Network Working Group                 Editors of this version:
Request for Comments: 2578                                 K. McCloghrie
STD: 58                                                    Cisco Systems
Obsoletes: 1902                                               D. Perkins
Category: Standards Track                                       SNMPinfo
                                                       J. Schoenwaelder
                                                        TU Braunschweig
                                     Authors of previous version:
                                                                J. Case
                                                          SNMP Research
                                                          K. McCloghrie
                                                          Cisco Systems
                                                                M. Rose
                                                 First Virtual Holdings
                                                          S. Waldbusser
                                         International Network Services
                                                             April 1999


        Structure of Management Information Version 2 (SMIv2)


Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.


Table of Contents

  1 Introduction .................................................3
  1.1 A Note on Terminology ......................................4
  2 Definitions ..................................................4
  2.1 The MODULE-IDENTITY macro ..................................5
  2.2 Object Names and Syntaxes ..................................5
  2.3 The OBJECT-TYPE macro ......................................8
  2.5 The NOTIFICATION-TYPE macro ...............................10
  2.6 Administrative Identifiers ................................11
  3 Information Modules .........................................11
  3.1 Macro Invocation ..........................................12
  3.1.1 Textual Values and Strings ..............................13


McCloghrie, et al.          Standards Track                     [Page 1]





RFC 2578                         SMIv2                        April 1999


  3.2 IMPORTing Symbols .........................................14
  3.3 Exporting Symbols .........................................14
  3.4 ASN.1 Comments ............................................14
  3.5 OBJECT IDENTIFIER values ..................................15
  3.6 OBJECT IDENTIFIER usage ...................................15
  3.7 Reserved Keywords .........................................16
  4 Naming Hierarchy ............................................16
  5 Mapping of the MODULE-IDENTITY macro ........................17
  5.1 Mapping of the LAST-UPDATED clause ........................17
  5.2 Mapping of the ORGANIZATION clause ........................17
  5.3 Mapping of the CONTACT-INFO clause ........................18
  5.4 Mapping of the DESCRIPTION clause .........................18
  5.5 Mapping of the REVISION clause ............................18
  5.5.1 Mapping of the DESCRIPTION sub-clause ...................18
  5.6 Mapping of the MODULE-IDENTITY value ......................18
  5.7 Usage Example .............................................18
  6 Mapping of the OBJECT-IDENTITY macro ........................19
  6.1 Mapping of the STATUS clause ..............................19
  6.2 Mapping of the DESCRIPTION clause .........................20
  6.3 Mapping of the REFERENCE clause ...........................20
  6.4 Mapping of the OBJECT-IDENTITY value ......................20
  6.5 Usage Example .............................................20
  7 Mapping of the OBJECT-TYPE macro ............................20
  7.1 Mapping of the SYNTAX clause ..............................21
  7.1.1 Integer32 and INTEGER ...................................21
  7.1.2 OCTET STRING ............................................21
  7.1.3 OBJECT IDENTIFIER .......................................22
  7.1.4 The BITS construct ......................................22
  7.1.5 IpAddress ...............................................22
  7.1.6 Counter32 ...............................................23
  7.1.7 Gauge32 .................................................23
  7.1.8 TimeTicks ...............................................24
  7.1.9 Opaque ..................................................24
  7.1.10 Counter64 ..............................................24
  7.1.11 Unsigned32 .............................................25
  7.1.12 Conceptual Tables ......................................25
  7.1.12.1 Creation and Deletion of Conceptual Rows .............26
  7.2 Mapping of the UNITS clause ...............................26
  7.3 Mapping of the MAX-ACCESS clause ..........................26
  7.4 Mapping of the STATUS clause ..............................27
  7.5 Mapping of the DESCRIPTION clause .........................27
  7.6 Mapping of the REFERENCE clause ...........................27
  7.7 Mapping of the INDEX clause ...............................27
  7.8 Mapping of the AUGMENTS clause ............................29
  7.8.1 Relation between INDEX and AUGMENTS clauses .............30
  7.9 Mapping of the DEFVAL clause ..............................30
  7.10 Mapping of the OBJECT-TYPE value .........................31
  7.11 Usage Example ............................................32


McCloghrie, et al.          Standards Track                     [Page 2]





RFC 2578                         SMIv2                        April 1999


  8 Mapping of the NOTIFICATION-TYPE macro ......................34
  8.1 Mapping of the OBJECTS clause .............................34
  8.2 Mapping of the STATUS clause ..............................34
  8.3 Mapping of the DESCRIPTION clause .........................35
  8.4 Mapping of the REFERENCE clause ...........................35
  8.5 Mapping of the NOTIFICATION-TYPE value ....................35
  8.6 Usage Example .............................................35
  9 Refined Syntax ..............................................36
  10 Extending an Information Module ............................37
  10.1 Object Assignments .......................................37
  10.2 Object Definitions .......................................38
  10.3 Notification Definitions .................................39
  11 Appendix A: Detailed Sub-typing Rules ......................40
  11.1 Syntax Rules .............................................40
  11.2 Examples .................................................41
  12 Security Considerations ....................................41
  13 Editors' Addresses .........................................41
  14 References .................................................42
  15 Full Copyright Statement ...................................43

1.  Introduction

  Management information is viewed as a collection of managed objects,
  residing in a virtual information store, termed the Management
  Information Base (MIB).  Collections of related objects are defined
  in MIB modules.  These modules are written using an adapted subset of
  OSI's Abstract Syntax Notation One, ASN.1 (1988) [1].  It is the
  purpose of this document, the Structure of Management Information
  (SMI), to define that adapted subset, and to assign a set of
  associated administrative values.

  The SMI is divided into three parts:  module definitions, object
  definitions, and, notification definitions.

(1)  Module definitions are used when describing information modules.
    An ASN.1 macro, MODULE-IDENTITY, is used to concisely convey the
    semantics of an information module.

(2)  Object definitions are used when describing managed objects.  An
    ASN.1 macro, OBJECT-TYPE, is used to concisely convey the syntax
    and semantics of a managed object.

(3)  Notification definitions are used when describing unsolicited
    transmissions of management information.  An ASN.1 macro,
    NOTIFICATION-TYPE, is used to concisely convey the syntax and
    semantics of a notification.




McCloghrie, et al.          Standards Track                     [Page 3]





RFC 2578                         SMIv2                        April 1999


1.1.  A Note on Terminology

  For the purpose of exposition, the original Structure of Management
  Information, as described in RFCs 1155 (STD 16), 1212 (STD 16), and
  RFC 1215, is termed the SMI version 1 (SMIv1).  The current version
  of the Structure of Management Information is termed SMI version 2
  (SMIv2).

2.  Definitions

SNMPv2-SMI DEFINITIONS ::= BEGIN


-- the path to the root

org            OBJECT IDENTIFIER ::= { iso 3 }  --  "iso" = 1
dod            OBJECT IDENTIFIER ::= { org 6 }
internet       OBJECT IDENTIFIER ::= { dod 1 }

directory      OBJECT IDENTIFIER ::= { internet 1 }

mgmt           OBJECT IDENTIFIER ::= { internet 2 }
mib-2          OBJECT IDENTIFIER ::= { mgmt 1 }
transmission   OBJECT IDENTIFIER ::= { mib-2 10 }

experimental   OBJECT IDENTIFIER ::= { internet 3 }

private        OBJECT IDENTIFIER ::= { internet 4 }
enterprises    OBJECT IDENTIFIER ::= { private 1 }

security       OBJECT IDENTIFIER ::= { internet 5 }

snmpV2         OBJECT IDENTIFIER ::= { internet 6 }

-- transport domains
snmpDomains    OBJECT IDENTIFIER ::= { snmpV2 1 }

-- transport proxies
snmpProxys     OBJECT IDENTIFIER ::= { snmpV2 2 }

-- module identities
snmpModules    OBJECT IDENTIFIER ::= { snmpV2 3 }

-- Extended UTCTime, to allow dates with four-digit years
-- (Note that this definition of ExtUTCTime is not to be IMPORTed
--  by MIB modules.)
ExtUTCTime ::= OCTET STRING(SIZE(11 | 13))
   -- format is YYMMDDHHMMZ or YYYYMMDDHHMMZ


McCloghrie, et al.          Standards Track                     [Page 4]





RFC 2578                         SMIv2                        April 1999


   --   where: YY   - last two digits of year (only years
   --                 between 1900-1999)
   --          YYYY - last four digits of the year (any year)
   --          MM   - month (01 through 12)
   --          DD   - day of month (01 through 31)
   --          HH   - hours (00 through 23)
   --          MM   - minutes (00 through 59)
   --          Z    - denotes GMT (the ASCII character Z)
   --
   -- For example, "9502192015Z" and "199502192015Z" represent
   -- 8:15pm GMT on 19 February 1995. Years after 1999 must use
   -- the four digit year format. Years 1900-1999 may use the
   -- two or four digit format.

