Network Working Group                                          A. Conta
Request for Comments: 2590                                       Lucent
Category: Standards Track                                      A. Malis
                                                                Ascend
                                                            M. Mueller
                                                                Lucent
                                                              May 1999


        Transmission of IPv6 Packets over Frame Relay Networks
                            Specification

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

  This memo describes mechanisms for the transmission of IPv6 packets
  over Frame Relay networks.

Table of Contents

  1. Introduction.................................................2
  2. Maximum Transmission Unit....................................3
  3. Frame Format.................................................4
  4. Stateless Autoconfiguration..................................5
     4.1 Generating the MID field.................................7
  5. Link-Local Address...........................................9
  6. Address Mapping -- Unicast, Multicast........................9
  7. Sending Neighbor Discovery Messages.........................14
  8. Receiving Neighbor Discovery Messages.......................15
  9. Security Considerations.....................................15
  10. Acknowledgments............................................16
  11. References.................................................16
  12. Authors' Addresses.........................................18
  13. Full Copyright Statement...................................19






Conta, et al.               Standards Track                     [Page 1]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


1. Introduction

  This document specifies the frame format for transmission of IPv6
  packets over Frame Relay networks, the method of forming IPv6 link-
  local addresses on Frame Relay links, and the mapping of the IPv6
  addresses to Frame Relay addresses.  It also specifies the content of
  the Source/Target link-layer address option used in Neighbor
  Discovery [ND] and Inverse Neighbor Discovery [IND] messages when
  those messages are transmitted over a Frame Relay link.  It is part
  of a set of specifications that define such IPv6 mechanisms for Non
  Broadcast Multi Access (NBMA) media [IPv6-NBMA], [IPv6-ATM], and a
  larger set that defines such mechanisms for specific link layers
  [IPv6-ETH], [IPv6-FDDI], [IPv6-PPP], [IPv6-ATM], etc...

  The information in this document applies to Frame Relay devices which
  serve as end stations (DTEs) on a public or private Frame Relay
  network (for example, provided by a common carrier or PTT.) Frame
  Relay end stations can be IPv6 hosts or routers. In this document
  they are referred to as nodes.

  In a Frame Relay network, a number of virtual circuits form the
  connections between the attached stations (nodes). The resulting set
  of interconnected devices forms a private Frame Relay group which may
  be either fully interconnected with a complete "mesh" of virtual
  circuits, or only partially interconnected.  In either case, each
  virtual circuit is uniquely identified at each Frame Relay interface
  (card) by a Data Link Connection Identifier (DLCI).  In most
  circumstances, DLCIs have strictly local significance at each Frame
  Relay interface.

  A Frame Relay virtual circuit acts like a virtual-link (also referred
  to as logical-link), with its own link parameters, distinct from the
  parameters of other virtual circuits established on the same wire or
  fiber. Such parameters are the input/output maximum frame size,
  incoming/outgoing requested/agreed throughput, incoming/outgoing
  acceptable throughput, incoming/outgoing burst size,
  incoming/outgoing frame rate.

  By default a DLCI is 10 bits in length. Frame Relay specifications
  define also 16, 17, or 23 bit DLCIs. The former is not used, while
  the latter two are suggested for use with SVCs.

  Frame Relay virtual circuits can be created administratively as
  Permanent Virtual Circuits -- PVCs -- or dynamically as Switched
  Virtual Circuits -- SVCs.  The mechanisms defined in this document
  are intended to apply to both permanent and switched Frame Relay
  virtual circuits, whether they are point to point or point to multi-
  point.



Conta, et al.               Standards Track                     [Page 2]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


  The keywords MUST, MUST NOT, MAY, OPTIONAL, REQUIRED, RECOMMENDED,
  SHALL, SHALL NOT, SHOULD, SHOULD NOT are to be interpreted as defined
  in [RFC 2119].

2. Maximum Transmission Unit

  The IPv6 minimum MTU is defined in [IPv6].

