Network Working Group                                            D. Levi
Request for Comments: 2573                           SNMP Research, Inc.
Obsoletes: 2273                                                 P. Meyer
Category: Standards Track                   Secure Computing Corporation
                                                             B. Stewart
                                                          Cisco Systems
                                                             April 1999


                          SNMP Applications

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

  This memo describes five types of SNMP applications which make use of
  an SNMP engine as described in [RFC2571].  The types of application
  described are Command Generators, Command Responders, Notification
  Originators, Notification Receivers, and Proxy Forwarders.

  This memo also defines MIB modules for specifying targets of
  management operations, for notification filtering, and for proxy
  forwarding.

Table Of Contents

  1 Overview .....................................................    2
  1.1 Command Generator Applications .............................    3
  1.2 Command Responder Applications .............................    3
  1.3 Notification Originator Applications .......................    3
  1.4 Notification Receiver Applications .........................    3
  1.5 Proxy Forwarder Applications ...............................    4
  2 Management Targets ...........................................    5
  3 Elements Of Procedure ........................................    6
  3.1 Command Generator Applications .............................    6
  3.2 Command Responder Applications .............................    9
  3.3 Notification Originator Applications .......................   14
  3.4 Notification Receiver Applications .........................   17



Levi, et al.                Standards Track                     [Page 1]

RFC 2573                   SNMP Applications                  April 1999


  3.5 Proxy Forwarder Applications ...............................   19
  3.5.1 Request Forwarding .......................................   20
  3.5.1.1 Processing an Incoming Request .........................   20
  3.5.1.2 Processing an Incoming Response ........................   23
  3.5.1.3 Processing an Incoming Internal-Class PDU ..............   24
  3.5.2 Notification Forwarding ..................................   25
  4 The Structure of the MIB Modules .............................   28
  4.1 The Management Target MIB Module ...........................   28
  4.1.1 Tag Lists ................................................   29
  4.1.2 Definitions ..............................................   30
  4.2 The Notification MIB Module ................................   43
  4.2.1 Definitions ..............................................   43
  4.3 The Proxy MIB Module .......................................   55
  4.3.1 Definitions ..............................................   55
  5 Identification of Management Targets in Notification
       Originators ...............................................   61
  6 Notification Filtering .......................................   62
  7 Management Target Translation in Proxy  Forwarder  Applica-
       tions .....................................................   63
  7.1 Management Target Translation for Request Forwarding .......   63
  7.2 Management Target Translation for Notification Forwarding
       ...........................................................   64
  8 Intellectual Property ........................................   65
  9 Acknowledgments ..............................................   66
  10 Security Considerations .....................................   67
  11 References ..................................................   67
  12 Editors' Addresses...........................................   69
  A. Trap Configuration Example ..................................   70
  B. Full Copyright Statement ....................................   72


1.  Overview

  This document describes five types of SNMP applications:

    - Applications which initiate SNMP Read-Class, and/or Write-Class
      requests, called 'command generators.'
    - Applications which respond to SNMP Read-Class, and/or Write-Class
      requests, called 'command responders.'
    - Applications which generate SNMP Notification-Class PDUs, called
      'notification originators.'
    - Applications which receive SNMP Notification-Class PDUs, called
      'notification receivers.'
    - Applications which forward SNMP messages, called 'proxy
      forwarders.'






Levi, et al.                Standards Track                     [Page 2]

RFC 2573                   SNMP Applications                  April 1999


  Note that there are no restrictions on which types of applications
  may be associated with a particular SNMP engine.  For example, a
  single SNMP engine may, in fact, be associated with both command
  generator and command responder applications.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

1.1.  Command Generator Applications

  A command generator application initiates SNMP Read-Class and/or
  Write-Class requests, as well as processing the response to a request
  which it generated.

1.2.  Command Responder Applications

  A command responder application receives SNMP Read-Class and/or
  Write-Class requests destined for the local system as indicated by
  the fact that the contextEngineID in the received request is equal to
  that of the local engine through which the request was received.  The
  command responder application will perform the appropriate protocol
  operation, using access control, and will generate a response message
  to be sent to the request's originator.

1.3.  Notification Originator Applications

  A notification originator application conceptually monitors a system
  for particular events or conditions, and generates Notification-Class
  messages based on these events or conditions.  A notification
  originator must have a mechanism for determining where to send
  messages, and what SNMP version and security parameters to use when
  sending messages.  A mechanism and MIB module for this purpose is
  provided in this document.  Note that Notification-Class PDUs
  generated by a notification originator may be either Confirmed-Class
  or Unconfirmed-Class PDU types.

1.4.  Notification Receiver Applications

  A notification receiver application listens for notification
  messages, and generates response messages when a message containing a
  Confirmed-Class PDU is received.









Levi, et al.                Standards Track                     [Page 3]

RFC 2573                   SNMP Applications                  April 1999


1.5.  Proxy Forwarder Applications

  A proxy forwarder application forwards SNMP messages.  Note that
  implementation of a proxy forwarder application is optional.  The
  sections describing proxy (4.5, 5.3, and 8) may be skipped for
  implementations that do not include a proxy forwarder application.

  The term "proxy" has historically been used very loosely, with
  multiple different meanings.  These different meanings include (among
  others):

  (1)  the forwarding of SNMP requests to other SNMP entities without
       regard for what managed object types are being accessed; for
       example, in order to forward an SNMP request from one transport
       domain to another, or to translate SNMP requests of one version
       into SNMP requests of another version;

  (2)  the translation of SNMP requests into operations of some non-
       SNMP management protocol; and

  (3)  support for aggregated managed objects where the value of one
       managed object instance depends upon the values of multiple
       other (remote) items of management information.

  Each of these scenarios can be advantageous; for example, support for
  aggregation of management information can significantly reduce the
  bandwidth requirements of large-scale management activities.

  However, using a single term to cover multiple different scenarios
  causes confusion.

  To avoid such confusion, this document uses the term "proxy" with a
  much more tightly defined meaning.  The term "proxy" is used in this
  document to refer to a proxy forwarder application which forwards
  either SNMP messages without regard for what managed objects are
  contained within those messages.  This definition is most closely
  related to the first definition above.  Note, however, that in the
  SNMP architecture [RFC2571], a proxy forwarder is actually an
  application, and need not be associated with what is traditionally
  thought of as an SNMP agent.

  Specifically, the distinction between a traditional SNMP agent and a
  proxy forwarder application is simple:








Levi, et al.                Standards Track                     [Page 4]

RFC 2573                   SNMP Applications                  April 1999


    -  a proxy forwarder application forwards SNMP messages to other
       SNMP engines according to the context, and irrespective of the
       specific managed object types being accessed, and forwards the
       response to such previously forwarded messages back to the SNMP
       engine from which the original message was received;

    -  in contrast, the command responder application that is part of
       what is traditionally thought of as an SNMP agent, and which
       processes SNMP requests according to the (names of the)
       individual managed object types and instances being accessed, is
       NOT a proxy forwarder application from the perspective of this
       document.

  Thus, when a proxy forwarder application forwards a request or
  notification for a particular contextEngineID / contextName pair, not
  only is the information on how to forward the request specifically
  associated with that context, but the proxy forwarder application has
  no need of a detailed definition of a MIB view (since the proxy
  forwarder application forwards the request irrespective of the
  managed object types).

  In contrast, a command responder application must have the detailed
  definition of the MIB view, and even if it needs to issue requests to
  other entities, via SNMP or otherwise, that need is dependent on the
  individual managed object instances being accessed (i.e., not only on
  the context).

  Note that it is a design goal of a proxy forwarder application to act
  as an intermediary between the endpoints of a transaction.  In
  particular, when forwarding Confirmed Notification-Class messages,
  the associated response is forwarded when it is received from the
  target to which the Notification-Class message was forwarded, rather
  than generating a response immediately when the Notification-Class
  message is received.

2.  Management Targets

  Some types of applications (notification generators and proxy
  forwarders in particular) require a mechanism for determining where
  and how to send generated messages.  This document provides a
  mechanism and MIB module for this purpose.  The set of information
  that describes where and how to send a message is called a '
  Management Target', and consists of two kinds of information:

    -  Destination information, consisting of a transport domain and a
       transport address.  This is also termed a transport endpoint.





Levi, et al.                Standards Track                     [Page 5]

RFC 2573                   SNMP Applications                  April 1999


    -  SNMP parameters, consisting of message processing model,
       security model, security level, and security name information.

  The SNMP-TARGET-MIB module described later in this document contains
  one table for each of these types of information.  There can be a
  many-to-many relationship in the MIB between these two types of
  information.  That is, there may be multiple transport endpoints
  associated with a particular set of SNMP parameters, or a particular
  transport endpoint may be associated with several sets of SNMP
  parameters.

3.  Elements Of Procedure

  The following sections describe the procedures followed by each type
  of application when generating messages for transmission or when
  processing received messages.  Applications communicate with the
  Dispatcher using the abstract service interfaces defined in
  [RFC2571].

3.1.  Command Generator Applications

  A command generator initiates an SNMP request by calling the
  Dispatcher using the following abstract service interface:

      statusInformation =              -- sendPduHandle if success
                                       -- errorIndication if failure
        sendPdu(

        IN   transportDomain           -- transport domain to be used
        IN   transportAddress          -- destination network address
        IN   messageProcessingModel    -- typically, SNMP version
        IN   securityModel             -- Security Model to use
        IN   securityName              -- on behalf of this principal
        IN   securityLevel             -- Level of Security requested
        IN   contextEngineID           -- data from/at this entity
        IN   contextName               -- data from/in this context
        IN   pduVersion                -- the version of the PDU
        IN   PDU                       -- SNMP Protocol Data Unit
        IN   expectResponse            -- TRUE or FALSE
             )

  Where:

    -  The transportDomain is that of the destination of the message.

    -  The transportAddress is that of the destination of the message.





Levi, et al.                Standards Track                     [Page 6]

RFC 2573                   SNMP Applications                  April 1999


    -  The messageProcessingModel indicates which Message Processing
       Model the application wishes to use.

    -  The securityModel is the security model that the application
       wishes to use.

    -  The securityName is the security model independent name for the
       principal on whose behalf the application wishes the message is
       to be generated.

    -  The securityLevel is the security level that the application
       wishes to use.

    -  The contextEngineID is provided by the command generator if it
       wishes to explicitly specify the location of the management
       information it is requesting.

    -  The contextName is provided by the command generator if it
       wishes to explicitly specify the local context name for the
       management information it is requesting.

    -  The pduVersion indicates the version of the PDU to be sent.

    -  The PDU is a value constructed by the command generator
       containing the management operation that the command generator
       wishes to perform.

    -  The expectResponse argument indicates that a response is
       expected.

  The result of the sendPdu interface indicates whether the PDU was
  successfully sent.  If it was successfully sent, the returned value
  will be a sendPduHandle.  The command generator should store the
  sendPduHandle so that it can correlate a response to the original
  request.

  The Dispatcher is responsible for delivering the response to a
  particular request to the correct command generator application.  The
  abstract service interface used is:

      processResponsePdu(              -- process Response PDU
        IN   messageProcessingModel    -- typically, SNMP version
        IN   securityModel             -- Security Model in use
        IN   securityName              -- on behalf of this principal
        IN   securityLevel             -- Level of Security
        IN   contextEngineID           -- data from/at this SNMP entity
        IN   contextName               -- data from/in this context
        IN   pduVersion                -- the version of the PDU



Levi, et al.                Standards Track                     [Page 7]

RFC 2573                   SNMP Applications                  April 1999


        IN   PDU                       -- SNMP Protocol Data Unit
        IN   statusInformation         -- success or errorIndication
        IN   sendPduHandle             -- handle from sendPdu
             )

  Where:

    -  The messageProcessingModel is the value from the received
       response.

    -  The securityModel is the value from the received response.

    -  The securityName is the value from the received response.

    -  The securityLevel is the value from the received response.

    -  The contextEngineID is the value from the received response.

    -  The contextName is the value from the received response.

    -  The pduVersion indicates the version of the PDU in the received
       response.

    -  The PDU is the value from the received response.

    -  The statusInformation indicates success or failure in receiving
       the response.

    -  The sendPduHandle is the value returned by the sendPdu call
       which generated the original request to which this is a
       response.

  The procedure when a command generator receives a message is as
  follows:

  (1)  If the received values of messageProcessingModel, securityModel,
       securityName, contextEngineID, contextName, and pduVersion are
       not all equal to the values used in the original request, the
       response is discarded.

  (2)  The operation type, request-id, error-status, error-index, and
       variable-bindings are extracted from the PDU and saved.  If the
       request-id is not equal to the value used in the original
       request, the response is discarded.

  (3)  At this point, it is up to the application to take an
       appropriate action.  The specific action is implementation
       dependent.  If the statusInformation indicates that the request



Levi, et al.                Standards Track                     [Page 8]

RFC 2573                   SNMP Applications                  April 1999


       failed, an appropriate action might be to attempt to transmit
       the request again, or to notify the person operating the
       application that a failure occurred.

3.2.  Command Responder Applications

  Before a command responder application can process messages, it must
  first associate itself with an SNMP engine.  The abstract service
  interface used for this purpose is:

      statusInformation =        -- success or errorIndication
        registerContextEngineID(
        IN   contextEngineID     -- take responsibility for this one
        IN   pduType             -- the pduType(s) to be registered
             )

  Where:

    -  The statusInformation indicates success or failure of the
       registration attempt.

    -  The contextEngineID is equal to the snmpEngineID of the SNMP
       engine with which the command responder is registering.