-- definitions for information modules

MODULE-IDENTITY MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 "LAST-UPDATED" value(Update ExtUTCTime)
                 "ORGANIZATION" Text
                 "CONTACT-INFO" Text
                 "DESCRIPTION" Text
                 RevisionPart

   VALUE NOTATION ::=
                 value(VALUE OBJECT IDENTIFIER)

   RevisionPart ::=
                 Revisions
               | empty
   Revisions ::=
                 Revision
               | Revisions Revision
   Revision ::=
                 "REVISION" value(Update ExtUTCTime)
                 "DESCRIPTION" Text

   -- a character string as defined in section 3.1.1
   Text ::= value(IA5String)
END


OBJECT-IDENTITY MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 "STATUS" Status
                 "DESCRIPTION" Text


McCloghrie, et al.          Standards Track                     [Page 5]





RFC 2578                         SMIv2                        April 1999


                 ReferPart

   VALUE NOTATION ::=
                 value(VALUE OBJECT IDENTIFIER)

   Status ::=
                 "current"
               | "deprecated"
               | "obsolete"

   ReferPart ::=
                 "REFERENCE" Text
               | empty

   -- a character string as defined in section 3.1.1
   Text ::= value(IA5String)
END


-- names of objects
-- (Note that these definitions of ObjectName and NotificationName
--  are not to be IMPORTed by MIB modules.)

ObjectName ::=
   OBJECT IDENTIFIER

NotificationName ::=
   OBJECT IDENTIFIER

-- syntax of objects

-- the "base types" defined here are:
--   3 built-in ASN.1 types: INTEGER, OCTET STRING, OBJECT IDENTIFIER
--   8 application-defined types: Integer32, IpAddress, Counter32,
--              Gauge32, Unsigned32, TimeTicks, Opaque, and Counter64

ObjectSyntax ::=
   CHOICE {
       simple
           SimpleSyntax,

         -- note that SEQUENCEs for conceptual tables and
         -- rows are not mentioned here...

       application-wide
           ApplicationSyntax
   }



McCloghrie, et al.          Standards Track                     [Page 6]





RFC 2578                         SMIv2                        April 1999


-- built-in ASN.1 types

SimpleSyntax ::=
   CHOICE {
       -- INTEGERs with a more restrictive range
       -- may also be used
       integer-value               -- includes Integer32
           INTEGER (-2147483648..2147483647),

       -- OCTET STRINGs with a more restrictive size
       -- may also be used
       string-value
           OCTET STRING (SIZE (0..65535)),

       objectID-value
           OBJECT IDENTIFIER
   }

-- indistinguishable from INTEGER, but never needs more than
-- 32-bits for a two's complement representation
Integer32 ::=
       INTEGER (-2147483648..2147483647)


-- application-wide types

ApplicationSyntax ::=
   CHOICE {
       ipAddress-value
           IpAddress,

       counter-value
           Counter32,

       timeticks-value
           TimeTicks,

       arbitrary-value
           Opaque,

       big-counter-value
           Counter64,

       unsigned-integer-value  -- includes Gauge32
           Unsigned32
   }

-- in network-byte order


McCloghrie, et al.          Standards Track                     [Page 7]





RFC 2578                         SMIv2                        April 1999


-- (this is a tagged type for historical reasons)
IpAddress ::=
   [APPLICATION 0]
       IMPLICIT OCTET STRING (SIZE (4))

-- this wraps
Counter32 ::=
   [APPLICATION 1]
       IMPLICIT INTEGER (0..4294967295)

-- this doesn't wrap
Gauge32 ::=
   [APPLICATION 2]
       IMPLICIT INTEGER (0..4294967295)

-- an unsigned 32-bit quantity
-- indistinguishable from Gauge32
Unsigned32 ::=
   [APPLICATION 2]
       IMPLICIT INTEGER (0..4294967295)

-- hundredths of seconds since an epoch
TimeTicks ::=
   [APPLICATION 3]
       IMPLICIT INTEGER (0..4294967295)

-- for backward-compatibility only
Opaque ::=
   [APPLICATION 4]
       IMPLICIT OCTET STRING

-- for counters that wrap in less than one hour with only 32 bits
Counter64 ::=
   [APPLICATION 6]
       IMPLICIT INTEGER (0..18446744073709551615)


-- definition for objects

OBJECT-TYPE MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 "SYNTAX" Syntax
                 UnitsPart
                 "MAX-ACCESS" Access
                 "STATUS" Status
                 "DESCRIPTION" Text
                 ReferPart


McCloghrie, et al.          Standards Track                     [Page 8]





RFC 2578                         SMIv2                        April 1999


                 IndexPart
                 DefValPart

   VALUE NOTATION ::=
                 value(VALUE ObjectName)

   Syntax ::=   -- Must be one of the following:
                      -- a base type (or its refinement),
                      -- a textual convention (or its refinement), or
                      -- a BITS pseudo-type
                  type
               | "BITS" "{" NamedBits "}"

   NamedBits ::= NamedBit
               | NamedBits "," NamedBit

   NamedBit ::=  identifier "(" number ")" -- number is nonnegative

   UnitsPart ::=
                 "UNITS" Text
               | empty

   Access ::=
                 "not-accessible"
               | "accessible-for-notify"
               | "read-only"
               | "read-write"
               | "read-create"

   Status ::=
                 "current"
               | "deprecated"
               | "obsolete"

   ReferPart ::=
                 "REFERENCE" Text
               | empty

   IndexPart ::=
                 "INDEX"    "{" IndexTypes "}"
               | "AUGMENTS" "{" Entry      "}"
               | empty
   IndexTypes ::=
                 IndexType
               | IndexTypes "," IndexType
   IndexType ::=
                 "IMPLIED" Index
               | Index


McCloghrie, et al.          Standards Track                     [Page 9]





RFC 2578                         SMIv2                        April 1999


   Index ::=
                   -- use the SYNTAX value of the
                   -- correspondent OBJECT-TYPE invocation
                 value(ObjectName)
   Entry ::=
                   -- use the INDEX value of the
                   -- correspondent OBJECT-TYPE invocation
                 value(ObjectName)

   DefValPart ::= "DEFVAL" "{" Defvalue "}"
               | empty

   Defvalue ::=  -- must be valid for the type specified in
                 -- SYNTAX clause of same OBJECT-TYPE macro
                 value(ObjectSyntax)
               | "{" BitsValue "}"

   BitsValue ::= BitNames
               | empty

   BitNames ::=  BitName
               | BitNames "," BitName

   BitName ::= identifier

   -- a character string as defined in section 3.1.1
   Text ::= value(IA5String)
END


-- definitions for notifications

NOTIFICATION-TYPE MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 ObjectsPart
                 "STATUS" Status
                 "DESCRIPTION" Text
                 ReferPart

   VALUE NOTATION ::=
                 value(VALUE NotificationName)

   ObjectsPart ::=
                 "OBJECTS" "{" Objects "}"
               | empty
   Objects ::=
                 Object


McCloghrie, et al.          Standards Track                    [Page 10]





RFC 2578                         SMIv2                        April 1999


               | Objects "," Object
   Object ::=
                 value(ObjectName)

   Status ::=
                 "current"
               | "deprecated"
               | "obsolete"

   ReferPart ::=
                 "REFERENCE" Text
               | empty

   -- a character string as defined in section 3.1.1
   Text ::= value(IA5String)
END

-- definitions of administrative identifiers

zeroDotZero    OBJECT-IDENTITY
   STATUS     current
   DESCRIPTION
           "A value used for null identifiers."
   ::= { 0 0 }

END

3.  Information Modules

  An "information module" is an ASN.1 module defining information
  relating to network management.

  The SMI describes how to use an adapted subset of ASN.1 (1988) to
  define an information module.  Further, additional restrictions are
  placed on "standard" information modules.  It is strongly recommended
  that "enterprise-specific" information modules also adhere to these
  restrictions.

  Typically, there are three kinds of information modules:

(1)  MIB modules, which contain definitions of inter-related managed
    objects, make use of the OBJECT-TYPE and NOTIFICATION-TYPE macros;

(2)  compliance statements for MIB modules, which make use of the
    MODULE-COMPLIANCE and OBJECT-GROUP macros [2]; and,

(3)  capability statements for agent implementations which make use of
    the AGENT-CAPABILITIES macros [2].


McCloghrie, et al.          Standards Track                    [Page 11]





RFC 2578                         SMIv2                        April 1999


  This classification scheme does not imply a rigid taxonomy.  For
  example, a "standard" information module will normally include
  definitions of managed objects and a compliance statement.
  Similarly, an "enterprise-specific" information module might include
  definitions of managed objects and a capability statement.  Of
  course, a "standard" information module may not contain capability
  statements.

  The constructs of ASN.1 allowed in SMIv2 information modules include:
  the IMPORTS clause, value definitions for OBJECT IDENTIFIERs, type
  definitions for SEQUENCEs (with restrictions), ASN.1 type assignments
  of the restricted ASN.1 types allowed in SMIv2, and instances of
  ASN.1 macros defined in this document and its companion documents [2,
  3].  Additional ASN.1 macros must not be defined in SMIv2 information
  modules.  SMIv1 macros must not be used in SMIv2 information modules.

  The names of all standard information modules must be unique (but
  different versions of the same information module should have the
  same name).  Developers of enterprise information modules are
  encouraged to choose names for their information modules that will
  have a low probability of colliding with standard or other enterprise
  information modules. An information module may not use the ASN.1
  construct of placing an object identifier value between the module
  name and the "DEFINITIONS" keyword.  For the purposes of this
  specification, an ASN.1 module name begins with an upper-case letter
  and continues with zero or more letters, digits, or hyphens, except
  that a hyphen can not be the last character, nor can there be two
  consecutive hyphens.