  In general, Frame Relay devices are configured to have a maximum
  frame size of at least 1600 octets. Therefore, the default IPv6 MTU
  size for a Frame Relay interface is considered to be 1592.

  A smaller than default frame size can be configured but of course not
  smaller than the minimum IPv6 MTU.

  An adequate larger than default IPv6 MTU and Frame Relay frame size
  can be configured to avoid fragmentation. The maximum frame size is
  controlled by the CRC generation mechanisms employed at the HDLC
  level. CRC16 will protect frames up to 4096 bytes in length, which
  reduces the effective maximum frame size to approximately 4088 bytes.
  A larger desired frame size (such as that used by FDDI or Token
  Ring), would require the CRC32 mechanism, which is not yet widely
  used and is not mandatory for frame relay systems conforming to Frame
  Relay Forum and ITU-T standards.

  In general, if upper layers provide adequate error
  protection/detection mechanisms, implementations may allow
  configuring a Frame Relay link with a larger than 4080 octets frame
  size but with a lesser error protection/detection mechanism at link
  layer. However, because IPv6 relies on the upper and lower layer
  error detection, configuring the IPv6 MTU to a value larger than 4080
  is strongly discouraged.

  Although a Frame Relay circuit allows the definition of distinct
  maximum frame sizes for input and output, for simplification
  purposes, this specification assumes symmetry, i.e. the same MTU for
  both input and output.

  Furthermore, implementations may limit the setting of the Frame Relay
  maximum frame size to the interface (link, or card) level, which then
  is enforced on all of the PVCs or SVCs on that interface (on that
  link, or card). For an SVC, the maximum frame size parameter
  negotiated during circuit setup will not exceed the configured
  maximum frame size.







Conta, et al.               Standards Track                     [Page 3]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


3. IPv6 Frame Format

  The IPv6 frame encapsulation for Frame Relay (for both PVCs and SVCs)
  follows [ENCAPS], which allows a VC to carry IPv6 packets along with
  other protocol packets. The NLPID frame format is used, in which the
  IPv6 NLPID has a value of 0x8E:

           0                       1                       (Octets)
          +-----------------------+-----------------------+
(Octets)0  |                                               |
          /                 Q.922 Address                 /
          /            (length 'n' equals 2 or 4)         /
          |                                               |
          +-----------------------+-----------------------+
       n  | Control (UI)  0x03    |      NLPID  0x8E      |  NLPID
          +-----------------------+-----------------------+  indicating
     n+2  |                       .                       |  IPv6
          /                       .                       /
          /                  IPv6 packet                  /
          |                       .                       |
          +-----------------------+-----------------------+
          |                                               |
          +                      FCS                      +
          |                                               |
          +-----------------------+-----------------------+

     "n" is the length of the Q.922 address which can be 2 or 4 octets.

     The Q.922 representation of a DLCI (in canonical order - the first
     bit is stored in the least significant, i.e., the right-most bit
     of a byte in memory) [CANON] is the following:

           7     6     5     4     3     2     1     0      (bit order)
          +-----+-----+-----+-----+-----+-----+-----+-----+
(octet) 0  |            DLCI(high order)       |  0  |  0  |
          +-----+-----+-----+-----+-----+-----+-----+-----+
       1  |  DLCI(low order)      |  0  |  0  |  0  |  1  |
          +-----+-----+-----+-----+-----+-----+-----+-----+

             10 bits DLCI











Conta, et al.               Standards Track                     [Page 4]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


           7     6     5     4     3     2     1     0      (bit order)
          +-----+-----+-----+-----+-----+-----+-----+-----+
(octet) 0  |            DLCI(high order)       |  0  |  0  |
          +-----+-----+-----+-----+-----+-----+-----+-----+
       1  |  DLCI                 |  0  |  0  |  0  |  0  |
          +-----+-----+-----+-----+-----+-----+-----+-----+
       2  |             DLCI(low order)             |  0  |
          +-----+-----+-----+-----+-----+-----+-----+-----+
       3  |       unused (set to 0)           |  1  |  1  |
          +-----+-----+-----+-----+-----+-----+-----+-----+

