] C. Alaettinouglu, D. Meyer, and J. Schmitz. Application of
      routing policy specification language (rpsl) on the internet.
      Work in Progress.

  [5] T. Bates. Specifying an `internet router' in the routing
      registry.  Technical Report RIPE-122, RIPE, RIPE NCC, Amsterdam,
      Netherlands, October 1994.

  [6] T. Bates, E. Gerich, L. Joncheray, J-M. Jouanigot, D. Karrenberg,
      M. Terpstra, and J. Yu. Representation of ip routing policies in
      a routing registry. Technical Report ripe-181, RIPE, RIPE NCC,
      Amsterdam, Netherlands, October 1994.

  [7] Bates, T., Gerich, E., Joncheray, L., Jouanigot, J-M.,
      Karrenberg, D., Terpstra, M. and J. Yu, " Representation of IP
      Routing Policies in a Routing Registry", RFC 1786, March 1995.

  [8] T. Bates, J-M. Jouanigot, D. Karrenberg, P. Lothberg, and M.
      Terpstra.  Representation of ip routing policies in the ripe
      database. Technical Report ripe-81, RIPE, RIPE NCC, Amsterdam,
      Netherlands, February 1993.

  [9] Chandra, R., Traina, P. and T. Li, "BGP Communities Attribute",
      RFC 1997, August 1996.

 [10] Crocker, D., "Standard for ARPA Internet Text Messages", STD 11,
      RFC 822, August 1982.

 [11] Fuller, V., Li, T., Yu, J. and K. Varadhan, "Classless Inter-
      Domain Routing (CIDR): an Address Assignment and Aggregation
      Strategy", RFC 1519, September 1993.

 [12] D. Karrenberg and T. Bates. Description of inter-as networks in
      the ripe routing registry. Technical Report RIPE-104, RIPE, RIPE
      NCC, Amsterdam, Netherlands, December 1993.

 [13] D. Karrenberg and M. Terpstra. Authorisation and notification of
      changes in the ripe database. Technical Report ripe-120, RIPE,
      RIPE NCC, Amsterdam, Netherlands, October 1994.

 [14] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
      Prentice-Hall, 1978.

 [15] A. Lord and M. Terpstra. Ripe database template for networks and
      persons. Technical Report ripe-119, RIPE, RIPE NCC, Amsterdam,
      Netherlands, October 1994.





Alaettinoglu, et al.        Standards Track                    [Page 57]

RFC 2622                          RPSL                         June 1999


 [16] A. M. R. Magee. Ripe ncc database documentation. Technical Report
      RIPE-157, RIPE, RIPE NCC, Amsterdam, Netherlands, May 1997.

 [17] Mockapetris, P., "Domain names - concepts and facilities", STD
      13, RFC 1034, November 1987.

 [18] Y. Rekhter. Inter-domain routing protocol (idrp). Journal of
      Internetworking Research and Experience, 4:61--80, 1993.

 [19] Rekhter Y. and T. Li, "A Border Gateway Protocol 4 (BGP-4)", RFC
      1771, March 1995.

 [20] C. Villamizar, C. Alaettinouglu, D. Meyer, S. Murphy, and C.
      Orange.  Routing policy system security", Work in Progress.

 [21] Villamizar, C., Chandra, R. and R. Govindan, "BGP Route Flap
      Damping", RFC 2439, November 1998.

 [22] J. Zsako, "PGP authentication for ripe database updates", Work in
      Progress.































Alaettinoglu, et al.        Standards Track                    [Page 58]

RFC 2622                          RPSL                         June 1999


A Routing Registry Sites

  The set of routing registries as of November 1996 are RIPE, RADB,
  CANet, MCI and ANS. You may contact one of these registries to find
  out the current list of registries.

B Grammar Rules

  In this section we provide formal grammar rules for RPSL. Basic data
  types are defined in Section 2.  We do not provide formal grammar
  rules for attributes whose values are of basic types or list of basic
  types.  The rules are written using the input language of GNU Bison
  parser.  Hence, they can be cut and pasted to that program.