    -  The pduType indicates a Read-Class and/or Write-Class PDU.

  Note that if another command responder application is already
  registered with an SNMP engine, any further attempts to register with
  the same contextEngineID and pduType will be denied.  This implies
  that separate command responder applications could register
  separately for the various pdu types.  However, in practice this is
  undesirable, and only a single command responder application should
  be registered with an SNMP engine at any given time.

  A command responder application can disassociate with an SNMP engine
  using the following abstract service interface:

      unregisterContextEngineID(
        IN   contextEngineID     -- give up responsibility for this one
        IN   pduType             -- the pduType(s) to be unregistered
             )

  Where:

    -  The contextEngineID is equal to the snmpEngineID of the SNMP
       engine with which the command responder is cancelling the
       registration.




Levi, et al.                Standards Track                     [Page 9]

RFC 2573                   SNMP Applications                  April 1999


    -  The pduType indicates a Read-Class and/or Write-Class PDU.

  Once the command responder has registered with the SNMP engine, it
  waits to receive SNMP messages.  The abstract service interface used
  for receiving messages is:

  processPdu(                     -- process Request/Notification PDU
    IN   messageProcessingModel   -- typically, SNMP version
    IN   securityModel            -- Security Model in use
    IN   securityName             -- on behalf of this principal
    IN   securityLevel            -- Level of Security
    IN   contextEngineID          -- data from/at this SNMP entity
    IN   contextName              -- data from/in this context
    IN   pduVersion               -- the version of the PDU
    IN   PDU                      -- SNMP Protocol Data Unit
    IN   maxSizeResponseScopedPDU -- maximum size of the Response PDU
    IN   stateReference           -- reference to state information
         )                        -- needed when sending a response

  Where:

    -  The messageProcessingModel indicates which Message Processing
       Model received and processed the message.

    -  The securityModel is the value from the received message.

    -  The securityName is the value from the received message.

    -  The securityLevel is the value from the received message.

    -  The contextEngineID is the value from the received message.

    -  The contextName is the value from the received message.

    -  The pduVersion indicates the version of the PDU in the received
       message.

    -  The PDU is the value from the received message.

    -  The maxSizeResponseScopedPDU is the maximum allowable size of a
       ScopedPDU containing a Response PDU (based on the maximum
       message size that the originator of the message can accept).

    -  The stateReference is a value which references cached
       information about each received request message.  This value
       must be returned to the Dispatcher in order to generate a
       response.




Levi, et al.                Standards Track                    [Page 10]

RFC 2573                   SNMP Applications                  April 1999


  The procedure when a message is received is as follows.

  (1)  The operation type is determined from the ASN.1 tag value
       associated with the PDU parameter.  The operation type should
       always be one of the types previously registered by the
       application.

  (2)  The request-id is extracted from the PDU and saved.

  (3)  Any PDU type specific parameters are extracted from the PDU and
       saved (for example, if the PDU type is an SNMPv2 GetBulk PDU,
       the non-repeaters and max-repetitions values are extracted).

  (4)  The variable-bindings are extracted from the PDU and saved.

  (5)  The management operation represented by the PDU type is
       performed with respect to the relevant MIB view within the
       context named by the contextName (for an SNMPv2 PDU type, the
       operation is performed according to the procedures set forth in
       [RFC1905]).  The relevant MIB view is determined by the
       securityLevel, securityModel, contextName, securityName, and the
       class of the PDU type.  To determine whether a particular object
       instance is within the relevant MIB view, the following abstract
       service interface is called:

      statusInformation =      -- success or errorIndication
        isAccessAllowed(
        IN   securityModel     -- Security Model in use
        IN   securityName      -- principal who wants to access
        IN   securityLevel     -- Level of Security
        IN   viewType          -- read, write, or notify view
        IN   contextName       -- context containing variableName
        IN   variableName      -- OID for the managed object
             )

  Where:

    -  The securityModel is the value from the received message.

    -  The securityName is the value from the received message.

    -  The securityLevel is the value from the received message.

    -  The viewType indicates whether the PDU type is a Read-Class or
       Write-Class operation.

    -  The contextName is the value from the received message.




Levi, et al.                Standards Track                    [Page 11]

RFC 2573                   SNMP Applications                  April 1999


    -  The variableName is the object instance of the variable for
       which access rights are to be checked.

  Normally, the result of the management operation will be a new PDU
  value, and processing will continue in step (6) below.  However, at
  any time during the processing of the management operation:

    -  If the isAccessAllowed ASI returns a noSuchView, noAccessEntry,
       or noGroupName error, processing of the management operation is
       halted, a PDU value is constructed using the values from the
       originally received PDU, but replacing the error_status with an
       authorizationError code, and error_index value of 0, and control
       is passed to step (6) below.

    -  If the isAccessAllowed ASI returns an otherError, processing of
       the management operation is halted, a different PDU value is
       constructed using the values from the originally received PDU,
       but replacing the error_status with a genError code, and control
       is passed to step (6) below.

    -  If the isAccessAllowed ASI returns a noSuchContext error,
       processing of the management operation is halted, no result PDU
       is generated, the snmpUnknownContexts counter is incremented,
       and control is passed to step (6) below.

    -  If the context named by the contextName parameter is
       unavailable, processing of the management operation is halted,
       no result PDU is generated, the snmpUnavailableContexts counter
       is incremented, and control is passed to step (6) below.

  (6)  The Dispatcher is called to generate a response or report
       message.  The abstract service interface is:

  returnResponsePdu(
    IN   messageProcessingModel   -- typically, SNMP version
    IN   securityModel            -- Security Model in use
    IN   securityName             -- on behalf of this principal
    IN   securityLevel            -- same as on incoming request
    IN   contextEngineID          -- data from/at this SNMP entity
    IN   contextName              -- data from/in this context
    IN   pduVersion               -- the version of the PDU
    IN   PDU                      -- SNMP Protocol Data Unit
    IN   maxSizeResponseScopedPDU -- maximum size of the Response PDU
    IN   stateReference           -- reference to state information
                                  -- as presented with the request
    IN   statusInformation        -- success or errorIndication
         )                        -- error counter OID/value if error




Levi, et al.                Standards Track                    [Page 12]

RFC 2573                   SNMP Applications                  April 1999


  Where:

    -  The messageProcessingModel is the value from the processPdu
       call.

    -  The securityModel is the value from the processPdu call.

    -  The securityName is the value from the processPdu call.

    -  The securityLevel is the value from the processPdu call.

    -  The contextEngineID is the value from the processPdu call.

    -  The contextName is the value from the processPdu call.

    -  The pduVersion indicates the version of the PDU to be returned.
       If no result PDU was generated, the pduVersion is an undefined
       value.

    -  The PDU is the result generated in step (5) above.  If no result
       PDU was generated, the PDU is an undefined value.

    -  The maxSizeResponseScopedPDU is a local value indicating the
       maximum size of a ScopedPDU that the application can accept.

    -  The stateReference is the value from the processPdu call.

    -  The statusInformation either contains an indication that no
       error occurred and that a response should be generated, or
       contains an indication that an error occurred along with the OID
       and counter value of the appropriate error counter object.

  Note that a command responder application should always call the
  returnResponsePdu abstract service interface, even in the event of an
  error such as a resource allocation error.  In the event of such an
  error, the PDU value passed to returnResponsePdu should contain
  appropriate values for errorStatus and errorIndex.

  Note that the text above describes situations where the
  snmpUnknownContexts counter is incremented, and where the
  snmpUnavailableContexts counter is incremented.  The difference
  between these is that the snmpUnknownContexts counter is incremented
  when a request is received for a context which unknown to the SNMP
  entity.  The snmpUnavailableContexts counter is incremented when a
  request is received for a context which is known to the SNMP entity,
  but is currently unavailable.  Determining when a context is





Levi, et al.                Standards Track                    [Page 13]

RFC 2573                   SNMP Applications                  April 1999


  unavailable is implementation specific, and some implementations may
  never encounter this situation, and so may never increment the
  snmpUnavailableContexts counter.

3.3.  Notification Originator Applications

  A notification originator application generates SNMP messages
  containing Notification-Class PDUs (for example, SNMPv2-Trap PDUs or
  Inform PDUs).  There is no requirement as to what specific types of
  Notification-Class PDUs a particular implementation must be capable
  of generating.

  Notification originator applications require a mechanism for
  identifying the management targets to which notifications should be
  sent.  The particular mechanism used is implementation dependent.
  However, if an implementation makes the configuration of management
  targets SNMP manageable, it MUST use the SNMP-TARGET-MIB module
  described in this document.

  When a notification originator wishes to generate a notification, it
  must first determine in which context the information to be conveyed
  in the notification exists, i.e., it must determine the
  contextEngineID and contextName.  It must then determine the set of
  management targets to which the notification should be sent.  The
  application must also determine, for each management target, what
  specific PDU type the notification message should contain, and if it
  is to contain a Confirmed-Class PDU, the number of retries and
  retransmission algorithm.

  The mechanism by which a notification originator determines this
  information is implementation dependent.  Once the application has
  determined this information, the following procedure is performed for
  each management target:

  (1)  Any appropriate filtering mechanisms are applied to determine
       whether the notification should be sent to the management
       target.  If such filtering mechanisms determine that the
       notification should not be sent, processing continues with the
       next management target.  Otherwise,

  (2)  The appropriate set of variable-bindings is retrieved from local
       MIB instrumentation within the relevant MIB view.  The relevant
       MIB view is determined by the securityLevel, securityModel,
       contextName, and securityName of the management target.  To
       determine whether a particular object instance is within the
       relevant MIB view, the isAccessAllowed abstract service
       interface is used, in the same manner as described in the




Levi, et al.                Standards Track                    [Page 14]

RFC 2573                   SNMP Applications                  April 1999


       preceding section.  If the statusInformation returned by
       isAccessAllowed does not indicate accessAllowed, the
       notification is not sent to the management target.

  (3)  The NOTIFICATION-TYPE OBJECT IDENTIFIER of the notification
       (this is the value of the element of the variable bindings whose
       name is snmpTrapOID.0, i.e., the second variable binding) is
       checked using the isAccessAllowed abstract service interface,
       using the same parameters used in the preceding step.  If the
       statusInformation returned by isAccessAllowed does not indicate
       accessAllowed, the notification is not sent to the management
       target.

  (4)  A PDU is constructed using a locally unique request-id value, a
       PDU type as determined by the implementation, an error-status
       and error-index value of 0, and the variable-bindings supplied
       previously in step (2).

  (5)  If the notification contains an Unconfirmed-Class PDU, the
       Dispatcher is called using the following abstract service
       interface:

      statusInformation =              -- sendPduHandle if success
                                       -- errorIndication if failure
        sendPdu(
        IN   transportDomain           -- transport domain to be used
        IN   transportAddress          -- destination network address
        IN   messageProcessingModel    -- typically, SNMP version
        IN   securityModel             -- Security Model to use
        IN   securityName              -- on behalf of this principal
        IN   securityLevel             -- Level of Security requested
        IN   contextEngineID           -- data from/at this entity
        IN   contextName               -- data from/in this context
        IN   pduVersion                -- the version of the PDU
        IN   PDU                       -- SNMP Protocol Data Unit
        IN   expectResponse            -- TRUE or FALSE
             )

  Where:

    -  The transportDomain is that of the management target.

    -  The transportAddress is that of the management target.

    -  The messageProcessingModel is that of the management target.

    -  The securityModel is that of the management target.




Levi, et al.                Standards Track                    [Page 15]

RFC 2573                   SNMP Applications                  April 1999


    -  The securityName is that of the management target.

    -  The securityLevel is that of the management target.

    -  The contextEngineID is the value originally determined for the
       notification.

    -  The contextName is the value originally determined for the
       notification.

    -  The pduVersion is the version of the PDU to be sent.

    -  The PDU is the value constructed in step (3) above.

    -  The expectResponse argument indicates that no response is
       expected.

  Otherwise,

  (6)  If the notification contains a Confirmed-Class PDU, then:

       a)  The Dispatcher is called using the sendPdu abstract service
           interface as described in step (4) above, except that the
           expectResponse argument indicates that a response is
           expected.

       b)  The application caches information about the management
           target.

       c)  If a response is received within an appropriate time
           interval from the transport endpoint of the management
           target, the notification is considered acknowledged and the
           cached information is deleted.  Otherwise,

       d)  If a response is not received within an appropriate time
           period, or if a report indication is received, information
           about the management target is retrieved from the cache, and
           steps a) through d) are repeated.  The number of times these
           steps are repeated is equal to the previously determined
           retry count.  If this retry count is exceeded, the
           acknowledgement of the notification is considered to have
           failed, and processing of the notification for this
           management target is halted.  Note that some report
           indications might be considered a failure.  Such report
           indications should be interpreted to mean that the
           acknowledgement of the notification has failed.





Levi, et al.                Standards Track                    [Page 16]

RFC 2573                   SNMP Applications                  April 1999


  Responses to Confirmed-Class PDU notifications will be received via
  the processResponsePdu abstract service interface.

  To summarize, the steps that a notification originator follows when
  determining where to send a notification are:

    -  Determine the targets to which the notification should be sent.

    -  Apply any required filtering to the list of targets.

    -  Determine which targets are authorized to receive the
       notification.

3.4.  Notification Receiver Applications

  Notification receiver applications receive SNMP Notification messages
  from the Dispatcher.  Before any messages can be received, the
  notification receiver must register with the Dispatcher using the
  registerContextEngineID abstract service interface.  The parameters
  used are:

    -  The contextEngineID is an undefined 'wildcard' value.
       Notifications are delivered to a registered notification
       receiver regardless of the contextEngineID contained in the
       notification message.