             17 bits DLCI

           7     6     5     4     3     2     1     0      (bit order)
          +-----+-----+-----+-----+-----+-----+-----+-----+
(octet) 0  |            DLCI(high order)       |  0  |  0  |
          +-----+-----+-----+-----+-----+-----+-----+-----
       1  |  DLCI                 |  0  |  0  |  0  |  0  |
          +-----+-----+-----+-----+-----+-----+-----+-----+
       2  |             DLCI                        |  0  |
          +-----+-----+-----+-----+-----+-----+-----+-----+
       3  |       DLCI (low order)            |  0  |  1  |
          +-----+-----+-----+-----+-----+-----+-----+-----+

             23 bits DLCI

  The encapsulation of data or control messages exchanged by various
  protocols that use SNAP encapsulation (with their own PIDs) is not
  affected. The encoding of the IPv6 protocol identifier in such
  messages MUST be done according to the specifications of those
  protocols, and [ASSNUM].

4. Stateless Autoconfiguration

  An interface identifier [AARCH] for an IPv6 Frame Relay interface
  must be unique on a Frame Relay link [AARCH], and must be unique on
  each of the virtual links represented by the VCs terminated on the
  interface.

  The interface identifier for the Frame Relay interface is locally
  generated by the IPv6 module.

  Each virtual circuit in a Frame Relay network is uniquely identified
  on a Frame Relay interface by a DLCI. Furthermore, a DLCI can be seen
  as an identification of the end point of a virtual circuit on a Frame
  Relay interface. Since each Frame Relay VC is configured or
  established separately, and acts like an independent virtual-link
  from other VCs in the network, or on the interface, link, wire or



Conta, et al.               Standards Track                     [Page 5]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


  fiber, it seems beneficial to view each VC's termination point on the
  Frame Relay interface as a "pseudo-interface" or "logical-interface"
  overlaid on the Frame Relay interface. Furthermore, it seems
  beneficial to be able to generate and associate an IPv6
  autoconfigured address (including an IPv6 link local address) to each
  "pseudo-interface", i.e. end-point of a VC, i.e. to each DLCI on a
  Frame Relay interface.

  In order to achieve the benefits described above, the mechanisms
  specified in this document suggest constructing the Frame Relay
  interface identifier from 3 distinct fields (Fig.1):

  (a)  The "EUI bits" field. Bits 6 and 7 of the first octet,
       representing the EUI-64 "universal/local" and respectively
       "individual/group" bits converted to IPv6 use. The former is set
       to zero to reflect that the 64 bit interface identifier value
       has local significance [AARCH]. The latter is set to 0 to
       reflect the unicast address [AARCH].

  (b)  The "Mid" field. A 38 bit field which is generated with the
       purpose of adding uniqueness to the interface identifier.

  (c)  The "DLCI" field. A 24 bit field that MAY hold a 10, 17, or 23
       bit DLCI value which MUST be extended with 0's to 24 bits. A
       DLCI based interface identifier -- which contains a valid DLCI
       -- SHOULD be generated as a result of successfully establishing
       a VC -- PVC or SVC.

       If a DLCI is not known, the field MUST be set to the
       "unspecified DLCI" value which consists of setting each of the
       24 bits to 1.

  Since DLCIs are local to a Frame Relay node, it is possible to have
  Frame Relay distinct virtual circuits within a Frame Relay network
  identified with the same DLCI values.
















Conta, et al.               Standards Track                     [Page 6]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


            7     6     5     4     3     2     1     0   (bit order)
           +-----+-----+-----+-----+-----+-----+-----+-----+
(Octets) 0  |                                   |"EUI bits" |
           +                                   +-----+-----+
        1  |                                               |
           +                                               +
        2  |                   "Mid"                       |
           +                                               +
        3  |                                               |
           +                                               +
        4  |                                               |
           +-----+-----+-----+-----+-----+-----+-----+-----+
        5  |                                               |
           +                                               +
        6  |                   "DLCI"                      |
           +                                               +
        7  |                                               |
           +-----+-----+-----+-----+-----+-----+-----+-----+

           Fig.1 Frame Relay Pseudo-Interface Identifier

  The Duplicate Address Detection specified in [AUTOCONF] is used
  repeatedly during the interface identifier and local-link address
  generation process, until the generated identifier and consequently
  the link-local address on the link -- VC -- are unique.