//**** Generic Attributes **********************************************

changed_attribute: ATTR_CHANGED TKN_EMAIL TKN_INT

//**** aut-num class ***************************************************

//// as_expression /////////////////////////////////////////////////////

opt_as_expression:
| as_expression

as_expression: as_expression OP_OR as_expression_term
| as_expression_term

as_expression_term: as_expression_term OP_AND as_expression_factor
| as_expression_term KEYW_EXCEPT as_expression_factor
| as_expression_factor

as_expression_factor: '(' as_expression ')'
| as_expression_operand

as_expression_operand: TKN_ASNO
| TKN_ASNAME

//// router_expression /////////////////////////////////////////////////

opt_router_expression:
| router_expression

opt_router_expression_with_at:
| KEYW_AT router_expression

router_expression: router_expression OP_OR router_expression_term
| router_expression_term



Alaettinoglu, et al.        Standards Track                    [Page 59]

RFC 2622                          RPSL                         June 1999


router_expression_term: router_expression_term OP_AND
                       router_expression_factor
| router_expression_term KEYW_EXCEPT router_expression_factor
| router_expression_factor

router_expression_factor: '(' router_expression ')'
| router_expression_operand

router_expression_operand: TKN_IPV4
| TKN_DNS
| TKN_RTRSNAME

//// peering ///////////////////////////////////////////////////////////

peering: as_expression opt_router_expression opt_router_expression_with_at
| TKN_PRNGNAME

//// action ////////////////////////////////////////////////////////////

opt_action:
| KEYW_ACTION action

action: single_action
| action single_action
single_action: TKN_RP_ATTR '.' TKN_WORD '(' generic_list ')' ';'
| TKN_RP_ATTR TKN_OPERATOR list_item ';'
| TKN_RP_ATTR '(' generic_list ')' ';'
| TKN_RP_ATTR '[' generic_list ']' ';'
| ';'

//// filter ////////////////////////////////////////////////////////////

filter: filter OP_OR filter_term
| filter filter_term %prec OP_OR
| filter_term

filter_term : filter_term OP_AND filter_factor
| filter_factor

filter_factor :  OP_NOT filter_factor
| '(' filter ')'
| filter_operand

filter_operand: KEYW_ANY
| '<' filter_aspath '>'
| filter_rp_attribute
| TKN_FLTRNAME
| filter_prefix



Alaettinoglu, et al.        Standards Track                    [Page 60]

RFC 2622                          RPSL                         June 1999


filter_prefix: filter_prefix_operand OP_MS
|  filter_prefix_operand

filter_prefix_operand: TKN_ASNO
| KEYW_PEERAS
| TKN_ASNAME
| TKN_RSNAME
| '{' opt_filter_prefix_list '}'

opt_filter_prefix_list:
| filter_prefix_list

filter_prefix_list: filter_prefix_list_prefix
| filter_prefix_list ',' filter_prefix_list_prefix

filter_prefix_list_prefix: TKN_PRFXV4
| TKN_PRFXV4RNG

filter_aspath: filter_aspath '|' filter_aspath_term
| filter_aspath_term

filter_aspath_term: filter_aspath_term filter_aspath_closure
| filter_aspath_closure

filter_aspath_closure: filter_aspath_closure '*'
| filter_aspath_closure '?'
| filter_aspath_closure '+'
| filter_aspath_factor

filter_aspath_factor: '^'
| '$'
| '(' filter_aspath ')'
| filter_aspath_no

filter_aspath_no: TKN_ASNO
| KEYW_PEERAS
| TKN_ASNAME
| '.'
| '[' filter_aspath_range ']'
| '[' '^' filter_aspath_range ']'

filter_aspath_range:
| filter_aspath_range TKN_ASNO
| filter_aspath_range KEYW_PEERAS
| filter_aspath_range '.'
| filter_aspath_range TKN_ASNO '-' TKN_ASNO
| filter_aspath_range TKN_ASNAME




Alaettinoglu, et al.        Standards Track                    [Page 61]

RFC 2622                          RPSL                         June 1999


filter_rp_attribute: TKN_RP_ATTR '.' TKN_WORD '(' generic_list ')'
| TKN_RP_ATTR TKN_OPERATOR list_item
| TKN_RP_ATTR '(' generic_list ')'
| TKN_RP_ATTR '[' generic_list ']'