    -  The pduType indicates the type of notifications that the
       application wishes to receive (for example, SNMPv2-Trap PDUs or
       Inform PDUs).

  Once the notification receiver has registered with the Dispatcher,
  messages are received using the processPdu abstract service
  interface.  Parameters are:

    -  The messageProcessingModel indicates which Message Processing
       Model received and processed the message.

    -  The securityModel is the value from the received message.

    -  The securityName is the value from the received message.

    -  The securityLevel is the value from the received message.

    -  The contextEngineID is the value from the received message.

    -  The contextName is the value from the received message.





Levi, et al.                Standards Track                    [Page 17]

RFC 2573                   SNMP Applications                  April 1999


    -  The pduVersion indicates the version of the PDU in the received
       message.

    -  The PDU is the value from the received message.

    -  The maxSizeResponseScopedPDU is the maximum allowable size of a
       ScopedPDU containing a Response PDU (based on the maximum
       message size that the originator of the message can accept).

    -  If the message contains an Unconfirmed-Class PDU, the
       stateReference is undefined and unused.  Otherwise, the
       stateReference is a value which references cached information
       about the notification.  This value must be returned to the
       Dispatcher in order to generate a response.

  When an Unconfirmed-Class PDU is delivered to a notification receiver
  application, it first extracts the SNMP operation type, request-id,
  error-status, error-index, and variable-bindings from the PDU.  After
  this, processing depends on the particular implementation.

  When a Confirmed-Class PDU is received, the notification receiver
  application follows the following procedure:

  (1)  The PDU type, request-id, error-status, error-index, and
       variable-bindings are extracted from the PDU.

  (2)  A Response-Class PDU is constructed using the extracted
       request-id and variable-bindings, and with error-status and
       error-index both set to 0.

  (3)  The Dispatcher is called to generate a response message using
       the returnResponsePdu abstract service interface.  Parameters
       are:

    -  The messageProcessingModel is the value from the processPdu
       call.

    -  The securityModel is the value from the processPdu call.

    -  The securityName is the value from the processPdu call.

    -  The securityLevel is the value from the processPdu call.

    -  The contextEngineID is the value from the processPdu call.

    -  The contextName is the value from the processPdu call.

    -  The pduVersion indicates the version of the PDU to be returned.



Levi, et al.                Standards Track                    [Page 18]

RFC 2573                   SNMP Applications                  April 1999


    -  The PDU is the result generated in step (2) above.

    -  The maxSizeResponseScopedPDU is a local value indicating the
       maximum size of a ScopedPDU that the application can accept.

    -  The stateReference is the value from the processPdu call.

    -  The statusInformation indicates that no error occurred and that
       a response should be generated.

3.5.  Proxy Forwarder Applications

  A proxy forwarder application deals with forwarding SNMP messages.
  There are four basic types of messages which a proxy forwarder
  application may need to forward.  These are grouped according to the
  class of PDU type contained in a message.  The four basic types of
  messages are:

    -  Those containing Read-Class or Write-Class PDU types (for
       example, Get, GetNext, GetBulk, and Set PDU types).  These deal
       with requesting or modifying information located within a
       particular context.

    -  Those containing Notification-Class PDU types (for example,
       SNMPv2-Trap and Inform PDU types).  These deal with
       notifications concerning information located within a particular
       context.

    -  Those containing a Response-Class PDU type.  Forwarding of
       Response PDUs always occurs as a result of receiving a response
       to a previously forwarded message.

    -  Those containing Internal-Class PDU types (for example, a Report
       PDU).  Forwarding of Internal-Class PDU types always occurs as a
       result of receiving an Internal-Class PDU in response to a
       previously forwarded message.

  For the first type, the proxy forwarder's role is to deliver a
  request for management information to an SNMP engine which is
  "closer" or "downstream in the path" to the SNMP engine which has
  access to that information, and to deliver the response containing
  the information back to the SNMP engine from which the request was
  received.  The context information in a request is used to determine
  which SNMP engine has access to the requested information, and this
  is used to determine where and how to forward the request.






Levi, et al.                Standards Track                    [Page 19]

RFC 2573                   SNMP Applications                  April 1999


  For the second type, the proxy forwarder's role is to determine which
  SNMP engines should receive notifications about management
  information from a particular location.  The context information in a
  notification message determines the location to which the information
  contained in the notification applies.  This is used to determine
  which SNMP engines should receive notification about this
  information.

  For the third type, the proxy forwarder's role is to determine which
  previously forwarded request or notification (if any) the response
  matches, and to forward the response back to the initiator of the
  request or notification.

  For the fourth type, the proxy forwarder's role is to determine which
  previously forwarded request or notification (if any) the Internal-
  Class PDU matches, and to forward the Internal-Class PDU back to the
  initiator of the request or notification.

  When forwarding messages, a proxy forwarder application must perform
  a translation of incoming management target information into outgoing
  management target information.  How this translation is performed is
  implementation specific.  In many cases, this will be driven by a
  preconfigured translation table.  If a proxy forwarder application
  makes the contents of this table SNMP manageable, it MUST use the
  SNMP-PROXY-MIB module defined in this document.

3.5.1.  Request Forwarding

  There are two phases for request forwarding.  First, the incoming
  request needs to be passed through the proxy application.  Then, the
  resulting response needs to be passed back.  These phases are
  described in the following two sections.

3.5.1.1.  Processing an Incoming Request

  A proxy forwarder application that wishes to forward request messages
  must first register with the Dispatcher using the
  registerContextEngineID abstract service interface.  The proxy
  forwarder must register each contextEngineID for which it wishes to
  forward messages, as well as for each pduType.  Note that as the
  configuration of a proxy forwarder is changed, the particular
  contextEngineID values for which it is forwarding may change.  The
  proxy forwarder should call the registerContextEngineID and
  unregisterContextEngineID abstract service interfaces as needed to
  reflect its current configuration.






Levi, et al.                Standards Track                    [Page 20]

RFC 2573                   SNMP Applications                  April 1999


  A proxy forwarder application should never attempt to register a
  value of contextEngineID which is equal to the snmpEngineID of the
  SNMP engine to which the proxy forwarder is associated.

  Once the proxy forwarder has registered for the appropriate
  contextEngineID values, it can start processing messages.  The
  following procedure is used:

  (1)  A message is received using the processPdu abstract service
       interface.  The incoming management target information received
       from the processPdu interface is translated into outgoing
       management target information.  Note that this translation may
       vary for different values of contextEngineID and/or contextName.
       The translation should result in a single management target.

  (2)  If appropriate outgoing management target information cannot be
       found, the proxy forwarder increments the snmpProxyDrops counter
       [RFC1907], and then calls the Dispatcher using the
       returnResponsePdu abstract service interface.  Parameters are:

    -  The messageProcessingModel is the value from the processPdu
       call.

    -  The securityModel is the value from the processPdu call.

    -  The securityName is the value from the processPdu call.

    -  The securityLevel is the value from the processPdu call.

    -  The contextEngineID is the value from the processPdu call.

    -  The contextName is the value from the processPdu call.

    -  The pduVersion is the value from the processPdu call.

    -  The PDU is an undefined value.

    -  The maxSizeResponseScopedPDU is a local value indicating the
       maximum size of a ScopedPDU that the application can accept.

    -  The stateReference is the value from the processPdu call.

    -  The statusInformation indicates that an error occurred and
       includes the OID and value of the snmpProxyDrops object.

       Processing of the message stops at this point.  Otherwise,





Levi, et al.                Standards Track                    [Page 21]

RFC 2573                   SNMP Applications                  April 1999


  (3)  A new PDU is constructed.  A unique value of request-id should
       be used in the new PDU (this value will enable a subsequent
       response message to be correlated with this request).  The
       remainder of the new PDU is identical to the received PDU,
       unless the incoming SNMP version and the outgoing SNMP version
       support different PDU versions, in which case the proxy
       forwarder may need to perform a translation on the PDU (A method
       for performing such a translation is described in [COEX].)

  (4)  The proxy forwarder calls the Dispatcher to generate the
       forwarded message, using the sendPdu abstract service interface.
       The parameters are:

    -  The transportDomain is that of the outgoing management target.

    -  The transportAddress is that of the outgoing management target.

    -  The messageProcessingModel is that of the outgoing management
       target.

    -  The securityModel is that of the outgoing management target.

    -  The securityName is that of the outgoing management target.

    -  The securityLevel is that of the outgoing management target.

    -  The contextEngineID is the value originally received.

    -  The contextName is the value originally received.

    -  The pduVersion is the version of the PDU to be sent.

    -  The PDU is the value constructed in step (3) above.

    -  The expectResponse argument indicates that a response is
       expected.  If the sendPdu call is unsuccessful, the proxy
       forwarder performs the steps described in (2) above.  Otherwise:

  (5)  The proxy forwarder caches the following information in order to
       match an incoming response to the forwarded request:

    -  The sendPduHandle returned from the call to sendPdu,

    -  The request-id from the received PDU.

    -  the contextEngineID,

    -  the contextName,



Levi, et al.                Standards Track                    [Page 22]

RFC 2573                   SNMP Applications                  April 1999


    -  the stateReference,

    -  the incoming management target information,

    -  the outgoing management information,

    -  any other information needed to match an incoming response to
       the forwarded request.

       If this information cannot be cached (possibly due to a lack of
       resources), the proxy forwarder performs the steps described in
       (2) above.  Otherwise:

  (6)  Processing of the request stops until a response to the
       forwarded request is received, or until an appropriate time
       interval has expired.  If this time interval expires before a
       response has been received, the cached information about this
       request is removed.

3.5.1.2.  Processing an Incoming Response

  A proxy forwarder follows the following procedure when an incoming
  response is received:

  (1)  The incoming response is received using the processResponsePdu
       interface.  The proxy forwarder uses the received parameters to
       locate an entry in its cache of pending forwarded requests.
       This is done by matching the received parameters with the cached
       values of sendPduHandle, contextEngineID, contextName, outgoing
       management target information, and the request-id contained in
       the received PDU (the proxy forwarder must extract the request-
       id for this purpose).  If an appropriate cache entry cannot be
       found, processing of the response is halted.  Otherwise:

  (2)  The cache information is extracted, and removed from the cache.

  (3)  A new Response-Class PDU is constructed, using the request-id
       value from the original forwarded request (as extracted from the
       cache).  All other values are identical to those in the received
       Response-Class PDU, unless the incoming SNMP version and the
       outgoing SNMP version support different PDU versions, in which
       case the proxy forwarder may need to perform a translation on
       the PDU.  (A method for performing such a translation is
       described in [COEX].)

  (4)  The proxy forwarder calls the Dispatcher using the
       returnResponsePdu abstract service interface.  Parameters are:




Levi, et al.                Standards Track                    [Page 23]

RFC 2573                   SNMP Applications                  April 1999


    -  The messageProcessingModel indicates the Message Processing
       Model by which the original incoming message was processed.

    -  The securityModel is that of the original incoming management
       target extracted from the cache.

    -  The securityName is that of the original incoming management
       target extracted from the cache.

    -  The securityLevel is that of the original incoming management
       target extracted from the cache.

    -  The contextEngineID is the value extracted from the cache.

    -  The contextName is the value extracted from the cache.

    -  The pduVersion indicates the version of the PDU to be returned.

    -  The PDU is the (possibly translated) Response PDU.

    -  The maxSizeResponseScopedPDU is a local value indicating the
       maximum size of a ScopedPDU that the application can accept.

    -  The stateReference is the value extracted from the cache.

    -  The statusInformation indicates that no error occurred and that
       a Response PDU message should be generated.

3.5.1.3.  Processing an Incoming Internal-Class PDU

  A proxy forwarder follows the following procedure when an incoming
  Internal-Class PDU is received:

  (1)  The incoming Internal-Class PDU is received using the
       processResponsePdu interface.  The proxy forwarder uses the
       received parameters to locate an entry in its cache of pending
       forwarded requests.  This is done by matching the received
       parameters with the cached values of sendPduHandle.  If an
       appropriate cache entry cannot be found, processing of the
       Internal-Class PDU is halted.  Otherwise:

  (2)  The cache information is extracted, and removed from the cache.

  (3)  If the original incoming management target information indicates
       an SNMP version which does not support Report PDUs, processing
       of the Internal-Class PDU is halted.





Levi, et al.                Standards Track                    [Page 24]

RFC 2573                   SNMP Applications                  April 1999


  (4)  The proxy forwarder calls the Dispatcher using the
       returnResponsePdu abstract service interface.  Parameters are:

    -  The messageProcessingModel indicates the Message Processing
       Model by which the original incoming message was processed.

    -  The securityModel is that of the original incoming management
       target extracted from the cache.

    -  The securityName is that of the original incoming management
       target extracted from the cache.

    -  The securityLevel is that of the original incoming management
       target extracted from the cache.

    -  The contextEngineID is the value extracted from the cache.

    -  The contextName is the value extracted from the cache.

    -  The pduVersion indicates the version of the PDU to be returned.

    -  The PDU is unused.

    -  The maxSizeResponseScopedPDU is a local value indicating the
       maximum size of a ScopedPDU that the application can accept.

    -  The stateReference is the value extracted from the cache.

    -  The statusInformation contains values specific to the Internal-
       Class PDU type (for example, for a Report PDU, the
       statusInformation contains the contextEngineID, contextName,
       counter OID, and counter value received in the incoming Report
       PDU).