4.1  Generating the "Mid" field.

  The "Mid" can be generated in multiple ways. This specification
  suggests two mechanisms:

(b.1)  "Use of Local Administrative Numbers"

       The "Mid" is filled with the result of merging:

  (b.1.1)  A random number of 6 bits in length (Fig.2).


  (b.1.2)  The Frame Relay Node Identifier -- 16 bits -- is a user
           administered value used to locally identify a Frame Relay
           node (Fig.2).

  (b.1.3)  The Frame Relay Link Identifier -- 16 bits -- is a numerical
           representation of the Frame Relay interface or link (Fig.2).







Conta, et al.               Standards Track                     [Page 7]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


            7     6     5     4     3     2     1     0  (bit order)
           +-----+-----+-----+-----+-----+-----+-----+-----+
(Octets) 0  |          Random Number            |    MBZ    |
           +-----------------------------------+-----+-----+
        1  |                                               |
           +          Frame Relay Node Identifier          +
        2  |                                               |
           +-----+-----+-----+-----+-----+-----+-----+-----+
        3  |                                               |
           +          Frame Relay Link Identifier          +
        4  |                                               |
           +-----+-----+-----+-----+-----+-----+-----+-----+
        5  |                                               |
           +                                               +
        6  |                    "DLCI"                     |
           +                                               +
        7  |                                               |
           +-----+-----+-----+-----+-----+-----+-----+-----+

           Fig.2  Frame Relay Pseudo-Interface Identifier

  or,

(b.2)  "Use of The Frame Relay address - E.164 [E164], X.121
      [X25] numbers, or NSAP [NSAP] address"

      If a Frame Relay interface has an E.164 or a X.121 number, or an
      NSAP address, the "Mid" field MUST be filled in with a number
      resulted from it as follows:  the number represented by the BCD
      encoding of the E.164 or X.121 number, or the binary encoding of
      the NSAP address is truncated to 38 bits (Fig.3). Since the Frame
      Relay interface identifier has a "local" significance, the use of
      such a value has no real practical purposes other than adding to
      the uniqueness of the interface identifier on the link. Therefore
      the truncation can be performed on the high order or low order
      bits. If the high order bits truncation does not provide
      uniqueness on the link -- perhaps the DLCI value is not unique --
      this most likely means that the VC spans more for instance than a
      national and/or international destination area for an E.164
      number, and therefore the truncation of the low order bits should
      be performed next, which most likely will provide the desired
      uniqueness.









Conta, et al.               Standards Track                     [Page 8]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


            7     6     5     4     3     2     1     0     (bit order)
           +-----+-----+-----+-----+-----+-----+-----+-----+
(Octets) 0  |                                   |    MBZ    |
           +                                   +-----+-----+
        1  |                                               |
           +          E.164, X.121 (BCD encoding)          +
        2  |               or NSAP Address                 |
           +                                               +
        3  |            (truncated to 38 bits)             |
           +                                               +
        4  |                                               |
           +-----+-----+-----+-----+-----+-----+-----+-----+
        5  |                                               |
           +                                               +
        6  |                    "DLCI"                     |
           +                                               +
        7  |                                               |
           +-----+-----+-----+-----+-----+-----+-----+-----+

           Fig.3   Frame Relay (Pseudo) Interface Identifier

5. Link-Local Addresses

  The IPv6 link-local address [AARCH] for an IPv6 Frame Relay interface
  is formed by appending the interface identifier, formed as defined
  above, to the prefix FE80::/64 [AARCH].