  All information modules start with exactly one invocation of the
  MODULE-IDENTITY macro, which provides contact information as well as
  revision history to distinguish between versions of the same
  information module.  This invocation must appear immediately after
  any IMPORTs statements.

3.1.  Macro Invocation

  Within an information module, each macro invocation appears as:

       <descriptor> <macro> <clauses> ::= <value>

  where <descriptor> corresponds to an ASN.1 identifier, <macro> names
  the macro being invoked, and <clauses> and <value> depend on the
  definition of the macro.  (Note that this definition of a descriptor
  applies to all macros defined in this memo and in [2].)





McCloghrie, et al.          Standards Track                    [Page 12]





RFC 2578                         SMIv2                        April 1999


  For the purposes of this specification, an ASN.1 identifier consists
  of one or more letters or digits, and its initial character must be a
  lower-case letter.  Note that hyphens are not allowed by this
  specification (except for use by information modules converted from
  SMIv1 which did allow hyphens).

  For all descriptors appearing in an information module, the
  descriptor shall be unique and mnemonic, and shall not exceed 64
  characters in length.  (However, descriptors longer than 32
  characters are not recommended.)  This promotes a common language for
  humans to use when discussing the information module and also
  facilitates simple table mappings for user-interfaces.

  The set of descriptors defined in all "standard" information modules
  shall be unique.

  Finally, by convention, if the descriptor refers to an object with a
  SYNTAX clause value of either Counter32 or Counter64, then the
  descriptor used for the object should denote plurality.

3.1.1.  Textual Values and Strings

  Some clauses in a macro invocation may take a character string as a
  textual value (e.g., the DESCRIPTION clause).  Other clauses take
  binary or hexadecimal strings (in any position where a non-negative
  number is allowed).

  A character string is preceded and followed by the quote character
  ("), and consists of an arbitrary number (possibly zero) of:

     - any 7-bit displayable ASCII characters except quote ("),
     - tab characters,
     - spaces, and
     - line terminator characters (\n or \r\n).

  The value of a character string is interpreted as ASCII.

  A binary string consists of a number (possibly zero) of zeros and
  ones preceded by a single (') and followed by either the pair ('B) or
  ('b), where the number is a multiple of eight.

  A hexadecimal string consists of an even number (possibly zero) of
  hexadecimal digits, preceded by a single (') and followed by either
  the pair ('H) or ('h).  Digits specified via letters can be in upper
  or lower case.

  Note that ASN.1 comments can not be enclosed inside any of these
  types of strings.


McCloghrie, et al.          Standards Track                    [Page 13]





RFC 2578                         SMIv2                        April 1999


3.2.  IMPORTing Symbols

  To reference an external object, the IMPORTS statement must be used
  to identify both the descriptor and the module in which the
  descriptor is defined, where the module is identified by its ASN.1
  module name.

  Note that when symbols from "enterprise-specific" information modules
  are referenced  (e.g., a descriptor), there is the possibility of
  collision.  As such, if different objects with the same descriptor
  are IMPORTed, then this ambiguity is resolved by prefixing the
  descriptor with the name of the information module and a dot ("."),
  i.e.,

       "module.descriptor"

  (All descriptors must be unique within any information module.)

  Of course, this notation can be used to refer to objects even when
  there is no collision when IMPORTing symbols.

  Finally, if any of the ASN.1 named types and macros defined in this
  document, specifically:

       Counter32, Counter64, Gauge32, Integer32, IpAddress, MODULE-
       IDENTITY, NOTIFICATION-TYPE, Opaque, OBJECT-TYPE, OBJECT-
       IDENTITY, TimeTicks, Unsigned32,

  or any of those defined in [2] or [3], are used in an information
  module, then they must be imported using the IMPORTS statement.
  However, the following must not be included in an IMPORTS statement:

     - named types defined by ASN.1 itself, specifically: INTEGER,
       OCTET STRING, OBJECT IDENTIFIER, SEQUENCE, SEQUENCE OF type,
     - the BITS construct.

3.3.  Exporting Symbols

  The ASN.1 EXPORTS statement is not allowed in SMIv2 information
  modules.  All items defined in an information module are
  automatically exported.

3.4.  ASN.1 Comments

  ASN.1 comments can be included in an information module.  However, it
  is recommended that all substantive descriptions be placed within an
  appropriate DESCRIPTION clause.



McCloghrie, et al.          Standards Track                    [Page 14]





RFC 2578                         SMIv2                        April 1999


  ASN.1 comments commence with a pair of adjacent hyphens and end with
  the next pair of adjacent hyphens or at the end of the line,
  whichever occurs first.  Comments ended by a pair of hyphens have the
  effect of a single space character.

3.5.  OBJECT IDENTIFIER values

  An OBJECT IDENTIFIER value is an ordered list of non-negative
  numbers.  For the SMIv2, each number in the list is referred to as a
  sub-identifier, there are at most 128 sub-identifiers in a value, and
  each sub-identifier has a maximum value of 2^32-1 (4294967295
  decimal).

  All OBJECT IDENTIFIER values have at least two sub-identifiers, where
  the value of the first sub-identifier is one of the following well-
  known names:

       Value   Name
         0     ccitt
         1     iso
         2     joint-iso-ccitt

  (Note that this SMI does not recognize "new" well-known names, e.g.,
  as defined when the CCITT became the ITU.)

3.6.  OBJECT IDENTIFIER usage

  OBJECT IDENTIFIERs are used in information modules in two ways:

(1)  registration: the definition of a particular item is registered as
    a particular OBJECT IDENTIFIER value, and associated with a
    particular descriptor.  After such a registration, the semantics
    thereby associated with the value are not allowed to change, the
    OBJECT IDENTIFIER can not be used for any other registration, and
    the descriptor can not be changed nor associated with any other
    registration.  The following macros result in a registration:

         OBJECT-TYPE, MODULE-IDENTITY, NOTIFICATION-TYPE, OBJECT-GROUP,
         OBJECT-IDENTITY, NOTIFICATION-GROUP, MODULE-COMPLIANCE,
         AGENT-CAPABILITIES.

(2)  assignment: a descriptor can be assigned to a particular OBJECT
    IDENTIFIER value.  For this usage, the semantics associated with
    the OBJECT IDENTIFIER value is not allowed to change, and a
    descriptor assigned to a particular OBJECT IDENTIFIER value cannot
    subsequently be assigned to another.  However, multiple descriptors
    can be assigned to the same OBJECT IDENTIFIER value.  Such
    assignments are specified in the following manner:


McCloghrie, et al.          Standards Track                    [Page 15]





RFC 2578                         SMIv2                        April 1999


         mib         OBJECT IDENTIFIER ::= { mgmt 1 }  -- from RFC1156
         mib-2       OBJECT IDENTIFIER ::= { mgmt 1 }  -- from RFC1213
         fredRouter  OBJECT IDENTIFIER ::= { flintStones 1 1 }
         barneySwitch OBJECT IDENTIFIER ::= { flintStones bedrock(2) 1 }

    Note while the above examples are legal, the following is not:

         dinoHost OBJECT IDENTIFIER ::= { flintStones bedrock 2 }

  A descriptor is allowed to be associated with both a registration and
  an assignment, providing both are associated with the same OBJECT
  IDENTIFIER value and semantics.

3.7.  Reserved Keywords

  The following are reserved keywords which must not be used as
  descriptors or module names:

       ABSENT ACCESS AGENT-CAPABILITIES ANY APPLICATION AUGMENTS BEGIN
       BIT BITS BOOLEAN BY CHOICE COMPONENT COMPONENTS CONTACT-INFO
       CREATION-REQUIRES Counter32 Counter64 DEFAULT DEFINED
       DEFINITIONS DEFVAL DESCRIPTION DISPLAY-HINT END ENUMERATED
       ENTERPRISE EXPLICIT EXPORTS EXTERNAL FALSE FROM GROUP Gauge32
       IDENTIFIER IMPLICIT IMPLIED IMPORTS INCLUDES INDEX INTEGER
       Integer32 IpAddress LAST-UPDATED MANDATORY-GROUPS MAX MAX-ACCESS
       MIN MIN-ACCESS MINUS-INFINITY MODULE MODULE-COMPLIANCE MODULE-
       IDENTITY NOTIFICATION-GROUP NOTIFICATION-TYPE NOTIFICATIONS NULL
       OBJECT OBJECT-GROUP OBJECT-IDENTITY OBJECT-TYPE OBJECTS OCTET OF
       OPTIONAL ORGANIZATION Opaque PLUS-INFINITY PRESENT PRIVATE
       PRODUCT-RELEASE REAL REFERENCE REVISION SEQUENCE SET SIZE STATUS
       STRING SUPPORTS SYNTAX TAGS TEXTUAL-CONVENTION TRAP-TYPE TRUE
       TimeTicks UNITS UNIVERSAL Unsigned32 VARIABLES VARIATION WITH
       WRITE-SYNTAX

4.  Naming Hierarchy

  The root of the subtree administered by the Internet Assigned Numbers
  Authority (IANA) for the Internet is:

       internet       OBJECT IDENTIFIER ::= { iso 3 6 1 }

  That is, the Internet subtree of OBJECT IDENTIFIERs starts with the
  prefix:

       1.3.6.1.