3.5.2.  Notification Forwarding

  A proxy forwarder receives notifications in the same manner as a
  notification receiver application, using the processPdu abstract
  service interface.  The following procedure is used when a
  notification is received:

  (1)  The incoming management target information received from the
       processPdu interface is translated into outgoing management
       target information.  Note that this translation may vary for
       different values of contextEngineID and/or contextName.  The
       translation may result in multiple management targets.





Levi, et al.                Standards Track                    [Page 25]

RFC 2573                   SNMP Applications                  April 1999


  (2)  If appropriate outgoing management target information cannot be
       found and the notification was an Unconfirmed-Class PDU,
       processing of the notification is halted.  If appropriate
       outgoing management target information cannot be found and the
       notification was a Confirmed-Class PDU, the proxy forwarder
       increments the snmpProxyDrops object, and calls the Dispatcher
       using the returnResponsePdu abstract service interface.  The
       parameters are:

    -  The messageProcessingModel is the received value.

    -  The securityModel is the received value.

    -  The securityName is the received value.

    -  The securityLevel is the received value.

    -  The contextEngineID is the received value.

    -  The contextName is the received value.

    -  The pduVersion is the received value.

    -  The PDU is an undefined and unused value.

    -  The maxSizeResponseScopedPDU is a local value indicating the
       maximum size of a ScopedPDU that the application can accept.

    -  The stateReference is the received value.

    -  The statusInformation indicates that an error occurred and that
       a Report message should be generated.

  Processing of the message stops at this point.  Otherwise,

  (3)  The proxy forwarder generates a notification using the
       procedures described in the preceding section on Notification
       Originators, with the following exceptions:

    -  The contextEngineID and contextName values from the original
       received notification are used.

    -  The outgoing management targets previously determined are used.

    -  No filtering mechanisms are applied.






Levi, et al.                Standards Track                    [Page 26]

RFC 2573                   SNMP Applications                  April 1999


    -  The variable-bindings from the original received notification
       are used, rather than retrieving variable-bindings from local
       MIB instrumentation.  In particular, no access-control is
       applied to these variable-bindings.

    -  If the original notification contains a Confirmed-Class PDU,
       then any outgoing management targets, for which the outgoing
       SNMP version does not support and PDU types which are both
       Notification-Class and Confirmed-Class PDUs, will not be used
       when generating the forwarded notifications.

    -  If, for any of the outgoing management targets, the incoming
       SNMP version and the outgoing SNMP version support different PDU
       versions, the proxy forwarder may need to perform a translation
       on the PDU.  (A method for performing such a translation is
       described in [COEX].)

  (4)  If the original received notification contains an Unconfirmed-
       Class PDU, processing of the notification is now completed.
       Otherwise, the original received notification must contain a
       Confirmed-Class PDU, and processing continues.

  (5)  If the forwarded notifications included any Confirmed-Class
       PDUs, processing continues when the procedures described in the
       section for Notification Originators determine that either:

    -  None of the generated notifications containing Confirmed-Class
       PDUs have been successfully acknowledged within the longest of
       the time intervals, in which case processing of the original
       notification is halted, or,

    -  At least one of the generated notifications containing
       Confirmed-Class PDUs is successfully acknowledged, in which case
       a response to the original received notification containing an
       Confirmed-Class PDU is generated as described in the following
       steps.

  (6)  A Response-Class PDU is constructed, using the values of
       request-id and variable-bindings from the original received
       Notification-Class PDU, and error-status and error-index values
       of 0.

  (7)  The Dispatcher is called using the returnResponsePdu abstract
       service interface.  Parameters are:

    -  The messageProcessingModel is the originally received value.

    -  The securityModel is the originally received value.



Levi, et al.                Standards Track                    [Page 27]

RFC 2573                   SNMP Applications                  April 1999


    -  The securityName is the originally received value.

    -  The securityLevel is the originally received value.

    -  The contextEngineID is the originally received value.

    -  The contextName is the originally received value.

    -  The pduVersion indicates the version of the PDU constructed in
       step (6) above.

    -  The PDU is the value constructed in step (6) above.

    -  The maxSizeResponseScopedPDU is a local value indicating the
       maximum size of a ScopedPDU that the application can accept.

    -  The stateReference is the originally received value.

    -  The statusInformation indicates that no error occurred and that
       a Response-Class PDU message should be generated.

4.  The Structure of the MIB Modules

  There are three separate MIB modules described in this document, the
  management target MIB, the notification MIB, and the proxy MIB.  The
  following sections describe the structure of these three MIB modules.

  The use of these MIBs by particular types of applications is
  described later in this document:

    -  The use of the management target MIB and the notification MIB in
       notification originator applications is described in section 6.

    -  The use of the notification MIB for filtering notifications in
       notification originator applications is described in section 7.

    -  The use of the management target MIB and the proxy MIB in proxy
       forwarding applications is described in section 8.

4.1.  The Management Target MIB Module

  The SNMP-TARGET-MIB module contains objects for defining management
  targets.  It consists of two tables and conformance/compliance
  statements.







Levi, et al.                Standards Track                    [Page 28]

RFC 2573                   SNMP Applications                  April 1999


  The first table, the snmpTargetAddrTable, contains information about
  transport domains and addresses.  It also contains an object,
  snmpTargetAddrTagList, which provides a mechanism for grouping
  entries.

  The second table, the snmpTargetParamsTable, contains information
  about SNMP version and security information to be used when sending
  messages to particular transport domains and addresses.

  The Management Target MIB is intended to provide a general-purpose
  mechanism for specifying transport address, and for specifying
  parameters of SNMP messages generated by an SNMP entity.  It is used
  within this document for generation of notifications and for proxy
  forwarding.  However, it may be used for other purposes.  If another
  document makes use of this MIB, that document is responsible for
  specifying how it is used.  For example, [COEX] uses this MIB for
  source address validation of SNMPv1 messages.

4.1.1.  Tag Lists

  The snmpTargetAddrTagList object is used for grouping entries in the
  snmpTargetAddrTable.  The value of this object contains a list of tag
  values which are used to select target addresses to be used for a
  particular operation.

  A tag value, which may also be used in MIB objects other than
  snmpTargetAddrTagList, is an arbitrary string of octets, but may not
  contain a delimiter character.  Delimiter characters are defined to
  be one of the following characters:

    -  An ASCII space character (0x20).

    -  An ASCII TAB character (0x09).

    -  An ASCII carriage return (CR) character (0x0D).

    -  An ASCII line feed (LF) character (0x0B).

  In addition, a tag value may not have a zero length.  Generally, a
  particular MIB object may contain either

    -  a single tag value, in which case the value of the MIB object
       may not contain a delimiter character, or:

    -  a MIB object may contain a list of tag values, separated by
       single delimiter characters.





Levi, et al.                Standards Track                    [Page 29]

RFC 2573                   SNMP Applications                  April 1999


  For a list of tag values, these constraints imply certain
  restrictions on the value of a MIB object:

    -  There cannot be a leading or trailing delimiter character.

    -  There cannot be multiple adjacent delimiter characters.

4.1.2.  Definitions

  SNMP-TARGET-MIB DEFINITIONS ::= BEGIN

  IMPORTS
      MODULE-IDENTITY,
      OBJECT-TYPE,
      snmpModules,
      Counter32,
      Integer32

          FROM SNMPv2-SMI

      TEXTUAL-CONVENTION,
      TDomain,
      TAddress,
      TimeInterval,
      RowStatus,
      StorageType,
      TestAndIncr
          FROM SNMPv2-TC

      SnmpSecurityModel,
      SnmpMessageProcessingModel,
      SnmpSecurityLevel,
      SnmpAdminString
          FROM SNMP-FRAMEWORK-MIB

      MODULE-COMPLIANCE,
      OBJECT-GROUP
          FROM SNMPv2-CONF;

  snmpTargetMIB MODULE-IDENTITY
      LAST-UPDATED "9808040000Z"
      ORGANIZATION "IETF SNMPv3 Working Group"
      CONTACT-INFO
          "WG-email:   [email protected]
           Subscribe:  [email protected]
                       In message body:  subscribe snmpv3

           Chair:      Russ Mundy



Levi, et al.                Standards Track                    [Page 30]

RFC 2573                   SNMP Applications                  April 1999


                       Trusted Information Systems
           Postal:     3060 Washington Rd
                       Glenwood MD 21738
                       USA
           EMail:      [email protected]
           Phone:      +1-301-854-6889

           Co-editor:  David B. Levi
                       SNMP Research, Inc.
           Postal:     3001 Kimberlin Heights Road
                       Knoxville, TN 37920-9716
           EMail:      [email protected]
           Phone:      +1 423 573 1434

           Co-editor:  Paul Meyer
                       Secure Computing Corporation
           Postal:     2675 Long Lake Road
                       Roseville, MN 55113
           EMail:      [email protected]
           Phone:      +1 651 628 1592

           Co-editor:  Bob Stewart
                       Cisco Systems, Inc.
           Postal:     170 West Tasman Drive
                       San Jose, CA 95134-1706
           EMail:      [email protected]
           Phone:      +1 603 654 2686"
      DESCRIPTION
          "This MIB module defines MIB objects which provide
           mechanisms to remotely configure the parameters used
           by an SNMP entity for the generation of SNMP messages."
      REVISION    "9808040000Z"
      DESCRIPTION "Clarifications, published as
                   RFC2573."
      REVISION    "9707140000Z"
      DESCRIPTION "The initial revision, published as RFC2273."
      ::= { snmpModules 12 }

  snmpTargetObjects       OBJECT IDENTIFIER ::= { snmpTargetMIB 1 }
  snmpTargetConformance   OBJECT IDENTIFIER ::= { snmpTargetMIB 3 }

  SnmpTagValue ::= TEXTUAL-CONVENTION
      DISPLAY-HINT "255a"
      STATUS       current
      DESCRIPTION
          "An octet string containing a tag value.
           Tag values are preferably in human-readable form.




Levi, et al.                Standards Track                    [Page 31]

RFC 2573                   SNMP Applications                  April 1999


           To facilitate internationalization, this information
           is represented using the ISO/IEC IS 10646-1 character
           set, encoded as an octet string using the UTF-8
           character encoding scheme described in RFC 2279.

           Since additional code points are added by amendments
           to the 10646 standard from time to time,
           implementations must be prepared to encounter any code
           point from 0x00000000 to 0x7fffffff.

           The use of control codes should be avoided, and certain
           control codes are not allowed as described below.

           For code points not directly supported by user
           interface hardware or software, an alternative means
           of entry and display, such as hexadecimal, may be
           provided.

           For information encoded in 7-bit US-ASCII, the UTF-8
           representation is identical to the US-ASCII encoding.

           Note that when this TC is used for an object that
           is used or envisioned to be used as an index, then a
           SIZE restriction must be specified so that the number
           of sub-identifiers for any object instance does not
           exceed the limit of 128, as defined by [RFC1905].

           An object of this type contains a single tag value
           which is used to select a set of entries in a table.

           A tag value is an arbitrary string of octets, but
           may not contain a delimiter character.  Delimiter
           characters are defined to be one of the following:

               -  An ASCII space character (0x20).

               -  An ASCII TAB character (0x09).

               -  An ASCII carriage return (CR) character (0x0D).

               -  An ASCII line feed (LF) character (0x0B).

           Delimiter characters are used to separate tag values
           in a tag list.  An object of this type may only
           contain a single tag value, and so delimiter
           characters are not allowed in a value of this type.

           Some examples of valid tag values are:



Levi, et al.                Standards Track                    [Page 32]

RFC 2573                   SNMP Applications                  April 1999


               - 'acme'

               - 'router'

               - 'host'

           The use of a tag value to select table entries is
           application and MIB specific."
      SYNTAX       OCTET STRING (SIZE (0..255))

  SnmpTagList ::= TEXTUAL-CONVENTION
      DISPLAY-HINT "255a"
      STATUS       current
      DESCRIPTION
          "An octet string containing a list of tag values.
           Tag values are preferably in human-readable form.

           To facilitate internationalization, this information
           is represented using the ISO/IEC IS 10646-1 character
           set, encoded as an octet string using the UTF-8
           character encoding scheme described in RFC 2279.

           Since additional code points are added by amendments
           to the 10646 standard from time to time,
           implementations must be prepared to encounter any code
           point from 0x00000000 to 0x7fffffff.

           The use of control codes should be avoided, except as
           described below.

           For code points not directly supported by user
           interface hardware or software, an alternative means
           of entry and display, such as hexadecimal, may be
           provided.

           For information encoded in 7-bit US-ASCII, the UTF-8
           representation is identical to the US-ASCII encoding.

           An object of this type contains a list of tag values
           which are used to select a set of entries in a table.

           A tag value is an arbitrary string of octets, but
           may not contain a delimiter character.  Delimiter
           characters are defined to be one of the following:

               -  An ASCII space character (0x20).

               -  An ASCII TAB character (0x09).



Levi, et al.                Standards Track                    [Page 33]

RFC 2573                   SNMP Applications                  April 1999


               -  An ASCII carriage return (CR) character (0x0D).

               -  An ASCII line feed (LF) character (0x0B).

           Delimiter characters are used to separate tag values
           in a tag list.  Only a single delimiter character may
           occur between two tag values.  A tag value may not
           have a zero length.  These constraints imply certain
           restrictions on the contents of this object:

               - There cannot be a leading or trailing delimiter
                 character.

               - There cannot be multiple adjacent delimiter
                 characters.

