Network Working Group                                      U. Blumenthal
Request for Comments: 2574                     IBM T. J. Watson Research
Obsoletes: 2274                                                B. Wijnen
Category: Standards Track                      IBM T. J. Watson Research
                                                             April 1999


         User-based Security Model (USM) for version 3 of the
             Simple Network Management Protocol (SNMPv3)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

  This document describes the User-based Security Model (USM) for SNMP
  version 3 for use in the SNMP architecture [RFC2571].  It defines the
  Elements of Procedure for providing SNMP message level security.
  This document also includes a MIB for remotely monitoring/managing
  the configuration parameters for this Security Model.

Table of Contents

  1.  Introduction                                                   3
  1.1.  Threats                                                      4
  1.2.  Goals and Constraints                                        5
  1.3.  Security Services                                            6
  1.4.  Module Organization                                          7
  1.4.1.  Timeliness Module                                          7
  1.4.2.  Authentication Protocol                                    8
  1.4.3.  Privacy Protocol                                           8
  1.5.  Protection against Message Replay, Delay and Redirection     8
  1.5.1.  Authoritative SNMP engine                                  8
  1.5.2.  Mechanisms                                                 9
  1.6.  Abstract Service Interfaces                                 10
  1.6.1.  User-based Security Model Primitives for Authentication   11
  1.6.2.  User-based Security Model Primitives for Privacy          11
  2.  Elements of the Model                                         12
  2.1.  User-based Security Model Users                             12



Blumenthal & Wijnen         Standards Track                     [Page 1]

RFC 2574                     USM for SNMPv3                   April 1999


  2.2.  Replay Protection                                           13
  2.2.1.  msgAuthoritativeEngineID                                  13
  2.2.2.  msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime14
  2.2.3.  Time Window                                               15
  2.3.  Time Synchronization                                        15
  2.4.  SNMP Messages Using this Security Model                     16
  2.5.  Services provided by the User-based Security Model          17
  2.5.1.  Services for Generating an Outgoing SNMP Message          17
  2.5.2.  Services for Processing an Incoming SNMP Message          19
  2.6.  Key Localization Algorithm.                                 21
  3.  Elements of Procedure                                         21
  3.1.  Generating an Outgoing SNMP Message                         22
  3.2.  Processing an Incoming SNMP Message                         25
  4.  Discovery                                                     30
  5.  Definitions                                                   31
  6.  HMAC-MD5-96 Authentication Protocol                           50
  6.1.  Mechanisms                                                  50
  6.1.1.  Digest Authentication Mechanism                           50
  6.2.  Elements of the Digest Authentication Protocol              51
  6.2.1.  Users                                                     51
  6.2.2.  msgAuthoritativeEngineID                                  51
  6.2.3.  SNMP Messages Using this Authentication Protocol          51
  6.2.4.  Services provided by the HMAC-MD5-96 Authentication Module52
  6.2.4.1.  Services for Generating an Outgoing SNMP Message        52
  6.2.4.2.  Services for Processing an Incoming SNMP Message        53
  6.3.  Elements of Procedure                                       53
  6.3.1.  Processing an Outgoing Message                            54
  6.3.2.  Processing an Incoming Message                            54
  7.  HMAC-SHA-96 Authentication Protocol                           55
  7.1.  Mechanisms                                                  55
  7.1.1.  Digest Authentication Mechanism                           56
  7.2.  Elements of the HMAC-SHA-96 Authentication Protocol         56
  7.2.1.  Users                                                     56
  7.2.2.  msgAuthoritativeEngineID                                  57
  7.2.3.  SNMP Messages Using this Authentication Protocol          57
  7.2.4.  Services provided by the HMAC-SHA-96 Authentication Module57
  7.2.4.1.  Services for Generating an Outgoing SNMP Message        57
  7.2.4.2.  Services for Processing an Incoming SNMP Message        58
  7.3.  Elements of Procedure                                       59
  7.3.1.  Processing an Outgoing Message                            59
  7.3.2.  Processing an Incoming Message                            60
  8.  CBC-DES Symmetric Encryption Protocol                         61
  8.1.  Mechanisms                                                  61
  8.1.1.  Symmetric Encryption Protocol                             61
  8.1.1.1.  DES key and Initialization Vector.                      62
  8.1.1.2.  Data Encryption.                                        63
  8.1.1.3.  Data Decryption                                         63
  8.2.  Elements of the DES Privacy Protocol                        63



Blumenthal & Wijnen         Standards Track                     [Page 2]

RFC 2574                     USM for SNMPv3                   April 1999


  8.2.1.  Users                                                     63
  8.2.2.  msgAuthoritativeEngineID                                  64
  8.2.3.  SNMP Messages Using this Privacy Protocol                 64
  8.2.4.  Services provided by the DES Privacy Module               64
  8.2.4.1.  Services for Encrypting Outgoing Data                   64
  8.2.4.2.  Services for Decrypting Incoming Data                   65
  8.3.  Elements of Procedure.                                      66
  8.3.1.  Processing an Outgoing Message                            66
  8.3.2.  Processing an Incoming Message                            66
  9.  Intellectual Property                                         67
  10. Acknowledgements                                              67
  11. Security Considerations                                       69
  11.1. Recommended Practices                                       69
  11.2. Defining Users                                              71
  11.3. Conformance                                                 72
  11.4. Use of Reports                                              72
  11.5. Access to the SNMP-USER-BASED-SM-MIB                        72
  12. References                                                    73
  13. Editors' Addresses                                            75
  A.1.  SNMP engine Installation Parameters                         76
  A.2.  Password to Key Algorithm                                   78
  A.2.1.  Password to Key Sample Code for MD5                       79
  A.2.2.  Password to Key Sample Code for SHA                       80
  A.3.  Password to Key Sample Results                              81
  A.3.1.  Password to Key Sample Results using MD5                  81
  A.3.2.  Password to Key Sample Results using SHA                  81
  A.4.  Sample encoding of msgSecurityParameters                    82
  A.5.  Sample keyChange Results                                    83
  A.5.1.  Sample keyChange Results using MD5                        83
  A.5.2.  Sample keyChange Results using SHA                        84
  B.  Change Log                                                    85
  C.  Full Copyright Statement                                      86

1.  Introduction

  The Architecture for describing Internet Management Frameworks
  [RFC2571] describes that an SNMP engine is composed of:

    1) a Dispatcher
    2) a Message Processing Subsystem,
    3) a Security Subsystem, and
    4) an Access Control Subsystem.

  Applications make use of the services of these subsystems.

  It is important to understand the SNMP architecture and the
  terminology of the architecture to understand where the Security
  Model described in this document fits into the architecture and



Blumenthal & Wijnen         Standards Track                     [Page 3]

RFC 2574                     USM for SNMPv3                   April 1999


  interacts with other subsystems within the architecture.  The reader
  is expected to have read and understood the description of the SNMP
  architecture, as defined in [RFC2571].

  This memo [RFC2274] describes the User-based Security Model as it is
  used within the SNMP Architecture.  The main idea is that we use the
  traditional concept of a user (identified by a userName) with which
  to associate security information.

  This memo describes the use of HMAC-MD5-96 and HMAC-SHA-96 as the
  authentication protocols and the use of CBC-DES as the privacy
  protocol. The User-based Security Model however allows for other such
  protocols to be used instead of or concurrent with these protocols.
  Therefore, the description of HMAC-MD5-96, HMAC-SHA-96 and CBC-DES
  are in separate sections to reflect their self-contained nature and
  to indicate that they can be replaced or supplemented in the future.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

1.1.  Threats

  Several of the classical threats to network protocols are applicable
  to the network management problem and therefore would be applicable
  to any SNMP Security Model.  Other threats are not applicable to the
  network management problem.  This section discusses principal
  threats, secondary threats, and threats which are of lesser
  importance.

  The principal threats against which this SNMP Security Model should
  provide protection are:

  - Modification of Information
    The modification threat is the danger that some unauthorized entity
    may alter in-transit SNMP messages generated on behalf of an
    authorized principal in such a way as to effect unauthorized
    management operations, including falsifying the value of an object.

  - Masquerade
    The masquerade threat is the danger that management operations not
    authorized for some user may be attempted by assuming the identity
    of another user that has the appropriate authorizations.

  Two secondary threats are also identified.  The Security Model
  defined in this memo provides limited protection against:





Blumenthal & Wijnen         Standards Track                     [Page 4]

RFC 2574                     USM for SNMPv3                   April 1999


  - Disclosure
    The disclosure threat is the danger of eavesdropping on the
    exchanges between managed agents and a management station.
    Protecting against this threat may be required as a matter of local
    policy.

  - Message Stream Modification
    The SNMP protocol is typically based upon a connection-less
    transport service which may operate over any sub-network service.
    The re-ordering, delay or replay of messages can and does occur
    through the natural operation of many such sub-network services.
    The message stream modification threat is the danger that messages
    may be maliciously re-ordered, delayed or replayed to an extent
    which is greater than can occur through the natural operation of a
    sub-network service, in order to effect unauthorized management
    operations.

  There are at least two threats that an SNMP Security Model need not
  protect against.  The security protocols defined in this memo do not
  provide protection against:

  - Denial of Service
    This SNMP Security Model does not attempt to address the broad
    range of attacks by which service on behalf of authorized users is
    denied.  Indeed, such denial-of-service attacks are in many cases
    indistinguishable from the type of network failures with which any
    viable network management protocol must cope as a matter of course.
  - Traffic Analysis
    This SNMP Security Model does not attempt to address traffic
    analysis attacks.  Indeed, many traffic patterns are predictable -
    devices may be managed on a regular basis by a relatively small
    number of management applications - and therefore there is no
    significant advantage afforded by protecting against traffic
    analysis.

1.2.  Goals and Constraints

  Based on the foregoing account of threats in the SNMP network
  management environment, the goals of this SNMP Security Model are as
  follows.

  1) Provide for verification that each received SNMP message has
     not been modified during its transmission through the network.

  2) Provide for verification of the identity of the user on whose
     behalf a received SNMP message claims to have been generated.





Blumenthal & Wijnen         Standards Track                     [Page 5]

RFC 2574                     USM for SNMPv3                   April 1999


  3) Provide for detection of received SNMP messages, which request
     or contain management information, whose time of generation was
     not recent.

  4) Provide, when necessary, that the contents of each received
     SNMP message are protected from disclosure.

  In addition to the principal goal of supporting secure network
  management, the design of this SNMP Security Model is also influenced
  by the following constraints:

  1) When the requirements of effective management in times of
     network stress are inconsistent with those of security, the design
     should prefer the former.

  2) Neither the security protocol nor its underlying security
     mechanisms should depend upon the ready availability of other
     network services (e.g., Network Time Protocol (NTP) or key
     management protocols).

  3) A security mechanism should entail no changes to the basic
     SNMP network management philosophy.

1.3.  Security Services

  The security services necessary to support the goals of this SNMP
  Security Model are as follows:

  - Data Integrity
    is the provision of the property that data has not been altered or
    destroyed in an unauthorized manner, nor have data sequences been
    altered to an extent greater than can occur non-maliciously.

  - Data Origin Authentication
    is the provision of the property that the claimed identity of the
    user on whose behalf received data was originated is corroborated.

  - Data Confidentiality
    is the provision of the property that information is not made
    available or disclosed to unauthorized individuals, entities, or
    processes.

  - Message timeliness and limited replay protection
    is the provision of the property that a message whose generation
    time is outside of a specified time window is not accepted.  Note
    that message reordering is not dealt with and can occur in normal
    conditions too.




Blumenthal & Wijnen         Standards Track                     [Page 6]

RFC 2574                     USM for SNMPv3                   April 1999


  For the protocols specified in this memo, it is not possible to
  assure the specific originator of a received SNMP message; rather, it
  is the user on whose behalf the message was originated that is
  authenticated.

  For these protocols, it not possible to obtain data integrity without
  data origin authentication, nor is it possible to obtain data origin
  authentication without data integrity.  Further, there is no
  provision for data confidentiality without both data integrity and
  data origin authentication.

  The security protocols used in this memo are considered acceptably
  secure at the time of writing.  However, the procedures allow for new
  authentication and privacy methods to be specified at a future time
  if the need arises.

1.4.  Module Organization

  The security protocols defined in this memo are split in three
  different modules and each has its specific responsibilities such
  that together they realize the goals and security services described
  above:

  - The authentication module MUST provide for:

    - Data Integrity,

    - Data Origin Authentication

  - The timeliness module MUST provide for:

    - Protection against message delay or replay (to an extent
      greater than can occur through normal operation)

  - The privacy module MUST provide for

    - Protection against disclosure of the message payload.

  The timeliness module is fixed for the User-based Security Model
  while there is provision for multiple authentication and/or privacy
  modules, each of which implements a specific authentication or
  privacy protocol respectively.

1.4.1.  Timeliness Module

  Section 3 (Elements of Procedure) uses the timeliness values in an
  SNMP message to do timeliness checking.  The timeliness check is only
  performed if authentication is applied to the message.  Since the



Blumenthal & Wijnen         Standards Track                     [Page 7]

RFC 2574                     USM for SNMPv3                   April 1999


  complete message is checked for integrity, we can assume that the
  timeliness values in a message that passes the authentication module
  are trustworthy.

1.4.2.  Authentication Protocol

  Section 6 describes the HMAC-MD5-96 authentication protocol which is
  the first authentication protocol that MUST be supported with the
  User-based Security Model.  Section 7 describes the HMAC-SHA-96
  authentication protocol which is another authentication protocol that
  SHOULD be supported with the User-based Security Model.  In the
  future additional or replacement authentication protocols may be
  defined as new needs arise.

  The User-based Security Model prescribes that, if authentication is
  used, then the complete message is checked for integrity in the
  authentication module.

  For a message to be authenticated, it needs to pass authentication
  check by the authentication module and the timeliness check which is
  a fixed part of this User-based Security model.

1.4.3.  Privacy Protocol

  Section 8 describes the CBC-DES Symmetric Encryption Protocol which
  is the first privacy protocol to be used with the User-based Security
  Model.  In the future additional or replacement privacy protocols may
  be defined as new needs arise.

  The User-based Security Model prescribes that the scopedPDU is
  protected from disclosure when a message is sent with privacy.

  The User-based Security Model also prescribes that a message needs to
  be authenticated if privacy is in use.

1.5.  Protection against Message Replay, Delay and Redirection

1.5.1.  Authoritative SNMP engine

  In order to protect against message replay, delay and redirection,
  one of the SNMP engines involved in each communication is designated
  to be the authoritative SNMP engine.  When an SNMP message contains a
  payload which expects a response (those messages that contain a
  Confirmed Class PDU [RFC2571]), then the receiver of such messages is
  authoritative.  When an SNMP message contains a payload which does
  not expect a response (those messages that contain an Unconfirmed
  Class PDU [RFC2571]), then the sender of such a message is
  authoritative.



Blumenthal & Wijnen         Standards Track                     [Page 8]

RFC 2574                     USM for SNMPv3                   April 1999


1.5.2.  Mechanisms

  The following mechanisms are used:

  1) To protect against the threat of message delay or replay (to an
     extent greater than can occur through normal operation), a set of
     timeliness indicators (for the authoritative SNMP engine) are
     included in each message generated.  An SNMP engine evaluates the
     timeliness indicators to determine if a received message is
     recent.  An SNMP engine may evaluate the timeliness indicators to
     ensure that a received message is at least as recent as the last
     message it received from the same source.  A non-authoritative
     SNMP engine uses received authentic messages to advance its notion
     of the timeliness indicators at the remote authoritative source.

     An SNMP engine MUST also use a mechanism to match incoming
     Responses to outstanding Requests and it MUST drop any Responses
     that do not match an outstanding request. For example, a msgID can
     be inserted in every message to cater for this functionality.

     These mechanisms provide for the detection of authenticated
     messages whose time of generation was not recent.

     This protection against the threat of message delay or replay does
     not imply nor provide any protection against unauthorized deletion
     or suppression of messages.  Also, an SNMP engine may not be able
     to detect message reordering if all the messages involved are sent
     within the Time Window interval.  Other mechanisms defined
     independently of the security protocol can also be used to detect
     the re-ordering replay, deletion, or suppression of messages
     containing Set operations (e.g., the MIB variable snmpSetSerialNo
     [RFC1907]).

  2) Verification that a message sent to/from one authoritative SNMP
     engine cannot be replayed to/as-if-from another authoritative SNMP
     engine.

     Included in each message is an identifier unique to the
     authoritative SNMP engine associated with the sender or intended
     recipient of the message.

     A message containing an Unconfirmed Class PDU sent by an
     authoritative SNMP engine to one non-authoritative SNMP engine can
     potentially be replayed to another non-authoritative SNMP engine.
     The latter non-authoritative SNMP engine might (if it knows about
     the same userName with the same secrets at the authoritative SNMP
     engine) as a result update its notion of timeliness indicators of
     the authoritative SNMP engine, but that is not considered a



Blumenthal & Wijnen         Standards Track                     [Page 9]

RFC 2574                     USM for SNMPv3                   April 1999


     threat.  In this case, A Report or Response message will be
     discarded by the Message Processing Model, because there should
     not be an outstanding Request message. A Trap will possibly be
     accepted.  Again, that is not considered a threat, because the
     communication was authenticated and timely. It is as if the
     authoritative SNMP engine was configured to start sending Traps to
     the second SNMP engine, which theoretically can happen without the
     knowledge of the second SNMP engine anyway. Anyway, the second
     SNMP engine may not expect to receive this Trap, but is allowed to
     see the management information contained in it.

  3) Detection of messages which were not recently generated.

     A set of time indicators are included in the message, indicating
     the time of generation.  Messages without recent time indicators
     are not considered authentic.  In addition, an SNMP engine MUST
     drop any Responses that do not match an outstanding request. This
     however is the responsibility of the Message Processing Model.

  This memo allows the same user to be defined on multiple SNMP
  engines.  Each SNMP engine maintains a value, snmpEngineID, which
  uniquely identifies the SNMP engine.  This value is included in each
  message sent to/from the SNMP engine that is authoritative (see
  section 1.5.1).  On receipt of a message, an authoritative SNMP
  engine checks the value to ensure that it is the intended recipient,
  and a non-authoritative SNMP engine uses the value to ensure that the
  message is processed using the correct state information.

  Each SNMP engine maintains two values, snmpEngineBoots and
  snmpEngineTime, which taken together provide an indication of time at
  that SNMP engine.  Both of these values are included in an
  authenticated message sent to/received from that SNMP engine.  On
  receipt, the values are checked to ensure that the indicated
  timeliness value is within a Time Window of the current time.  The
  Time Window represents an administrative upper bound on acceptable
  delivery delay for protocol messages.