  Several branches underneath this subtree are used for network
  management:


McCloghrie, et al.          Standards Track                    [Page 16]





RFC 2578                         SMIv2                        April 1999


       mgmt           OBJECT IDENTIFIER ::= { internet 2 }
       experimental   OBJECT IDENTIFIER ::= { internet 3 }
       private        OBJECT IDENTIFIER ::= { internet 4 }
       enterprises    OBJECT IDENTIFIER ::= { private 1 }

  However, the SMI does not prohibit the definition of objects in other
  portions of the object tree.

  The mgmt(2) subtree is used to identify "standard" objects.

  The experimental(3) subtree is used to identify objects being
  designed by working groups of the IETF.  If an information module
  produced by a working group becomes a "standard" information module,
  then at the very beginning of its entry onto the Internet standards
  track, the objects are moved under the mgmt(2) subtree.

  The private(4) subtree is used to identify objects defined
  unilaterally.  The enterprises(1) subtree beneath private is used,
  among other things, to permit providers of networking subsystems to
  register models of their products.

5.  Mapping of the MODULE-IDENTITY macro

  The MODULE-IDENTITY macro is used to provide contact and revision
  history for each information module.  It must appear exactly once in
  every information module.  It should be noted that the expansion of
  the MODULE-IDENTITY macro is something which conceptually happens
  during implementation and not during run-time.

  Note that reference in an IMPORTS clause or in clauses of SMIv2
  macros to an information module is NOT through the use of the
  'descriptor' of a MODULE-IDENTITY macro; rather, an information
  module is referenced through specifying its module name.

5.1.  Mapping of the LAST-UPDATED clause

  The LAST-UPDATED clause, which must be present, contains the date and
  time that this information module was last edited.

5.2.  Mapping of the ORGANIZATION clause

  The ORGANIZATION clause, which must be present, contains a textual
  description of the organization under whose auspices this information
  module was developed.






McCloghrie, et al.          Standards Track                    [Page 17]





RFC 2578                         SMIv2                        April 1999


5.3.  Mapping of the CONTACT-INFO clause

  The CONTACT-INFO clause, which must be present, contains the name,
  postal address, telephone number, and electronic mail address of the
  person to whom technical queries concerning this information module
  should be sent.

5.4.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a high-level
  textual description of the contents of this information module.

5.5.  Mapping of the REVISION clause

  The REVISION clause, which need not be present, is repeatedly used to
  describe the revisions (including the initial version) made to this
  information module, in reverse chronological order (i.e., most recent
  first).  Each instance of this clause contains the date and time of
  the revision.

5.5.1.  Mapping of the DESCRIPTION sub-clause

  The DESCRIPTION sub-clause, which must be present for each REVISION
  clause, contains a high-level textual description of the revision
  identified in that REVISION clause.

5.6.  Mapping of the MODULE-IDENTITY value

  The value of an invocation of the MODULE-IDENTITY macro is an OBJECT
  IDENTIFIER.  As such, this value may be authoritatively used when
  specifying an OBJECT IDENTIFIER value to refer to the information
  module containing the invocation.

  Note that it is a common practice to use the value of the MODULE-
  IDENTITY macro as a subtree under which other OBJECT IDENTIFIER
  values assigned within the module are defined.  However, it is legal
  (and occasionally necessary) for the other OBJECT IDENTIFIER values
  assigned within the module to be unrelated to the OBJECT IDENTIFIER
  value of the MODULE-IDENTITY macro.

5.7.  Usage Example

  Consider how a skeletal MIB module might be constructed:  e.g.,

  FIZBIN-MIB DEFINITIONS ::= BEGIN

  IMPORTS
      MODULE-IDENTITY, OBJECT-TYPE, experimental


McCloghrie, et al.          Standards Track                    [Page 18]





RFC 2578                         SMIv2                        April 1999


          FROM SNMPv2-SMI;


  fizbin MODULE-IDENTITY
      LAST-UPDATED "199505241811Z"
      ORGANIZATION "IETF SNMPv2 Working Group"
      CONTACT-INFO
              "        Marshall T. Rose

               Postal: Dover Beach Consulting, Inc.
                       420 Whisman Court
                       Mountain View, CA  94043-2186
                       US

                  Tel: +1 415 968 1052
                  Fax: +1 415 968 2510

               E-mail: [email protected]"

      DESCRIPTION
              "The MIB module for entities implementing the xxxx
              protocol."
      REVISION      "9505241811Z"
      DESCRIPTION
              "The latest version of this MIB module."
      REVISION      "9210070433Z"
      DESCRIPTION
              "The initial version of this MIB module, published in
              RFC yyyy."
  -- contact IANA for actual number
      ::= { experimental xx }

  END

6.  Mapping of the OBJECT-IDENTITY macro

  The OBJECT-IDENTITY macro is used to define information about an
  OBJECT IDENTIFIER assignment.  All administrative OBJECT IDENTIFIER
  assignments which define a type identification value (see
  AutonomousType, a textual convention defined in [3]) should be
  defined via the OBJECT-IDENTITY macro.  It should be noted that the
  expansion of the OBJECT-IDENTITY macro is something which
  conceptually happens during implementation and not during run-time.

6.1.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this
  definition is current or historic.


McCloghrie, et al.          Standards Track                    [Page 19]





RFC 2578                         SMIv2                        April 1999


  The value "current" means that the definition is current and valid.
  The value "obsolete" means the definition is obsolete and should not
  be implemented and/or can be removed if previously implemented.
  While the value "deprecated" also indicates an obsolete definition,
  it permits new/continued implementation in order to foster
  interoperability with older/existing implementations.

6.2.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  description of the object assignment.

6.3.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to some other document, either another information
  module which defines a related assignment, or some other document
  which provides additional information relevant to this definition.

6.4.  Mapping of the OBJECT-IDENTITY value

  The value of an invocation of the OBJECT-IDENTITY macro is an OBJECT
  IDENTIFIER.

6.5.  Usage Example

  Consider how an OBJECT IDENTIFIER assignment might be made:  e.g.,

  fizbin69 OBJECT-IDENTITY
      STATUS  current
      DESCRIPTION
              "The authoritative identity of the Fizbin 69 chipset."
     ::= { fizbinChipSets 1 }

7.  Mapping of the OBJECT-TYPE macro

  The OBJECT-TYPE macro is used to define a type of managed object.  It
  should be noted that the expansion of the OBJECT-TYPE macro is
  something which conceptually happens during implementation and not
  during run-time.

  For leaf objects which are not columnar objects (i.e., not contained
  within a conceptual table), instances of the object are identified by
  appending a sub-identifier of zero to the name of that object.
  Otherwise, the INDEX clause of the conceptual row object superior to
  a columnar object defines instance identification information.




McCloghrie, et al.          Standards Track                    [Page 20]





RFC 2578                         SMIv2                        April 1999


7.1.  Mapping of the SYNTAX clause

  The SYNTAX clause, which must be present, defines the abstract data
  structure corresponding to that object.  The data structure must be
  one of the following: a base type, the BITS construct, or a textual
  convention.  (SEQUENCE OF and SEQUENCE are also possible for
  conceptual tables, see section 7.1.12).  The base types are those
  defined in the ObjectSyntax CHOICE.  A textual convention is a
  newly-defined type defined as a sub-type of a base type [3].

  An extended subset of the full capabilities of ASN.1 (1988) sub-
  typing is allowed, as appropriate to the underlying ASN.1 type.  Any
  such restriction on size, range or enumerations specified in this
  clause represents the maximal level of support which makes "protocol
  sense".  Restrictions on sub-typing are specified in detail in
  Section 9 and Appendix A of this memo.

  The semantics of ObjectSyntax are now described.

7.1.1.  Integer32 and INTEGER

  The Integer32 type represents integer-valued information between
  -2^31 and 2^31-1 inclusive (-2147483648 to 2147483647 decimal).  This
  type is indistinguishable from the INTEGER type.  Both the INTEGER
  and Integer32 types may be sub-typed to be more constrained than the
  Integer32 type.

  The INTEGER type (but not the Integer32 type) may also be used to
  represent integer-valued information as named-number enumerations.
  In this case, only those named-numbers so enumerated may be present
  as a value.  Note that although it is recommended that enumerated
  values start at 1 and be numbered contiguously, any valid value for
  Integer32 is allowed for an enumerated value and, further, enumerated
  values needn't be contiguously assigned.

  Finally, a label for a named-number enumeration must consist of one
  or more letters or digits, up to a maximum of 64 characters, and the
  initial character must be a lower-case letter.  (However, labels
  longer than 32 characters are not recommended.)  Note that hyphens
  are not allowed by this specification (except for use by information
  modules converted from SMIv1 which did allow hyphens).

7.1.2.  OCTET STRING

  The OCTET STRING type represents arbitrary binary or textual data.
  Although the SMI-specified size limitation for this type is 65535
  octets, MIB designers should realize that there may be implementation
  and interoperability limitations for sizes in excess of 255 octets.


McCloghrie, et al.          Standards Track                    [Page 21]





RFC 2578                         SMIv2                        April 1999


7.1.3.  OBJECT IDENTIFIER

  The OBJECT IDENTIFIER type represents administratively assigned
  names.  Any instance of this type may have at most 128 sub-
  identifiers.  Further, each sub-identifier must not exceed the value
  2^32-1 (4294967295 decimal).