           Some examples of valid tag lists are:

               - An empty string

               - 'acme router'

               - 'host managerStation'

           Note that although a tag value may not have a length of
           zero, an empty string is still valid.  This indicates
           an empty list (i.e. there are no tag values in the list).

           The use of the tag list to select table entries is
           application and MIB specific.  Typically, an application
           will provide one or more tag values, and any entry
           which contains some combination of these tag values
           will be selected."
      SYNTAX       OCTET STRING (SIZE (0..255))

  --
  --
  -- The snmpTargetObjects group
  --
  --

  snmpTargetSpinLock OBJECT-TYPE
      SYNTAX      TestAndIncr
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
          "This object is used to facilitate modification of table
           entries in the SNMP-TARGET-MIB module by multiple



Levi, et al.                Standards Track                    [Page 34]

RFC 2573                   SNMP Applications                  April 1999


           managers.  In particular, it is useful when modifying
           the value of the snmpTargetAddrTagList object.

           The procedure for modifying the snmpTargetAddrTagList
           object is as follows:

               1.  Retrieve the value of snmpTargetSpinLock and
                   of snmpTargetAddrTagList.

               2.  Generate a new value for snmpTargetAddrTagList.

               3.  Set the value of snmpTargetSpinLock to the
                   retrieved value, and the value of
                   snmpTargetAddrTagList to the new value.  If
                   the set fails for the snmpTargetSpinLock
                   object, go back to step 1."
      ::= { snmpTargetObjects 1 }

  snmpTargetAddrTable OBJECT-TYPE
      SYNTAX      SEQUENCE OF SnmpTargetAddrEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "A table of transport addresses to be used in the generation
           of SNMP messages."
      ::= { snmpTargetObjects 2 }

  snmpTargetAddrEntry OBJECT-TYPE
      SYNTAX      SnmpTargetAddrEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "A transport address to be used in the generation
           of SNMP operations.

           Entries in the snmpTargetAddrTable are created and
           deleted using the snmpTargetAddrRowStatus object."
      INDEX { IMPLIED snmpTargetAddrName }
      ::= { snmpTargetAddrTable 1 }

  SnmpTargetAddrEntry ::= SEQUENCE {
      snmpTargetAddrName         SnmpAdminString,
      snmpTargetAddrTDomain      TDomain,
      snmpTargetAddrTAddress     TAddress,
      snmpTargetAddrTimeout      TimeInterval,
      snmpTargetAddrRetryCount   Integer32,
      snmpTargetAddrTagList      SnmpTagList,
      snmpTargetAddrParams       SnmpAdminString,



Levi, et al.                Standards Track                    [Page 35]

RFC 2573                   SNMP Applications                  April 1999


      snmpTargetAddrStorageType  StorageType,
      snmpTargetAddrRowStatus    RowStatus
  }

  snmpTargetAddrName OBJECT-TYPE
      SYNTAX      SnmpAdminString (SIZE(1..32))
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "The locally arbitrary, but unique identifier associated
           with this snmpTargetAddrEntry."
      ::= { snmpTargetAddrEntry 1 }

  snmpTargetAddrTDomain OBJECT-TYPE
      SYNTAX      TDomain
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "This object indicates the transport type of the address
           contained in the snmpTargetAddrTAddress object."
      ::= { snmpTargetAddrEntry 2 }

  snmpTargetAddrTAddress OBJECT-TYPE
      SYNTAX      TAddress
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "This object contains a transport address.  The format of
           this address depends on the value of the
           snmpTargetAddrTDomain object."
      ::= { snmpTargetAddrEntry 3 }

  snmpTargetAddrTimeout OBJECT-TYPE
      SYNTAX      TimeInterval
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "This object should reflect the expected maximum round
           trip time for communicating with the transport address
           defined by this row.  When a message is sent to this
           address, and a response (if one is expected) is not
           received within this time period, an implementation
           may assume that the response will not be delivered.

           Note that the time interval that an application waits
           for a response may actually be derived from the value
           of this object.  The method for deriving the actual time
           interval is implementation dependent.  One such method



Levi, et al.                Standards Track                    [Page 36]

RFC 2573                   SNMP Applications                  April 1999


           is to derive the expected round trip time based on a
           particular retransmission algorithm and on the number
           of timeouts which have occurred.  The type of message may
           also be considered when deriving expected round trip
           times for retransmissions.  For example, if a message is
           being sent with a securityLevel that indicates both
           authentication and privacy, the derived value may be
           increased to compensate for extra processing time spent
           during authentication and encryption processing."
      DEFVAL { 1500 }
      ::= { snmpTargetAddrEntry 4 }

  snmpTargetAddrRetryCount OBJECT-TYPE
      SYNTAX      Integer32 (0..255)
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "This object specifies a default number of retries to be
           attempted when a response is not received for a generated
           message.  An application may provide its own retry count,
           in which case the value of this object is ignored."
      DEFVAL { 3 }
      ::= { snmpTargetAddrEntry 5 }

  snmpTargetAddrTagList OBJECT-TYPE
      SYNTAX      SnmpTagList
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "This object contains a list of tag values which are
           used to select target addresses for a particular
           operation."
      DEFVAL { "" }
      ::= { snmpTargetAddrEntry 6 }

  snmpTargetAddrParams OBJECT-TYPE
      SYNTAX      SnmpAdminString (SIZE(1..32))
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The value of this object identifies an entry in the
           snmpTargetParamsTable.  The identified entry
           contains SNMP parameters to be used when generating
           messages to be sent to this transport address."
      ::= { snmpTargetAddrEntry 7 }

  snmpTargetAddrStorageType OBJECT-TYPE
      SYNTAX      StorageType



Levi, et al.                Standards Track                    [Page 37]

RFC 2573                   SNMP Applications                  April 1999


      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The storage type for this conceptual row."
      DEFVAL { nonVolatile }
      ::= { snmpTargetAddrEntry 8 }

  snmpTargetAddrRowStatus OBJECT-TYPE
      SYNTAX      RowStatus
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The status of this conceptual row.

           To create a row in this table, a manager must
           set this object to either createAndGo(4) or
           createAndWait(5).

           Until instances of all corresponding columns are
           appropriately configured, the value of the
           corresponding instance of the snmpTargetAddrRowStatus
           column is 'notReady'.

           In particular, a newly created row cannot be made
           active until the corresponding instances of
           snmpTargetAddrTDomain, snmpTargetAddrTAddress, and
           snmpTargetAddrParams have all been set.

           The following objects may not be modified while the
           value of this object is active(1):
               - snmpTargetAddrTDomain
               - snmpTargetAddrTAddress
           An attempt to set these objects while the value of
           snmpTargetAddrRowStatus is active(1) will result in
           an inconsistentValue error."
      ::= { snmpTargetAddrEntry 9 }

  snmpTargetParamsTable OBJECT-TYPE
      SYNTAX      SEQUENCE OF SnmpTargetParamsEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "A table of SNMP target information to be used
           in the generation of SNMP messages."
      ::= { snmpTargetObjects 3 }

  snmpTargetParamsEntry OBJECT-TYPE
      SYNTAX      SnmpTargetParamsEntry



Levi, et al.                Standards Track                    [Page 38]

RFC 2573                   SNMP Applications                  April 1999


      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "A set of SNMP target information.

           Entries in the snmpTargetParamsTable are created and
           deleted using the snmpTargetParamsRowStatus object."
      INDEX { IMPLIED snmpTargetParamsName }
      ::= { snmpTargetParamsTable 1 }

  SnmpTargetParamsEntry ::= SEQUENCE {
      snmpTargetParamsName           SnmpAdminString,
      snmpTargetParamsMPModel        SnmpMessageProcessingModel,
      snmpTargetParamsSecurityModel  SnmpSecurityModel,
      snmpTargetParamsSecurityName   SnmpAdminString,
      snmpTargetParamsSecurityLevel  SnmpSecurityLevel,
      snmpTargetParamsStorageType    StorageType,
      snmpTargetParamsRowStatus      RowStatus
  }

  snmpTargetParamsName OBJECT-TYPE
      SYNTAX      SnmpAdminString (SIZE(1..32))
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "The locally arbitrary, but unique identifier associated
           with this snmpTargetParamsEntry."
      ::= { snmpTargetParamsEntry 1 }

  snmpTargetParamsMPModel OBJECT-TYPE
      SYNTAX      SnmpMessageProcessingModel
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The Message Processing Model to be used when generating
           SNMP messages using this entry."
      ::= { snmpTargetParamsEntry 2 }

  snmpTargetParamsSecurityModel OBJECT-TYPE
      SYNTAX      SnmpSecurityModel (1..2147483647)
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The Security Model to be used when generating SNMP
            messages using this entry.  An implementation may
            choose to return an inconsistentValue error if an
            attempt is made to set this variable to a value
            for a security model which the implementation does



Levi, et al.                Standards Track                    [Page 39]

RFC 2573                   SNMP Applications                  April 1999


            not support."
      ::= { snmpTargetParamsEntry 3 }

  snmpTargetParamsSecurityName OBJECT-TYPE
      SYNTAX      SnmpAdminString
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The securityName which identifies the Principal on
           whose behalf SNMP messages will be generated using
           this entry."
      ::= { snmpTargetParamsEntry 4 }

  snmpTargetParamsSecurityLevel OBJECT-TYPE
      SYNTAX      SnmpSecurityLevel
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The Level of Security to be used when generating
           SNMP messages using this entry."
      ::= { snmpTargetParamsEntry 5 }

  snmpTargetParamsStorageType OBJECT-TYPE
      SYNTAX      StorageType
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The storage type for this conceptual row."
      DEFVAL { nonVolatile }
      ::= { snmpTargetParamsEntry 6 }

  snmpTargetParamsRowStatus OBJECT-TYPE
      SYNTAX      RowStatus
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The status of this conceptual row.

           To create a row in this table, a manager must
           set this object to either createAndGo(4) or
           createAndWait(5).

           Until instances of all corresponding columns are
           appropriately configured, the value of the
           corresponding instance of the snmpTargetParamsRowStatus
           column is 'notReady'.

           In particular, a newly created row cannot be made



Levi, et al.                Standards Track                    [Page 40]

RFC 2573                   SNMP Applications                  April 1999


           active until the corresponding
           snmpTargetParamsMPModel,
           snmpTargetParamsSecurityModel,
           snmpTargetParamsSecurityName,
           and snmpTargetParamsSecurityLevel have all been set.
           The following objects may not be modified while the
           value of this object is active(1):
               - snmpTargetParamsMPModel
               - snmpTargetParamsSecurityModel
               - snmpTargetParamsSecurityName
               - snmpTargetParamsSecurityLevel
           An attempt to set these objects while the value of
           snmpTargetParamsRowStatus is active(1) will result in
           an inconsistentValue error."
      ::= { snmpTargetParamsEntry 7 }

  snmpUnavailableContexts OBJECT-TYPE
      SYNTAX       Counter32
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
          "The total number of packets received by the SNMP
           engine which were dropped because the context
           contained in the message was unavailable."
      ::= { snmpTargetObjects 4 }

  snmpUnknownContexts OBJECT-TYPE
      SYNTAX       Counter32
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
          "The total number of packets received by the SNMP
           engine which were dropped because the context
           contained in the message was unknown."
      ::= { snmpTargetObjects 5 }

  --
  --
  -- Conformance information
  --
  --

  snmpTargetCompliances OBJECT IDENTIFIER ::=
                                          { snmpTargetConformance 1 }
  snmpTargetGroups      OBJECT IDENTIFIER ::=
                                          { snmpTargetConformance 2 }

  --



Levi, et al.                Standards Track                    [Page 41]

RFC 2573                   SNMP Applications                  April 1999


  --
  -- Compliance statements
  --
  --
  snmpTargetCommandResponderCompliance MODULE-COMPLIANCE
      STATUS      current
      DESCRIPTION
          "The compliance statement for SNMP entities which include
           a command responder application."
      MODULE -- This Module
          MANDATORY-GROUPS { snmpTargetCommandResponderGroup }
      ::= { snmpTargetCompliances 1 }

  snmpTargetBasicGroup OBJECT-GROUP
      OBJECTS {
          snmpTargetSpinLock,
          snmpTargetAddrTDomain,
          snmpTargetAddrTAddress,
          snmpTargetAddrTagList,
          snmpTargetAddrParams,
          snmpTargetAddrStorageType,
          snmpTargetAddrRowStatus,
          snmpTargetParamsMPModel,
          snmpTargetParamsSecurityModel,
          snmpTargetParamsSecurityName,
          snmpTargetParamsSecurityLevel,
          snmpTargetParamsStorageType,
          snmpTargetParamsRowStatus
      }
      STATUS      current
      DESCRIPTION
          "A collection of objects providing basic remote
           configuration of management targets."
      ::= { snmpTargetGroups 1 }

  snmpTargetResponseGroup OBJECT-GROUP
      OBJECTS {
          snmpTargetAddrTimeout,
          snmpTargetAddrRetryCount
      }
      STATUS      current
      DESCRIPTION
          "A collection of objects providing remote configuration
           of management targets for applications which generate
           SNMP messages for which a response message would be
           expected."
      ::= { snmpTargetGroups 2 }




Levi, et al.                Standards Track                    [Page 42]

RFC 2573                   SNMP Applications                  April 1999


  snmpTargetCommandResponderGroup OBJECT-GROUP
      OBJECTS {
          snmpUnavailableContexts,
          snmpUnknownContexts
      }
      STATUS      current
      DESCRIPTION
          "A collection of objects required for command responder
           applications, used for counting error conditions."
      ::= { snmpTargetGroups 3 }

  END

4.2.  The Notification MIB Module

  The SNMP-NOTIFICATION-MIB module contains objects for the remote
  configuration of the parameters used by an SNMP entity for the
  generation of notifications.  It consists of three tables and
  conformance/compliance statements.  The first table, the
  snmpNotifyTable, contains entries which select which entries in the
  snmpTargetAddrTable should be used for generating notifications, and
  the type of notifications to be generated.