  For an SNMP engine to generate a message which an authoritative SNMP
  engine will accept as authentic, and to verify that a message
  received from that authoritative SNMP engine is authentic, such an
  SNMP engine must first achieve timeliness synchronization with the
  authoritative SNMP engine. See section 2.3.

1.6.  Abstract Service Interfaces

  Abstract service interfaces have been defined to describe the
  conceptual interfaces between the various subsystems within an SNMP
  entity. Similarly a set of abstract service interfaces have been



Blumenthal & Wijnen         Standards Track                    [Page 10]

RFC 2574                     USM for SNMPv3                   April 1999


  defined within the User-based Security Model (USM) to describe the
  conceptual interfaces between the generic USM services and the self-
  contained authentication and privacy services.

  These abstract service interfaces are defined by a set of primitives
  that define the services provided and the abstract data elements that
  must be passed when the services are invoked. This section lists the
  primitives that have been defined for the User-based Security Model.

1.6.1.  User-based Security Model Primitives for Authentication

  The User-based Security Model provides the following internal
  primitives to pass data back and forth between the Security Model
  itself and the authentication service:

  statusInformation =
    authenticateOutgoingMsg(
    IN   authKey                   -- secret key for authentication
    IN   wholeMsg                  -- unauthenticated complete message
    OUT  authenticatedWholeMsg     -- complete authenticated message
         )

  statusInformation =
    authenticateIncomingMsg(
    IN   authKey                   -- secret key for authentication
    IN   authParameters            -- as received on the wire
    IN   wholeMsg                  -- as received on the wire
    OUT  authenticatedWholeMsg     -- complete authenticated message
         )

1.6.2.  User-based Security Model Primitives for Privacy

  The User-based Security Model provides the following internal
  primitives to pass data back and forth between the Security Model
  itself and the privacy service:

  statusInformation =
    encryptData(
    IN    encryptKey               -- secret key for encryption
    IN    dataToEncrypt            -- data to encrypt (scopedPDU)
    OUT   encryptedData            -- encrypted data (encryptedPDU)
    OUT   privParameters           -- filled in by service provider
          )

  statusInformation =
    decryptData(
    IN    decryptKey               -- secret key for decrypting
    IN    privParameters           -- as received on the wire



Blumenthal & Wijnen         Standards Track                    [Page 11]

RFC 2574                     USM for SNMPv3                   April 1999


    IN    encryptedData            -- encrypted data (encryptedPDU)
    OUT   decryptedData            -- decrypted data (scopedPDU)
             )

2.  Elements of the Model

  This section contains definitions required to realize the security
  model defined by this memo.

2.1.  User-based Security Model Users

  Management operations using this Security Model make use of a defined
  set of user identities.  For any user on whose behalf management
  operations are authorized at a particular SNMP engine, that SNMP
  engine must have knowledge of that user.  An SNMP engine that wishes
  to communicate with another SNMP engine must also have knowledge of a
  user known to that engine, including knowledge of the applicable
  attributes of that user.

  A user and its attributes are defined as follows:

  userName
    A string representing the name of the user.

  securityName
    A human-readable string representing the user in a format that is
    Security Model independent.

  authProtocol
    An indication of whether messages sent on behalf of this user can
    be authenticated, and if so, the type of authentication protocol
    which is used.  Two such protocols are defined in this memo:

      - the HMAC-MD5-96 authentication protocol.
      - the HMAC-SHA-96 authentication protocol.

  authKey
    If messages sent on behalf of this user can be authenticated,
    the (private) authentication key for use with the authentication
    protocol.  Note that a user's authentication key will normally
    be different at different authoritative SNMP engines. The authKey
    is not accessible via SNMP. The length requirements of the authKey
    are defined by the authProtocol in use.

  authKeyChange and authOwnKeyChange
    The only way to remotely update the authentication key.  Does
    that in a secure manner, so that the update can be completed
    without the need to employ privacy protection.



Blumenthal & Wijnen         Standards Track                    [Page 12]

RFC 2574                     USM for SNMPv3                   April 1999


  privProtocol
    An indication of whether messages sent on behalf of this user
    can be protected from disclosure, and if so, the type of privacy
    protocol which is used.  One such protocol is defined in this
    memo: the CBC-DES Symmetric Encryption Protocol.

  privKey
    If messages sent on behalf of this user can be en/decrypted,
    the (private) privacy key for use with the privacy protocol.
    Note that a user's privacy key will normally be different at
    different authoritative SNMP engines. The privKey is not
    accessible via SNMP. The length requirements of the privKey are
    defined by the privProtocol in use.

  privKeyChange and privOwnKeyChange
    The only way to remotely update the encryption key. Does that
    in a secure manner, so that the update can be completed without
    the need to employ privacy protection.

2.2.  Replay Protection

  Each SNMP engine maintains three objects:

  - snmpEngineID, which (at least within an administrative domain)
    uniquely and unambiguously identifies an SNMP engine.

  - snmpEngineBoots, which is a count of the number of times the
    SNMP engine has re-booted/re-initialized since snmpEngineID
    was last configured; and,

  - snmpEngineTime, which is the number of seconds since the
    snmpEngineBoots counter was last incremented.

  Each SNMP engine is always authoritative with respect to these
  objects in its own SNMP entity.  It is the responsibility of a
  non-authoritative SNMP engine to synchronize with the
  authoritative SNMP engine, as appropriate.

  An authoritative SNMP engine is required to maintain the values of
  its snmpEngineID and snmpEngineBoots in non-volatile storage.

2.2.1.  msgAuthoritativeEngineID

  The msgAuthoritativeEngineID value contained in an authenticated
  message is used to defeat attacks in which messages from one SNMP
  engine to another SNMP engine are replayed to a different SNMP
  engine. It represents the snmpEngineID at the authoritative SNMP
  engine involved in the exchange of the message.



Blumenthal & Wijnen         Standards Track                    [Page 13]

RFC 2574                     USM for SNMPv3                   April 1999


  When an authoritative SNMP engine is first installed, it sets its
  local value of snmpEngineID according to a enterprise-specific
  algorithm (see the definition of the Textual Convention for
  SnmpEngineID in the SNMP Architecture document [RFC2571]).

2.2.2.  msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime

  The msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime
  values contained in an authenticated message are used to defeat
  attacks in which messages are replayed when they are no longer
  valid.  They represent the snmpEngineBoots and snmpEngineTime
  values at the authoritative SNMP engine involved in the exchange
  of the message.

  Through use of snmpEngineBoots and snmpEngineTime, there is no
  requirement for an SNMP engine to have a non-volatile clock which
  ticks (i.e., increases with the passage of time) even when the
  SNMP engine is powered off.  Rather, each time an SNMP engine
  re-boots, it retrieves, increments, and then stores snmpEngineBoots
  in non-volatile storage, and resets snmpEngineTime to zero.

  When an SNMP engine is first installed, it sets its local values
  of snmpEngineBoots and snmpEngineTime to zero.  If snmpEngineTime
  ever reaches its maximum value (2147483647), then snmpEngineBoots
  is incremented as if the SNMP engine has re-booted and
  snmpEngineTime is reset to zero and starts incrementing again.

  Each time an authoritative SNMP engine re-boots, any SNMP engines
  holding that authoritative SNMP engine's values of snmpEngineBoots
  and snmpEngineTime need to re-synchronize prior to sending
  correctly authenticated messages to that authoritative SNMP engine
  (see Section 2.3 for (re-)synchronization procedures).  Note,
  however, that the procedures do provide for a notification to be
  accepted as authentic by a receiving SNMP engine, when sent by an
  authoritative SNMP engine which has re-booted since the receiving
  SNMP engine last (re-)synchronized.

  If an authoritative SNMP engine is ever unable to determine its
  latest snmpEngineBoots value, then it must set its snmpEngineBoots
  value to 2147483647.

  Whenever the local value of snmpEngineBoots has the value 2147483647
  it latches at that value and an authenticated message always causes
  an notInTimeWindow authentication failure.

  In order to reset an SNMP engine whose snmpEngineBoots value has
  reached the value 2147483647, manual intervention is required.
  The engine must be physically visited and re-configured, either



Blumenthal & Wijnen         Standards Track                    [Page 14]

RFC 2574                     USM for SNMPv3                   April 1999


  with a new snmpEngineID value, or with new secret values for the
  authentication and privacy protocols of all users known to that
  SNMP engine. Note that even if an SNMP engine re-boots once a second
  that it would still take approximately 68 years before the max value
  of 2147483647 would be reached.

2.2.3.  Time Window

  The Time Window is a value that specifies the window of time in
  which a message generated on behalf of any user is valid.  This
  memo specifies that the same value of the Time Window, 150 seconds,
  is used for all users.

2.3.  Time Synchronization

  Time synchronization, required by a non-authoritative SNMP engine
  in order to proceed with authentic communications, has occurred
  when the non-authoritative SNMP engine has obtained a local notion
  of the authoritative SNMP engine's values of snmpEngineBoots and
  snmpEngineTime from the authoritative SNMP engine.  These values
  must be (and remain) within the authoritative SNMP engine's Time
  Window.  So the local notion of the authoritative SNMP engine's
  values must be kept loosely synchronized with the values stored
  at the authoritative SNMP engine.  In addition to keeping a local
  copy of snmpEngineBoots and snmpEngineTime from the authoritative
  SNMP engine, a non-authoritative SNMP engine must also keep one
  local variable, latestReceivedEngineTime.  This value records the
  highest value of snmpEngineTime that was received by the
  non-authoritative SNMP engine from the authoritative SNMP engine
  and is used to eliminate the possibility of replaying messages
  that would prevent the non-authoritative SNMP engine's notion of
  the snmpEngineTime from advancing.

  A non-authoritative SNMP engine must keep local notions of these
  values
  (snmpEngineBoots, snmpEngineTime and latestReceivedEngineTime)
  for each authoritative SNMP engine with which it wishes to
  communicate.  Since each authoritative SNMP engine is uniquely
  and unambiguously identified by its value of snmpEngineID, the
  non-authoritative SNMP engine may use this value as a key in
  order to cache its local notions of these values.

  Time synchronization occurs as part of the procedures of receiving
  an SNMP message (Section 3.2, step 7b). As such, no explicit time
  synchronization procedure is required by a non-authoritative SNMP
  engine.  Note, that whenever the local value of snmpEngineID is
  changed (e.g., through discovery) or when secure communications
  are first established with an authoritative SNMP engine, the local



Blumenthal & Wijnen         Standards Track                    [Page 15]

RFC 2574                     USM for SNMPv3                   April 1999


  values of snmpEngineBoots and latestReceivedEngineTime should be
  set to zero.  This will cause the time synchronization to occur
  when the next authentic message is received.

2.4.  SNMP Messages Using this Security Model

  The syntax of an SNMP message using this Security Model adheres
  to the message format defined in the version-specific Message
  Processing Model document (for example [RFC2572]).

  The field msgSecurityParameters in SNMPv3 messages has a data type
  of OCTET STRING.  Its value is the BER serialization of the
  following ASN.1 sequence:

  USMSecurityParametersSyntax DEFINITIONS IMPLICIT TAGS ::= BEGIN

     UsmSecurityParameters ::=
         SEQUENCE {
          -- global User-based security parameters
             msgAuthoritativeEngineID     OCTET STRING,
             msgAuthoritativeEngineBoots  INTEGER (0..2147483647),
             msgAuthoritativeEngineTime   INTEGER (0..2147483647),
             msgUserName                  OCTET STRING (SIZE(0..32)),
          -- authentication protocol specific parameters
             msgAuthenticationParameters  OCTET STRING,
          -- privacy protocol specific parameters
             msgPrivacyParameters         OCTET STRING
         }
  END

  The fields of this sequence are:

  - The msgAuthoritativeEngineID specifies the snmpEngineID of the
    authoritative SNMP engine involved in the exchange of the message.

  - The msgAuthoritativeEngineBoots specifies the snmpEngineBoots value
    at the authoritative SNMP engine involved in the exchange of the
    message.

  - The msgAuthoritativeEngineTime specifies the snmpEngineTime value
    at the authoritative SNMP engine involved in the exchange of the
    message.

  - The msgUserName specifies the user (principal) on whose behalf the
    message is being exchanged.  Note that a zero-length userName will
    not match any user, but it can be used for snmpEngineID discovery.





Blumenthal & Wijnen         Standards Track                    [Page 16]

RFC 2574                     USM for SNMPv3                   April 1999


  - The msgAuthenticationParameters are defined by the authentication
    protocol in use for the message, as defined by the
    usmUserAuthProtocol column in the user's entry in the usmUserTable.

  - The msgPrivacyParameters are defined by the privacy protocol in use
    for the message, as defined by the usmUserPrivProtocol column in
    the user's entry in the usmUserTable).

  See appendix A.4 for an example of the BER encoding of field
  msgSecurityParameters.

2.5.  Services provided by the User-based Security Model

  This section describes the services provided by the User-based
  Security Model with their inputs and outputs.

  The services are described as primitives of an abstract service
  interface and the inputs and outputs are described as abstract data
  elements as they are passed in these abstract service primitives.

2.5.1.  Services for Generating an Outgoing SNMP Message

  When the Message Processing (MP) Subsystem invokes the User-based
  Security module to secure an outgoing SNMP message, it must use the
  appropriate service as provided by the Security module.  These two
  services are provided:

  1) A service to generate a Request message. The abstract service
     primitive is:

     statusInformation =            -- success or errorIndication
       generateRequestMsg(
       IN   messageProcessingModel  -- typically, SNMP version
       IN   globalData              -- message header, admin data
       IN   maxMessageSize          -- of the sending SNMP entity
       IN   securityModel           -- for the outgoing message
       IN   securityEngineID        -- authoritative SNMP entity
       IN   securityName            -- on behalf of this principal
       IN   securityLevel           -- Level of Security requested
       IN   scopedPDU               -- message (plaintext) payload
       OUT  securityParameters      -- filled in by Security Module
       OUT  wholeMsg                -- complete generated message
       OUT  wholeMsgLength          -- length of generated message
            )

  2) A service to generate a Response message. The abstract service
     primitive is:




Blumenthal & Wijnen         Standards Track                    [Page 17]

RFC 2574                     USM for SNMPv3                   April 1999


     statusInformation =            -- success or errorIndication
       generateResponseMsg(
       IN   messageProcessingModel  -- typically, SNMP version
       IN   globalData              -- message header, admin data
       IN   maxMessageSize          -- of the sending SNMP entity
       IN   securityModel           -- for the outgoing message
       IN   securityEngineID        -- authoritative SNMP entity
       IN   securityName            -- on behalf of this principal
       IN   securityLevel           -- Level of Security requested
       IN   scopedPDU               -- message (plaintext) payload
       IN   securityStateReference  -- reference to security state
                                    -- information from original
                                    -- request
       OUT  securityParameters      -- filled in by Security Module
       OUT  wholeMsg                -- complete generated message
       OUT  wholeMsgLength          -- length of generated message
            )

  The abstract data elements passed as parameters in the abstract
  service primitives are as follows:

   statusInformation
     An indication of whether the encoding and securing of the message
     was successful.  If not it is an indication of the problem.
   messageProcessingModel
     The SNMP version number for the message to be generated.  This
     data is not used by the User-based Security module.
   globalData
     The message header (i.e., its administrative information). This
     data is not used by the User-based Security module.
   maxMessageSize
     The maximum message size as included in the message.  This data is
     not used by the User-based Security module.
   securityParameters
     These are the security parameters. They will be filled in by the
     User-based Security module.

   securityModel
     The securityModel in use. Should be User-based Security Model.
     This data is not used by the User-based Security module.
   securityName
     Together with the snmpEngineID it identifies a row in the
     usmUserTable that is to be used for securing the message.  The
     securityName has a format that is independent of the Security
     Model. In case of a response this parameter is ignored and the
     value from the cache is used.





Blumenthal & Wijnen         Standards Track                    [Page 18]

RFC 2574                     USM for SNMPv3                   April 1999


   securityLevel
     The Level of Security from which the User-based Security module
     determines if the message needs to be protected from disclosure
     and if the message needs to be authenticated.
   securityEngineID
     The snmpEngineID of the authoritative SNMP engine to which a
     Request message is to be sent. In case of a response it is implied
     to be the processing SNMP engine's snmpEngineID and so if it is
     specified, then it is ignored.
   scopedPDU
     The message payload.  The data is opaque as far as the User-based
     Security Model is concerned.
   securityStateReference
     A handle/reference to cachedSecurityData to be used when securing
     an outgoing Response message.  This is the exact same
     handle/reference as it was generated by the User-based Security
     module when processing the incoming Request message to which this
     is the Response message.
   wholeMsg
     The fully encoded and secured message ready for sending on the
     wire.
   wholeMsgLength
     The length of the encoded and secured message (wholeMsg).

  Upon completion of the process, the User-based Security module
  returns statusInformation. If the process was successful, the
  completed message with privacy and authentication applied if such was
  requested by the specified securityLevel is returned. If the process
  was not successful, then an errorIndication is returned.

2.5.2.  Services for Processing an Incoming SNMP Message

  When the Message Processing (MP) Subsystem invokes the User-based
  Security module to verify proper security of an incoming message, it
  must use the service provided for an incoming message. The abstract
  service primitive is:

  statusInformation =             -- errorIndication or success
                                  -- error counter OID/value if error
    processIncomingMsg(
    IN   messageProcessingModel   -- typically, SNMP version
    IN   maxMessageSize           -- of the sending SNMP entity
    IN   securityParameters       -- for the received message
    IN   securityModel            -- for the received message
    IN   securityLevel            -- Level of Security
    IN   wholeMsg                 -- as received on the wire
    IN   wholeMsgLength           -- length as received on the wire
    OUT  securityEngineID         -- authoritative SNMP entity



Blumenthal & Wijnen         Standards Track                    [Page 19]

RFC 2574                     USM for SNMPv3                   April 1999


    OUT  securityName             -- identification of the principal
    OUT  scopedPDU,               -- message (plaintext) payload
    OUT  maxSizeResponseScopedPDU -- maximum size of the Response PDU
    OUT  securityStateReference   -- reference to security state
         )                        -- information, needed for response

  The abstract data elements passed as parameters in the abstract
  service primitives are as follows:

   statusInformation
     An indication of whether the process was successful or not.  If
     not, then the statusInformation includes the OID and the value of
     the error counter that was incremented.
   messageProcessingModel
     The SNMP version number as received in the message.  This data is
     not used by the User-based Security module.
   maxMessageSize
     The maximum message size as included in the message.  The User-
     based Security module uses this value to calculate the
     maxSizeResponseScopedPDU.
   securityParameters
     These are the security parameters as received in the message.
   securityModel
     The securityModel in use.  Should be the User-based Security
     Model.  This data is not used by the User-based Security module.
   securityLevel
     The Level of Security from which the User-based Security module
     determines if the message needs to be protected from disclosure
     and if the message needs to be authenticated.
   wholeMsg
     The whole message as it was received.
   wholeMsgLength
     The length of the message as it was received (wholeMsg).
   securityEngineID
     The snmpEngineID that was extracted from the field
     msgAuthoritativeEngineID and that was used to lookup the secrets
     in the usmUserTable.
   securityName
     The security name representing the user on whose behalf the
     message was received.  The securityName has a format that is
     independent of the Security Model.
   scopedPDU
     The message payload.  The data is opaque as far as the User-based
     Security Model is concerned.