7.1.4.  The BITS construct

  The BITS construct represents an enumeration of named bits.  This
  collection is assigned non-negative, contiguous (but see below)
  values, starting at zero.  Only those named-bits so enumerated may be
  present in a value.  (Thus, enumerations must be assigned to
  consecutive bits; however, see Section 9 for refinements of an object
  with this syntax.)

  As part of updating an information module, for an object defined
  using the BITS construct, new enumerations can be added or existing
  enumerations can have new labels assigned to them.  After an
  enumeration is added, it might not be possible to distinguish between
  an implementation of the updated object for which the new enumeration
  is not asserted, and an implementation of the object prior to the
  addition.  Depending on the circumstances, such an ambiguity could
  either be desirable or could be undesirable.  The means to avoid such
  an ambiguity is dependent on the encoding of values on the wire;
  however, one possibility is to define new enumerations starting at
  the next multiple of eight bits.  (Of course, this can also result in
  the enumerations no longer being contiguous.)

  Although there is no SMI-specified limitation on the number of
  enumerations (and therefore on the length of a value), except as may
  be imposed by the limit on the length of an OCTET STRING, MIB
  designers should realize that there may be implementation and
  interoperability limitations for sizes in excess of 128 bits.

  Finally, a label for a named-number enumeration must consist of one
  or more letters or digits, up to a maximum of 64 characters, and the
  initial character must be a lower-case letter.  (However, labels
  longer than 32 characters are not recommended.)  Note that hyphens
  are not allowed by this specification.

7.1.5.  IpAddress

  The IpAddress type represents a 32-bit internet address.  It is
  represented as an OCTET STRING of length 4, in network byte-order.





McCloghrie, et al.          Standards Track                    [Page 22]





RFC 2578                         SMIv2                        April 1999


  Note that the IpAddress type is a tagged type for historical reasons.
  Network addresses should be represented using an invocation of the
  TEXTUAL-CONVENTION macro [3].

7.1.6.  Counter32

  The Counter32 type represents a non-negative integer which
  monotonically increases until it reaches a maximum value of 2^32-1
  (4294967295 decimal), when it wraps around and starts increasing
  again from zero.

  Counters have no defined "initial" value, and thus, a single value of
  a Counter has (in general) no information content.  Discontinuities
  in the monotonically increasing value normally occur at re-
  initialization of the management system, and at other times as
  specified in the description of an object-type using this ASN.1 type.
  If such other times can occur, for example, the creation of an object
  instance at times other than re-initialization, then a corresponding
  object should be defined, with an appropriate SYNTAX clause, to
  indicate the last discontinuity.  Examples of appropriate SYNTAX
  clause include:  TimeStamp (a textual convention defined in [3]),
  DateAndTime (another textual convention from [3]) or TimeTicks.

  The value of the MAX-ACCESS clause for objects with a SYNTAX clause
  value of Counter32 is either "read-only" or "accessible-for-notify".

  A DEFVAL clause is not allowed for objects with a SYNTAX clause value
  of Counter32.

7.1.7.  Gauge32

  The Gauge32 type represents a non-negative integer, which may
  increase or decrease, but shall never exceed a maximum value, nor
  fall below a minimum value.  The maximum value can not be greater
  than 2^32-1 (4294967295 decimal), and the minimum value can not be
  smaller than 0.  The value of a Gauge32 has its maximum value
  whenever the information being modeled is greater than or equal to
  its maximum value, and has its minimum value whenever the information
  being modeled is smaller than or equal to its minimum value.  If the
  information being modeled subsequently decreases below (increases
  above) the maximum (minimum) value, the Gauge32 also decreases
  (increases).  (Note that despite of the use of the term "latched" in
  the original definition of this type, it does not become "stuck" at
  its maximum or minimum value.)






McCloghrie, et al.          Standards Track                    [Page 23]





RFC 2578                         SMIv2                        April 1999


7.1.8.  TimeTicks

  The TimeTicks type represents a non-negative integer which represents
  the time, modulo 2^32 (4294967296 decimal), in hundredths of a second
  between two epochs.  When objects are defined which use this ASN.1
  type, the description of the object identifies both of the reference
  epochs.

  For example, [3] defines the TimeStamp textual convention which is
  based on the TimeTicks type.  With a TimeStamp, the first reference
  epoch is defined as the time when sysUpTime [5] was zero, and the
  second reference epoch is defined as the current value of sysUpTime.

  The TimeTicks type may not be sub-typed.

7.1.9.  Opaque

  The Opaque type is provided solely for backward-compatibility, and
  shall not be used for newly-defined object types.

  The Opaque type supports the capability to pass arbitrary ASN.1
  syntax.  A value is encoded using the ASN.1 Basic Encoding Rules [4]
  into a string of octets.  This, in turn, is encoded as an OCTET
  STRING, in effect "double-wrapping" the original ASN.1 value.

  Note that a conforming implementation need only be able to accept and
  recognize opaquely-encoded data.  It need not be able to unwrap the
  data and then interpret its contents.

  A requirement on "standard" MIB modules is that no object may have a
  SYNTAX clause value of Opaque.

7.1.10.  Counter64

  The Counter64 type represents a non-negative integer which
  monotonically increases until it reaches a maximum value of 2^64-1
  (18446744073709551615 decimal), when it wraps around and starts
  increasing again from zero.

  Counters have no defined "initial" value, and thus, a single value of
  a Counter has (in general) no information content.  Discontinuities
  in the monotonically increasing value normally occur at re-
  initialization of the management system, and at other times as
  specified in the description of an object-type using this ASN.1 type.
  If such other times can occur, for example, the creation of an object
  instance at times other than re-initialization, then a corresponding
  object should be defined, with an appropriate SYNTAX clause, to
  indicate the last discontinuity.  Examples of appropriate SYNTAX


McCloghrie, et al.          Standards Track                    [Page 24]





RFC 2578                         SMIv2                        April 1999


  clause are:  TimeStamp (a textual convention defined in [3]),
  DateAndTime (another textual convention from [3]) or TimeTicks.

  The value of the MAX-ACCESS clause for objects with a SYNTAX clause
  value of Counter64 is either "read-only" or "accessible-for-notify".

  A requirement on "standard" MIB modules is that the Counter64 type
  may be used only if the information being modeled would wrap in less
  than one hour if the Counter32 type was used instead.

  A DEFVAL clause is not allowed for objects with a SYNTAX clause value
  of Counter64.

7.1.11.  Unsigned32

  The Unsigned32 type represents integer-valued information between 0
  and 2^32-1 inclusive (0 to 4294967295 decimal).

7.1.12.  Conceptual Tables

  Management operations apply exclusively to scalar objects.  However,
  it is sometimes convenient for developers of management applications
  to impose an imaginary, tabular structure on an ordered collection of
  objects within the MIB.  Each such conceptual table contains zero or
  more rows, and each row may contain one or more scalar objects,
  termed columnar objects.  This conceptualization is formalized by
  using the OBJECT-TYPE macro to define both an object which
  corresponds to a table and an object which corresponds to a row in
  that table.  A conceptual table has SYNTAX of the form:

       SEQUENCE OF <EntryType>

  where <EntryType> refers to the SEQUENCE type of its subordinate
  conceptual row.  A conceptual row has SYNTAX of the form:

       <EntryType>

  where <EntryType> is a SEQUENCE type defined as follows:

       <EntryType> ::= SEQUENCE { <type1>, ... , <typeN> }

  where there is one <type> for each subordinate object, and each
  <type> is of the form:

       <descriptor> <syntax>

  where <descriptor> is the descriptor naming a subordinate object, and
  <syntax> has the value of that subordinate object's SYNTAX clause,


McCloghrie, et al.          Standards Track                    [Page 25]





RFC 2578                         SMIv2                        April 1999


  except that both sub-typing information and the named values for
  enumerated integers or the named bits for the BITS construct, are
  omitted from <syntax>.

  Further, a <type> is always present for every subordinate object.
  (The ASN.1 DEFAULT and OPTIONAL clauses are disallowed in the
  SEQUENCE definition.)  The MAX-ACCESS clause for conceptual tables
  and rows is "not-accessible".

7.1.12.1.  Creation and Deletion of Conceptual Rows

  For newly-defined conceptual rows which allow the creation of new
  object instances and/or the deletion of existing object instances,
  there should be one columnar object with a SYNTAX clause value of
  RowStatus (a textual convention defined in [3]) and a MAX-ACCESS
  clause value of read-create.  By convention, this is termed the
  status column for the conceptual row.

7.2.  Mapping of the UNITS clause

  This UNITS clause, which need not be present, contains a textual
  definition of the units associated with that object.

7.3.  Mapping of the MAX-ACCESS clause

  The MAX-ACCESS clause, which must be present, defines whether it
  makes "protocol sense" to read, write and/or create an instance of
  the object, or to include its value in a notification.  This is the
  maximal level of access for the object.  (This maximal level of
  access is independent of any administrative authorization policy.)

  The value "read-write" indicates that read and write access make
  "protocol sense", but create does not.  The value "read-create"
  indicates that read, write and create access make "protocol sense".
  The value "not-accessible" indicates an auxiliary object (see Section
  7.7).  The value "accessible-for-notify" indicates an object which is
  accessible only via a notification (e.g., snmpTrapOID [5]).

  These values are ordered, from least to greatest:  "not-accessible",
  "accessible-for-notify", "read-only", "read-write", "read-create".