  The second table sparsely augments the snmpTargetAddrTable with an
  object which is used to associate a set of filters with a particular
  management target.

  The third table defines filters which are used to limit the number of
  notifications which are generated using particular management
  targets.

4.2.1.  Definitions

  SNMP-NOTIFICATION-MIB DEFINITIONS ::= BEGIN

  IMPORTS
      MODULE-IDENTITY,
      OBJECT-TYPE,
      snmpModules
          FROM SNMPv2-SMI

      RowStatus,
      StorageType
          FROM SNMPv2-TC

      SnmpAdminString
          FROM SNMP-FRAMEWORK-MIB




Levi, et al.                Standards Track                    [Page 43]

RFC 2573                   SNMP Applications                  April 1999


      SnmpTagValue,
      snmpTargetParamsName
          FROM SNMP-TARGET-MIB

      MODULE-COMPLIANCE,
      OBJECT-GROUP
          FROM SNMPv2-CONF;

  snmpNotificationMIB MODULE-IDENTITY
      LAST-UPDATED "9808040000Z"
      ORGANIZATION "IETF SNMPv3 Working Group"
      CONTACT-INFO
          "WG-email:   [email protected]
           Subscribe:  [email protected]
                       In message body:  subscribe snmpv3

           Chair:      Russ Mundy
                       Trusted Information Systems
           Postal:     3060 Washington Rd
                       Glenwood MD 21738
                       USA
           EMail:      [email protected]
           Phone:      +1-301-854-6889

           Co-editor:  David B. Levi
                       SNMP Research, Inc.
           Postal:     3001 Kimberlin Heights Road
                       Knoxville, TN 37920-9716
           EMail:      [email protected]
           Phone:      +1 423 573 1434

           Co-editor:  Paul Meyer
                       Secure Computing Corporation
           Postal:     2675 Long Lake Road
                       Roseville, MN 55113
           EMail:      [email protected]
           Phone:      +1 651 628 1592

           Co-editor:  Bob Stewart
                       Cisco Systems, Inc.
           Postal:     170 West Tasman Drive
                       San Jose, CA 95134-1706
           EMail:      [email protected]
           Phone:      +1 603 654 2686"
      DESCRIPTION
          "This MIB module defines MIB objects which provide
           mechanisms to remotely configure the parameters
           used by an SNMP entity for the generation of



Levi, et al.                Standards Track                    [Page 44]

RFC 2573                   SNMP Applications                  April 1999


           notifications."
      REVISION    "9808040000Z"
      DESCRIPTION "Clarifications, published as
                   RFC2573"
      REVISION    "9707140000Z"
      DESCRIPTION "The initial revision, published as RFC2273."
      ::= { snmpModules 13 }

  snmpNotifyObjects       OBJECT IDENTIFIER ::=
                                            { snmpNotificationMIB 1 }
  snmpNotifyConformance   OBJECT IDENTIFIER ::=
                                            { snmpNotificationMIB 3 }

  --
  --
  -- The snmpNotifyObjects group
  --
  --

  snmpNotifyTable OBJECT-TYPE
      SYNTAX      SEQUENCE OF SnmpNotifyEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "This table is used to select management targets which should
           receive notifications, as well as the type of notification
           which should be sent to each selected management target."
      ::= { snmpNotifyObjects 1 }

  snmpNotifyEntry OBJECT-TYPE
      SYNTAX      SnmpNotifyEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "An entry in this table selects a set of management targets
           which should receive notifications, as well as the type of
           notification which should be sent to each selected
           management target.

           Entries in the snmpNotifyTable are created and
           deleted using the snmpNotifyRowStatus object."
      INDEX { IMPLIED snmpNotifyName }
      ::= { snmpNotifyTable 1 }

  SnmpNotifyEntry ::= SEQUENCE {
      snmpNotifyName         SnmpAdminString,
      snmpNotifyTag          SnmpTagValue,
      snmpNotifyType         INTEGER,



Levi, et al.                Standards Track                    [Page 45]

RFC 2573                   SNMP Applications                  April 1999


      snmpNotifyStorageType  StorageType,
      snmpNotifyRowStatus    RowStatus
  }

  snmpNotifyName OBJECT-TYPE
      SYNTAX      SnmpAdminString (SIZE(1..32))
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "The locally arbitrary, but unique identifier associated
           with this snmpNotifyEntry."
      ::= { snmpNotifyEntry 1 }

  snmpNotifyTag OBJECT-TYPE
      SYNTAX      SnmpTagValue
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "This object contains a single tag value which is used
           to select entries in the snmpTargetAddrTable.  Any entry
           in the snmpTargetAddrTable which contains a tag value
           which is equal to the value of an instance of this
           object is selected.  If this object contains a value
           of zero length, no entries are selected."
      DEFVAL { "" }
      ::= { snmpNotifyEntry 2 }

  snmpNotifyType OBJECT-TYPE
      SYNTAX      INTEGER {
                      trap(1),
                      inform(2)
                  }
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "This object determines the type of notification to
           be generated for entries in the snmpTargetAddrTable
           selected by the corresponding instance of
           snmpNotifyTag.  This value is only used when
           generating notifications, and is ignored when
           using the snmpTargetAddrTable for other purposes.

           If the value of this object is trap(1), then any
           messages generated for selected rows will contain
           Unconfirmed-Class PDUs.

           If the value of this object is inform(2), then any
           messages generated for selected rows will contain



Levi, et al.                Standards Track                    [Page 46]

RFC 2573                   SNMP Applications                  April 1999


           Confirmed-Class PDUs.

           Note that if an SNMP entity only supports
           generation of Unconfirmed-Class PDUs (and not
           Confirmed-Class PDUs), then this object may be
           read-only."
      DEFVAL { trap }
      ::= { snmpNotifyEntry 3 }
  snmpNotifyStorageType OBJECT-TYPE
      SYNTAX      StorageType
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The storage type for this conceptual row."
      DEFVAL { nonVolatile }
      ::= { snmpNotifyEntry 4 }

  snmpNotifyRowStatus OBJECT-TYPE
      SYNTAX      RowStatus
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The status of this conceptual row.

           To create a row in this table, a manager must
           set this object to either createAndGo(4) or
           createAndWait(5)."
      ::= { snmpNotifyEntry 5 }

  snmpNotifyFilterProfileTable OBJECT-TYPE
      SYNTAX      SEQUENCE OF SnmpNotifyFilterProfileEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "This table is used to associate a notification filter
           profile with a particular set of target parameters."
      ::= { snmpNotifyObjects 2 }

  snmpNotifyFilterProfileEntry OBJECT-TYPE
      SYNTAX      SnmpNotifyFilterProfileEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "An entry in this table indicates the name of the filter
           profile to be used when generating notifications using
           the corresponding entry in the snmpTargetParamsTable.

           Entries in the snmpNotifyFilterProfileTable are created



Levi, et al.                Standards Track                    [Page 47]

RFC 2573                   SNMP Applications                  April 1999


           and deleted using the snmpNotifyFilterProfileRowStatus
           object."
      INDEX { IMPLIED snmpTargetParamsName }
      ::= { snmpNotifyFilterProfileTable 1 }

  SnmpNotifyFilterProfileEntry ::= SEQUENCE {
      snmpNotifyFilterProfileName         SnmpAdminString,
      snmpNotifyFilterProfileStorType     StorageType,
      snmpNotifyFilterProfileRowStatus    RowStatus
  }

  snmpNotifyFilterProfileName OBJECT-TYPE
      SYNTAX      SnmpAdminString (SIZE(1..32))
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The name of the filter profile to be used when generating
           notifications using the corresponding entry in the
           snmpTargetAddrTable."
      ::= { snmpNotifyFilterProfileEntry 1 }

  snmpNotifyFilterProfileStorType OBJECT-TYPE
      SYNTAX      StorageType
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The storage type of this conceptual row."
      DEFVAL { nonVolatile }
      ::= { snmpNotifyFilterProfileEntry 2 }

  snmpNotifyFilterProfileRowStatus OBJECT-TYPE
      SYNTAX      RowStatus
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The status of this conceptual row.

           To create a row in this table, a manager must
           set this object to either createAndGo(4) or
           createAndWait(5).

           Until instances of all corresponding columns are
           appropriately configured, the value of the
           corresponding instance of the
           snmpNotifyFilterProfileRowStatus column is 'notReady'.

           In particular, a newly created row cannot be made
           active until the corresponding instance of



Levi, et al.                Standards Track                    [Page 48]

RFC 2573                   SNMP Applications                  April 1999


           snmpNotifyFilterProfileName has been set."
      ::= { snmpNotifyFilterProfileEntry 3 }

  snmpNotifyFilterTable OBJECT-TYPE
      SYNTAX      SEQUENCE OF SnmpNotifyFilterEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "The table of filter profiles.  Filter profiles are used
           to determine whether particular management targets should
           receive particular notifications.

           When a notification is generated, it must be compared
           with the filters associated with each management target
           which is configured to receive notifications, in order to
           determine whether it may be sent to each such management
           target.

           A more complete discussion of notification filtering
           can be found in section 6. of [RFC2573]."
      ::= { snmpNotifyObjects 3 }

  snmpNotifyFilterEntry OBJECT-TYPE
      SYNTAX      SnmpNotifyFilterEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "An element of a filter profile.

           Entries in the snmpNotifyFilterTable are created and
           deleted using the snmpNotifyFilterRowStatus object."
      INDEX {         snmpNotifyFilterProfileName,
              IMPLIED snmpNotifyFilterSubtree }
      ::= { snmpNotifyFilterTable 1 }

  SnmpNotifyFilterEntry ::= SEQUENCE {
      snmpNotifyFilterSubtree           OBJECT IDENTIFIER,
      snmpNotifyFilterMask              OCTET STRING,
      snmpNotifyFilterType              INTEGER,
      snmpNotifyFilterStorageType       StorageType,
      snmpNotifyFilterRowStatus         RowStatus
  }

  snmpNotifyFilterSubtree OBJECT-TYPE
      SYNTAX      OBJECT IDENTIFIER
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION



Levi, et al.                Standards Track                    [Page 49]

RFC 2573                   SNMP Applications                  April 1999


          "The MIB subtree which, when combined with the corresponding
           instance of snmpNotifyFilterMask, defines a family of
           subtrees which are included in or excluded from the
           filter profile."
      ::= { snmpNotifyFilterEntry 1 }
  snmpNotifyFilterMask OBJECT-TYPE
      SYNTAX      OCTET STRING (SIZE(0..16))
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The bit mask which, in combination with the corresponding
           instance of snmpNotifyFilterSubtree, defines a family of
           subtrees which are included in or excluded from the
           filter profile.

           Each bit of this bit mask corresponds to a
           sub-identifier of snmpNotifyFilterSubtree, with the
           most significant bit of the i-th octet of this octet
           string value (extended if necessary, see below)
           corresponding to the (8*i - 7)-th sub-identifier, and
           the least significant bit of the i-th octet of this
           octet string corresponding to the (8*i)-th
           sub-identifier, where i is in the range 1 through 16.

           Each bit of this bit mask specifies whether or not
           the corresponding sub-identifiers must match when
           determining if an OBJECT IDENTIFIER matches this
           family of filter subtrees; a '1' indicates that an
           exact match must occur; a '0' indicates 'wild card',
           i.e., any sub-identifier value matches.

           Thus, the OBJECT IDENTIFIER X of an object instance
           is contained in a family of filter subtrees if, for
           each sub-identifier of the value of
           snmpNotifyFilterSubtree, either:

             the i-th bit of snmpNotifyFilterMask is 0, or

             the i-th sub-identifier of X is equal to the i-th
             sub-identifier of the value of
             snmpNotifyFilterSubtree.

           If the value of this bit mask is M bits long and
           there are more than M sub-identifiers in the
           corresponding instance of snmpNotifyFilterSubtree,
           then the bit mask is extended with 1's to be the
           required length.




Levi, et al.                Standards Track                    [Page 50]

RFC 2573                   SNMP Applications                  April 1999


           Note that when the value of this object is the
           zero-length string, this extension rule results in
           a mask of all-1's being used (i.e., no 'wild card'),
           and the family of filter subtrees is the one
           subtree uniquely identified by the corresponding
           instance of snmpNotifyFilterSubtree."
      DEFVAL { ''H }
      ::= { snmpNotifyFilterEntry 2 }

  snmpNotifyFilterType OBJECT-TYPE
      SYNTAX      INTEGER {
                      included(1),
                      excluded(2)
                  }
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "This object indicates whether the family of filter subtrees
           defined by this entry are included in or excluded from a
           filter.  A more detailed discussion of the use of this
           object can be found in section 6. of [RFC2573]."
      DEFVAL { included }
      ::= { snmpNotifyFilterEntry 3 }

  snmpNotifyFilterStorageType OBJECT-TYPE
      SYNTAX      StorageType
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The storage type of this conceptual row."
      DEFVAL { nonVolatile }
      ::= { snmpNotifyFilterEntry 4 }

  snmpNotifyFilterRowStatus OBJECT-TYPE
      SYNTAX      RowStatus
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The status of this conceptual row.