      10 bits            54 bits                  64 bits
    +----------+-----------------------+----------------------------+
    |1111111010|         (zeros)       |Frame Relay Interface Ident.|
    +----------+-----------------------+----------------------------+

6. Address Mapping -- Unicast, Multicast

  The procedure for mapping IPv6 addresses to link-layer addresses is
  described in [IPv6-ND]. Additionally, extensions to Neighbor
  Discovery (ND) that allow the mapping of link-layer addresses to IPv6
  addresses are defined as Inverse Neighbor Discovery (IND) in [IND].
  This document defines the formats of the link-layer address fields
  used by ND and IND. This specification does not define an algorithmic
  mapping of IPv6 multicast addresses to Frame Relay link-layer
  addresses.

  The Source/Target Link-layer Address option used in Neighbor
  Discovery and Inverse Neighbor Discovery messages for a Frame Relay
  link follows the general rules defined by [IPv6-ND]. IPv6 addresses
  can map two type of identifiers equivalent to link-layer addresses:




Conta, et al.               Standards Track                     [Page 9]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


  DLCIs, and Frame Relay Addresses.  Therefore, for Frame Relay, this
  document defines two distinct formats for the ND and IND messages
  Link-Layer Address field:

  (a)  DLCI Format -- used in ND and/or IND messages on VCs that were
       established prior to the ND or IND message exchange --  mostly
       PVCs. The use on SVCs makes sense with Inverse Neighbor
       Discovery [IND] messages if IND is employed after the successful
       establishing of an SVC to gather information about other IPv6
       addresses assigned to the remote node and that SVC.

  (b)  Frame Relay Address Format -- used mostly prior to establishing
       a new SVC, to get the  Frame Relay remote node identifier
       (link-layer address) mapping to a certain IPv6 address.

       Note: An implementation may hold both types of link layer
       identifiers in the Neighbor Discovery cache. Additionally, in
       case of multiple VCs between two nodes, one node's Neighbor
       Discovery cache may hold a mapping of one of the remote node's
       IPv6 addresses to each and every DLCI identifying the VCs.

       The mechanisms which in such an implementation would make the
       distinction between the Neighbor Discovery Cache mapping of an
       IPv6 address to a "Frame Relay Address Format" and a "DLCI
       Format" link-layer address, or among several mappings to a "DLCI
       Format" addresses are beyond the scope of this specification.

       The use of the override "O" bit in the advertisement messages
       that contain the above Link-Layer Address formats SHOULD be
       consistent with the [ND] specifications. Additionally, there
       should be consistency related to the type of Link-Layer Address
       format: an implementation should override one address format in
       its Neighbor Discovery cache with the same type of address
       format.

  The "DLCI Format" is defined as follows:

             7     6     5     4     3     2     1     0    (bit order)
            +-----+-----+-----+-----+-----+-----+-----+-----+
         0  |                      Type                     |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         1  |                     Length                    |
            +-----+-----+-----+-----+-----+-----+-----+-----+








Conta, et al.               Standards Track                    [Page 10]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


  with a DLCI (Q.922 address) encoded as option value:

             7     6     5     4     3     2     1     0    (bit order)
            +-----+-----+-----+-----+-----+-----+-----+-----+
         2  |                                   |  1  |  1  |
            +              unused               +-----+-----+
         3  |                                               |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         4  |            DLCI(high order)       |  0  |  0  |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         5  |  DLCI(low order)      |  0  |  0  |  0  |  1  |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         6  |                                               |
            +                   Padding                     +
         7  |                   (zeros)                     |
            +-----+-----+-----+-----+-----+-----+-----+-----+

                10 bits DLCI

             7     6     5     4     3     2     1     0    (bit order)
            +-----+-----+-----+-----+-----+-----+-----+-----+
         2  |                                   |  1  |  1  |
            +              unused               +-----+-----+
         3  |                                               |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         4  |            DLCI(high order)       |  0  |  0  |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         5  |  DLCI                 |  0  |  0  |  0  |  0  |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         6  |             DLCI(low order)             |  0  |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         7  |       unused (set to 0)           |  1  |  1  |
            +-----+-----+-----+-----+-----+-----+-----+-----+