Blumenthal & Wijnen         Standards Track                    [Page 20]

RFC 2574                     USM for SNMPv3                   April 1999


   maxSizeResponseScopedPDU
     The maximum size of a scopedPDU to be included in a possible
     Response message.  The User-based Security module calculates this
     size based on the msgMaxSize (as received in the message) and the
     space required for the message header (including the
     securityParameters) for such a Response message.
   securityStateReference
     A handle/reference to cachedSecurityData to be used when securing
     an outgoing Response message.  When the Message Processing
     Subsystem calls the User-based Security module to generate a
     response to this incoming message it must pass this
     handle/reference.

  Upon completion of the process, the User-based Security module
  returns statusInformation and, if the process was successful, the
  additional data elements for further processing of the message.  If
  the process was not successful, then an errorIndication, possibly
  with a OID and value pair of an error counter that was incremented.

2.6.  Key Localization Algorithm.

  A localized key is a secret key shared between a user U and one
  authoritative SNMP engine E.  Even though a user may have only one
  password and therefore one key for the whole network, the actual
  secrets shared between the user and each authoritative SNMP engine
  will be different. This is achieved by key localization [Localized-
  key].

  First, if a user uses a password, then the user's password is
  converted into a key Ku using one of the two algorithms described in
  Appendices A.2.1 and A.2.2.

  To convert key Ku into a localized key Kul of user U at the
  authoritative SNMP engine E, one appends the snmpEngineID of the
  authoritative SNMP engine to the key Ku and then appends the key Ku
  to the result, thus enveloping the snmpEngineID within the two copies
  of user's key Ku. Then one runs a secure hash function (which one
  depends on the authentication protocol defined for this user U at
  authoritative SNMP engine E; this document defines two authentication
  protocols with their associated algorithms based on MD5 and SHA). The
  output of the hash-function is the localized key Kul for user U at
  the authoritative SNMP engine E.

3.  Elements of Procedure

  This section describes the security related procedures followed by an
  SNMP engine when processing SNMP messages according to the User-based
  Security Model.



Blumenthal & Wijnen         Standards Track                    [Page 21]

RFC 2574                     USM for SNMPv3                   April 1999


3.1.  Generating an Outgoing SNMP Message

  This section describes the procedure followed by an SNMP engine
  whenever it generates a message containing a management operation
  (like a request, a response, a notification, or a report) on behalf
  of a user, with a particular securityLevel.

  1)  a) If any securityStateReference is passed (Response or Report
         message), then information concerning the user is extracted
         from the cachedSecurityData.  The cachedSecurityData can now
         be discarded.  The securityEngineID is set to the local
         snmpEngineID.  The securityLevel is set to the value specified
         by the calling module.

         Otherwise,

      b) based on the securityName, information concerning the user at
         the destination snmpEngineID, specified by the
         securityEngineID, is extracted from the Local Configuration
         Datastore (LCD, usmUserTable). If information about the user
         is absent from the LCD, then an error indication
         (unknownSecurityName) is returned to the calling module.

  2)  If the securityLevel specifies that the message is to be
      protected from disclosure, but the user does not support both an
      authentication and a privacy protocol then the message cannot be
      sent.  An error indication (unsupportedSecurityLevel) is returned
      to the calling module.

  3)  If the securityLevel specifies that the message is to be
      authenticated, but the user does not support an authentication
      protocol, then the message cannot be sent. An error indication
      (unsupportedSecurityLevel) is returned to the calling module.

  4)  a) If the securityLevel specifies that the message is to be
         protected from disclosure, then the octet sequence
         representing the serialized scopedPDU is encrypted according
         to the user's privacy protocol. To do so a call is made to the
         privacy module that implements the user's privacy protocol
         according to the abstract primitive:

         statusInformation =       -- success or failure
           encryptData(
           IN    encryptKey        -- user's localized privKey
           IN    dataToEncrypt     -- serialized scopedPDU
           OUT   encryptedData     -- serialized encryptedPDU
           OUT   privParameters    -- serialized privacy parameters
                 )



Blumenthal & Wijnen         Standards Track                    [Page 22]

RFC 2574                     USM for SNMPv3                   April 1999


         statusInformation
           indicates if the encryption process was successful or not.
         encryptKey
           the user's localized private privKey is the secret key that
           can be used by the encryption algorithm.
         dataToEncrypt
           the serialized scopedPDU is the data to be encrypted.
         encryptedData
           the encryptedPDU represents the encrypted scopedPDU,
           encoded as an OCTET STRING.
         privParameters
           the privacy parameters, encoded as an OCTET STRING.

         If the privacy module returns failure, then the message cannot
         be sent and an error indication (encryptionError) is returned
         to the calling module.

         If the privacy module returns success, then the returned
         privParameters are put into the msgPrivacyParameters field of
         the securityParameters and the encryptedPDU serves as the
         payload of the message being prepared.

         Otherwise,

      b) If the securityLevel specifies that the message is not to be
         be protected from disclosure, then a zero-length OCTET STRING
         is encoded into the msgPrivacyParameters field of the
         securityParameters and the plaintext scopedPDU serves as the
         payload of the message being prepared.

  5)  The securityEngineID is encoded as an OCTET STRING into the
      msgAuthoritativeEngineID field of the securityParameters.  Note
      that an empty (zero length) securityEngineID is OK for a Request
      message, because that will cause the remote (authoritative) SNMP
      engine to return a Report PDU with the proper securityEngineID
      included in the msgAuthoritativeEngineID in the
      securityParameters of that returned Report PDU.

  6)  a) If the securityLevel specifies that the message is to be
         authenticated, then the current values of snmpEngineBoots and
         snmpEngineTime corresponding to the securityEngineID from the
         LCD are used.

         Otherwise,

      b) If this is a Response or Report message, then the current
         value of snmpEngineBoots and snmpEngineTime corresponding to
         the local snmpEngineID from the LCD are used.



Blumenthal & Wijnen         Standards Track                    [Page 23]

RFC 2574                     USM for SNMPv3                   April 1999


         Otherwise,

      c) If this is a Request message, then a zero value is used for
         both snmpEngineBoots and snmpEngineTime. This zero value gets
         used if snmpEngineID is empty.

      The values are encoded as INTEGER respectively into the
      msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime fields
      of the securityParameters.

  7)  The userName is encoded as an OCTET STRING into the msgUserName
      field of the securityParameters.

  8)  a) If the securityLevel specifies that the message is to be
         authenticated, the message is authenticated according to the
         user's authentication protocol. To do so a call is made to the
         authentication module that implements the user's
         authentication protocol according to the abstract service
         primitive:

         statusInformation =
           authenticateOutgoingMsg(
           IN  authKey               -- the user's localized authKey
           IN  wholeMsg              -- unauthenticated message
           OUT authenticatedWholeMsg -- authenticated complete message
               )

         statusInformation
           indicates if authentication was successful or not.
         authKey
           the user's localized private authKey is the secret key that
           can be used by the authentication algorithm.
         wholeMsg
           the complete serialized message to be authenticated.
         authenticatedWholeMsg
           the same as the input given to the authenticateOutgoingMsg
           service, but with msgAuthenticationParameters properly
           filled in.

         If the authentication module returns failure, then the message
         cannot be sent and an error indication (authenticationFailure)
         is returned to the calling module.

         If the authentication module returns success, then the
         msgAuthenticationParameters field is put into the
         securityParameters and the authenticatedWholeMsg represents
         the serialization of the authenticated message being prepared.




Blumenthal & Wijnen         Standards Track                    [Page 24]

RFC 2574                     USM for SNMPv3                   April 1999


         Otherwise,

      b) If the securityLevel specifies that the message is not to be
         authenticated then a zero-length OCTET STRING is encoded into
         the msgAuthenticationParameters field of the
         securityParameters.  The wholeMsg is now serialized and then
         represents the unauthenticated message being prepared.

  9)  The completed message with its length is returned to the calling
      module with the statusInformation set to success.

3.2.  Processing an Incoming SNMP Message

  This section describes the procedure followed by an SNMP engine
  whenever it receives a message containing a management operation on
  behalf of a user, with a particular securityLevel.

  To simplify the elements of procedure, the release of state
  information is not always explicitly specified. As a general rule, if
  state information is available when a message gets discarded, the
  state information should also be released.  Also, an error indication
  can return an OID and value for an incremented counter and optionally
  a value for securityLevel, and values for contextEngineID or
  contextName for the counter.  In addition, the securityStateReference
  data is returned if any such information is available at the point
  where the error is detected.

  1)  If the received securityParameters is not the serialization
      (according to the conventions of [RFC1906]) of an OCTET STRING
      formatted according to the UsmSecurityParameters defined in
      section 2.4, then the snmpInASNParseErrs counter [RFC1907] is
      incremented, and an error indication (parseError) is returned to
      the calling module.  Note that we return without the OID and
      value of the incremented counter, because in this case there is
      not enough information to generate a Report PDU.

  2)  The values of the security parameter fields are extracted from
      the securityParameters. The securityEngineID to be returned to
      the caller is the value of the msgAuthoritativeEngineID field.
      The cachedSecurityData is prepared and a securityStateReference
      is prepared to reference this data. Values to be cached are:

          msgUserName

  3)  If the value of the msgAuthoritativeEngineID field in the
      securityParameters is unknown then:





Blumenthal & Wijnen         Standards Track                    [Page 25]

RFC 2574                     USM for SNMPv3                   April 1999


      a) a non-authoritative SNMP engine that performs discovery may
         optionally create a new entry in its Local Configuration
         Datastore (LCD) and continue processing;

         or

      b) the usmStatsUnknownEngineIDs counter is incremented, and
         an error indication (unknownEngineID) together with the
         OID and value of the incremented counter is returned to
         the calling module.

      Note in the event that a zero-length, or other illegally
      sized msgAuthoritativeEngineID is received, b) should be
      chosen to facilitate engineID discovery.
      Otherwise the choice between a) and b) is an implementation
      issue.

  4)  Information about the value of the msgUserName and
      msgAuthoritativeEngineID fields is extracted from the Local
      Configuration Datastore (LCD, usmUserTable).  If no information
      is available for the user, then the usmStatsUnknownUserNames
      counter is incremented and an error indication
      (unknownSecurityName) together with the OID and value of the
      incremented counter is returned to the calling module.

  5)  If the information about the user indicates that it does not
      support the securityLevel requested by the caller, then the
      usmStatsUnsupportedSecLevels counter is incremented and an
      error indication (unsupportedSecurityLevel) together with the
      OID and value of the incremented counter is returned to the
      calling module.

  6)  If the securityLevel specifies that the message is to be
      authenticated, then the message is authenticated according to
      the user's authentication protocol. To do so a call is made
      to the authentication module that implements the user's
      authentication protocol according to the abstract service
      primitive:

      statusInformation =          -- success or failure
        authenticateIncomingMsg(
        IN   authKey               -- the user's localized authKey
        IN   authParameters        -- as received on the wire
        IN   wholeMsg              -- as received on the wire
        OUT  authenticatedWholeMsg -- checked for authentication
                )





Blumenthal & Wijnen         Standards Track                    [Page 26]

RFC 2574                     USM for SNMPv3                   April 1999


      statusInformation
        indicates if authentication was successful or not.
      authKey
        the user's localized private authKey is the secret key that
        can be used by the authentication algorithm.
      wholeMsg
        the complete serialized message to be authenticated.
      authenticatedWholeMsg
        the same as the input given to the authenticateIncomingMsg
        service, but after authentication has been checked.

      If the authentication module returns failure, then the message
      cannot be trusted, so the usmStatsWrongDigests counter is
      incremented and an error indication (authenticationFailure)
      together with the OID and value of the incremented counter is
      returned to the calling module.

      If the authentication module returns success, then the message
      is authentic and can be trusted so processing continues.

  7)  If the securityLevel indicates an authenticated message, then
      the local values of snmpEngineBoots, snmpEngineTime
      and latestReceivedEngineTime
      corresponding to the value of the msgAuthoritativeEngineID
      field are extracted from the Local Configuration Datastore.

      a) If the extracted value of msgAuthoritativeEngineID is the
         same as the value of snmpEngineID of the processing SNMP
         engine (meaning this is the authoritative SNMP engine),
         then if any of the following conditions is true, then the
         message is considered to be outside of the Time Window:

          - the local value of snmpEngineBoots is 2147483647;

          - the value of the msgAuthoritativeEngineBoots field differs
            from the local value of snmpEngineBoots; or,

          - the value of the msgAuthoritativeEngineTime field differs
            from the local notion of snmpEngineTime by more than
            +/- 150 seconds.

         If the message is considered to be outside of the Time Window
         then the usmStatsNotInTimeWindows counter is incremented and
         an error indication (notInTimeWindow) together with the OID,
         the value of the incremented counter, and an indication that
         the error must be reported with a securityLevel of authNoPriv,
         is returned to the calling module




Blumenthal & Wijnen         Standards Track                    [Page 27]

RFC 2574                     USM for SNMPv3                   April 1999


      b) If the extracted value of msgAuthoritativeEngineID is not the
         same as the value snmpEngineID of the processing SNMP engine
         (meaning this is not the authoritative SNMP engine), then:

         1) if at least one of the following conditions is true:

            - the extracted value of the msgAuthoritativeEngineBoots
              field is greater than the local notion of the value of
              snmpEngineBoots; or,

            - the extracted value of the msgAuthoritativeEngineBoots
              field is equal to the local notion of the value of
              snmpEngineBoots, and the extracted value of
              msgAuthoritativeEngineTime field is greater than the
              value of latestReceivedEngineTime,

            then the LCD entry corresponding to the extracted value
            of the msgAuthoritativeEngineID field is updated, by
            setting:

               - the local notion of the value of snmpEngineBoots to
                 the value of the msgAuthoritativeEngineBoots field,
               - the local notion of the value of snmpEngineTime to
                 the value of the msgAuthoritativeEngineTime field,
                 and
               - the latestReceivedEngineTime to the value of the
                 value of the msgAuthoritativeEngineTime field.

         2) if any of the following conditions is true, then the
            message is considered to be outside of the Time Window:

            - the local notion of the value of snmpEngineBoots is
              2147483647;

            - the value of the msgAuthoritativeEngineBoots field is
              less than the local notion of the value of
              snmpEngineBoots; or,

            - the value of the msgAuthoritativeEngineBoots field is
              equal to the local notion of the value of
              snmpEngineBoots and the value of the
              msgAuthoritativeEngineTime field is more than 150
              seconds less than the local notion of the value of
              snmpEngineTime.

            If the message is considered to be outside of the Time
            Window then an error indication (notInTimeWindow) is
            returned to the calling module.



Blumenthal & Wijnen         Standards Track                    [Page 28]

RFC 2574                     USM for SNMPv3                   April 1999


            Note that this means that a too old (possibly replayed)
            message has been detected and is deemed unauthentic.

            Note that this procedure allows for the value of
            msgAuthoritativeEngineBoots in the message to be greater
            than the local notion of the value of snmpEngineBoots to
            allow for received messages to be accepted as authentic
            when received from an authoritative SNMP engine that has
            re-booted since the receiving SNMP engine last
            (re-)synchronized.

  8)  a) If the securityLevel indicates that the message was protected
         from disclosure, then the OCTET STRING representing the
         encryptedPDU is decrypted according to the user's privacy
         protocol to obtain an unencrypted serialized scopedPDU value.
         To do so a call is made to the privacy module that implements
         the user's privacy protocol according to the abstract
         primitive:

         statusInformation =       -- success or failure
           decryptData(
           IN    decryptKey        -- the user's localized privKey
           IN    privParameters    -- as received on the wire
           IN    encryptedData     -- encryptedPDU as received
           OUT   decryptedData     -- serialized decrypted scopedPDU
                 )

         statusInformation
           indicates if the decryption process was successful or not.
         decryptKey
           the user's localized private privKey is the secret key that
           can be used by the decryption algorithm.
         privParameters
           the msgPrivacyParameters, encoded as an OCTET STRING.
         encryptedData
           the encryptedPDU represents the encrypted scopedPDU, encoded
           as an OCTET STRING.
         decryptedData
           the serialized scopedPDU if decryption is successful.

         If the privacy module returns failure, then the message can
         not be processed, so the usmStatsDecryptionErrors counter is
         incremented and an error indication (decryptionError) together
         with the OID and value of the incremented counter is returned
         to the calling module.






Blumenthal & Wijnen         Standards Track                    [Page 29]

RFC 2574                     USM for SNMPv3                   April 1999


         If the privacy module returns success, then the decrypted
         scopedPDU is the message payload to be returned to the calling
         module.

         Otherwise,

      b) The scopedPDU component is assumed to be in plain text
         and is the message payload to be returned to the calling
         module.

  9)  The maxSizeResponseScopedPDU is calculated.  This is the
      maximum size allowed for a scopedPDU for a possible Response
      message.  Provision is made for a message header that allows the
      same securityLevel as the received Request.

  10) The securityName for the user is retrieved from the
      usmUserTable.

  11) The security data is cached as cachedSecurityData, so that a
      possible response to this message can and will use the same
      authentication and privacy secrets.  Information to be
      saved/cached is as follows:

         msgUserName,
         usmUserAuthProtocol, usmUserAuthKey
         usmUserPrivProtocol, usmUserPrivKey

  12) The statusInformation is set to success and a return is made to
      the calling module passing back the OUT parameters as specified
      in the processIncomingMsg primitive.

4.  Discovery

  The User-based Security Model requires that a discovery process
  obtains sufficient information about other SNMP engines in order to
  communicate with them.  Discovery requires an non-authoritative SNMP
  engine to learn the authoritative SNMP engine's snmpEngineID value
  before communication may proceed.  This may be accomplished by
  generating a Request message with a securityLevel of noAuthNoPriv, a
  msgUserName of zero-length, a msgAuthoritativeEngineID value of zero
  length, and the varBindList left empty.  The response to this message
  will be a Report message containing the snmpEngineID of the
  authoritative SNMP engine as the value of the
  msgAuthoritativeEngineID field within the msgSecurityParameters
  field.  It contains a Report PDU with the usmStatsUnknownEngineIDs
  counter in the varBindList.