//// peering action pair ///////////////////////////////////////////////

import_peering_action_list: KEYW_FROM peering opt_action
| import_peering_action_list KEYW_FROM peering opt_action

export_peering_action_list: KEYW_TO peering opt_action
| export_peering_action_list KEYW_TO peering opt_action

//// import/export factor //////////////////////////////////////////////

import_factor: import_peering_action_list KEYW_ACCEPT filter

import_factor_list: import_factor ';'
| import_factor_list import_factor ';'

export_factor: export_peering_action_list KEYW_ANNOUNCE filter

export_factor_list: export_factor ';'
| export_factor_list export_factor ';'

//// import/export term ////////////////////////////////////////////////

import_term: import_factor ';'
| '{' import_factor_list '}'

export_term: export_factor ';'
| '{' export_factor_list '}'

//// import/export expression //////////////////////////////////////////

import_expression: import_term
| import_term KEYW_REFINE import_expression
| import_term KEYW_EXCEPT import_expression

export_expression: export_term
| export_term KEYW_REFINE export_expression
| export_term KEYW_EXCEPT export_expression

//// protocol ///////////////////////////////////////////////////////////

opt_protocol_from:
| KEYW_PROTOCOL tkn_word




Alaettinoglu, et al.        Standards Track                    [Page 62]

RFC 2622                          RPSL                         June 1999


opt_protocol_into:
| KEYW_INTO tkn_word

//**** import/export attributes ****************************************

import_attribute: ATTR_IMPORT
| ATTR_IMPORT opt_protocol_from opt_protocol_into import_factor

export_attribute: ATTR_EXPORT
| ATTR_EXPORT opt_protocol_from opt_protocol_into export_factor

opt_default_filter:
| KEYW_NETWORKS filter

default_attribute: ATTR_DEFAULT KEYW_TO peering

filter_attribute: ATTR_FILTER filter

peering_attribute: ATTR_PEERING peering

//**** inet-rtr class **************************************************

ifaddr_attribute: ATTR_IFADDR TKN_IPV4 KEYW_MASKLEN TKN_INT opt_action

//// peer attribute ////////////////////////////////////////////////////

opt_peer_options:
| peer_options

peer_options: peer_option
| peer_options ',' peer_option

peer_option: tkn_word '(' generic_list ')'

peer_id: TKN_IPV4
| TKN_DNS
| TKN_RTRSNAME
| TKN_PRNGNAME

peer_attribute: ATTR_PEER tkn_word peer_id opt_peer_options

//**** route class *****************************************************

aggr_bndry_attribute: ATTR_AGGR_BNDRY as_expression

aggr_mtd_attribute: ATTR_AGGR_MTD KEYW_INBOUND
| ATTR_AGGR_MTD KEYW_OUTBOUND opt_as_expression




Alaettinoglu, et al.        Standards Track                    [Page 63]

RFC 2622                          RPSL                         June 1999


//// inject attribute //////////////////////////////////////////////////

opt_inject_expression:
| KEYW_UPON inject_expression

inject_expression: inject_expression OP_OR inject_expression_term
| inject_expression_term

inject_expression_term: inject_expression_term OP_AND
                       inject_expression_factor
| inject_expression_factor

inject_expression_factor: '(' inject_expression ')'
| inject_expression_operand

inject_expression_operand: KEYW_STATIC
| KEYW_HAVE_COMPONENTS '{' opt_filter_prefix_list '}'
| KEYW_EXCLUDE '{' opt_filter_prefix_list '}'

inject_attribute: ATTR_INJECT opt_router_expression_with_at opt_action
                             opt_inject_expression

//// components attribute //////////////////////////////////////////////

opt_atomic:
| KEYW_ATOMIC

components_list:
| filter
| components_list KEYW_PROTOCOL tkn_word filter

components_attribute: ATTR_COMPONENTS opt_atomic components_list

//**** route-set *******************************************************

opt_rs_members_list: /* empty list */
| rs_members_list

rs_members_list: rs_member
| rs_members_list ',' rs_member

rs_member: TKN_ASNO
| TKN_ASNO OP_MS
| TKN_ASNAME
| TKN_ASNAME OP_MS
| TKN_RSNAME
| TKN_RSNAME OP_MS
| TKN_PRFXV4



Alaettinoglu, et al.        Standards Track                    [Page 64]