  If any columnar object in a conceptual row has "read-create" as its
  maximal level of access, then no other columnar object of the same
  conceptual row may have a maximal access of "read-write".  (Note that
  "read-create" is a superset of "read-write".)





McCloghrie, et al.          Standards Track                    [Page 26]





RFC 2578                         SMIv2                        April 1999


7.4.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this
  definition is current or historic.

  The value "current" means that the definition is current and valid.
  The value "obsolete" means the definition is obsolete and should not
  be implemented and/or can be removed if previously implemented.
  While the value "deprecated" also indicates an obsolete definition,
  it permits new/continued implementation in order to foster
  interoperability with older/existing implementations.

7.5.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  definition of that object which provides all semantic definitions
  necessary for implementation, and should embody any information which
  would otherwise be communicated in any ASN.1 commentary annotations
  associated with the object.

7.6.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to some other document, either another information
  module which defines a related assignment, or some other document
  which provides additional information relevant to this definition.

7.7.  Mapping of the INDEX clause

  The INDEX clause, which must be present if that object corresponds to
  a conceptual row (unless an AUGMENTS clause is present instead), and
  must be absent otherwise, defines instance identification information
  for the columnar objects subordinate to that object.

  The instance identification information in an INDEX clause must
  specify object(s) such that value(s) of those object(s) will
  unambiguously distinguish a conceptual row.  The objects can be
  columnar objects from the same and/or another conceptual table, but
  must not be scalar objects.  Multiple occurrences of the same object
  in a single INDEX clause is strongly discouraged.

  The syntax of the objects in the INDEX clause indicate how to form
  the instance-identifier:

(1)  integer-valued (i.e., having INTEGER as its underlying primitive
    type):  a single sub-identifier taking the integer value (this
    works only for non-negative integers);



McCloghrie, et al.          Standards Track                    [Page 27]





RFC 2578                         SMIv2                        April 1999


(2)  string-valued, fixed-length strings (or variable-length preceded by
    the IMPLIED keyword):  `n' sub-identifiers, where `n' is the length
    of the string (each octet of the string is encoded in a separate
    sub-identifier);

(3)  string-valued, variable-length strings (not preceded by the IMPLIED
    keyword):  `n+1' sub-identifiers, where `n' is the length of the
    string (the first sub-identifier is `n' itself, following this,
    each octet of the string is encoded in a separate sub-identifier);

(4)  object identifier-valued (when preceded by the IMPLIED keyword):
    `n' sub-identifiers, where `n' is the number of sub-identifiers in
    the value (each sub-identifier of the value is copied into a
    separate sub-identifier);

(5)  object identifier-valued (when not preceded by the IMPLIED
    keyword):  `n+1' sub-identifiers, where `n' is the number of sub-
    identifiers in the value (the first sub-identifier is `n' itself,
    following this, each sub-identifier in the value is copied);

(6)  IpAddress-valued:  4 sub-identifiers, in the familiar a.b.c.d
    notation.

  Note that the IMPLIED keyword can only be present for an object
  having a variable-length syntax (e.g., variable-length strings or
  object identifier-valued objects), Further, the IMPLIED keyword can
  only be associated with the last object in the INDEX clause.
  Finally, the IMPLIED keyword may not be used on a variable-length
  string object if that string might have a value of zero-length.

  Since a single value of a Counter has (in general) no information
  content (see section 7.1.6 and 7.1.10), objects defined using the
  syntax, Counter32 or Counter64, must not be specified in an INDEX

  clause. If an object defined using the BITS construct is used in an
  INDEX clause, it is considered a variable-length string.

  Instances identified by use of integer-valued objects should be
  numbered starting from one (i.e., not from zero).  The use of zero as
  a value for an integer-valued index object should be avoided, except
  in special cases.

  Objects which are both specified in the INDEX clause of a conceptual
  row and also columnar objects of the same conceptual row are termed
  auxiliary objects.  The MAX-ACCESS clause for auxiliary objects is
  "not-accessible", except in the following circumstances:




McCloghrie, et al.          Standards Track                    [Page 28]





RFC 2578                         SMIv2                        April 1999


(1)  within a MIB module originally written to conform to SMIv1, and
    later converted to conform to SMIv2; or

(2)  a conceptual row must contain at least one columnar object which is
    not an auxiliary object.  In the event that all of a conceptual
    row's columnar objects are also specified in its INDEX clause, then
    one of them must be accessible, i.e., have a MAX-ACCESS clause of
    "read-only". (Note that this situation does not arise for a
    conceptual row allowing create access, since such a row will have a
    status column which will not be an auxiliary object.)

  Note that objects specified in a conceptual row's INDEX clause need
  not be columnar objects of that conceptual row.  In this situation,
  the DESCRIPTION clause of the conceptual row must include a textual
  explanation of how the objects which are included in the INDEX clause
  but not columnar objects of that conceptual row, are used in uniquely
  identifying instances of the conceptual row's columnar objects.

7.8.  Mapping of the AUGMENTS clause

  The AUGMENTS clause, which must not be present unless the object
  corresponds to a conceptual row, is an alternative to the INDEX
  clause.  Every object corresponding to a conceptual row has either an
  INDEX clause or an AUGMENTS clause.

  If an object corresponding to a conceptual row has an INDEX clause,
  that row is termed a base conceptual row; alternatively, if the
  object has an AUGMENTS clause, the row is said to be a conceptual row
  augmentation, where the AUGMENTS clause names the object
  corresponding to the base conceptual row which is augmented by this
  conceptual row augmentation.  (Thus, a conceptual row augmentation
  cannot itself be augmented.)  Instances of subordinate columnar
  objects of a conceptual row augmentation are identified according to
  the INDEX clause of the base conceptual row corresponding to the
  object named in the AUGMENTS clause.  Further, instances of
  subordinate columnar objects of a conceptual row augmentation exist
  according to the same semantics as instances of subordinate columnar
  objects of the base conceptual row being augmented.  As such, note
  that creation of a base conceptual row implies the correspondent
  creation of any conceptual row augmentations.

  For example, a MIB designer might wish to define additional columns
  in an "enterprise-specific" MIB which logically extend a conceptual
  row in a "standard" MIB.  The "standard" MIB definition of the
  conceptual row would include the INDEX clause and the "enterprise-
  specific" MIB would contain the definition of a conceptual row using
  the AUGMENTS clause.  On the other hand, it would be incorrect to use
  the AUGMENTS clause for the relationship between RFC 2233's ifTable


McCloghrie, et al.          Standards Track                    [Page 29]





RFC 2578                         SMIv2                        April 1999


  and the many media-specific MIBs which extend it for specific media
  (e.g., the dot3Table in RFC 2358), since not all interfaces are of
  the same media.

  Note that a base conceptual row may be augmented by multiple
  conceptual row augmentations.

7.8.1.  Relation between INDEX and AUGMENTS clauses

  When defining instance identification information for a conceptual
  table:

(1)  If there is a one-to-one correspondence between the conceptual rows
    of this table and an existing table, then the AUGMENTS clause
    should be used.

(2)  Otherwise, if there is a sparse relationship between the conceptual
    rows of this table and an existing table, then an INDEX clause
    should be used which is identical to that in the existing table.
    For example, the relationship between RFC 2233's ifTable and a
    media-specific MIB which extends the ifTable for a specific media
    (e.g., the dot3Table in RFC 2358), is a sparse relationship.

(3)  Otherwise, if no existing objects have the required syntax and
    semantics, then auxiliary objects should be defined within the
    conceptual row for the new table, and those objects should be used
    within the INDEX clause for the conceptual row.

7.9.  Mapping of the DEFVAL clause

  The DEFVAL clause, which need not be present, defines an acceptable
  default value which may be used at the discretion of an agent when an
  object instance is created.  That is, the value is a "hint" to
  implementors.

  During conceptual row creation, if an instance of a columnar object
  is not present as one of the operands in the correspondent management
  protocol set operation, then the value of the DEFVAL clause, if
  present, indicates an acceptable default value that an agent might
  use (especially for a read-only object).

  Note that with this definition of the DEFVAL clause, it is
  appropriate to use it for any columnar object of a read-create table.
  It is also permitted to use it for scalar objects dynamically created
  by an agent, or for columnar objects of a read-write table
  dynamically created by an agent.




McCloghrie, et al.          Standards Track                    [Page 30]





RFC 2578                         SMIv2                        April 1999


  The value of the DEFVAL clause must, of course, correspond to the
  SYNTAX clause for the object.  If the value is an OBJECT IDENTIFIER,
  then it must be expressed as a single ASN.1 identifier, and not as a
  collection of sub-identifiers.

  Note that if an operand to the management protocol set operation is
  an instance of a read-only object, then the error `notWritable' [6]
  will be returned.  As such, the DEFVAL clause can be used to provide
  an acceptable default value that an agent might use.