Blumenthal & Wijnen         Standards Track                    [Page 30]

RFC 2574                     USM for SNMPv3                   April 1999


  If authenticated communication is required, then the discovery
  process should also establish time synchronization with the
  authoritative SNMP engine.  This may be accomplished by sending an
  authenticated Request message with the value of
  msgAuthoritativeEngineID set to the newly learned snmpEngineID and
  with the values of msgAuthoritativeEngineBoots and
  msgAuthoritativeEngineTime set to zero.  For an authenticated Request
  message, a valid userName must be used in the msgUserName field.  The
  response to this authenticated message will be a Report message
  containing the up to date values of the authoritative SNMP engine's
  snmpEngineBoots and snmpEngineTime as the value of the
  msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime fields
  respectively.  It also contains the usmStatsNotInTimeWindows counter
  in the varBindList of the Report PDU.  The time synchronization then
  happens automatically as part of the procedures in section 3.2 step
  7b. See also section 2.3.

5.  Definitions

SNMP-USER-BASED-SM-MIB DEFINITIONS ::= BEGIN

IMPORTS
   MODULE-IDENTITY, OBJECT-TYPE,
   OBJECT-IDENTITY,
   snmpModules, Counter32                FROM SNMPv2-SMI
   TEXTUAL-CONVENTION, TestAndIncr,
   RowStatus, RowPointer,
   StorageType, AutonomousType           FROM SNMPv2-TC
   MODULE-COMPLIANCE, OBJECT-GROUP       FROM SNMPv2-CONF
   SnmpAdminString, SnmpEngineID,
   snmpAuthProtocols, snmpPrivProtocols  FROM SNMP-FRAMEWORK-MIB;

snmpUsmMIB MODULE-IDENTITY
   LAST-UPDATED "9901200000Z"            -- 20 Jan 1999, midnight
   ORGANIZATION "SNMPv3 Working Group"
   CONTACT-INFO "WG-email:   [email protected]
                 Subscribe:  [email protected]
                             In msg body:  subscribe snmpv3

                 Chair:      Russ Mundy
                             Trusted Information Systems
                 postal:     3060 Washington Rd
                             Glenwood MD 21738
                             USA
                 email:      [email protected]
                 phone:      +1-301-854-6889

                 Co-editor   Uri Blumenthal



Blumenthal & Wijnen         Standards Track                    [Page 31]

RFC 2574                     USM for SNMPv3                   April 1999


                             IBM T. J. Watson Research
                 postal:     30 Saw Mill River Pkwy,
                             Hawthorne, NY 10532
                             USA
                 email:      [email protected]
                 phone:      +1-914-784-7964

                 Co-editor:  Bert Wijnen
                             IBM T. J. Watson Research
                 postal:     Schagen 33
                             3461 GL Linschoten
                             Netherlands
                 email:      [email protected]
                 phone:      +31-348-432-794
                "
   DESCRIPTION  "The management information definitions for the
                 SNMP User-based Security Model.
                "
--  Revision history

   REVISION     "9901200000Z"            -- 20 Jan 1999, midnight
   DESCRIPTION  "Clarifications, published as RFC2574"

   REVISION     "9711200000Z"            -- 20 Nov 1997, midnight
   DESCRIPTION  "Initial version, published as RFC2274"

   ::= { snmpModules 15 }

-- Administrative assignments ****************************************

usmMIBObjects     OBJECT IDENTIFIER ::= { snmpUsmMIB 1 }
usmMIBConformance OBJECT IDENTIFIER ::= { snmpUsmMIB 2 }

-- Identification of Authentication and Privacy Protocols ************

usmNoAuthProtocol OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "No Authentication Protocol."
   ::= { snmpAuthProtocols 1 }

usmHMACMD5AuthProtocol OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "The HMAC-MD5-96 Digest Authentication Protocol."
   REFERENCE    "- H. Krawczyk, M. Bellare, R. Canetti HMAC:
                   Keyed-Hashing for Message Authentication,
                   RFC2104, Feb 1997.
                 - Rivest, R., Message Digest Algorithm MD5, RFC1321.
                "



Blumenthal & Wijnen         Standards Track                    [Page 32]

RFC 2574                     USM for SNMPv3                   April 1999


   ::= { snmpAuthProtocols 2 }

usmHMACSHAAuthProtocol OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "The HMAC-SHA-96 Digest Authentication Protocol."
   REFERENCE    "- H. Krawczyk, M. Bellare, R. Canetti, HMAC:
                   Keyed-Hashing for Message Authentication,
                   RFC2104, Feb 1997.
                 - Secure Hash Algorithm. NIST FIPS 180-1.
                "
   ::= { snmpAuthProtocols 3 }

usmNoPrivProtocol OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "No Privacy Protocol."
   ::= { snmpPrivProtocols 1 }

usmDESPrivProtocol OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "The CBC-DES Symmetric Encryption Protocol."
   REFERENCE    "- Data Encryption Standard, National Institute of
                   Standards and Technology.  Federal Information
                   Processing Standard (FIPS) Publication 46-1.
                   Supersedes FIPS Publication 46,
                   (January, 1977; reaffirmed January, 1988).

                 - Data Encryption Algorithm, American National
                   Standards Institute.  ANSI X3.92-1981,
                   (December, 1980).

                 - DES Modes of Operation, National Institute of
                   Standards and Technology.  Federal Information
                   Processing Standard (FIPS) Publication 81,
                   (December, 1980).

                 - Data Encryption Algorithm - Modes of Operation,
                   American National Standards Institute.
                   ANSI X3.106-1983, (May 1983).
                "
   ::= { snmpPrivProtocols 2 }


-- Textual Conventions ***********************************************


KeyChange ::=     TEXTUAL-CONVENTION
  STATUS         current
  DESCRIPTION



Blumenthal & Wijnen         Standards Track                    [Page 33]

RFC 2574                     USM for SNMPv3                   April 1999


        "Every definition of an object with this syntax must identify
         a protocol P, a secret key K, and a hash algorithm H
         that produces output of L octets.

         The object's value is a manager-generated, partially-random
         value which, when modified, causes the value of the secret
         key K, to be modified via a one-way function.

         The value of an instance of this object is the concatenation
         of two components: first a 'random' component and then a
         'delta' component.

         The lengths of the random and delta components
         are given by the corresponding value of the protocol P;
         if P requires K to be a fixed length, the length of both the
         random and delta components is that fixed length; if P
         allows the length of K to be variable up to a particular
         maximum length, the length of the random component is that
         maximum length and the length of the delta component is any
         length less than or equal to that maximum length.
         For example, usmHMACMD5AuthProtocol requires K to be a fixed
         length of 16 octets and L - of 16 octets.
         usmHMACSHAAuthProtocol requires K to be a fixed length of
         20 octets and L - of 20 octets. Other protocols may define
         other sizes, as deemed appropriate.

         When a requester wants to change the old key K to a new
         key keyNew on a remote entity, the 'random' component is
         obtained from either a true random generator, or from a
         pseudorandom generator, and the 'delta' component is
         computed as follows:

          - a temporary variable is initialized to the existing value
            of K;
          - if the length of the keyNew is greater than L octets,
            then:
             - the random component is appended to the value of the
               temporary variable, and the result is input to the
               the hash algorithm H to produce a digest value, and
               the temporary variable is set to this digest value;
             - the value of the temporary variable is XOR-ed with
               the first (next) L-octets (16 octets in case of MD5)
               of the keyNew to produce the first (next) L-octets
               (16 octets in case of MD5) of the 'delta' component.
             - the above two steps are repeated until the unused
               portion of the keyNew component is L octets or less,
          - the random component is appended to the value of the
            temporary variable, and the result is input to the



Blumenthal & Wijnen         Standards Track                    [Page 34]

RFC 2574                     USM for SNMPv3                   April 1999


            hash algorithm H to produce a digest value;
          - this digest value, truncated if necessary to be the same
            length as the unused portion of the keyNew, is XOR-ed
            with the unused portion of the keyNew to produce the
            (final portion of the) 'delta' component.

          For example, using MD5 as the hash algorithm H:

             iterations = (lenOfDelta - 1)/16; /* integer division */
             temp = keyOld;
             for (i = 0; i < iterations; i++) {
                 temp = MD5 (temp || random);
                 delta[i*16 .. (i*16)+15] =
                        temp XOR keyNew[i*16 .. (i*16)+15];
             }
             temp = MD5 (temp || random);
             delta[i*16 .. lenOfDelta-1] =
                    temp XOR keyNew[i*16 .. lenOfDelta-1];

         The 'random' and 'delta' components are then concatenated as
         described above, and the resulting octet string is sent to
         the recipient as the new value of an instance of this object.

         At the receiver side, when an instance of this object is set
         to a new value, then a new value of K is computed as follows:

          - a temporary variable is initialized to the existing value
            of K;
          - if the length of the delta component is greater than L
            octets, then:
             - the random component is appended to the value of the
               temporary variable, and the result is input to the
               hash algorithm H to produce a digest value, and the
               temporary variable is set to this digest value;
             - the value of the temporary variable is XOR-ed with
               the first (next) L-octets (16 octets in case of MD5)
               of the delta component to produce the first (next)
               L-octets (16 octets in case of MD5) of the new value
               of K.
             - the above two steps are repeated until the unused
               portion of the delta component is L octets or less,
          - the random component is appended to the value of the
            temporary variable, and the result is input to the
            hash algorithm H to produce a digest value;
          - this digest value, truncated if necessary to be the same
            length as the unused portion of the delta component, is
            XOR-ed with the unused portion of the delta component to
            produce the (final portion of the) new value of K.



Blumenthal & Wijnen         Standards Track                    [Page 35]

RFC 2574                     USM for SNMPv3                   April 1999


          For example, using MD5 as the hash algorithm H:

             iterations = (lenOfDelta - 1)/16; /* integer division */
             temp = keyOld;
             for (i = 0; i < iterations; i++) {
                 temp = MD5 (temp || random);
                 keyNew[i*16 .. (i*16)+15] =
                        temp XOR delta[i*16 .. (i*16)+15];
             }
             temp = MD5 (temp || random);
             keyNew[i*16 .. lenOfDelta-1] =
                    temp XOR delta[i*16 .. lenOfDelta-1];

         The value of an object with this syntax, whenever it is
         retrieved by the management protocol, is always the zero
         length string.

         Note that the keyOld and keyNew are the localized keys.

         Note that it is probably wise that when an SNMP entity sends
         a SetRequest to change a key, that it keeps a copy of the old
         key until it has confirmed that the key change actually
         succeeded.
        "
   SYNTAX       OCTET STRING


-- Statistics for the User-based Security Model **********************


usmStats         OBJECT IDENTIFIER ::= { usmMIBObjects 1 }


usmStatsUnsupportedSecLevels OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The total number of packets received by the SNMP
                engine which were dropped because they requested a
                securityLevel that was unknown to the SNMP engine
                or otherwise unavailable.
               "
   ::= { usmStats 1 }

usmStatsNotInTimeWindows OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current



Blumenthal & Wijnen         Standards Track                    [Page 36]

RFC 2574                     USM for SNMPv3                   April 1999


   DESCRIPTION "The total number of packets received by the SNMP
                engine which were dropped because they appeared
                outside of the authoritative SNMP engine's window.
               "
   ::= { usmStats 2 }

usmStatsUnknownUserNames OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The total number of packets received by the SNMP
                engine which were dropped because they referenced a
                user that was not known to the SNMP engine.
               "
   ::= { usmStats 3 }

usmStatsUnknownEngineIDs OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The total number of packets received by the SNMP
                engine which were dropped because they referenced an
                snmpEngineID that was not known to the SNMP engine.
               "
   ::= { usmStats 4 }

usmStatsWrongDigests OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The total number of packets received by the SNMP
                engine which were dropped because they didn't
                contain the expected digest value.
               "
   ::= { usmStats 5 }

usmStatsDecryptionErrors OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The total number of packets received by the SNMP
                engine which were dropped because they could not be
                decrypted.
               "
   ::= { usmStats 6 }

-- The usmUser Group ************************************************




Blumenthal & Wijnen         Standards Track                    [Page 37]

RFC 2574                     USM for SNMPv3                   April 1999


usmUser          OBJECT IDENTIFIER ::= { usmMIBObjects 2 }

usmUserSpinLock  OBJECT-TYPE
   SYNTAX       TestAndIncr
   MAX-ACCESS   read-write
   STATUS       current
   DESCRIPTION "An advisory lock used to allow several cooperating
                Command Generator Applications to coordinate their
                use of facilities to alter secrets in the
                usmUserTable.
               "
   ::= { usmUser 1 }

-- The table of valid users for the User-based Security Model ********

usmUserTable     OBJECT-TYPE
   SYNTAX       SEQUENCE OF UsmUserEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION "The table of users configured in the SNMP engine's
                Local Configuration Datastore (LCD).

                To create a new user (i.e., to instantiate a new
                conceptual row in this table), it is recommended to
                follow this procedure:

                  1)  GET(usmUserSpinLock.0) and save in sValue.
                  2)  SET(usmUserSpinLock.0=sValue,
                          usmUserCloneFrom=templateUser,
                          usmUserStatus=createAndWait)
                      You should use a template user to clone from
                      which has the proper auth/priv protocol defined.

                If the new user is to use privacy:

                  3)  generate the keyChange value based on the secret
                      privKey of the clone-from user and the secret key
                      to be used for the new user. Let us call this
                      pkcValue.
                  4)  GET(usmUserSpinLock.0) and save in sValue.
                  5)  SET(usmUserSpinLock.0=sValue,
                          usmUserPrivKeyChange=pkcValue
                          usmUserPublic=randomValue1)
                  6)  GET(usmUserPulic) and check it has randomValue1.
                      If not, repeat steps 4-6.

                If the new user will never use privacy:




Blumenthal & Wijnen         Standards Track                    [Page 38]

RFC 2574                     USM for SNMPv3                   April 1999


                  7)  SET(usmUserPrivProtocol=usmNoPrivProtocol)

                If the new user is to use authentication:

                  8)  generate the keyChange value based on the secret
                      authKey of the clone-from user and the secret key
                      to be used for the new user. Let us call this
                      akcValue.
                  9)  GET(usmUserSpinLock.0) and save in sValue.
                  10) SET(usmUserSpinLock.0=sValue,
                          usmUserAuthKeyChange=akcValue
                          usmUserPublic=randomValue2)
                  11) GET(usmUserPulic) and check it has randomValue2.
                      If not, repeat steps 9-11.

                If the new user will never use authentication:

                  12) SET(usmUserAuthProtocol=usmNoAuthProtocol)

                Finally, activate the new user:

                  13) SET(usmUserStatus=active)

                The new user should now be available and ready to be
                used for SNMPv3 communication. Note however that access
                to MIB data must be provided via configuration of the
                SNMP-VIEW-BASED-ACM-MIB.

                The use of usmUserSpinlock is to avoid conflicts with
                another SNMP command responder application which may
                also be acting on the usmUserTable.
               "
   ::= { usmUser 2 }

usmUserEntry     OBJECT-TYPE
   SYNTAX       UsmUserEntry
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION "A user configured in the SNMP engine's Local
                Configuration Datastore (LCD) for the User-based
                Security Model.
               "
   INDEX       { usmUserEngineID,
                 usmUserName
               }
   ::= { usmUserTable 1 }

UsmUserEntry ::= SEQUENCE



Blumenthal & Wijnen         Standards Track                    [Page 39]

RFC 2574                     USM for SNMPv3                   April 1999


   {
       usmUserEngineID         SnmpEngineID,
       usmUserName             SnmpAdminString,
       usmUserSecurityName     SnmpAdminString,
       usmUserCloneFrom        RowPointer,
       usmUserAuthProtocol     AutonomousType,
       usmUserAuthKeyChange    KeyChange,
       usmUserOwnAuthKeyChange KeyChange,
       usmUserPrivProtocol     AutonomousType,
       usmUserPrivKeyChange    KeyChange,
       usmUserOwnPrivKeyChange KeyChange,
       usmUserPublic           OCTET STRING,
       usmUserStorageType      StorageType,
       usmUserStatus           RowStatus
   }

usmUserEngineID  OBJECT-TYPE
   SYNTAX       SnmpEngineID
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION "An SNMP engine's administratively-unique identifier.

                In a simple agent, this value is always that agent's
                own snmpEngineID value.

                The value can also take the value of the snmpEngineID
                of a remote SNMP engine with which this user can
                communicate.
               "
   ::= { usmUserEntry 1 }

usmUserName      OBJECT-TYPE
   SYNTAX       SnmpAdminString (SIZE(1..32))
   MAX-ACCESS   not-accessible
   STATUS       current
   DESCRIPTION "A human readable string representing the name of
                the user.

                This is the (User-based Security) Model dependent
                security ID.
               "
   ::= { usmUserEntry 2 }

usmUserSecurityName OBJECT-TYPE
   SYNTAX       SnmpAdminString
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "A human readable string representing the user in



Blumenthal & Wijnen         Standards Track                    [Page 40]

RFC 2574                     USM for SNMPv3                   April 1999


                Security Model independent format.

                The default transformation of the User-based Security
                Model dependent security ID to the securityName and
                vice versa is the identity function so that the
                securityName is the same as the userName.
               "
   ::= { usmUserEntry 3 }

usmUserCloneFrom OBJECT-TYPE
   SYNTAX       RowPointer
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "A pointer to another conceptual row in this
                usmUserTable.  The user in this other conceptual
                row is called the clone-from user.

                When a new user is created (i.e., a new conceptual
                row is instantiated in this table), the privacy and
                authentication parameters of the new user must be
                cloned from its clone-from user. These parameters are:
                  - authentication protocol (usmUserAuthProtocol)
                  - privacy protocol (usmUserPrivProtocol)
                They will be copied regardless of what the current
                value is.

                Cloning also causes the initial values of the secret
                authentication key (authKey) and the secret encryption
                key (privKey) of the new user to be set to the same
                value as the corresponding secret of the clone-from
                user.

                The first time an instance of this object is set by
                a management operation (either at or after its
                instantiation), the cloning process is invoked.
                Subsequent writes are successful but invoke no
                action to be taken by the receiver.
                The cloning process fails with an 'inconsistentName'
                error if the conceptual row representing the
                clone-from user does not exist or is not in an active
                state when the cloning process is invoked.

                When this object is read, the ZeroDotZero OID
                is returned.
               "
   ::= { usmUserEntry 4 }

usmUserAuthProtocol OBJECT-TYPE



Blumenthal & Wijnen         Standards Track                    [Page 41]

RFC 2574                     USM for SNMPv3                   April 1999


   SYNTAX       AutonomousType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "An indication of whether messages sent on behalf of
                this user to/from the SNMP engine identified by
                usmUserEngineID, can be authenticated, and if so,
                the type of authentication protocol which is used.