           To create a row in this table, a manager must
           set this object to either createAndGo(4) or
           createAndWait(5)."
      ::= { snmpNotifyFilterEntry 5 }

  --
  --
  -- Conformance information



Levi, et al.                Standards Track                    [Page 51]

RFC 2573                   SNMP Applications                  April 1999


  --
  --
  snmpNotifyCompliances OBJECT IDENTIFIER ::=
                                          { snmpNotifyConformance 1 }
  snmpNotifyGroups      OBJECT IDENTIFIER ::=
                                          { snmpNotifyConformance 2 }

  --
  --
  -- Compliance statements
  --
  --

  snmpNotifyBasicCompliance MODULE-COMPLIANCE
      STATUS      current
      DESCRIPTION
          "The compliance statement for minimal SNMP entities which
           implement only SNMP Unconfirmed-Class notifications and
           read-create operations on only the snmpTargetAddrTable."
      MODULE SNMP-TARGET-MIB
          MANDATORY-GROUPS { snmpTargetBasicGroup }

          OBJECT snmpTargetParamsMPModel
          MIN-ACCESS    read-only
          DESCRIPTION
              "Create/delete/modify access is not required."

          OBJECT snmpTargetParamsSecurityModel
          MIN-ACCESS    read-only
          DESCRIPTION
              "Create/delete/modify access is not required."

          OBJECT snmpTargetParamsSecurityName
          MIN-ACCESS    read-only
          DESCRIPTION
              "Create/delete/modify access is not required."

          OBJECT snmpTargetParamsSecurityLevel
          MIN-ACCESS    read-only
          DESCRIPTION
              "Create/delete/modify access is not required."

          OBJECT snmpTargetParamsStorageType
          SYNTAX INTEGER {
              readOnly(5)
          }
          MIN-ACCESS    read-only
          DESCRIPTION



Levi, et al.                Standards Track                    [Page 52]

RFC 2573                   SNMP Applications                  April 1999


              "Create/delete/modify access is not required.
               Support of the values other(1), volatile(2),
               nonVolatile(3), and permanent(4) is not required."

          OBJECT snmpTargetParamsRowStatus
          SYNTAX INTEGER {
              active(1)
          }
          MIN-ACCESS    read-only
          DESCRIPTION
              "Create/delete/modify access to the
               snmpTargetParamsTable is not required.
               Support of the values notInService(2), notReady(3),
               createAndGo(4), createAndWait(5), and destroy(6) is
               not required."

      MODULE -- This Module
          MANDATORY-GROUPS { snmpNotifyGroup }

          OBJECT snmpNotifyTag
          MIN-ACCESS    read-only
          DESCRIPTION
              "Create/delete/modify access is not required."

          OBJECT snmpNotifyType
          SYNTAX INTEGER {
              trap(1)
          }
          MIN-ACCESS    read-only
          DESCRIPTION
              "Create/delete/modify access is not required.
               Support of the value notify(2) is not required."

          OBJECT snmpNotifyStorageType
          SYNTAX INTEGER {
              readOnly(5)
          }
          MIN-ACCESS    read-only
          DESCRIPTION
              "Create/delete/modify access is not required.
               Support of the values other(1), volatile(2),
               nonVolatile(3), and permanent(4) is not required."

          OBJECT snmpNotifyRowStatus
          SYNTAX INTEGER {
              active(1)
          }
          MIN-ACCESS    read-only



Levi, et al.                Standards Track                    [Page 53]

RFC 2573                   SNMP Applications                  April 1999


          DESCRIPTION
              "Create/delete/modify access to the
               snmpNotifyTable is not required.
               Support of the values notInService(2), notReady(3),
               createAndGo(4), createAndWait(5), and destroy(6) is
               not required."

      ::= { snmpNotifyCompliances 1 }

  snmpNotifyBasicFiltersCompliance MODULE-COMPLIANCE
      STATUS      current
      DESCRIPTION
          "The compliance statement for SNMP entities which implement
           SNMP Unconfirmed-Class notifications with filtering, and
           read-create operations on all related tables."
      MODULE SNMP-TARGET-MIB
          MANDATORY-GROUPS { snmpTargetBasicGroup }
      MODULE -- This Module
          MANDATORY-GROUPS { snmpNotifyGroup,
                             snmpNotifyFilterGroup }
      ::= { snmpNotifyCompliances 2 }

  snmpNotifyFullCompliance MODULE-COMPLIANCE
      STATUS      current
      DESCRIPTION
          "The compliance statement for SNMP entities which either
           implement only SNMP Confirmed-Class notifications, or both
           SNMP Unconfirmed-Class and Confirmed-Class notifications,
           plus filtering and read-create operations on all related
           tables."
      MODULE SNMP-TARGET-MIB
          MANDATORY-GROUPS { snmpTargetBasicGroup,
                             snmpTargetResponseGroup }
      MODULE -- This Module
          MANDATORY-GROUPS { snmpNotifyGroup,
                             snmpNotifyFilterGroup }
      ::= { snmpNotifyCompliances 3 }

  snmpNotifyGroup OBJECT-GROUP
      OBJECTS {
          snmpNotifyTag,
          snmpNotifyType,
          snmpNotifyStorageType,
          snmpNotifyRowStatus
      }
      STATUS      current
      DESCRIPTION
          "A collection of objects for selecting which management



Levi, et al.                Standards Track                    [Page 54]

RFC 2573                   SNMP Applications                  April 1999


           targets are used for generating notifications, and the
           type of notification to be generated for each selected
           management target."
      ::= { snmpNotifyGroups 1 }

  snmpNotifyFilterGroup OBJECT-GROUP
      OBJECTS {
          snmpNotifyFilterProfileName,
          snmpNotifyFilterProfileStorType,
          snmpNotifyFilterProfileRowStatus,
          snmpNotifyFilterMask,
          snmpNotifyFilterType,
          snmpNotifyFilterStorageType,
          snmpNotifyFilterRowStatus
      }
      STATUS      current
      DESCRIPTION
          "A collection of objects providing remote configuration
           of notification filters."
      ::= { snmpNotifyGroups 2 }

  END

4.3.  The Proxy MIB Module

  The SNMP-PROXY-MIB module, which defines MIB objects that provide
  mechanisms to remotely configure the parameters used by an SNMP
  entity for proxy forwarding operations, contains a single table.
  This table, snmpProxyTable, is used to define translations between
  management targets for use when forwarding messages.

4.3.1.  Definitions

  SNMP-PROXY-MIB DEFINITIONS ::= BEGIN

  IMPORTS
      MODULE-IDENTITY,
      OBJECT-TYPE,
      snmpModules
          FROM SNMPv2-SMI

      RowStatus,
      StorageType
          FROM SNMPv2-TC

      SnmpEngineID,
      SnmpAdminString
          FROM SNMP-FRAMEWORK-MIB



Levi, et al.                Standards Track                    [Page 55]

RFC 2573                   SNMP Applications                  April 1999


      SnmpTagValue
          FROM SNMP-TARGET-MIB

      MODULE-COMPLIANCE,
      OBJECT-GROUP
          FROM SNMPv2-CONF;

  snmpProxyMIB MODULE-IDENTITY
      LAST-UPDATED "9808040000Z"
      ORGANIZATION "IETF SNMPv3 Working Group"
      CONTACT-INFO
          "WG-email:   [email protected]
           Subscribe:  [email protected]
                       In message body:  subscribe snmpv3

           Chair:      Russ Mundy
                       Trusted Information Systems
           Postal:     3060 Washington Rd
                       Glenwood MD 21738
                       USA
           EMail:      [email protected]
           Phone:      +1-301-854-6889

           Co-editor:  David B. Levi
                       SNMP Research, Inc.
           Postal:     3001 Kimberlin Heights Road
                       Knoxville, TN 37920-9716
           EMail:      [email protected]
           Phone:      +1 423 573 1434

           Co-editor:  Paul Meyer
                       Secure Computing Corporation
           Postal:     2675 Long Lake Road
                       Roseville, MN 55113
           EMail:      [email protected]
           Phone:      +1 651 628 1592

           Co-editor:  Bob Stewart
                       Cisco Systems, Inc.
           Postal:     170 West Tasman Drive
                       San Jose, CA 95134-1706
           EMail:      [email protected]
           Phone:      +1 603 654 2686"
      DESCRIPTION
          "This MIB module defines MIB objects which provide
           mechanisms to remotely configure the parameters
           used by a proxy forwarding application."
      REVISION    "9808040000Z"



Levi, et al.                Standards Track                    [Page 56]

RFC 2573                   SNMP Applications                  April 1999


      DESCRIPTION "Clarifications, published as
                   RFC2573."
      REVISION    "9707140000Z"
      DESCRIPTION "The initial revision, published as RFC2273."
      ::= { snmpModules 14 }

  snmpProxyObjects        OBJECT IDENTIFIER ::= { snmpProxyMIB 1 }
  snmpProxyConformance    OBJECT IDENTIFIER ::= { snmpProxyMIB 3 }

  --
  --
  -- The snmpProxyObjects group
  --
  --

  snmpProxyTable OBJECT-TYPE
      SYNTAX      SEQUENCE OF SnmpProxyEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "The table of translation parameters used by proxy forwarder
           applications for forwarding SNMP messages."
      ::= { snmpProxyObjects 2 }

  snmpProxyEntry OBJECT-TYPE
      SYNTAX      SnmpProxyEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "A set of translation parameters used by a proxy forwarder
           application for forwarding SNMP messages.

           Entries in the snmpProxyTable are created and deleted
           using the snmpProxyRowStatus object."
      INDEX { IMPLIED snmpProxyName }
      ::= { snmpProxyTable 1 }

  SnmpProxyEntry ::= SEQUENCE {
      snmpProxyName               SnmpAdminString,
      snmpProxyType               INTEGER,
      snmpProxyContextEngineID    SnmpEngineID,
      snmpProxyContextName        SnmpAdminString,
      snmpProxyTargetParamsIn     SnmpAdminString,
      snmpProxySingleTargetOut    SnmpAdminString,
      snmpProxyMultipleTargetOut  SnmpTagValue,
      snmpProxyStorageType        StorageType,
      snmpProxyRowStatus          RowStatus
  }



Levi, et al.                Standards Track                    [Page 57]

RFC 2573                   SNMP Applications                  April 1999


  snmpProxyName OBJECT-TYPE
      SYNTAX      SnmpAdminString (SIZE(1..32))
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
          "The locally arbitrary, but unique identifier associated
           with this snmpProxyEntry."
      ::= { snmpProxyEntry 1 }

  snmpProxyType OBJECT-TYPE
      SYNTAX      INTEGER {
                      read(1),
                      write(2),
                      trap(3),
                      inform(4)
                  }
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The type of message that may be forwarded using
           the translation parameters defined by this entry."
      ::= { snmpProxyEntry 2 }

  snmpProxyContextEngineID OBJECT-TYPE
      SYNTAX      SnmpEngineID
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The contextEngineID contained in messages that
           may be forwarded using the translation parameters
           defined by this entry."
      ::= { snmpProxyEntry 3 }

  snmpProxyContextName OBJECT-TYPE
      SYNTAX      SnmpAdminString
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The contextName contained in messages that may be
           forwarded using the translation parameters defined
           by this entry.

           This object is optional, and if not supported, the
           contextName contained in a message is ignored when
           selecting an entry in the snmpProxyTable."
      ::= { snmpProxyEntry 4 }

  snmpProxyTargetParamsIn OBJECT-TYPE



Levi, et al.                Standards Track                    [Page 58]

RFC 2573                   SNMP Applications                  April 1999


      SYNTAX      SnmpAdminString
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "This object selects an entry in the snmpTargetParamsTable.
           The selected entry is used to determine which row of the
           snmpProxyTable to use for forwarding received messages."
      ::= { snmpProxyEntry 5 }

  snmpProxySingleTargetOut OBJECT-TYPE
      SYNTAX      SnmpAdminString
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "This object selects a management target defined in the
           snmpTargetAddrTable (in the SNMP-TARGET-MIB).  The
           selected target is defined by an entry in the
           snmpTargetAddrTable whose index value (snmpTargetAddrName)
           is equal to this object.

           This object is only used when selection of a single
           target is required (i.e. when forwarding an incoming
           read or write request)."
      ::= { snmpProxyEntry 6 }

  snmpProxyMultipleTargetOut OBJECT-TYPE
      SYNTAX      SnmpTagValue
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "This object selects a set of management targets defined
           in the snmpTargetAddrTable (in the SNMP-TARGET-MIB).

           This object is only used when selection of multiple
           targets is required (i.e. when forwarding an incoming
           notification)."
      ::= { snmpProxyEntry 7 }

  snmpProxyStorageType OBJECT-TYPE
      SYNTAX      StorageType
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The storage type of this conceptual row."
      DEFVAL { nonVolatile }
      ::= { snmpProxyEntry 8 }

  snmpProxyRowStatus OBJECT-TYPE



Levi, et al.                Standards Track                    [Page 59]

RFC 2573                   SNMP Applications                  April 1999


      SYNTAX      RowStatus
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The status of this conceptual row.

           To create a row in this table, a manager must
           set this object to either createAndGo(4) or
           createAndWait(5).