                17 bits DLCI
















Conta, et al.               Standards Track                    [Page 11]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


             7     6     5     4     3     2     1     0    (bit order)
            +-----+-----+-----+-----+-----+-----+-----+-----+
         2  |                                   |  1  |  1  |
            +              unused               +-----+-----+
         3  |                                               |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         4  |            DLCI(high order)       |  0  |  0  |
            +-----+-----+-----+-----+-----+-----+-----+-----
         5  |  DLCI                 |  0  |  0  |  0  |  0  |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         6  |             DLCI                        |  0  |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         7  |       DLCI (low order)            |  0  |  1  |
            +-----+-----+-----+-----+-----+-----+-----+-----+

                23 bits DLCI


    Option fields:

       Type        1 for Source Link-layer address.
                   2 for Target Link-layer address.

       Length      The Length of the Option (including the Type
                   and Length fields) in units of 8 octets.
                   It has the value 1.

       Link-Layer Address        The DLCI encoded as a Q.922 address.

     Description

       The "DLCI Format" option value field has two components:


       (a)  Address Type -- encoded in the first two bits of the first
            two octets. Both bits are set to 1 to indicate the DLCI
            format. The rest of the bits in the two first octets are
            not used -- they MUST be set to zero on transmit and MUST
            be ignored by the receiver.

       (b)  DLCI -- encoded as a Q.922 address padded with zeros to the
            last octet of the 6 octets available for the entire Link-
            Layer Address field of this format.








Conta, et al.               Standards Track                    [Page 12]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


  The "Frame Relay Address Format" is defined as follows:

             7     6     5     4     3     2     1     0    (bit order)
            +-----+-----+-----+-----+-----+-----+-----+-----+
         0  |                      Type                     |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         1  |                     Length                    |
            +-----+-----+-----+-----+-----+-----+-----+-----+

  with an E.164, X.121, number or NSAP  address encoded as option
  value:

             7     6     5     4     3     2     1     0    (bit order)
            +-----+-----+-----+-----+-----+-----+-----+-----+
         2  |             size                  |  1  |  0  |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         3  |            E.164 or X.121, or NSAP            |
            +---          Address Family Number          ---+
         4  |               (Assigned Number)               |
            +-----+-----+-----+-----+-----+-----+-----+-----+
         5  |                                               |
            /       E.164, or X.121 number (BCD encoded)    /
            /               or  NSAP address                /
     4+size |                                               |
            +-----+-----+-----+-----+-----+-----+-----+-----+
     5+size |                                               |
            /                    Padding                    /
            /                    (zeros)                    /
  8*Length-1|                                               |
            +-----+-----+-----+-----+-----+-----+-----+-----+


     Option fields:

       Type        1 for Source Link-layer address.
                   2 for Target Link-layer address.

       Length      The length of the Option (including the
                   Type and Length fields) in units of 8 octet.
                   It may have the value:

                    2 -- for E.164, or X.121 numbers or NSAP
                         addresses not longer than 11 octets
                         [E164], [X25], [NSAP].

                    3 -- for NSAP addresses longer than 11 but
                         not longer than 19 octets.




Conta, et al.               Standards Track                    [Page 13]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


                    4 -- for NSAP addresses longer than 19 octets
                         (not longer than the maximum NSAP address
                         length) [NSAP].

       Link-Layer Address       The E.164, X.121, number encoded in
                                Binary Coded Decimal (BCD), or the NSAP
                                address.

  Description

    The "Frame Relay Address" option value has three components:

    (a)  Address Type -- encoded in the first two bits of the first
         octet.  The first bit is set to 0, the second bit is set to 1.

    (b)  Size -- encoded in the last (high order) 6 bits of the first
         octet. The maximum value of the field is the maximum size of
         the E.164, X.121, or NSAP addresses.

    (c)  Address Family Number -- the number assigned for the E.164,
         X.121, or NSAP address family [ASSNUM].