                An instance of this object is created concurrently
                with the creation of any other object instance for
                the same user (i.e., as part of the processing of
                the set operation which creates the first object
                instance in the same conceptual row).

                If an initial set operation (i.e. at row creation time)
                tries to set a value for an unknown or unsupported
                protocol, then a 'wrongValue' error must be returned.

                The value will be overwritten/set when a set operation
                is performed on the corresponding instance of
                usmUserCloneFrom.

                Once instantiated, the value of such an instance of
                this object can only be changed via a set operation to
                the value of the usmNoAuthProtocol.

                If a set operation tries to change the value of an
                existing instance of this object to any value other
                than usmNoAuthProtocol, then an 'inconsistentValue'
                error must be returned.

                If a set operation tries to set the value to the
                usmNoAuthProtocol while the usmUserPrivProtocol value
                in the same row is not equal to usmNoPrivProtocol,
                then an 'inconsistentValue' error must be returned.
                That means that an SNMP command generator application
                must first ensure that the usmUserPrivProtocol is set
                to the usmNoPrivProtocol value before it can set
                the usmUserAuthProtocol value to usmNoAuthProtocol.
               "
   DEFVAL      { usmNoAuthProtocol }
   ::= { usmUserEntry 5 }

usmUserAuthKeyChange OBJECT-TYPE
   SYNTAX       KeyChange   -- typically (SIZE (0 | 32)) for HMACMD5
                            -- typically (SIZE (0 | 40)) for HMACSHA
   MAX-ACCESS   read-create
   STATUS       current



Blumenthal & Wijnen         Standards Track                    [Page 42]

RFC 2574                     USM for SNMPv3                   April 1999


   DESCRIPTION "An object, which when modified, causes the secret
                authentication key used for messages sent on behalf
                of this user to/from the SNMP engine identified by
                usmUserEngineID, to be modified via a one-way
                function.

                The associated protocol is the usmUserAuthProtocol.
                The associated secret key is the user's secret
                authentication key (authKey). The associated hash
                algorithm is the algorithm used by the user's
                usmUserAuthProtocol.

                When creating a new user, it is an 'inconsistentName'
                error for a set operation to refer to this object
                unless it is previously or concurrently initialized
                through a set operation on the corresponding instance
                of usmUserCloneFrom.

                When the value of the corresponding usmUserAuthProtocol
                is usmNoAuthProtocol, then a set is successful, but
                effectively is a no-op.

                When this object is read, the zero-length (empty)
                string is returned.

                The recommended way to do a key change is as follows:

                  1) GET(usmUserSpinLock.0) and save in sValue.
                  2) generate the keyChange value based on the old
                     (existing) secret key and the new secret key,
                     let us call this kcValue.

                If you do the key change on behalf of another user:

                  3) SET(usmUserSpinLock.0=sValue,
                         usmUserAuthKeyChange=kcValue
                         usmUserPublic=randomValue)

                If you do the key change for yourself:

                  4) SET(usmUserSpinLock.0=sValue,
                         usmUserOwnAuthKeyChange=kcValue
                         usmUserPublic=randomValue)

                If you get a response with error-status of noError,
                then the SET succeeded and the new key is active.
                If you do not get a response, then you can issue a
                GET(usmUserPublic) and check if the value is equal



Blumenthal & Wijnen         Standards Track                    [Page 43]

RFC 2574                     USM for SNMPv3                   April 1999


                to the randomValue you did send in the SET. If so, then
                the key change succeeded and the new key is active
                (probably the response got lost). If not, then the SET
                request probably never reached the target and so you
                can start over with the procedure above.
               "
   DEFVAL      { ''H }    -- the empty string
   ::= { usmUserEntry 6 }

usmUserOwnAuthKeyChange OBJECT-TYPE
   SYNTAX       KeyChange   -- typically (SIZE (0 | 32)) for HMACMD5
                            -- typically (SIZE (0 | 40)) for HMACSHA
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "Behaves exactly as usmUserAuthKeyChange, with one
                notable difference: in order for the set operation
                to succeed, the usmUserName of the operation
                requester must match the usmUserName that
                indexes the row which is targeted by this
                operation.
                In addition, the USM security model must be
                used for this operation.

                The idea here is that access to this column can be
                public, since it will only allow a user to change
                his own secret authentication key (authKey).
                Note that this can only be done once the row is active.

                When a set is received and the usmUserName of the
                requester is not the same as the umsUserName that
                indexes the row which is targeted by this operation,
                then a 'noAccess' error must be returned.

                When a set is received and the security model in use
                is not USM, then a 'noAccess' error must be returned.
               "
   DEFVAL      { ''H }    -- the empty string
   ::= { usmUserEntry 7 }

usmUserPrivProtocol OBJECT-TYPE
   SYNTAX       AutonomousType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "An indication of whether messages sent on behalf of
                this user to/from the SNMP engine identified by
                usmUserEngineID, can be protected from disclosure,
                and if so, the type of privacy protocol which is used.




Blumenthal & Wijnen         Standards Track                    [Page 44]

RFC 2574                     USM for SNMPv3                   April 1999


                An instance of this object is created concurrently
                with the creation of any other object instance for
                the same user (i.e., as part of the processing of
                the set operation which creates the first object
                instance in the same conceptual row).

                If an initial set operation (i.e. at row creation time)
                tries to set a value for an unknown or unsupported
                protocol, then a 'wrongValue' error must be returned.

                The value will be overwritten/set when a set operation
                is performed on the corresponding instance of
                usmUserCloneFrom.

                Once instantiated, the value of such an instance of
                this object can only be changed via a set operation to
                the value of the usmNoPrivProtocol.

                If a set operation tries to change the value of an
                existing instance of this object to any value other
                than usmNoPrivProtocol, then an 'inconsistentValue'
                error must be returned.

                Note that if any privacy protocol is used, then you
                must also use an authentication protocol. In other
                words, if usmUserPrivProtocol is set to anything else
                than usmNoPrivProtocol, then the corresponding instance
                of usmUserAuthProtocol cannot have a value of
                usmNoAuthProtocol. If it does, then an
                'inconsistentValue' error must be returned.
               "
   DEFVAL      { usmNoPrivProtocol }
   ::= { usmUserEntry 8 }

usmUserPrivKeyChange OBJECT-TYPE
   SYNTAX       KeyChange  -- typically (SIZE (0 | 32)) for DES
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "An object, which when modified, causes the secret
                encryption key used for messages sent on behalf
                of this user to/from the SNMP engine identified by
                usmUserEngineID, to be modified via a one-way
                function.

                The associated protocol is the usmUserPrivProtocol.
                The associated secret key is the user's secret
                privacy key (privKey). The associated hash
                algorithm is the algorithm used by the user's



Blumenthal & Wijnen         Standards Track                    [Page 45]

RFC 2574                     USM for SNMPv3                   April 1999


                usmUserAuthProtocol.

                When creating a new user, it is an 'inconsistentName'
                error for a set operation to refer to this object
                unless it is previously or concurrently initialized
                through a set operation on the corresponding instance
                of usmUserCloneFrom.

                When the value of the corresponding usmUserPrivProtocol
                is usmNoPrivProtocol, then a set is successful, but
                effectively is a no-op.

                When this object is read, the zero-length (empty)
                string is returned.
                See the description clause of usmUserAuthKeyChange for
                a recommended procedure to do a key change.
               "
   DEFVAL      { ''H }    -- the empty string
   ::= { usmUserEntry 9 }

usmUserOwnPrivKeyChange OBJECT-TYPE
   SYNTAX       KeyChange  -- typically (SIZE (0 | 32)) for DES
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "Behaves exactly as usmUserPrivKeyChange, with one
                notable difference: in order for the Set operation
                to succeed, the usmUserName of the operation
                requester must match the usmUserName that indexes
                the row which is targeted by this operation.
                In addition, the USM security model must be
                used for this operation.

                The idea here is that access to this column can be
                public, since it will only allow a user to change
                his own secret privacy key (privKey).
                Note that this can only be done once the row is active.

                When a set is received and the usmUserName of the
                requester is not the same as the umsUserName that
                indexes the row which is targeted by this operation,
                then a 'noAccess' error must be returned.

                When a set is received and the security model in use
                is not USM, then a 'noAccess' error must be returned.
               "
   DEFVAL      { ''H }    -- the empty string
   ::= { usmUserEntry 10 }




Blumenthal & Wijnen         Standards Track                    [Page 46]

RFC 2574                     USM for SNMPv3                   April 1999


usmUserPublic    OBJECT-TYPE
   SYNTAX       OCTET STRING (SIZE(0..32))
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "A publicly-readable value which can be written as part
                of the procedure for changing a user's secret
                authentication and/or privacy key, and later read to
                determine whether the change of the secret was
                effected.
               "
   DEFVAL      { ''H }  -- the empty string
   ::= { usmUserEntry 11 }

usmUserStorageType OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "The storage type for this conceptual row.

                Conceptual rows having the value 'permanent' must
                allow write-access at a minimum to:

                - usmUserAuthKeyChange, usmUserOwnAuthKeyChange
                  and usmUserPublic for a user who employs
                  authentication, and
                - usmUserPrivKeyChange, usmUserOwnPrivKeyChange
                  and usmUserPublic for a user who employs
                  privacy.

                Note that any user who employs authentication or
                privacy must allow its secret(s) to be updated and
                thus cannot be 'readOnly'.

                If an initial set operation tries to set the value to
                'readOnly' for a user who employs authentication or
                privacy, then an 'inconsistentValue' error must be
                returned.  Note that if the value has been previously
                set (implicit or explicit) to any value, then the rules
                as defined in the StorageType Textual Convention apply.

                It is an implementation issue to decide if a SET for
                a readOnly or permanent row is accepted at all. In some
                contexts this may make sense, in others it may not. If
                a SET for a readOnly or permanent row is not accepted
                at all, then a 'wrongValue' error must be returned.
               "
   DEFVAL      { nonVolatile }
   ::= { usmUserEntry 12 }



Blumenthal & Wijnen         Standards Track                    [Page 47]

RFC 2574                     USM for SNMPv3                   April 1999


usmUserStatus    OBJECT-TYPE
   SYNTAX       RowStatus
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION "The status of this conceptual row.

                Until instances of all corresponding columns are
                appropriately configured, the value of the
                corresponding instance of the usmUserStatus column
                is 'notReady'.

                In particular, a newly created row for a user who
                employs authentication, cannot be made active until the
                corresponding usmUserCloneFrom and usmUserAuthKeyChange
                have been set.

                Further, a newly created row for a user who also
                employs privacy, cannot be made active until the
                usmUserPrivKeyChange has been set.

                The RowStatus TC [RFC2579] requires that this
                DESCRIPTION clause states under which circumstances
                other objects in this row can be modified:

                The value of this object has no effect on whether
                other objects in this conceptual row can be modified,
                except for usmUserOwnAuthKeyChange and
                usmUserOwnPrivKeyChange. For these 2 objects, the
                value of usmUserStatus MUST be active.
               "
   ::= { usmUserEntry 13 }

-- Conformance Information *******************************************

usmMIBCompliances OBJECT IDENTIFIER ::= { usmMIBConformance 1 }
usmMIBGroups      OBJECT IDENTIFIER ::= { usmMIBConformance 2 }

-- Compliance statements

usmMIBCompliance MODULE-COMPLIANCE
   STATUS       current
   DESCRIPTION "The compliance statement for SNMP engines which
                implement the SNMP-USER-BASED-SM-MIB.
               "

   MODULE       -- this module
       MANDATORY-GROUPS { usmMIBBasicGroup }




Blumenthal & Wijnen         Standards Track                    [Page 48]

RFC 2574                     USM for SNMPv3                   April 1999


       OBJECT           usmUserAuthProtocol
       MIN-ACCESS       read-only
       DESCRIPTION     "Write access is not required."

       OBJECT           usmUserPrivProtocol
       MIN-ACCESS       read-only
       DESCRIPTION     "Write access is not required."

   ::= { usmMIBCompliances 1 }

-- Units of compliance
usmMIBBasicGroup OBJECT-GROUP
   OBJECTS     {
                 usmStatsUnsupportedSecLevels,
                 usmStatsNotInTimeWindows,
                 usmStatsUnknownUserNames,
                 usmStatsUnknownEngineIDs,
                 usmStatsWrongDigests,
                 usmStatsDecryptionErrors,
                 usmUserSpinLock,
                 usmUserSecurityName,
                 usmUserCloneFrom,
                 usmUserAuthProtocol,
                 usmUserAuthKeyChange,
                 usmUserOwnAuthKeyChange,
                 usmUserPrivProtocol,
                 usmUserPrivKeyChange,
                 usmUserOwnPrivKeyChange,
                 usmUserPublic,
                 usmUserStorageType,
                 usmUserStatus
               }
   STATUS       current
   DESCRIPTION "A collection of objects providing for configuration
                of an SNMP engine which implements the SNMP
                User-based Security Model.
               "
   ::= { usmMIBGroups 1 }

END











Blumenthal & Wijnen         Standards Track                    [Page 49]

RFC 2574                     USM for SNMPv3                   April 1999


6.  HMAC-MD5-96 Authentication Protocol

  This section describes the HMAC-MD5-96 authentication protocol.  This
  authentication protocol is the first defined for the User-based
  Security Model. It uses MD5 hash-function which is described in
  [MD5], in HMAC mode described in [RFC2104], truncating the output to
  96 bits.

  This protocol is identified by usmHMACMD5AuthProtocol.

  Over time, other authentication protocols may be defined either as a
  replacement of this protocol or in addition to this protocol.

6.1.  Mechanisms

  - In support of data integrity, a message digest algorithm is
    required.  A digest is calculated over an appropriate portion of an
    SNMP message and included as part of the message sent to the
    recipient.

  - In support of data origin authentication and data integrity,
    a secret value is prepended to SNMP message prior to computing the
    digest; the calculated digest is partially inserted into the SNMP
    message prior to transmission, and the prepended value is not
    transmitted.  The secret value is shared by all SNMP engines
    authorized to originate messages on behalf of the appropriate user.

6.1.1.  Digest Authentication Mechanism

  The Digest Authentication Mechanism defined in this memo provides
  for:

  - verification of the integrity of a received message, i.e., the
    message received is the message sent.

    The integrity of the message is protected by computing a digest
    over an appropriate portion of the message.  The digest is computed
    by the originator of the message, transmitted with the message, and
    verified by the recipient of the message.

  - verification of the user on whose behalf the message was generated.

    A secret value known only to SNMP engines authorized to generate
    messages on behalf of a user is used in HMAC mode (see [RFC2104]).
    It also recommends the hash-function output used as Message
    Authentication Code, to be truncated.





Blumenthal & Wijnen         Standards Track                    [Page 50]

RFC 2574                     USM for SNMPv3                   April 1999


  This protocol uses the MD5 [MD5] message digest algorithm.  A 128-bit
  MD5 digest is calculated in a special (HMAC) way over the designated
  portion of an SNMP message and the first 96 bits of this digest is
  included as part of the message sent to the recipient. The size of
  the digest carried in a message is 12 octets. The size of the private
  authentication key (the secret) is 16 octets. For the details see
  section 6.3.

6.2.  Elements of the Digest Authentication Protocol

  This section contains definitions required to realize the
  authentication module defined in this section of this memo.

6.2.1.  Users

  Authentication using this authentication protocol makes use of a
  defined set of userNames. For any user on whose behalf a message must
  be authenticated at a particular SNMP engine, that SNMP engine must
  have knowledge of that user. An SNMP engine that wishes to
  communicate with another SNMP engine must also have knowledge of a
  user known to that engine, including knowledge of the applicable
  attributes of that user.

  A user and its attributes are defined as follows:

  <userName>
    A string representing the name of the user.
  <authKey>
    A user's secret key to be used when calculating a digest.
    It MUST be 16 octets long for MD5.

6.2.2.  msgAuthoritativeEngineID

  The msgAuthoritativeEngineID value contained in an authenticated
  message specifies the authoritative SNMP engine for that particular
  message (see the definition of SnmpEngineID in the SNMP Architecture
  document [RFC2571]).

  The user's (private) authentication key is normally different at each
  authoritative SNMP engine and so the snmpEngineID is used to select
  the proper key for the authentication process.

6.2.3.  SNMP Messages Using this Authentication Protocol

  Messages using this authentication protocol carry a
  msgAuthenticationParameters field as part of the
  msgSecurityParameters.  For this protocol, the




Blumenthal & Wijnen         Standards Track                    [Page 51]

RFC 2574                     USM for SNMPv3                   April 1999


  msgAuthenticationParameters field is the serialized OCTET STRING
  representing the first 12 octets of the HMAC-MD5-96 output done over
  the wholeMsg.

  The digest is calculated over the wholeMsg so if a message is
  authenticated, that also means that all the fields in the message are
  intact and have not been tampered with.

6.2.4.  Services provided by the HMAC-MD5-96 Authentication Module

  This section describes the inputs and outputs that the HMAC-MD5-96
  Authentication module expects and produces when the User-based
  Security module calls the HMAC-MD5-96 Authentication module for
  services.

6.2.4.1.  Services for Generating an Outgoing SNMP Message

  The HMAC-MD5-96 authentication protocol assumes that the selection of
  the authKey is done by the caller and that the caller passes the
  secret key to be used.

  Upon completion the authentication module returns statusInformation
  and, if the message digest was correctly calculated, the wholeMsg
  with the digest inserted at the proper place. The abstract service
  primitive is:

  statusInformation =              -- success or failure
    authenticateOutgoingMsg(
    IN   authKey                   -- secret key for authentication
    IN   wholeMsg                  -- unauthenticated complete message
    OUT  authenticatedWholeMsg     -- complete authenticated message
         )

  The abstract data elements are:

    statusInformation
      An indication of whether the authentication process was
      successful.  If not it is an indication of the problem.
    authKey
      The secret key to be used by the authentication algorithm.
      The length of this key MUST be 16 octets.
    wholeMsg
      The message to be authenticated.
    authenticatedWholeMsg
      The authenticated message (including inserted digest) on output.






Blumenthal & Wijnen         Standards Track                    [Page 52]

RFC 2574                     USM for SNMPv3                   April 1999


  Note, that authParameters field is filled by the authentication
  module and this module and this field should be already present in
  the wholeMsg before the Message Authentication Code (MAC) is
  generated.

6.2.4.2.  Services for Processing an Incoming SNMP Message

  The HMAC-MD5-96 authentication protocol assumes that the selection of
  the authKey is done by the caller and that the caller passes the
  secret key to be used.