RFC 2622                          RPSL                         June 1999


| TKN_PRFXV4RNG

rs_members_attribute: ATTR_RS_MEMBERS opt_rs_members_list

//**** dictionary ******************************************************

rpattr_attribute: ATTR_RP_ATTR TKN_WORD methods
| ATTR_RP_ATTR TKN_RP_ATTR methods

methods: method
| methods method

method: TKN_WORD '(' ')'
| TKN_WORD '(' typedef_type_list ')'
| TKN_WORD '(' typedef_type_list ',' TKN_3DOTS ')'
| KEYW_OPERATOR TKN_OPERATOR '(' typedef_type_list ')'
| KEYW_OPERATOR TKN_OPERATOR '(' typedef_type_list ',' TKN_3DOTS ')'

//// typedef attribute  ////////////////////////////////////////////////

typedef_attribute: ATTR_TYPEDEF TKN_WORD typedef_type

typedef_type_list: typedef_type
| typedef_type_list ',' typedef_type

typedef_type: KEYW_UNION typedef_type_list
| KEYW_RANGE KEYW_OF typedef_type
| TKN_WORD
| TKN_WORD '[' TKN_INT ',' TKN_INT ']'
| TKN_WORD '[' TKN_REAL ',' TKN_REAL ']'
| TKN_WORD '[' enum_list ']'
| KEYW_LIST '[' TKN_INT ':' TKN_INT ']' KEYW_OF typedef_type
| KEYW_LIST KEYW_OF typedef_type

enum_list: tkn_word
| enum_list ',' tkn_word

//// protocol attribute ////////////////////////////////////////////////

protocol_attribute: ATTR_PROTOCOL tkn_word protocol_options

protocol_options:
| protocol_options protocol_option

protocol_option: KEYW_MANDATORY method
| KEYW_OPTIONAL method

//**** Token Definitions ***********************************************



Alaettinoglu, et al.        Standards Track                    [Page 65]

RFC 2622                          RPSL                         June 1999


//// flex macros used in token definitions /////////////////////////////
INT            [[:digit:]]+
SINT           [+-]?{INT}
REAL           [+-]?{INT}?\.{INT}({WS}*E{WS}*[+-]?{INT})?
NAME           [[:alpha:]]([[:alnum:]_-]*[[:alnum:]])?
ASNO           AS{INT}
ASNAME         AS-[[:alnum:]_-]*[[:alnum:]]
RSNAME         RS-[[:alnum:]_-]*[[:alnum:]]
RTRSNAME       RTRS-[[:alnum:]_-]*[[:alnum:]]
PRNGNAME       PRNG-[[:alnum:]_-]*[[:alnum:]]
FLTRNAME       FLTR-[[:alnum:]_-]*[[:alnum:]]
IPV4           [0-9]+(\.[0-9]+){3,3}
PRFXV4         {IPV4}\/[0-9]+
PRFXV4RNG      {PRFXV4}("^+"|"^-"|"^"{INT}|"^"{INT}-{INT})
ENAMECHAR      [^()<>,;:\\\"\.[\] \t\r]
ENAME          ({ENAMECHAR}+(\.{ENAMECHAR}+)*\.?)|(\"[^\"@\\\r\n]+\")
DNAME          [[:alnum:]_-]+
//// Token Definitions ////////////////////////////////////////////////
TKN_INT         {SINT}
TKN_INT         {INT}:{INT}             if each {INT} is two octets
TKN_INT         {INT}.{INT}.{INT}.{INT} if each {INT} is one octet
TKN_REAL        {REAL}
TKN_STRING      Same as in programming language C
TKN_IPV4        {IPV4}
TKN_PRFXV4      {PRFXV4}
TKN_PRFXV4RNG   {PRFXV4RNG}
TKN_ASNO        {ASNO}
TKN_ASNAME      (({ASNO}|peeras|{ASNAME}):)*{ASNAME}\
               (:({ASNO}|peeras|{ASNAME}))*
TKN_RSNAME      (({ASNO}|peeras|{RSNAME}):)*{RSNAME}\
               (:({ASNO}|peeras|{RSNAME}))*
TKN_RTRSNAME    (({ASNO}|peeras|{RTRSNAME}):)*{RTRSNAME}\
               (:({ASNO}|peeras|{RTRSNAME}))*
TKN_PRNGNAME    (({ASNO}|peeras|{PRNGNAME}):)*{PRNGNAME}\
               (:({ASNO}|peeras|{PRNGNAME}))*
TKN_FLTRNAME    (({ASNO}|peeras|{FLTRNAME}):)*{FLTRNAME}\
               (:({ASNO}|peeras|{FLTRNAME}))*
TKN_BOOLEAN     true|false
TKN_RP_ATTR     {NAME} if defined in dictionary
TKN_WORD        {NAME}
TKN_DNS         {DNAME}("."{DNAME})+
TKN_EMAIL       {ENAME}@({DNAME}("."{DNAME})+|{IPV4})