    (d)  E.164, X.121, number -- encoded in BCD (two digits per octet).
         If the E.164, or X.121 has an even number of digits the
         encoding will fill all encoding octets -- half the number of
         digits. If the E.164, or X.121 number has an odd number of
         digits, the lowest order digit fills only half of an octet --
         it is placed in the first 4 bits of the last octet of the
         E.164, or X.121 BCD encoding. The rest of the field up to the
         last octet of the 11 octets available is padded with zeros.

         NSAP address -- the NSAP address. It is padded with zeros if
         the NSAP address does not fit in a number of octets that makes
         the length of the option an even number of 8 octets.

7. Sending Neighbor Discovery Messages

  Frame Relay networks do not provide link-layer native multicasting
  mechanisms. For the correct functioning of the Neighbor Discovery
  mechanisms, link-layer multicasting must be emulated.

  To emulate multicasting for Neighbor Discovery (ND) the node MUST
  send frames carrying ND multicast packets to all VCs on a Frame Relay
  interface. This applies to ND messages addressed to both all-node and
  solicited-node multicast addresses. This method works well with PVCs.
  A mesh of PVCs MAY be configured and dedicated to multicast traffic
  only.  An alternative to a mesh of PVCs is a set of point-to-
  multipoint PVCs.



Conta, et al.               Standards Track                    [Page 14]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


8. Receiving Neighbor Discovery Messages

  If a Neighbor Discovery Solicitation message received by a node
  contains the Source  link-layer  address option with a DLCI, the
  message MUST undergo Frame Relay specific preprocessing required for
  the correct interpretation of the field during the ND protocol engine
  processing. This processing is done before the Neighbor Discovery
  message is processed by the Neighbor Discovery (ND) protocol engine.

  The motivation for this processing is the local significance of the
  DLCI fields in the Neighbor Discovery message: the DLCI significance
  at the sender node is different than the DLCI significance at the
  receiver node. In other words, the DLCI that identifies the Frame
  Relay virtual circuit at the sender may be different than the DLCI
  that identifies the virtual circuit at the receiver node.
  Furthermore, the sender node may not be aware of the DLCI value at
  the receiver. Therefore, the Frame Relay specific preprocessing
  consists in modifying the Neighbor Discovery Solicitation message
  received, by storing into the Source link-layer address option the
  DLCI value of the virtual circuit on which the frame was received, as
  known to the receiver node. The DLCI value being stored must be
  encoded in the appropriate format (see previous sections). The
  passing of the DLCI value from the Frame Relay module to the Neighbor
  Discovery preprocessing module is an implementation choice.

9. Security Considerations

  The mechanisms defined in this document for generating an IPv6 Frame
  Relay interface identifier are intended to provide uniqueness at link
  level -- virtual circuit.  The protection against duplication is
  achieved by way of IPv6 Stateless Autoconfiguration Duplicate Address
  Detection mechanisms. Security protection against forgery or accident
  at the level of the mechanisms described here is provided by the IPv6
  security mechanisms [IPSEC], [IPSEC-Auth], [IPSEC-ESP] applied to
  Neighbor Discovery [IPv6-ND] or Inverse Neighbor Discovery [IND]
  messages.

  To avoid an IPsec Authentication verification failure, the Frame
  Relay specific preprocessing of a Neighbor Discovery Solicitation
  message that contains a DLCI format Source link-layer address option,
  MUST be done by the receiver node after it completed IP Security
  processing.









Conta, et al.               Standards Track                    [Page 15]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


10. Acknowledgments

  Thanks to D. Harrington, and M. Merhar for reviewing  this document
  and providing useful suggestions. Also thanks to G. Armitage for his
  reviewing and suggestions. Many thanks also to Thomas Narten for
  suggestions on improving the document.

11. References

  [AARCH]      Hinden, R. and S. Deering, "IPv6 Addressing
               Architecture", RFC 2373, July 1998.