  Upon completion the authentication module returns statusInformation
  and, if the message digest was correctly calculated, the wholeMsg as
  it was processed. The abstract service primitive is:

  statusInformation =              -- success or failure
    authenticateIncomingMsg(
    IN   authKey                   -- secret key for authentication
    IN   authParameters            -- as received on the wire
    IN   wholeMsg                  -- as received on the wire
    OUT  authenticatedWholeMsg     -- complete authenticated message
      )

  The abstract data elements are:

    statusInformation
      An indication of whether the authentication process was
      successful.  If not it is an indication of the problem.
    authKey
      The secret key to be used by the authentication algorithm.
      The length of this key MUST be 16 octets.
    authParameters
      The authParameters from the incoming message.
    wholeMsg
      The message to be authenticated on input and the authenticated
      message on output.
    authenticatedWholeMsg
      The whole message after the authentication check is complete.

6.3.  Elements of Procedure

  This section describes the procedures for the HMAC-MD5-96
  authentication protocol.








Blumenthal & Wijnen         Standards Track                    [Page 53]

RFC 2574                     USM for SNMPv3                   April 1999


6.3.1.  Processing an Outgoing Message

  This section describes the procedure followed by an SNMP engine
  whenever it must authenticate an outgoing message using the
  usmHMACMD5AuthProtocol.

  1) The msgAuthenticationParameters field is set to the serialization,
     according to the rules in [RFC1906], of an OCTET STRING containing
     12 zero octets.

  2) From the secret authKey, two keys K1 and K2 are derived:

        a) extend the authKey to 64 octets by appending 48 zero
           octets; save it as extendedAuthKey
        b) obtain IPAD by replicating the octet 0x36 64 times;
        c) obtain K1 by XORing extendedAuthKey with IPAD;
        d) obtain OPAD by replicating the octet 0x5C 64 times;
        e) obtain K2 by XORing extendedAuthKey with OPAD.

  3) Prepend K1 to the wholeMsg and calculate MD5 digest over it
     according to [MD5].

  4) Prepend K2 to the result of the step 4 and calculate MD5 digest
     over it according to [MD5]. Take the first 12 octets of the final
     digest - this is Message Authentication Code (MAC).

  5) Replace the msgAuthenticationParameters field with MAC obtained
     in the step 4.

  6) The authenticatedWholeMsg is then returned to the caller
     together with statusInformation indicating success.

6.3.2.  Processing an Incoming Message

  This section describes the procedure followed by an SNMP engine
  whenever it must authenticate an incoming message using the
  usmHMACMD5AuthProtocol.

  1)  If the digest received in the msgAuthenticationParameters field
      is not 12 octets long, then an failure and an errorIndication
      (authenticationError) is returned to the calling module.

  2)  The MAC received in the msgAuthenticationParameters field
      is saved.

  3)  The digest in the msgAuthenticationParameters field is replaced
      by the 12 zero octets.




Blumenthal & Wijnen         Standards Track                    [Page 54]

RFC 2574                     USM for SNMPv3                   April 1999


  4)  From the secret authKey, two keys K1 and K2 are derived:

        a) extend the authKey to 64 octets by appending 48 zero
           octets; save it as extendedAuthKey
        b) obtain IPAD by replicating the octet 0x36 64 times;
        c) obtain K1 by XORing extendedAuthKey with IPAD;
        d) obtain OPAD by replicating the octet 0x5C 64 times;
        e) obtain K2 by XORing extendedAuthKey with OPAD.

  5)  The MAC is calculated over the wholeMsg:

        a) prepend K1 to the wholeMsg and calculate the MD5 digest
           over it;
        b) prepend K2 to the result of step 5.a and calculate the
           MD5 digest over it;
        c) first 12 octets of the result of step 5.b is the MAC.

      The msgAuthenticationParameters field is replaced with the MAC
      value that was saved in step 2.

  6)  Then the newly calculated MAC is compared with the MAC
      saved in step 2. If they do not match, then an failure and an
      errorIndication (authenticationFailure) is returned to the
      calling module.

  7)  The authenticatedWholeMsg and statusInformation indicating
      success are then returned to the caller.


7.  HMAC-SHA-96 Authentication Protocol

  This section describes the HMAC-SHA-96 authentication protocol.  This
  protocol uses the SHA hash-function which is described in [SHA-NIST],
  in HMAC mode described in [RFC2104], truncating the output to 96
  bits.

  This protocol is identified by usmHMACSHAAuthProtocol.

  Over time, other authentication protocols may be defined either as a
  replacement of this protocol or in addition to this protocol.

7.1.  Mechanisms

  - In support of data integrity, a message digest algorithm is
    required.  A digest is calculated over an appropriate portion of an
    SNMP message and included as part of the message sent to the
    recipient.




Blumenthal & Wijnen         Standards Track                    [Page 55]

RFC 2574                     USM for SNMPv3                   April 1999


  - In support of data origin authentication and data integrity,
    a secret value is prepended to the SNMP message prior to computing
    the digest; the calculated digest is then partially inserted into
    the message prior to transmission. The prepended secret is not
    transmitted.  The secret value is shared by all SNMP engines
    authorized to originate messages on behalf of the appropriate user.

7.1.1.  Digest Authentication Mechanism

  The Digest Authentication Mechanism defined in this memo provides
  for:

  - verification of the integrity of a received message, i.e., the
    the message received is the message sent.

    The integrity of the message is protected by computing a digest
    over an appropriate portion of the message.  The digest is computed
    by the originator of the message, transmitted with the message, and
    verified by the recipient of the message.

  - verification of the user on whose behalf the message was generated.

    A secret value known only to SNMP engines authorized to generate
    messages on behalf of a user is used in HMAC mode (see [RFC2104]).
    It also recommends the hash-function output used as Message
    Authentication Code, to be truncated.

  This mechanism uses the SHA [SHA-NIST] message digest algorithm.  A
  160-bit SHA digest is calculated in a special (HMAC) way over the
  designated portion of an SNMP message and the first 96 bits of this
  digest is included as part of the message sent to the recipient. The
  size of the digest carried in a message is 12 octets. The size of the
  private authentication key (the secret) is 20 octets. For the details
  see section 7.3.

7.2.  Elements of the HMAC-SHA-96 Authentication Protocol

  This section contains definitions required to realize the
  authentication module defined in this section of this memo.

7.2.1.  Users

  Authentication using this authentication protocol makes use of a
  defined set of userNames.  For any user on whose behalf a message
  must be authenticated at a particular SNMP engine, that SNMP engine
  must have knowledge of that user.  An SNMP engine that wishes to





Blumenthal & Wijnen         Standards Track                    [Page 56]

RFC 2574                     USM for SNMPv3                   April 1999


  communicate with another SNMP engine must also have knowledge of a
  user known to that engine, including knowledge of the applicable
  attributes of that user.

  A user and its attributes are defined as follows:

  <userName>
    A string representing the name of the user.
  <authKey>
    A user's secret key to be used when calculating a digest.
    It MUST be 20 octets long for SHA.

7.2.2.  msgAuthoritativeEngineID

  The msgAuthoritativeEngineID value contained in an authenticated
  message specifies the authoritative SNMP engine for that particular
  message (see the definition of SnmpEngineID in the SNMP Architecture
  document [RFC2571]).

  The user's (private) authentication key is normally different at each
  authoritative SNMP engine and so the snmpEngineID is used to select
  the proper key for the authentication process.

7.2.3.  SNMP Messages Using this Authentication Protocol

  Messages using this authentication protocol carry a
  msgAuthenticationParameters field as part of the
  msgSecurityParameters. For this protocol, the
  msgAuthenticationParameters field is the serialized OCTET STRING
  representing the first 12 octets of HMAC-SHA-96 output done over the
  wholeMsg.

  The digest is calculated over the wholeMsg so if a message is
  authenticated, that also means that all the fields in the message are
  intact and have not been tampered with.

7.2.4.  Services provided by the HMAC-SHA-96 Authentication Module

  This section describes the inputs and outputs that the HMAC-SHA-96
  Authentication module expects and produces when the User-based
  Security module calls the HMAC-SHA-96 Authentication module for
  services.

7.2.4.1.  Services for Generating an Outgoing SNMP Message

  HMAC-SHA-96 authentication protocol assumes that the selection of the
  authKey is done by the caller and that the caller passes the secret
  key to be used.



Blumenthal & Wijnen         Standards Track                    [Page 57]

RFC 2574                     USM for SNMPv3                   April 1999


  Upon completion the authentication module returns statusInformation
  and, if the message digest was correctly calculated, the wholeMsg
  with the digest inserted at the proper place. The abstract service
  primitive is:

  statusInformation =              -- success or failure
    authenticateOutgoingMsg(
    IN   authKey                   -- secret key for authentication
    IN   wholeMsg                  -- unauthenticated complete message
    OUT  authenticatedWholeMsg     -- complete authenticated message
         )

  The abstract data elements are:

    statusInformation
      An indication of whether the authentication process was
      successful.  If not it is an indication of the problem.
    authKey
      The secret key to be used by the authentication algorithm.
      The length of this key MUST be 20 octets.
    wholeMsg
      The message to be authenticated.
    authenticatedWholeMsg
      The authenticated message (including inserted digest) on output.

  Note, that authParameters field is filled by the authentication
  module and this field should be already present in the wholeMsg
  before the Message Authentication Code (MAC) is generated.

7.2.4.2.  Services for Processing an Incoming SNMP Message

  HMAC-SHA-96 authentication protocol assumes that the selection of the
  authKey is done by the caller and that the caller passes the secret
  key to be used.

  Upon completion the authentication module returns statusInformation
  and, if the message digest was correctly calculated, the wholeMsg as
  it was processed. The abstract service primitive is:

  statusInformation =              -- success or failure
    authenticateIncomingMsg(
    IN   authKey                   -- secret key for authentication
    IN   authParameters            -- as received on the wire
    IN   wholeMsg                  -- as received on the wire
    OUT  authenticatedWholeMsg     -- complete authenticated message
      )





Blumenthal & Wijnen         Standards Track                    [Page 58]

RFC 2574                     USM for SNMPv3                   April 1999


  The abstract data elements are:

    statusInformation
      An indication of whether the authentication process was
      successful.  If not it is an indication of the problem.
    authKey
      The secret key to be used by the authentication algorithm.
      The length of this key MUST be 20 octets.
    authParameters
      The authParameters from the incoming message.
    wholeMsg
      The message to be authenticated on input and the authenticated
      message on output.
    authenticatedWholeMsg
      The whole message after the authentication check is complete.

7.3.  Elements of Procedure

  This section describes the procedures for the HMAC-SHA-96
  authentication protocol.

7.3.1.  Processing an Outgoing Message

  This section describes the procedure followed by an SNMP engine
  whenever it must authenticate an outgoing message using the
  usmHMACSHAAuthProtocol.

  1) The msgAuthenticationParameters field is set to the
     serialization, according to the rules in [RFC1906], of an OCTET
     STRING containing 12 zero octets.

  2) From the secret authKey, two keys K1 and K2 are derived:

        a) extend the authKey to 64 octets by appending 44 zero
           octets; save it as extendedAuthKey
        b) obtain IPAD by replicating the octet 0x36 64 times;
        c) obtain K1 by XORing extendedAuthKey with IPAD;
        d) obtain OPAD by replicating the octet 0x5C 64 times;
        e) obtain K2 by XORing extendedAuthKey with OPAD.

  3) Prepend K1 to the wholeMsg and calculate the SHA digest over it
     according to [SHA-NIST].

  4) Prepend K2 to the result of the step 4 and calculate SHA digest
     over it according to [SHA-NIST]. Take the first 12 octets of the
     final digest - this is Message Authentication Code (MAC).





Blumenthal & Wijnen         Standards Track                    [Page 59]

RFC 2574                     USM for SNMPv3                   April 1999


  5) Replace the msgAuthenticationParameters field with MAC obtained
     in the step 5.

  6) The authenticatedWholeMsg is then returned to the caller
     together with statusInformation indicating success.

7.3.2.  Processing an Incoming Message

  This section describes the procedure followed by an SNMP engine
  whenever it must authenticate an incoming message using the
  usmHMACSHAAuthProtocol.

  1)  If the digest received in the msgAuthenticationParameters field
      is not 12 octets long, then an failure and an errorIndication
      (authenticationError) is returned to the calling module.

  2)  The MAC received in the msgAuthenticationParameters field
      is saved.

  3)  The digest in the msgAuthenticationParameters field is
      replaced by the 12 zero octets.

  4)  From the secret authKey, two keys K1 and K2 are derived:

        a) extend the authKey to 64 octets by appending 44 zero
           octets; save it as extendedAuthKey
        b) obtain IPAD by replicating the octet 0x36 64 times;
        c) obtain K1 by XORing extendedAuthKey with IPAD;
        d) obtain OPAD by replicating the octet 0x5C 64 times;
        e) obtain K2 by XORing extendedAuthKey with OPAD.

  5)  The MAC is calculated over the wholeMsg:

        a) prepend K1 to the wholeMsg and calculate the SHA digest
           over it;
        b) prepend K2 to the result of step 5.a and calculate the
           SHA digest over it;
        c) first 12 octets of the result of step 5.b is the MAC.

      The msgAuthenticationParameters field is replaced with the MAC
      value that was saved in step 2.

  6)  The the newly calculated MAC is compared with the MAC saved in
      step 2. If they do not match, then a failure and an
      errorIndication (authenticationFailure) are returned to the
      calling module.





Blumenthal & Wijnen         Standards Track                    [Page 60]

RFC 2574                     USM for SNMPv3                   April 1999


  7)  The authenticatedWholeMsg and statusInformation indicating
      success are then returned to the caller.

8.  CBC-DES Symmetric Encryption Protocol

  This section describes the CBC-DES Symmetric Encryption Protocol.
  This protocol is the first privacy protocol defined for the User-
  based Security Model.

  This protocol is identified by usmDESPrivProtocol.

  Over time, other privacy protocols may be defined either as a
  replacement of this protocol or in addition to this protocol.

8.1.  Mechanisms

  - In support of data confidentiality, an encryption algorithm is
    required.  An appropriate portion of the message is encrypted prior
    to being transmitted. The User-based Security Model specifies that
    the scopedPDU is the portion of the message that needs to be
    encrypted.

  - A secret value in combination with a timeliness value is used
    to create the en/decryption key and the initialization vector.  The
    secret value is shared by all SNMP engines authorized to originate
    messages on behalf of the appropriate user.

8.1.1.  Symmetric Encryption Protocol

  The Symmetric Encryption Protocol defined in this memo provides
  support for data confidentiality.  The designated portion of an SNMP
  message is encrypted and included as part of the message sent to the
  recipient.

  Two organizations have published specifications defining the DES:
  the National Institute of Standards and Technology (NIST) [DES-NIST]
  and the American National Standards Institute [DES-ANSI].  There is a
  companion Modes of Operation specification for each definition
  ([DESO-NIST] and [DESO-ANSI], respectively).

  The NIST has published three additional documents that implementors
  may find useful.

  - There is a document with guidelines for implementing and using
    the DES, including functional specifications for the DES and its
    modes of operation [DESG-NIST].





Blumenthal & Wijnen         Standards Track                    [Page 61]

RFC 2574                     USM for SNMPv3                   April 1999


  - There is a specification of a validation test suite for the DES
    [DEST-NIST].  The suite is designed to test all aspects of the DES
    and is useful for pinpointing specific problems.

  - There is a specification of a maintenance test for the DES
    [DESM-NIST].  The test utilizes a minimal amount of data and
    processing to test all components of the DES.  It provides a simple
    yes-or-no indication of correct operation and is useful to run as
    part of an initialization step, e.g., when a computer re-boots.

8.1.1.1.  DES key and Initialization Vector.

  The first 8 octets of the 16-octet secret (private privacy key) are
  used as a DES key.  Since DES uses only 56 bits, the Least
  Significant Bit in each octet is disregarded.

  The Initialization Vector for encryption is obtained using the
  following procedure.

  The last 8 octets of the 16-octet secret (private privacy key) are
  used as pre-IV.

  In order to ensure that the IV for two different packets encrypted by
  the same key, are not the same (i.e., the IV does not repeat) we need
  to "salt" the pre-IV with something unique per packet.  An 8-octet
  string is used as the "salt".  The concatenation of the generating
  SNMP engine's 32-bit snmpEngineBoots and a local 32-bit integer, that
  the encryption engine maintains, is input to the "salt".  The 32-bit
  integer is initialized to an arbitrary value at boot time.

  The 32-bit snmpEngineBoots is converted to the first 4 octets (Most
  Significant Byte first) of our "salt".  The 32-bit integer is then
  converted to the last 4 octet (Most Significant Byte first) of our
  "salt".  The resulting "salt" is then XOR-ed with the pre-IV to
  obtain the IV.  The 8-octet "salt" is then put into the
  privParameters field encoded as an OCTET STRING.  The "salt" integer
  is then modified.  We recommend that it be incremented by one and
  wrap when it reaches the maximum value.

  How exactly the value of the "salt" (and thus of the IV) varies, is
  an implementation issue, as long as the measures are taken to avoid
  producing a duplicate IV.

  The "salt" must be placed in the privParameters field to enable the
  receiving entity to compute the correct IV and to decrypt the
  message.





Blumenthal & Wijnen         Standards Track                    [Page 62]

RFC 2574                     USM for SNMPv3                   April 1999


8.1.1.2.  Data Encryption.

  The data to be encrypted is treated as sequence of octets. Its length
  should be an integral multiple of 8 - and if it is not, the data is
  padded at the end as necessary.  The actual pad value is irrelevant.

  The data is encrypted in Cipher Block Chaining mode.

  The plaintext is divided into 64-bit blocks.

  The plaintext for each block is XOR-ed with the ciphertext of the
  previous block, the result is encrypted and the output of the
  encryption is the ciphertext for the block.  This procedure is
  repeated until there are no more plaintext blocks.

  For the very first block, the Initialization Vector is used instead
  of the ciphertext of the previous block.

8.1.1.3.  Data Decryption

  Before decryption, the encrypted data length is verified.  If the
  length of the OCTET STRING to be decrypted is not an integral
  multiple of 8 octets, the decryption process is halted and an
  appropriate exception noted.  When decrypting, the padding is
  ignored.

  The first ciphertext block is decrypted, the decryption output is
  XOR-ed with the Initialization Vector, and the result is the first
  plaintext block.

  For each subsequent block, the ciphertext block is decrypted, the
  decryption output is XOR-ed with the previous ciphertext block and
  the result is the plaintext block.

8.2.  Elements of the DES Privacy Protocol

  This section contains definitions required to realize the privacy
  module defined by this memo.