Alaettinoglu, et al.        Standards Track                    [Page 66]

RFC 2622                          RPSL                         June 1999


C Changes from RFC 2280

  RFC 2280 [3] contains an earlier version of RPSL. This section
  summarizes the changes since then.  They are as follows:

 o  It is now possible to write integers as sequence of four 1-octet
    integers (e.g. 1.1.1.1) or as sequence of two 2-octet integers
    (e.g.  3561:70).  Please see Section 2.

 o  The definition of address prefix range is extended so that an
    address prefix is also an address prefix range.  Please see Section
    2.

 o  The semantics for a range operator applied to a set containing
    address prefix ranges is defined (e.g. {30.0.0.0/8^24-28}^27-30).
    Please see Section 2.

 o  All dates are now in UTC. Please see Section 2.

 o  Plus ('+') character is added to space and tab characters to split
    an attribute's value to multiple lines (i.e. by starting the
    following lines with a space, a tab or a plus ('+') character).
    Please see Section 2.

 o  The withdrawn attribute of route class is removed from the
    language.

 o  filter-set class is introduced.  Please see Section 5.4.

 o  rtr-set class is introduced.  Please see Section 5.5.

 o  peering-set class is introduced.  Please see Section 5.6.

 o  Filters can now refer to filter-set names.  Please see Section 5.4.

 o  Peerings can now refer to peering-set, rtr-set names.  Both local
    and peer routers can be specified using router expressions.  Please
    see Section 5.6.

 o  The peer attribute of the inet-rtr class can refer to peering-set,
    rtr-set names.  Please see Section 9.

 o  The syntax and semantics of union, and list types and typedef
    attribute have changed.  Please see Section 7.

 o  In the initial dictionary, the typedef attribute defining the
    community_elm, rp-attribute defining the community attribute has
    changed.  Please see Section 7.



Alaettinoglu, et al.        Standards Track                    [Page 67]

RFC 2622                          RPSL                         June 1999


 o  Guideliness for extending RPSL is added.  Please see Section 10.

 o  Formal grammar rules are added.  Please see Appendix B.

D Authors' Addresses

  Cengiz Alaettinoglu
  USC/Information Sciences Institute

  EMail: [email protected]

  Curtis Villamizar
  Avici Systems

  EMail: [email protected]

  Elise Gerich
  At Home Network

  EMail: [email protected]

  David Kessens
  Qwest Communications

  EMail: [email protected]

  David Meyer
  University of Oregon

  EMail: [email protected]

  Tony Bates
  Cisco Systems, Inc.

  EMail: [email protected]

  Daniel Karrenberg
  RIPE NCC

  EMail: [email protected]

  Marten Terpstra
  c/o Bay Networks, Inc.

  EMail: [email protected]






Alaettinoglu, et al.        Standards Track                    [Page 68]

RFC 2622                          RPSL                         June 1999


Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implmentation may be prepared, copied, published and
  distributed, in whole or in part, without restriction of any kind,
  provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of developing
  Internet standards in which case the procedures for copyrights defined
  in the Internet Standards process must be followed, or as required to
  translate it into languages other than English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
  NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
  WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.




















Alaettinoglu, et al.        Standards Track                    [Page 69]