  By way of example, consider the following possible DEFVAL clauses:

       ObjectSyntax       DEFVAL clause
       ----------------   ------------
       Integer32          DEFVAL { 1 }
                          -- same for Gauge32, TimeTicks, Unsigned32
       INTEGER            DEFVAL { valid } -- enumerated value
       OCTET STRING       DEFVAL { 'ffffffffffff'H }
       DisplayString      DEFVAL { "SNMP agent" }
       IpAddress          DEFVAL { 'c0210415'H } -- 192.33.4.21
       OBJECT IDENTIFIER  DEFVAL { sysDescr }
       BITS               DEFVAL { { primary, secondary } }
                          -- enumerated values that are set
       BITS               DEFVAL { { } }
                          -- no enumerated values are set

  A binary string used in a DEFVAL clause for an OCTET STRING must be
  either an integral multiple of eight or zero bits in length;
  similarly, a hexadecimal string must be an even number of hexadecimal
  digits.  The value of a character string used in a DEFVAL clause must
  not contain tab characters or line terminator characters.

  Object types with SYNTAX of Counter32 and Counter64 may not have
  DEFVAL clauses, since they do not have defined initial values.
  However, it is recommended that they be initialized to zero.

7.10.  Mapping of the OBJECT-TYPE value

  The value of an invocation of the OBJECT-TYPE macro is the name of
  the object, which is an OBJECT IDENTIFIER, an administratively
  assigned name.

  When an OBJECT IDENTIFIER is assigned to an object:

(1)  If the object corresponds to a conceptual table, then only a single
    assignment, that for a conceptual row, is present immediately
    beneath that object.  The administratively assigned name for the
    conceptual row object is derived by appending a sub-identifier of


McCloghrie, et al.          Standards Track                    [Page 31]





RFC 2578                         SMIv2                        April 1999


    "1" to the administratively assigned name for the conceptual table.

(2)  If the object corresponds to a conceptual row, then at least one
    assignment, one for each column in the conceptual row, is present
    beneath that object.  The administratively assigned name for each
    column is derived by appending a unique, positive sub-identifier to
    the administratively assigned name for the conceptual row.

(3)  Otherwise, no other OBJECT IDENTIFIERs which are subordinate to the
    object may be assigned.

  Note that the final sub-identifier of any administratively assigned
  name for an object shall be positive.  A zero-valued  final sub-
  identifier is reserved for future use.

7.11.  Usage Example

  Consider how one might define a conceptual table and its
  subordinates.  (This example uses the RowStatus textual convention
  defined in [3].)

  evalSlot OBJECT-TYPE
      SYNTAX      Integer32 (0..2147483647)
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The index number of the first unassigned entry in the
              evaluation table, or the value of zero indicating that
              all entries are assigned.

              A management station should create new entries in the
              evaluation table using this algorithm:  first, issue a
              management protocol retrieval operation to determine the
              value of evalSlot; and, second, issue a management
              protocol set operation to create an instance of the
              evalStatus object setting its value to createAndGo(4) or
              createAndWait(5).  If this latter operation succeeds,
              then the management station may continue modifying the
              instances corresponding to the newly created conceptual
              row, without fear of collision with other management
              stations."
     ::= { eval 1 }

  evalTable OBJECT-TYPE
      SYNTAX      SEQUENCE OF EvalEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION


McCloghrie, et al.          Standards Track                    [Page 32]





RFC 2578                         SMIv2                        April 1999


              "The (conceptual) evaluation table."
     ::= { eval 2 }

  evalEntry OBJECT-TYPE
      SYNTAX      EvalEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
              "An entry (conceptual row) in the evaluation table."
     INDEX   { evalIndex }
     ::= { evalTable 1 }

  EvalEntry ::=
      SEQUENCE {
          evalIndex       Integer32,
          evalString      DisplayString,
          evalValue       Integer32,
          evalStatus      RowStatus
      }

  evalIndex OBJECT-TYPE
      SYNTAX      Integer32 (1..2147483647)
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
              "The auxiliary variable used for identifying instances of
              the columnar objects in the evaluation table."
          ::= { evalEntry 1 }

  evalString OBJECT-TYPE
      SYNTAX      DisplayString
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
              "The string to evaluate."
          ::= { evalEntry 2 }

  evalValue OBJECT-TYPE
      SYNTAX      Integer32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The value when evalString was last evaluated, or zero if
               no such value is available."
      DEFVAL  { 0 }
          ::= { evalEntry 3 }

  evalStatus OBJECT-TYPE


McCloghrie, et al.          Standards Track                    [Page 33]





RFC 2578                         SMIv2                        April 1999


      SYNTAX      RowStatus
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
              "The status column used for creating, modifying, and
              deleting instances of the columnar objects in the
              evaluation table."
   DEFVAL  { active }
       ::= { evalEntry 4 }

8.  Mapping of the NOTIFICATION-TYPE macro

  The NOTIFICATION-TYPE macro is used to define the information
  contained within an unsolicited transmission of management
  information (i.e., within either a SNMPv2-Trap-PDU or InformRequest-
  PDU).  It should be noted that the expansion of the NOTIFICATION-TYPE
  macro is something which conceptually happens during implementation
  and not during run-time.

8.1.  Mapping of the OBJECTS clause

  The OBJECTS clause, which need not be present, defines an ordered
  sequence of MIB object types.  One and only one object instance for
  each occurrence of each object type must be present, and in the
  specified order, in every instance of the notification.  If the same
  object type occurs multiple times in a notification's ordered
  sequence, then an object instance is present for each of them.  An
  object type specified in this clause must not have an MAX-ACCESS
  clause of "not-accessible".  The notification's DESCRIPTION clause
  must specify the information/meaning conveyed by each occurrence of
  each object type in the sequence.  The DESCRIPTION clause must also
  specify which object instance is present for each object type in the
  notification.

  Note that an agent is allowed, at its own discretion, to append as
  many additional objects as it considers useful to the end of the
  notification (i.e., after the objects defined by the OBJECTS clause).

8.2.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this
  definition is current or historic.

  The value "current" means that the definition is current and valid.
  The value "obsolete" means the definition is obsolete and should not
  be implemented and/or can be removed if previously implemented.
  While the value "deprecated" also indicates an obsolete definition,
  it permits new/continued implementation in order to foster


McCloghrie, et al.          Standards Track                    [Page 34]





RFC 2578                         SMIv2                        April 1999


  interoperability with older/existing implementations.

8.3.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  definition of the notification which provides all semantic
  definitions necessary for implementation, and should embody any
  information which would otherwise be communicated in any ASN.1
  commentary annotations associated with the notification.  In
  particular, the DESCRIPTION clause should document which instances of
  the objects mentioned in the OBJECTS clause should be contained
  within notifications of this type.

8.4.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to some other document, either another information
  module which defines a related assignment, or some other document
  which provides additional information relevant to this definition.

8.5.  Mapping of the NOTIFICATION-TYPE value

  The value of an invocation of the NOTIFICATION-TYPE macro is the name
  of the notification, which is an OBJECT IDENTIFIER, an
  administratively assigned name.  In order to achieve compatibility
  with SNMPv1 traps, both when converting SMIv1 information modules
  to/from this SMI, and in the procedures employed by multi-lingual
  systems and proxy forwarding applications, the next to last sub-
  identifier in the name of any newly-defined notification must have
  the value zero.

  Sections 4.2.6 and 4.2.7 of [6] describe how the NOTIFICATION-TYPE
  macro is used to generate a SNMPv2-Trap-PDU or InformRequest-PDU,
  respectively.

8.6.  Usage Example

  Consider how a configuration change notification might be described:

  entityMIBTraps      OBJECT IDENTIFIER ::= { entityMIB 2 }
  entityMIBTrapPrefix OBJECT IDENTIFIER ::= { entityMIBTraps 0 }

  entConfigChange NOTIFICATION-TYPE
      STATUS             current
      DESCRIPTION
              "An entConfigChange trap is sent when the value of
              entLastChangeTime changes. It can be utilized by an NMS to
              trigger logical/physical entity table maintenance polls.


McCloghrie, et al.          Standards Track                    [Page 35]





RFC 2578                         SMIv2                        April 1999



              An agent must not generate more than one entConfigChange
              'trap-event' in a five second period, where a 'trap-event'
              is the transmission of a single trap PDU to a list of
              trap destinations.  If additional configuration changes
              occur within the five second 'throttling' period, then
              these trap-events should be suppressed by the agent. An
              NMS should periodically check the value of
              entLastChangeTime to detect any missed entConfigChange
              trap-events, e.g. due to throttling or transmission loss."
     ::= { entityMIBTrapPrefix 1 }

  According to this invocation, the notification authoritatively
  identified as

       { entityMIBTrapPrefix 1 }

  is used to report a particular type of configuration change.

9.  Refined Syntax

  Some macros have clauses which allows syntax to be refined,
  specifically: the SYNTAX clause of the OBJECT-TYPE macro, and the
  SYNTAX/WRITE-SYNTAX clauses of the MODULE-COMPLIANCE and AGENT-
  CAPABILITIES macros [2].  However, not all refinements of syntax are
  appropriate.  In particular, the object's primitive or application
  type must not be changed.

  Further, the following restrictions apply:

                         Restrictions to Refinement of
    object syntax         range   enumeration     size
    -----------------     -----   -----------     ----
              INTEGER      (1)        (2)           -
            Integer32      (1)         -            -
           Unsigned32      (1)         -            -
         OCTET STRING       -          -           (3)
    OBJECT IDENTIFIER       -          -            -
                 BITS       -         (2)           -
            IpAddress       -          -            -
            Counter32       -          -            -
            Counter64       -          -            -
              Gauge32      (1)         -            -
            TimeTicks       -          -            -

 where:




McCloghrie, et al.          Standards Track                    [Page 36]





RFC 2578                         SMIv2                        April 1999


(1)  the range of permitted values may be refined by raising the lower-
    bounds, by reducing the upper-bounds, and/or by reducing the
    alternative value/range choices;

(2)  the enumeration of named-values may be refined by removing one or
    more named-values (note that for BITS, a refinement may cause the
    enumerations to no longer be contiguous); or,

(3)  the size in octets of the value may be refined by raising the
    lower-bounds, by reducing the upper-bounds, and/or by reducing the
    alternative size choices.