8.2.1.  Users

  Data en/decryption using this Symmetric Encryption Protocol makes use
  of a defined set of userNames.  For any user on whose behalf a
  message must be en/decrypted at a particular SNMP engine, that SNMP
  engine must have knowledge of that user.  An SNMP engine that wishes
  to communicate with another SNMP engine must also have knowledge of a
  user known to that SNMP engine, including knowledge of the applicable
  attributes of that user.



Blumenthal & Wijnen         Standards Track                    [Page 63]

RFC 2574                     USM for SNMPv3                   April 1999


  A user and its attributes are defined as follows:

  <userName>
    An octet string representing the name of the user.

  <privKey>
    A user's secret key to be used as input for the DES key and IV.
    The length of this key MUST be 16 octets.

8.2.2.  msgAuthoritativeEngineID

  The msgAuthoritativeEngineID value contained in an authenticated
  message specifies the authoritative SNMP engine for that particular
  message (see the definition of SnmpEngineID in the SNMP Architecture
  document [RFC2571]).

  The user's (private) privacy key is normally different at each
  authoritative SNMP engine and so the snmpEngineID is used to select
  the proper key for the en/decryption process.

8.2.3.  SNMP Messages Using this Privacy Protocol

  Messages using this privacy protocol carry a msgPrivacyParameters
  field as part of the msgSecurityParameters. For this protocol, the
  msgPrivacyParameters field is the serialized OCTET STRING
  representing the "salt" that was used to create the IV.

8.2.4.  Services provided by the DES Privacy Module

  This section describes the inputs and outputs that the DES Privacy
  module expects and produces when the User-based Security module
  invokes the DES Privacy module for services.

8.2.4.1.  Services for Encrypting Outgoing Data

  This DES privacy protocol assumes that the selection of the privKey
  is done by the caller and that the caller passes the secret key to be
  used.

  Upon completion the privacy module returns statusInformation and, if
  the encryption process was successful, the encryptedPDU and the
  msgPrivacyParameters encoded as an OCTET STRING.  The abstract
  service primitive is:

  statusInformation =              -- success of failure
    encryptData(
    IN    encryptKey               -- secret key for encryption
    IN    dataToEncrypt            -- data to encrypt (scopedPDU)



Blumenthal & Wijnen         Standards Track                    [Page 64]

RFC 2574                     USM for SNMPv3                   April 1999


    OUT   encryptedData            -- encrypted data (encryptedPDU)
    OUT   privParameters           -- filled in by service provider
          )

  The abstract data elements are:

    statusInformation
      An indication of the success or failure of the encryption
      process.  In case of failure, it is an indication of the error.
    encryptKey
      The secret key to be used by the encryption algorithm.
      The length of this key MUST be 16 octets.
    dataToEncrypt
      The data that must be encrypted.
    encryptedData
      The encrypted data upon successful completion.
    privParameters
      The privParameters encoded as an OCTET STRING.

8.2.4.2.  Services for Decrypting Incoming Data

  This DES privacy protocol assumes that the selection of the privKey
  is done by the caller and that the caller passes the secret key to be
  used.

  Upon completion the privacy module returns statusInformation and, if
  the decryption process was successful, the scopedPDU in plain text.
  The abstract service primitive is:

  statusInformation =
    decryptData(
    IN    decryptKey               -- secret key for decryption
    IN    privParameters           -- as received on the wire
    IN    encryptedData            -- encrypted data (encryptedPDU)
    OUT   decryptedData            -- decrypted data (scopedPDU)
          )

  The abstract data elements are:

    statusInformation
      An indication whether the data was successfully decrypted
      and if not an indication of the error.
    decryptKey
      The secret key to be used by the decryption algorithm.
      The length of this key MUST be 16 octets.
    privParameters
      The "salt" to be used to calculate the IV.




Blumenthal & Wijnen         Standards Track                    [Page 65]

RFC 2574                     USM for SNMPv3                   April 1999


    encryptedData
      The data to be decrypted.
    decryptedData
      The decrypted data.

8.3.  Elements of Procedure.

  This section describes the procedures for the DES privacy protocol.

8.3.1.  Processing an Outgoing Message

  This section describes the procedure followed by an SNMP engine
  whenever it must encrypt part of an outgoing message using the
  usmDESPrivProtocol.

  1)  The secret cryptKey is used to construct the DES encryption key,
      the "salt" and the DES pre-IV (from which the IV is computed as
      described in section 8.1.1.1).

  2)  The privParameters field is set to the serialization according
      to the rules in [RFC1906] of an OCTET STRING representing the the
      "salt" string.

  3)  The scopedPDU is encrypted (as described in section 8.1.1.2)
      and the encrypted data is serialized according to the rules in
      [RFC1906] as an OCTET STRING.

  4)  The serialized OCTET STRING representing the encrypted
      scopedPDU together with the privParameters and statusInformation
      indicating success is returned to the calling module.

8.3.2.  Processing an Incoming Message

  This section describes the procedure followed by an SNMP engine
  whenever it must decrypt part of an incoming message using the
  usmDESPrivProtocol.

  1)  If the privParameters field is not an 8-octet OCTET STRING,
      then an error indication (decryptionError) is returned to the
      calling module.

  2)  The "salt" is extracted from the privParameters field.

  3)  The secret cryptKey and the "salt" are then used to construct the
      DES decryption key and pre-IV (from which the IV is computed as
      described in section 8.1.1.1).





Blumenthal & Wijnen         Standards Track                    [Page 66]

RFC 2574                     USM for SNMPv3                   April 1999


  4)  The encryptedPDU is then decrypted (as described in
      section 8.1.1.3).

  5)  If the encryptedPDU cannot be decrypted, then an error
      indication (decryptionError) is returned to the calling module.

  6)  The decrypted scopedPDU and statusInformation indicating
      success are returned to the calling module.

9.  Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.

10.  Acknowledgements

  This document is the result of the efforts of the SNMPv3 Working
  Group.  Some special thanks are in order to the following SNMPv3 WG
  members:

     Harald Tveit Alvestrand (Maxware)
     Dave Battle (SNMP Research, Inc.)
     Alan Beard (Disney Worldwide Services)
     Paul Berrevoets (SWI Systemware/Halcyon Inc.)
     Martin Bjorklund (Ericsson)
     Uri Blumenthal (IBM T.J. Watson Research Center)
     Jeff Case (SNMP Research, Inc.)
     John Curran (BBN)
     Mike Daniele (Compaq Computer Corporation))
     T. Max Devlin (Eltrax Systems)
     John Flick (Hewlett Packard)



Blumenthal & Wijnen         Standards Track                    [Page 67]

RFC 2574                     USM for SNMPv3                   April 1999


     Rob Frye (MCI)
     Wes Hardaker (U.C.Davis, Information Technology - D.C.A.S.)
     David Harrington (Cabletron Systems Inc.)
     Lauren Heintz (BMC Software, Inc.)
     N.C. Hien (IBM T.J. Watson Research Center)
     Michael Kirkham (InterWorking Labs, Inc.)
     Dave Levi (SNMP Research, Inc.)
     Louis A Mamakos (UUNET Technologies Inc.)
     Joe Marzot (Nortel Networks)
     Paul Meyer (Secure Computing Corporation)
     Keith McCloghrie (Cisco Systems)
     Bob Moore (IBM)
     Russ Mundy (TIS Labs at Network Associates)
     Bob Natale (ACE*COMM Corporation)
     Mike O'Dell (UUNET Technologies Inc.)
     Dave Perkins (DeskTalk)
     Peter Polkinghorne (Brunel University)
     Randy Presuhn (BMC Software, Inc.)
     David Reeder (TIS Labs at Network Associates)
     David Reid (SNMP Research, Inc.)
     Aleksey Romanov (Quality Quorum)
     Shawn Routhier (Epilogue)
     Juergen Schoenwaelder (TU Braunschweig)
     Bob Stewart (Cisco Systems)
     Mike Thatcher (Independent Consultant)
     Bert Wijnen (IBM T.J. Watson Research Center)

  The document is based on recommendations of the IETF Security and
  Administrative Framework Evolution for SNMP Advisory Team.  Members
  of that Advisory Team were:

     David Harrington (Cabletron Systems Inc.)
     Jeff Johnson (Cisco Systems)
     David Levi (SNMP Research Inc.)
     John Linn (Openvision)
     Russ Mundy (Trusted Information Systems) chair
     Shawn Routhier (Epilogue)
     Glenn Waters (Nortel)
     Bert Wijnen (IBM T. J. Watson Research Center)

  As recommended by the Advisory Team and the SNMPv3 Working Group
  Charter, the design incorporates as much as practical from previous
  RFCs and drafts. As a result, special thanks are due to the authors
  of previous designs known as SNMPv2u and SNMPv2*:

     Jeff Case (SNMP Research, Inc.)
     David Harrington (Cabletron Systems Inc.)
     David Levi (SNMP Research, Inc.)



Blumenthal & Wijnen         Standards Track                    [Page 68]

RFC 2574                     USM for SNMPv3                   April 1999


     Keith McCloghrie (Cisco Systems)
     Brian O'Keefe (Hewlett Packard)
     Marshall T. Rose (Dover Beach Consulting)
     Jon Saperia (BGS Systems Inc.)
     Steve Waldbusser (International Network Services)
     Glenn W. Waters (Bell-Northern Research Ltd.)

11.  Security Considerations

11.1.  Recommended Practices

  This section describes practices that contribute to the secure,
  effective operation of the mechanisms defined in this memo.

  - An SNMP engine must discard SNMP Response messages that do not
    correspond to any currently outstanding Request message. It is the
    responsibility of the Message Processing module to take care of
    this. For example it can use a msgID for that.

    An SNMP Command Generator Application must discard any Response
    Class PDU for which there is no currently outstanding Confirmed
    Class PDU; for example for SNMPv2 [RFC1905] PDUs, the request-id
    component in the PDU can be used to correlate Responses to
    outstanding Requests.

    Although it would be typical for an SNMP engine and an SNMP Command
    Generator Application to do this as a matter of course, when using
    these security protocols it is significant due to the possibility
    of message duplication (malicious or otherwise).

  - If an SNMP engine uses a msgID for correlating Response messages
    to outstanding Request messages, then it MUST use different msgIDs
    in all such Request messages that it sends out during a Time Window
    (150 seconds) period.

    A Command Generator or Notification Originator Application MUST use
    different request-ids in all Request PDUs that it sends out during
    a TimeWindow (150 seconds) period.

    This must be done to protect against the possibility of message
    duplication (malicious or otherwise).

    For example, starting operations with a msgID and/or request-id
    value of zero is not a good idea.  Initializing them with an
    unpredictable number (so they do not start out the same after each
    reboot) and then incrementing by one would be acceptable.





Blumenthal & Wijnen         Standards Track                    [Page 69]

RFC 2574                     USM for SNMPv3                   April 1999


  - An SNMP engine should perform time synchronization using
    authenticated messages in order to protect against the possibility
    of message duplication (malicious or otherwise).

  - When sending state altering messages to a managed authoritative
    SNMP engine, a Command Generator Application should delay sending
    successive messages to that managed SNMP engine until a positive
    acknowledgement is received for the previous message or until the
    previous message expires.

    No message ordering is imposed by the SNMP. Messages may be
    received in any order relative to their time of generation and each
    will be processed in the ordered received.  Note that when an
    authenticated message is sent to a managed SNMP engine, it will be
    valid for a period of time of approximately 150 seconds under
    normal circumstances, and is subject to replay during this period.
    Indeed, an SNMP engine and SNMP Command Generator Applications must
    cope with the loss and re-ordering of messages resulting from
    anomalies in the network as a matter of course.

    However, a managed object, snmpSetSerialNo [RFC1907], is
    specifically defined for use with SNMP Set operations in order to
    provide a mechanism to ensure that the processing of SNMP messages
    occurs in a specific order.

  - The frequency with which the secrets of a User-based Security
    Model user should be changed is indirectly related to the frequency
    of their use.

    Protecting the secrets from disclosure is critical to the overall
    security of the protocols.  Frequent use of a secret provides a
    continued source of data that may be useful to a cryptanalyst in
    exploiting known or perceived weaknesses in an algorithm.  Frequent
    changes to the secret avoid this vulnerability.

    Changing a secret after each use is generally regarded as the most
    secure practice, but a significant amount of overhead may be
    associated with that approach.

    Note, too, in a local environment the threat of disclosure may be
    less significant, and as such the changing of secrets may be less
    frequent.  However, when public data networks are used as the
    communication paths, more caution is prudent.








Blumenthal & Wijnen         Standards Track                    [Page 70]

RFC 2574                     USM for SNMPv3                   April 1999


11.2  Defining Users

  The mechanisms defined in this document employ the notion of users on
  whose behalf messages are sent.  How "users" are defined is subject
  to the security policy of the network administration.  For example,
  users could be individuals (e.g., "joe" or "jane"), or a particular
  role (e.g., "operator" or "administrator"), or a combination (e.g.,
  "joe-operator", "jane-operator" or "joe-admin").  Furthermore, a user
  may be a logical entity, such as an SNMP Application or a set of SNMP
  Applications, acting on behalf of an individual or role, or set of
  individuals, or set of roles, including combinations.

  Appendix A describes an algorithm for mapping a user "password" to a
  16/20 octet value for use as either a user's authentication key or
  privacy key (or both).  Note however, that using the same password
  (and therefore the same key) for both authentication and privacy is
  very poor security practice and should be strongly discouraged.
  Passwords are often generated, remembered, and input by a human.
  Human-generated passwords may be less than the 16/20 octets required
  by the authentication and privacy protocols, and brute force attacks
  can be quite easy on a relatively short ASCII character set.
  Therefore, the algorithm is Appendix A performs a transformation on
  the password.  If the Appendix A algorithm is used, SNMP
  implementations (and SNMP configuration applications) must ensure
  that passwords are at least 8 characters in length.  Please note that
  longer passwords with repetitive strings may result in exactly the
  same key. For example, a password 'bertbert' will result in exactly
  the same key as password 'bertbertbert'.

  Because the Appendix A algorithm uses such passwords (nearly)
  directly, it is very important that they not be easily guessed.  It
  is suggested that they be composed of mixed-case alphanumeric and
  punctuation characters that don't form words or phrases that might be
  found in a dictionary.  Longer passwords improve the security of the
  system.  Users may wish to input multiword phrases to make their
  password string longer while ensuring that it is memorable.

  Since it is infeasible for human users to maintain different
  passwords for every SNMP engine, but security requirements strongly
  discourage having the same key for more than one SNMP engine, the
  User-based Security Model employs a compromise proposed in
  [Localized-key].  It derives the user keys for the SNMP engines from
  user's password in such a way that it is practically impossible to
  either determine the user's password, or user's key for another SNMP
  engine from any combination of user's keys on SNMP engines.






Blumenthal & Wijnen         Standards Track                    [Page 71]

RFC 2574                     USM for SNMPv3                   April 1999


  Note however, that if user's password is disclosed, then key
  localization will not help and network security may be compromised in
  this case. Therefore a user's password or non-localized key MUST NOT
  be stored on a managed device/node. Instead the localized key SHALL
  be stored (if at all) , so that, in case a device does get
  compromised, no other managed or managing devices get compromised.

11.3.  Conformance

  To be termed a "Secure SNMP implementation" based on the User-based
  Security Model, an SNMP implementation MUST:

  - implement one or more Authentication Protocol(s). The HMAC-MD5-96
    and HMAC-SHA-96 Authentication Protocols defined in this memo are
    examples of such protocols.

  - to the maximum extent possible, prohibit access to the secret(s)
    of each user about which it maintains information in a Local
    Configuration Datastore (LCD) under all circumstances except as
    required to generate and/or validate SNMP messages with respect to
    that user.

  - implement the key-localization mechanism.

  - implement the SNMP-USER-BASED-SM-MIB.

  In addition, an authoritative SNMP engine SHOULD provide initial
  configuration in accordance with Appendix A.1.

  Implementation of a Privacy Protocol (the DES Symmetric Encryption
  Protocol defined in this memo is one such protocol) is optional.

11.4.  Use of Reports

  The use of unsecure reports (i.e. sending them with a securityLevel
  of noAuthNoPriv) potentially exposes a non-authoritative SNMP engine
  to some form of attacks.  Some people consider these denial of
  service attacks, others don't.  An installation should evaluate the
  risk involved before deploying unsecure Report PDUs.

11.5  Access to the SNMP-USER-BASED-SM-MIB

  The objects in this MIB may be considered sensitive in many
  environments. Specifically the objects in the usmUserTable contain
  information about users and their authentication and privacy
  protocols.  It is important to closely control (both read and write)





Blumenthal & Wijnen         Standards Track                    [Page 72]

RFC 2574                     USM for SNMPv3                   April 1999


  access to these MIB objects by using appropriately configured Access
  Control models (for example the View-based Access Control Model as
  specified in [RFC2575]).

12.  References

  [RFC1321]       Rivest, R.,  "Message Digest Algorithm MD5", RFC
                  1321, April 1992.

  [RFC2579]       McCloghrie, K., Perkins, D. and J. Schoenwaelder,
                  "Textual Conventions for SMIv2", STD 58, RFC 2579,
                  April 1999.

  [RFC1905]       Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
                  "Protocol Operations for Version 2 of the Simple
                  Network Management Protocol (SNMPv2)", RFC 1905,
                  January 1996.

  [RFC1906]       Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
                  "Transport Mappings for Version 2 of the Simple
                  Network Management Protocol (SNMPv2)", RFC 1906,
                  January 1996.

  [RFC1907]       Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
                  "Management Information Base for Version 2 of the
                  Simple Network Management Protocol (SNMPv2)", RFC
                  1907 January 1996.

  [RFC2104]       Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
                  Keyed-Hashing  for Message Authentication", RFC 2104,
                  February 1997.

  [RFC2119]       Bradner, S., "Key words for use in RFCs to Indicate
                  Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2571]       Harrington, D., Presuhn, R. and B. Wijnen, "An
                  Architecture for describing SNMP Management
                  Frameworks", RFC 2571, April 1999.

  [RFC2572]       Case, J., Harrington, D., Presuhn, R. and B. Wijnen,
                  "Message Processing and Dispatching for the Simple
                  Network Management Protocol (SNMP)", RFC 2572, April
                  1999.

  [RF2575]        Wijnen, B., Presuhn, R. and K. McCloghrie, "View-
                  based Access Control Model for the Simple Network
                  Management Protocol (SNMP)", RFC 2575, April 1999.




Blumenthal & Wijnen         Standards Track                    [Page 73]

RFC 2574                     USM for SNMPv3                   April 1999


  [Localized-Key] U. Blumenthal, N. C. Hien, B. Wijnen "Key Derivation
                  for Network Management Applications" IEEE Network
                  Magazine, April/May issue, 1997.