  [ASSNUM]     Reynolds, J. and J. Postel, "Assigned Numbers", STD 2,
               RFC 1700, October 1994.  See also:
               http://www.iana.org/numbers.html

  [AUTOCONF]   Thomson, S. and T. Narten, "IPv6 Stateless
               Autoconfiguration", RFC 2462, December 1998.

  [CANON]      Narten, T. and C. Burton, "A Caution on the Canonical
               Ordering of Link-Layer Addresses", RFC 2469, December
               1998.

  [ENCAPS]     Brown, C. and A. Malis, "Multiprotocol Interconnect over
               Frame Relay", STD 55, RFC 2427, November 1998.

  [IND]        Conta, A., "Extensions to IPv6 Neighbor Discovery for
               Inverse Discovery", Work in Progress, December 1998.

  [IPv6]       Deering, S. and R. Hinden, "Internet Protocol Version 6
               Specification", RFC 2460, December 1998.

  [IPv6-ATM]   Armitage, G., Schulter, P. and M. Jork, "IPv6 over ATM
               Networks", RFC 2492, January 1999.

  [IPv6-ETH]   Crawford, M., "Transmission of IPv6 packets over
               Ethernet Networks", RFC 2464, December 1998.

  [IPv6-FDDI]  Crawford, M., "Transmission of IPv6 packets over FDDI
               Networks", RFC 2467, December 1998.

  [IPv6-NBMA]  Armitage, G., Schulter, P., Jork, M. and G. Harter,
               "IPv6 over Non-Broadcast Multiple Access (NBMA)
               networks", RFC 2491, January 1999.

  [IPv6-ND]    Narten, T., Nordmark, E. and W. Simpson, "Neighbor
               Discovery for IP Version 6 (IPv6)", RFC 2461, December
               1998.



Conta, et al.               Standards Track                    [Page 16]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


  [IPv6-PPP]   Haskin, D. and E. Allen, "IP Version 6 over PPP", RFC
               2472, December 1998.

  [IPv6-TR]    Narten, T.,  Crawford, M. and M. Thomas, "Transmission
               of IPv6 packets over Token Ring Networks", RFC 2470,
               December 1998.

  [IPSEC]      Atkinson, R. and S. Kent, "Security Architecture for the
               Internet Protocol", RFC 2401, November 1998.

  [IPSEC-Auth] Atkinson, R. and S. Kent, "IP Authentication Header",
               RFC 2402, December 1998.

  [IPSEC-ESP]  Atkinson, R. and S. Kent, "IP Encapsulating Security
               Protocol (ESP)", RFC 2406, November 1998.

  [RFC2119]    Bradner, S., "Key words for use in RFCs to indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [E164]       International Telecommunication Union - "Telephone
               Network and ISDN Operation, Numbering, Routing, amd
               Mobile Service", ITU-T Recommendation E.164, 1991.

  [NSAP]       ISO/IEC, "Information Processing Systems -- Data
               Communications -- Network Service Definition Addendum 2:
               Network Layer Addressing". International Standard
               8348/Addendum 2, ISO/IEC JTC 1, Switzerland 1988.

  [X25]        "Information Technology -- Data Communications -- X.25
               Packet Layer Protocol for Data Terminal Equipment",
               International Standard 8208, March 1988.




















Conta, et al.               Standards Track                    [Page 17]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


12. Authors' Addresses

  Alex Conta
  Lucent Technologies Inc.
  300 Baker Ave, Suite 100
  Concord, MA 01742

  Phone: +1-978-287-2842
  EMail: [email protected]


  Andrew Malis
  Ascend Communications
  1 Robbins Rd
  Westford, MA 01886

  Phone: +1-978-952-7414
  EMail: [email protected]


  Martin Mueller
  Lucent Technologies Inc.
  300 Baker Ave, Suite 100
  Concord, MA 01742

  PHone: +1-978-287-2833
  EMail:  [email protected]
























Conta, et al.               Standards Track                    [Page 18]

RFC 2590             IPv6 over Frame Relay Networks             May 1999


13.  Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Conta, et al.               Standards Track                    [Page 19]