  No other types of refinements can be specified in the SYNTAX clause.
  However, the DESCRIPTION clause is available to specify additional
  restrictions which can not be expressed in the SYNTAX clause.
  Further details on (and examples of) sub-typing are provided in
  Appendix A.

10.  Extending an Information Module

  As experience is gained with an information module, it may be
  desirable to revise that information module.  However, changes are
  not allowed if they have any potential to cause interoperability
  problems "over the wire" between an implementation using an original
  specification and an implementation using an updated
  specification(s).

  For any change, the invocation of the MODULE-IDENTITY macro must be
  updated to include information about the revision: specifically,
  updating the LAST-UPDATED clause, adding a pair of REVISION and
  DESCRIPTION clauses (see section 5.5), and making any necessary
  changes to existing clauses, including the ORGANIZATION and CONTACT-
  INFO clauses.

  Note that any definition contained in an information module is
  available to be IMPORT-ed by any other information module, and is
  referenced in an IMPORTS clause via the module name.  Thus, a module
  name should not be changed.  Specifically, the module name (e.g.,
  "FIZBIN-MIB" in the example of Section 5.7) should not be changed
  when revising an information module (except to correct typographical
  errors), and definitions should not be moved from one information
  module to another.

  Also note that obsolete definitions must not be removed from MIB
  modules since their descriptors may still be referenced by other
  information modules, and the OBJECT IDENTIFIERs used to name them
  must never be re-assigned.



McCloghrie, et al.          Standards Track                    [Page 37]





RFC 2578                         SMIv2                        April 1999


10.1.  Object Assignments

  If any non-editorial change is made to any clause of a object
  assignment, then the OBJECT IDENTIFIER value associated with that
  object assignment must also be changed, along with its associated
  descriptor.

10.2.  Object Definitions

  An object definition may be revised in any of the following ways:

(1)  A SYNTAX clause containing an enumerated INTEGER may have new
    enumerations added or existing labels changed.  Similarly, named
    bits may be added or existing labels changed for the BITS
    construct.

(2)  The value of a SYNTAX clause may be replaced by a textual
    convention, providing the textual convention is defined to use the
    same primitive ASN.1 type, has the same set of values, and has
    identical semantics.

(3)  A STATUS clause value of "current" may be revised as "deprecated"
    or "obsolete".  Similarly, a STATUS clause value of "deprecated"
    may be revised as "obsolete".  When making such a change, the
    DESCRIPTION clause should be updated to explain the rationale.

(4)  A DEFVAL clause may be added or updated.

(5)  A REFERENCE clause may be added or updated.

(6)  A UNITS clause may be added.

(7)  A conceptual row may be augmented by adding new columnar objects at
    the end of the row, and making the corresponding update to the
    SEQUENCE definition.

(8)  Clarifications and additional information may be included in the
    DESCRIPTION clause.

(9)  Entirely new objects may be defined, named with previously
    unassigned OBJECT IDENTIFIER values.

  Otherwise, if the semantics of any previously defined object are
  changed (i.e., if a non-editorial change is made to any clause other
  than those specifically allowed above), then the OBJECT IDENTIFIER
  value associated with that object must also be changed.




McCloghrie, et al.          Standards Track                    [Page 38]





RFC 2578                         SMIv2                        April 1999


  Note that changing the descriptor associated with an existing object
  is considered a semantic change, as these strings may be used in an
  IMPORTS statement.

10.3.  Notification Definitions

  A notification definition may be revised in any of the following
  ways:

(1)  A REFERENCE clause may be added or updated.

(2)  A STATUS clause value of "current" may be revised as "deprecated"
    or "obsolete".  Similarly, a STATUS clause value of "deprecated"
    may be revised as "obsolete".  When making such a change, the
    DESCRIPTION clause should be updated to explain the rationale.

(3)  A DESCRIPTION clause may be clarified.

  Otherwise, if the semantics of any previously defined notification
  are changed (i.e., if a non-editorial change is made to any clause
  other those specifically allowed above), then the OBJECT IDENTIFIER
  value associated with that notification must also be changed.

  Note that changing the descriptor associated with an existing
  notification is considered a semantic change, as these strings may be
  used in an IMPORTS statement.
























McCloghrie, et al.          Standards Track                    [Page 39]





RFC 2578                         SMIv2                        April 1999


11.  Appendix A: Detailed Sub-typing Rules


11.1.  Syntax Rules

  The syntax rules for sub-typing are given below.  Note that while
  this syntax is based on ASN.1, it includes some extensions beyond
  what is allowed in ASN.1, and a number of ASN.1 constructs are not
  allowed by this syntax.

       <integerSubType>
           ::= <empty>
             | "(" <range> ["|" <range>]... ")"

       <octetStringSubType>
           ::= <empty>
             | "(" "SIZE" "(" <range> ["|" <range>]... ")" ")"

       <range>
           ::= <value>
             | <value> ".." <value>

       <value>
           ::= "-" <number>
             | <number>
             | <hexString>
             | <binString>

       where:
           <empty>     is the empty string
           <number>    is a non-negative integer
           <hexString> is a hexadecimal string (e.g., '0F0F'H)
           <binString> is a binary string (e.g, '1010'B)

           <range> is further restricted as follows:
               - any <value> used in a SIZE clause must be non-negative.
               - when a pair of values is specified, the first value
                 must be less than the second value.
               - when multiple ranges are specified, the ranges may
                 not overlap but may touch. For example, (1..4 | 4..9)
                 is invalid, and (1..4 | 5..9) is valid.
               - the ranges must be a subset of the maximum range of the
                 base type.







McCloghrie, et al.          Standards Track                    [Page 40]





RFC 2578                         SMIv2                        April 1999


11.2.  Examples

  Some examples of legal sub-typing:

           Integer32 (-20..100)
           Integer32 (0..100 | 300..500)
           Integer32 (300..500 | 0..100)
           Integer32 (0 | 2 | 4 | 6 | 8 | 10)
           OCTET STRING (SIZE(0..100))
           OCTET STRING (SIZE(0..100 | 300..500))
           OCTET STRING (SIZE(0 | 2 | 4 | 6 | 8 | 10))
           SYNTAX   TimeInterval (0..100)
           SYNTAX   DisplayString (SIZE(0..32))

  (Note the last two examples above are not valid in a TEXTUAL
  CONVENTION, see [3].)

  Some examples of illegal sub-typing:

       Integer32 (150..100)         -- first greater than second
       Integer32 (0..100 | 50..500) -- ranges overlap
       Integer32 (0 | 2 | 0 )       -- value duplicated
       Integer32 (MIN..-1 | 1..MAX) -- MIN and MAX not allowed
       Integer32 (SIZE (0..34))     -- must not use SIZE
       OCTET STRING (0..100)        -- must use SIZE
       OCTET STRING (SIZE(-10..100)) -- negative SIZE

12.  Security Considerations

  This document defines a language with which to write and read
  descriptions of management information.  The language itself has no
  security impact on the Internet.



13.  Editors' Addresses

  Keith McCloghrie
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA  95134-1706
  USA
  Phone: +1 408 526 5260
  EMail: [email protected]






McCloghrie, et al.          Standards Track                    [Page 41]





RFC 2578                         SMIv2                        April 1999


  David Perkins
  SNMPinfo
  3763 Benton Street
  Santa Clara, CA 95051
  USA
  Phone: +1 408 221-8702
  EMail: [email protected]

  Juergen Schoenwaelder
  TU Braunschweig
  Bueltenweg 74/75
  38106 Braunschweig
  Germany
  Phone: +49 531 391-3283
  EMail: [email protected]


14.  References

[1]  Information processing systems - Open Systems Interconnection -
    Specification of Abstract Syntax Notation One (ASN.1),
    International Organization for Standardization.  International
    Standard 8824, (December, 1987).

[2]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M.
    and S. Waldbusser, "Conformance Statements for SMIv2", STD 58,
    RFC 2580, April 1999.

[3]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M.
    and S. Waldbusser, "Textual Conventions for SMIv2", STD 58,
    RFC 2579, April 1999.

[4]  Information processing systems - Open Systems Interconnection -
    Specification of Basic Encoding Rules for Abstract Syntax Notation
    One (ASN.1), International Organization for Standardization.
    International Standard 8825, (December, 1987).

[5]  The SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M. and
    S. Waldbusser, "Management Information Base for Version 2 of the
    Simple Network Management Protocol (SNMPv2)", RFC 1907, January
    1996.

[6]  The SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M. and
    S. Waldbusser, "Protocol Operations for Version 2 of the Simple
    Network Management Protocol (SNMPv2)", RFC 1905, January 1996.





McCloghrie, et al.          Standards Track                    [Page 42]





RFC 2578                         SMIv2                        April 1999


15.  Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."























McCloghrie, et al.          Standards Track                    [Page 43]