  [DES-NIST]      Data Encryption Standard, National Institute of
                  Standards and Technology.  Federal Information
                  Processing Standard (FIPS) Publication 46-1.
                  Supersedes FIPS Publication 46, (January, 1977;
                  reaffirmed January, 1988).

  [DES-ANSI]      Data Encryption Algorithm, American National
                  Standards Institute.  ANSI X3.92-1981, (December,
                  1980).

  [DESO-NIST]     DES Modes of Operation, National Institute of
                  Standards and Technology.  Federal Information
                  Processing Standard (FIPS) Publication 81, (December,
                  1980).

  [DESO-ANSI]     Data Encryption Algorithm - Modes of Operation,
                  American National Standards Institute.  ANSI X3.106-
                  1983, (May 1983).

  [DESG-NIST]     Guidelines for Implementing and Using the NBS Data
                  Encryption Standard, National Institute of Standards
                  and Technology.  Federal Information Processing
                  Standard (FIPS) Publication 74, (April, 1981).

  [DEST-NIST]     Validating the Correctness of Hardware
                  Implementations of the NBS Data Encryption Standard,
                  National Institute of Standards and Technology.
                  Special Publication 500-20.

  [DESM-NIST]     Maintenance Testing for the Data Encryption Standard,
                  National Institute of Standards and Technology.
                  Special Publication 500-61, (August, 1980).

  [SHA-NIST]      Secure Hash Algorithm. NIST FIPS 180-1, (April, 1995)
                  http://csrc.nist.gov/fips/fip180-1.txt (ASCII)
                  http://csrc.nist.gov/fips/fip180-1.ps  (Postscript)











Blumenthal & Wijnen         Standards Track                    [Page 74]

RFC 2574                     USM for SNMPv3                   April 1999


13.  Editors' Addresses

  Uri Blumenthal
  IBM T. J. Watson Research
  30 Saw Mill River Pkwy,
  Hawthorne, NY 10532
  USA

  Phone:      +1-914-784-7064
  EMail:      [email protected]



  Bert Wijnen
  IBM T. J. Watson Research
  Schagen 33
  3461 GL Linschoten
  Netherlands

  Phone:      +31-348-432-794
  EMail:      [email protected]






























Blumenthal & Wijnen         Standards Track                    [Page 75]

RFC 2574                     USM for SNMPv3                   April 1999


APPENDIX A - Installation

A.1.  SNMP engine Installation Parameters

  During installation, an authoritative SNMP engine SHOULD (in the
  meaning as defined in [RFC2119]) be configured with several initial
  parameters.  These include:

  1) A security posture

     The choice of security posture determines if initial configuration
     is implemented and if so how.  One of three possible choices is
     selected:

           minimum-secure,
           semi-secure,
           very-secure (i.e., no-initial-configuration)

     In the case of a very-secure posture, there is no initial
     configuration, and so the following steps are irrelevant.

2) one or more secrets

  These are the authentication/privacy secrets for the first user to be
  configured.

  One way to accomplish this is to have the installer enter a
  "password" for each required secret. The password is then
  algorithmically converted into the required secret by:

  - forming a string of length 1,048,576 octets by repeating the
    value of the password as often as necessary, truncating
    accordingly, and using the resulting string as the input to the MD5
    algorithm [MD5].  The resulting digest, termed "digest1", is used
    in the next step.

  - a second string is formed by concatenating digest1, the SNMP
    engine's snmpEngineID value, and digest1.  This string is used as
    input to the MD5 algorithm [MD5].

    The resulting digest is the required secret (see Appendix A.2).

  With these configured parameters, the SNMP engine instantiates the
  following usmUserEntry in the usmUserTable:







Blumenthal & Wijnen         Standards Track                    [Page 76]

RFC 2574                     USM for SNMPv3                   April 1999


                          no privacy support     privacy support
                          ------------------     ---------------
  usmUserEngineID         localEngineID          localEngineID
  usmUserName             "initial"              "initial"
  usmUserSecurityName     "initial"              "initial"
  usmUserCloneFrom        ZeroDotZero            ZeroDotZero
  usmUserAuthProtocol     usmHMACMD5AuthProtocol usmHMACMD5AuthProtocol
  usmUserAuthKeyChange    ""                     ""
  usmUserOwnAuthKeyChange ""                     ""
  usmUserPrivProtocol     none                   usmDESPrivProtocol
  usmUserPrivKeyChange    ""                     ""
  usmUserOwnPrivKeyChange ""                     ""
  usmUserPublic           ""                     ""
  usmUserStorageType      anyValidStorageType    anyValidStorageType
  usmUserStatus           active                 active


  It is recommended to also instantiate a set of template
  usmUserEntries which can be used as clone-from users for newly
  created usmUserEntries.  These are the two suggested entries:

                          no privacy support     privacy support
                          ------------------     ---------------
  usmUserEngineID         localEngineID          localEngineID
  usmUserName             "templateMD5"          "templateMD5"
  usmUserSecurityName     "templateMD5"          "templateMD5"
  usmUserCloneFrom        ZeroDotZero            ZeroDotZero
  usmUserAuthProtocol     usmHMACMD5AuthProtocol usmHMACMD5AuthProtocol
  usmUserAuthKeyChange    ""                     ""
  usmUserOwnAuthKeyChange ""                     ""
  usmUserPrivProtocol     none                   usmDESPrivProtocol
  usmUserPrivKeyChange    ""                     ""
  usmUserOwnPrivKeyChange ""                     ""
  usmUserPublic           ""                     ""
  usmUserStorageType      permanent              permanent
  usmUserStatus           active                 active















Blumenthal & Wijnen         Standards Track                    [Page 77]

RFC 2574                     USM for SNMPv3                   April 1999


                          no privacy support     privacy support
                          ------------------     ---------------
  usmUserEngineID         localEngineID          localEngineID
  usmUserName             "templateSHA"          "templateSHA"
  usmUserSecurityName     "templateSHA"          "templateSHA"
  usmUserCloneFrom        ZeroDotZero            ZeroDotZero
  usmUserAuthProtocol     usmHMACSHAAuthProtocol usmHMACSHAAuthProtocol
  usmUserAuthKeyChange    ""                     ""
  usmUserOwnAuthKeyChange ""                     ""
  usmUserPrivProtocol     none                   usmDESPrivProtocol
  usmUserPrivKeyChange    ""                     ""
  usmUserOwnPrivKeyChange ""                     ""
  usmUserPublic           ""                     ""
  usmUserStorageType      permanent              permanent
  usmUserStatus           active                 active

A.2.  Password to Key Algorithm

  A sample code fragment (section A.2.1) demonstrates the password to
  key algorithm which can be used when mapping a password to an
  authentication or privacy key using MD5. The reference source code
  of MD5 is available in [RFC1321].

  Another sample code fragment (section A.2.2) demonstrates the
  password to key algorithm which can be used when mapping a password
  to an authentication or privacy key using SHA (documented in
  SHA-NIST).

  An example of the results of a correct implementation is provided
  (section A.3) which an implementor can use to check if his
  implementation produces the same result.




















Blumenthal & Wijnen         Standards Track                    [Page 78]

RFC 2574                     USM for SNMPv3                   April 1999


A.2.1.  Password to Key Sample Code for MD5

void password_to_key_md5(
  u_char *password,    /* IN */
  u_int   passwordlen, /* IN */
  u_char *engineID,    /* IN  - pointer to snmpEngineID  */
  u_int   engineLength,/* IN  - length of snmpEngineID */
  u_char *key)         /* OUT - pointer to caller 16-octet buffer */
{
  MD5_CTX     MD;
  u_char     *cp, password_buf[64];
  u_long      password_index = 0;
  u_long      count = 0, i;

  MD5Init (&MD);   /* initialize MD5 */

  /**********************************************/
  /* Use while loop until we've done 1 Megabyte */
  /**********************************************/
  while (count < 1048576) {
     cp = password_buf;
     for (i = 0; i < 64; i++) {
         /*************************************************/
         /* Take the next octet of the password, wrapping */
         /* to the beginning of the password as necessary.*/
         /*************************************************/
         *cp++ = password[password_index++ % passwordlen];
     }
     MD5Update (&MD, password_buf, 64);
     count += 64;
  }
  MD5Final (key, &MD);          /* tell MD5 we're done */

  /*****************************************************/
  /* Now localize the key with the engineID and pass   */
  /* through MD5 to produce final key                  */
  /* May want to ensure that engineLength <= 32,       */
  /* otherwise need to use a buffer larger than 64     */
  /*****************************************************/
  memcpy(password_buf, key, 16);
  memcpy(password_buf+16, engineID, engineLength);
  memcpy(password_buf+16+engineLength, key, 16);

  MD5Init(&MD);
  MD5Update(&MD, password_buf, 32+engineLength);
  MD5Final(key, &MD);
  return;
}



Blumenthal & Wijnen         Standards Track                    [Page 79]

RFC 2574                     USM for SNMPv3                   April 1999


A.2.2.  Password to Key Sample Code for SHA

void password_to_key_sha(
  u_char *password,    /* IN */
  u_int   passwordlen, /* IN */
  u_char *engineID,    /* IN  - pointer to snmpEngineID  */
  u_int   engineLength,/* IN  - length of snmpEngineID */
  u_char *key)         /* OUT - pointer to caller 20-octet buffer */
{
  SHA_CTX     SH;
  u_char     *cp, password_buf[72];
  u_long      password_index = 0;
  u_long      count = 0, i;

  SHAInit (&SH);   /* initialize SHA */

  /**********************************************/
  /* Use while loop until we've done 1 Megabyte */
  /**********************************************/
  while (count < 1048576) {
     cp = password_buf;
     for (i = 0; i < 64; i++) {
         /*************************************************/
         /* Take the next octet of the password, wrapping */
         /* to the beginning of the password as necessary.*/
         /*************************************************/
         *cp++ = password[password_index++ % passwordlen];
     }
     SHAUpdate (&SH, password_buf, 64);
     count += 64;
  }
  SHAFinal (key, &SH);          /* tell SHA we're done */

  /*****************************************************/
  /* Now localize the key with the engineID and pass   */
  /* through SHA to produce final key                  */
  /* May want to ensure that engineLength <= 32,       */
  /* otherwise need to use a buffer larger than 72     */
  /*****************************************************/
  memcpy(password_buf, key, 20);
  memcpy(password_buf+20, engineID, engineLength);
  memcpy(password_buf+20+engineLength, key, 20);

  SHAInit(&SH);
  SHAUpdate(&SH, password_buf, 40+engineLength);
  SHAFinal(key, &SH);
  return;
}



Blumenthal & Wijnen         Standards Track                    [Page 80]

RFC 2574                     USM for SNMPv3                   April 1999


A.3.  Password to Key Sample Results

A.3.1.  Password to Key Sample Results using MD5

  The following shows a sample output of the password to key algorithm
  for a 16-octet key using MD5.

  With a password of "maplesyrup" the output of the password to key
  algorithm before the key is localized with the SNMP engine's
  snmpEngineID is:

     '9f af 32 83 88 4e 92 83 4e bc 98 47 d8 ed d9 63'H

  After the intermediate key (shown above) is localized with the
  snmpEngineID value of:

     '00 00 00 00 00 00 00 00 00 00 00 02'H

  the final output of the password to key algorithm is:

     '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b'H

A.3.2.  Password to Key Sample Results using SHA

     The following shows a sample output of the password to key
     algorithm for a 20-octet key using SHA.

     With a password of "maplesyrup" the output of the password to key
     algorithm before the key is localized with the SNMP engine's
     snmpEngineID is:

     '9f b5 cc 03 81 49 7b 37 93 52 89 39 ff 78 8d 5d 79 14 52 11'H

  After the intermediate key (shown above) is localized with the
  snmpEngineID value of:

     '00 00 00 00 00 00 00 00 00 00 00 02'H

  the final output of the password to key algorithm is:

     '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84 97 b3 8f 3f'H










Blumenthal & Wijnen         Standards Track                    [Page 81]

RFC 2574                     USM for SNMPv3                   April 1999


A.4.  Sample encoding of msgSecurityParameters

  The msgSecurityParameters in an SNMP message are represented as an
  OCTET STRING. This OCTET STRING should be considered opaque outside a
  specific Security Model.

  The User-based Security Model defines the contents of the OCTET
  STRING as a SEQUENCE (see section 2.4).

  Given these two properties, the following is an example of the
  msgSecurityParameters for the User-based Security Model, encoded as
  an OCTET STRING:

    04 <length>
    30 <length>
    04 <length> <msgAuthoritativeEngineID>
    02 <length> <msgAuthoritativeEngineBoots>
    02 <length> <msgAuthoritativeEngineTime>
    04 <length> <msgUserName>
    04 0c       <HMAC-MD5-96-digest>
    04 08       <salt>

  Here is the example once more, but now with real values (except for
  the digest in msgAuthenticationParameters and the salt in
  msgPrivacyParameters, which depend on variable data that we have not
  defined here):

    Hex Data                         Description
    --------------  -----------------------------------------------
    04 39           OCTET STRING,                  length 57
    30 37           SEQUENCE,                      length 55
    04 0c 80000002  msgAuthoritativeEngineID:      IBM
          01                                       IPv4 address
          09840301                                 9.132.3.1
    02 01 01        msgAuthoritativeEngineBoots:   1
    02 02 0101      msgAuthoritativeEngineTime:    257
    04 04 62657274  msgUserName:                   bert
    04 0c 01234567  msgAuthenticationParameters:   sample value
          89abcdef
          fedcba98
    04 08 01234567  msgPrivacyParameters:          sample value
          89abcdef









Blumenthal & Wijnen         Standards Track                    [Page 82]

RFC 2574                     USM for SNMPv3                   April 1999


A.5.  Sample keyChange Results


A.5.1.  Sample keyChange Results using MD5

  Let us assume that a user has a current password of "maplesyrup" as
  in section A.3.1. and let us also assume the snmpEngineID of 12
  octets:

     '00 00 00 00 00 00 00 00 00 00 00 02'H

  If we now want to change the password to "newsyrup", then we first
  calculate the key for the new password. It is as follows:

     '01 ad d2 73 10 7c 4e 59 6b 4b 00 f8 2b 1d 42 a7'H

  If we localize it for the above snmpEngineID, then the localized new
  key becomes:

     '87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a'H

  If we then use a (not so good, but easy to test) random value of:

     '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

  Then the value we must send for keyChange is:

     '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
      88 05 61 51 41 67 6c c9 19 61 74 e7 42 a3 25 51'H

  If this were for the privacy key, then it would be exactly the same.




















Blumenthal & Wijnen         Standards Track                    [Page 83]

RFC 2574                     USM for SNMPv3                   April 1999


A.5.2.  Sample keyChange Results using SHA

  Let us assume that a user has a current password of "maplesyrup" as
  in section A.3.2. and let us also assume the snmpEngineID of 12
  octets:

     '00 00 00 00 00 00 00 00 00 00 00 02'H

  If we now want to change the password to "newsyrup", then we first
  calculate the key for the new password. It is as follows:

     '3a 51 a6 d7 36 aa 34 7b 83 dc 4a 87 e3 e5 5e e4 d6 98 ac 71'H

  If we localize it for the above snmpEngineID, then the localized new
  key becomes:

     '78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63 91 f1 cd 25'H

  If we then use a (not so good, but easy to test) random value of:

     '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

  Then the value we must send for keyChange is:

     '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
      9c 10 17 f4 fd 48 3d 2d e8 d5 fa db f8 43 92 cb 06 45 70 51'

  For the key used for privacy, the new nonlocalized key would be:

     '3a 51 a6 d7 36 aa 34 7b 83 dc 4a 87 e3 e5 5e e4 d6 98 ac 71'H

  For the key used for privacy, the new localized key would be (note
  that they localized key gets truncated to 16 octets for DES):

     '78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63'H

  If we then use a (not so good, but easy to test) random value of:

     '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

  Then the value we must send for keyChange for the privacy key is:

     '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
     '7e f8 d8 a4 c9 cd b2 6b 47 59 1c d8 52 ff 88 b5'H







Blumenthal & Wijnen         Standards Track                    [Page 84]

RFC 2574                     USM for SNMPv3                   April 1999


B.  Change Log

  Changes made since RFC2274:
  - Fixed msgUserName to allow size of zero and explain that this can
  be used for snmpEngineID discovery.
  - Clarified section 3.1 steps 4.b, 5, 6 and 8.b.
  - Clarified section 3.2 paragraph 2.
  - Clarified section 3.2 step 7.a last paragraph, step 7.b.1 second
  bullet and step 7.b.2 third bullet.
  - Clarified section 4 to indicate that discovery can use a userName
  of zero length in unAuthenticated messages, whereas a valid userName
  must be used in authenticated messages.
  - Added REVISION clauses to MODULE-IDENTITY
  - Clarified KeyChange TC by adding a note that localized keys must be
  used when calculating a KeyChange value.
  - Added clarifying text to the DESCRIPTION clause of usmUserTable.
  Added text describes a recommended procedure for adding a new user.
  - Clarified the use of usmUserCloneFrom object.
  - Clarified how and under which conditions the usmUserAuthProtocol
  and usmUserPrivProtocol can be initialized and/or changed.
  - Added comment on typical sizes for usmUserAuthKeyChange and
  usmUserPrivKeyChange. Also for usmUserOwnAuthKeyChange and
  usmUserOwnPrivKeyChange.
  - Added clarifications to the DESCRIPTION clauses of
  usmUserAuthKeyChange, usmUserOwnAuthKeychange, usmUserPrivKeyChange
  and usmUserOwnPrivKeychange.  - Added clarification to DESCRIPTION
  clause of usmUserStorageType.  - Added clarification to DESCRIPTION
  clause of usmUserStatus.
  - Clarified IV generation procedure in section 8.1.1.1 and in
  addition clarified section 8.3.1 step 1 and section 8.3.2. step 3.
  - Clarified section 11.2 and added a warning that different size
  passwords with repetitive strings may result in same key.
  - Added template users to appendix A for cloning process.
  - Fixed C-code examples in Appendix A.
  - Fixed examples of generated keys in Appendix A.
  - Added examples of KeyChange values to Appendix A.
  - Used PDU Classes instead of RFC1905 PDU types.
  - Added text in the security section about Reports and Access Control
  to the MIB
  - Removed a incorrect note at the end of section 3.2 step 7.
  - Added a note in section 3.2 step 3.
  - Corrected various spelling errors and typos.
  - Corrected procedure for 3.2 step 2.a)
  - various clarifications.
  - Fixed references to new/revised documents
  - Change to no longer cache data that is not used





Blumenthal & Wijnen         Standards Track                    [Page 85]

RFC 2574                     USM for SNMPv3                   April 1999


C.  Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by
  the Internet Society.


















Blumenthal & Wijnen         Standards Track                    [Page 86]