           The following objects may not be modified while the
           value of this object is active(1):
               - snmpProxyType
               - snmpProxyContextEngineID
               - snmpProxyContextName
               - snmpProxyTargetParamsIn
               - snmpProxySingleTargetOut
               - snmpProxyMultipleTargetOut"
      ::= { snmpProxyEntry 9 }

  --
  --
  -- Conformance information
  --
  --

  snmpProxyCompliances OBJECT IDENTIFIER ::=
                                           { snmpProxyConformance 1 }
  snmpProxyGroups      OBJECT IDENTIFIER ::=
                                           { snmpProxyConformance 2 }

  --
  --
  -- Compliance statements
  --
  --

  snmpProxyCompliance MODULE-COMPLIANCE
      STATUS      current
      DESCRIPTION
          "The compliance statement for SNMP entities which include
           a proxy forwarding application."
      MODULE SNMP-TARGET-MIB
          MANDATORY-GROUPS { snmpTargetBasicGroup,
                             snmpTargetResponseGroup }
      MODULE -- This Module
          MANDATORY-GROUPS { snmpProxyGroup }
      ::= { snmpProxyCompliances 1 }



Levi, et al.                Standards Track                    [Page 60]

RFC 2573                   SNMP Applications                  April 1999


  snmpProxyGroup OBJECT-GROUP
      OBJECTS {
          snmpProxyType,
          snmpProxyContextEngineID,
          snmpProxyContextName,
          snmpProxyTargetParamsIn,
          snmpProxySingleTargetOut,
          snmpProxyMultipleTargetOut,
          snmpProxyStorageType,
          snmpProxyRowStatus
      }
      STATUS      current
      DESCRIPTION
          "A collection of objects providing remote configuration of
           management target translation parameters for use by
           proxy forwarder applications."
      ::= { snmpProxyGroups 3 }

  END

5.  Identification of Management Targets in Notification Originators

  This section describes the mechanisms used by a notification
  originator application when using the MIB module described in this
  document to determine the set of management targets to be used when
  generating a notification.

  A notification originator uses each entry in the snmpNotifyTable to
  find the management targets to be used for generating notifications.
  Each active entry in this table identifies zero or more entries in
  the snmpTargetAddrTable.  Any entry in the snmpTargetAddrTable whose
  snmpTargetAddrTagList object contains a tag value which is equal to a
  value of snmpNotifyTag is selected by the snmpNotifyEntry which
  contains that instance of snmpNotifyTag.  Note that a particular
  snmpTargetAddrEntry may be selected by multiple entries in the
  snmpNotifyTable, resulting in multiple notifications being generated
  using that snmpTargetAddrEntry.

  Each snmpTargetAddrEntry contains a pointer to the
  snmpTargetParamsTable (snmpTargetAddrParams).  This pointer selects a
  set of SNMP parameters to be used for generating notifications.  If
  the selected entry in the snmpTargetParamsTable does not exist, the
  management target is not used to generate notifications.

  The decision as to whether a notification should contain an
  Unconfirmed-Class or a Confirmed-Class PDU is determined by the value
  of the snmpNotifyType object.  If the value of this object is
  trap(1), the notification should contain an Unconfirmed-Class PDU.



Levi, et al.                Standards Track                    [Page 61]

RFC 2573                   SNMP Applications                  April 1999


  If the value of this object is inform(2), then the notification
  should contain a Confirmed-Class PDU, and the timeout time and number
  of retries for the notification are the value of
  snmpTargetAddrTimeout and snmpTargetAddrRetryCount.  Note that the
  exception to these rules is when the snmpTargetParamsMPModel object
  indicates an SNMP version which supports a different PDU version.  In
  this case, the notification may be sent using a different PDU type
  ([COEX] defines the PDU type in the case where the outgoing SNMP
  version is SNMPv1).

6.  Notification Filtering

  This section describes the mechanisms used by a notification
  originator application when using the MIB module described in this
  document to filter generation of notifications.

  A notification originator uses the snmpNotifyFilterTable to filter
  notifications.  A notification filter profile may be associated with
  a particular entry in the snmpTargetParamsTable.  The associated
  filter profile is identified by an entry in the
  snmpNotifyFilterProfileTable whose index is equal to the index of the
  entry in the snmpTargetParamsTable.  If no such entry exists in the
  snmpNotifyFilterProfileTable, no filtering is performed for that
  management target.

  If such an entry does exist, the value of snmpNotifyFilterProfileName
  of the entry is compared with the corresponding portion of the index
  of all active entries in the snmpNotifyFilterTable.  All such entries
  for which this comparison results in an exact match are used for
  filtering a notification generated using the associated
  snmpTargetParamsEntry.  If no such entries exist, no filtering is
  performed, and a notification may be sent to the management target.

  Otherwise, if matching entries do exist, a notification may be sent
  if the NOTIFICATION-TYPE OBJECT IDENTIFIER of the notification (this
  is the value of the element of the variable bindings whose name is
  snmpTrapOID.0, i.e., the second variable binding) is specifically
  included, and none of the object instances to be included in the
  variable-bindings of the notification are specifically excluded by
  the matching entries.

  Each set of snmpNotifyFilterTable entries is divided into two
  collections of filter subtrees:  the included filter subtrees, and
  the excluded filter subtrees.  The snmpNotifyFilterType object
  defines the collection to which each matching entry belongs.






Levi, et al.                Standards Track                    [Page 62]

RFC 2573                   SNMP Applications                  April 1999


  To determine whether a particular notification name or object
  instance is excluded by the set of matching entries, compare the
  notification name's or object instance's OBJECT IDENTIFIER with each
  of the matching entries.  For a notification name, if none match,
  then the notification name is considered excluded, and the
  notification should not be sent to this management target.  For an
  object instance, if none match, the object instance is considered
  included, and the notification may be sent to this management target.
  If one or more match, then the notification name or object instance
  is included or excluded, according to the value of
  snmpNotifyFilterType in the entry whose value of
  snmpNotifyFilterSubtree has the most sub-identifiers.  If multiple
  entries match and have the same number of sub-identifiers, then the
  lexicographically greatest instance of snmpNotifyFilterType among
  those which match determines the inclusion or exclusion.

  A notification name or object instance's OBJECT IDENTIFIER X matches
  an entry in the snmpNotifyFilterTable when the number of sub-
  identifiers in X is at least as many as in the value of
  snmpNotifyFilterSubtree for the entry, and each sub-identifier in the
  value of snmpNotifyFilterSubtree matches its corresponding sub-
  identifier in X.  Two sub-identifiers match either if the
  corresponding bit of snmpNotifyFilterMask is zero (the 'wild card'
  value), or if the two sub-identifiers are equal.

7.  Management Target Translation in Proxy Forwarder Applications

  This section describes the mechanisms used by a proxy forwarder
  application when using the MIB module described in this document to
  translate incoming management target information into outgoing
  management target information for the purpose of forwarding messages.
  There are actually two mechanisms a proxy forwarder may use, one for
  forwarding request messages, and one for forwarding notification
  messages.

7.1.  Management Target Translation for Request Forwarding

  When forwarding request messages, the proxy forwarder will select a
  single entry in the snmpProxyTable.  To select this entry, it will
  perform the following comparisons:

    -  The snmpProxyType must be read(1) if the request is a Read-
       Class PDU.  The snmpProxyType must be write(2) if the request is
       a Write-Class PDU.

    -  The contextEngineID must equal the snmpProxyContextEngineID
       object.




Levi, et al.                Standards Track                    [Page 63]

RFC 2573                   SNMP Applications                  April 1999


    -  If the snmpProxyContextName object is supported, it must equal
       the contextName.

    -  The snmpProxyTargetParamsIn object identifies an entry in the
       snmpTargetParamsTable.  The messageProcessingModel,
       securityLevel, security model, and securityName must match the
       values of snmpTargetParamsMPModel,
       snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName, and
       snmpTargetParamsSecurityLevel of the identified entry in the
       snmpTargetParamsTable.

  There may be multiple entries in the snmpProxyTable for which these
  comparisons succeed.  The entry whose snmpProxyName has the
  lexicographically smallest value and for which the comparisons
  succeed will be selected by the proxy forwarder.

  The outgoing management target information is identified by the value
  of the snmpProxySingleTargetOut object of the selected entry.  This
  object identifies an entry in the snmpTargetAddrTable.  The
  identified entry in the snmpTargetAddrTable also contains a reference
  to the snmpTargetParamsTable (snmpTargetAddrParams).  If either the
  identified entry in the snmpTargetAddrTable does not exist, or the
  identified entry in the snmpTargetParamsTable does not exist, then
  this snmpProxyEntry does not identify valid forwarding information,
  and the proxy forwarder should attempt to identify another row.

  If there is no entry in the snmpProxyTable for which all of the
  conditions above may be met, then there is no appropriate forwarding
  information, and the proxy forwarder should take appropriate actions.

  Otherwise, The snmpTargetAddrTDomain, snmpTargetAddrTAddress,
  snmpTargetAddrTimeout, and snmpTargetRetryCount of the identified
  snmpTargetAddrEntry, and the snmpTargetParamsMPModel,
  snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName, and
  snmpTargetParamsSecurityLevel of the identified snmpTargetParamsEntry
  are used as the destination management target.

7.2.  Management Target Translation for Notification Forwarding

  When forwarding notification messages, the proxy forwarder will
  select multiple entries in the snmpProxyTable.  To select these
  entries, it will perform the following comparisons:

    -  The snmpProxyType must be trap(3) if the notification is an
       Unconfirmed-Class PDU.  The snmpProxyType must be inform(4) if
       the request is a Confirmed-Class PDU.





Levi, et al.                Standards Track                    [Page 64]

RFC 2573                   SNMP Applications                  April 1999


    -  The contextEngineID must equal the snmpProxyContextEngineID
       object.

    -  If the snmpProxyContextName object is supported, it must equal
       the contextName.

    -  The snmpProxyTargetParamsIn object identifies an entry in the
       snmpTargetParamsTable.  The messageProcessingModel,
       securityLevel, security model, and securityName must match the
       values of snmpTargetParamsMPModel,
       snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName, and
       snmpTargetParamsSecurityLevel of the identified entry in the
       snmpTargetParamsTable.

  All entries for which these conditions are met are selected.  The
  snmpProxyMultipleTargetOut object of each such entry is used to
  select a set of entries in the snmpTargetAddrTable.  Any
  snmpTargetAddrEntry whose snmpTargetAddrTagList object contains a tag
  value equal to the value of snmpProxyMultipleTargetOut, and whose
  snmpTargetAddrParams object references an existing entry in the
  snmpTargetParamsTable, is selected as a destination for the forwarded
  notification.

8.  Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.







Levi, et al.                Standards Track                    [Page 65]

RFC 2573                   SNMP Applications                  April 1999


9.  Acknowledgments

  This document is the result of the efforts of the SNMPv3 Working
  Group.  Some special thanks are in order to the following SNMPv3 WG
  members:

    Harald Tveit Alvestrand (Maxware)
    Dave Battle (SNMP Research, Inc.)
    Alan Beard (Disney Worldwide Services)
    Paul Berrevoets (SWI Systemware/Halcyon Inc.)
    Martin Bjorklund (Ericsson)
    Uri Blumenthal (IBM T.J. Watson Research Center)
    Jeff Case (SNMP Research, Inc.)
    John Curran (BBN)
    Mike Daniele (Compaq Computer Corporation)
    T. Max Devlin (Eltrax Systems)
    John Flick (Hewlett Packard)
    Rob Frye (MCI)
    Wes Hardaker (U.C.Davis, Information Technology - D.C.A.S.)
    David Harrington (Cabletron Systems Inc.)
    Lauren Heintz (BMC Software, Inc.)
    N.C. Hien (IBM T.J. Watson Research Center)
    Michael Kirkham (InterWorking Labs, Inc.)
    Dave Levi (SNMP Research, Inc.)
    Louis A Mamakos (UUNET Technologies Inc.)
    Joe Marzot (Nortel Networks)
    Paul Meyer (Secure Computing Corporation)
    Keith McCloghrie (Cisco Systems)
    Bob Moore (IBM)
    Russ Mundy (TIS Labs at Network Associates)
    Bob Natale (ACE*COMM Corporation)
    Mike O'Dell (UUNET Technologies Inc.)
    Dave Perkins (DeskTalk)
    Peter Polkinghorne (Brunel University)
    Randy Presuhn (BMC Software, Inc.)
    David Reeder (TIS Labs at Network Associates)
    David Reid (SNMP Research, Inc.)
    Aleksey Romanov (Quality Quorum)
    Shawn Routhier (Epilogue)
    Juergen Schoenwaelder (TU Braunschweig)
    Bob Stewart (Cisco Systems)
    Mike Thatcher (Independent Consultant)
    Bert Wijnen (IBM T.J. Watson Research Center)

  The document is based on recommendations of the IETF Security and
  Administrative Framework Evolution for SNMP Advisory Team. Members of
  that Advisory Team were:




Levi, et al.                Standards Track                    [Page 66]

RFC 2573                   SNMP Applications                  April 1999


    David Harrington (Cabletron Systems Inc.)
    Jeff Johnson (Cisco Systems)
    David Levi (SNMP Research Inc.)
    John Linn (Openvision)
    Russ Mundy (Trusted Information Systems) chair
    Shawn Routhier (Epilogue)
    Glenn Waters (Nortel)
    Bert Wijnen (IBM T. J. Watson Research Center)

  As recommended by the Advisory Team and the SNMPv3 Working Group
  Charter, the design incorporates as much as practical from previous
  RFCs and drafts. As a result, special thanks are due to the authors
  of previous designs known as SNMPv2u and SNMPv2*:

    Jeff Case (SNMP Research, Inc.)
    David Harrington (Cabletron Systems Inc.)
    David Levi (SNMP Research, Inc.)
    Keith McCloghrie (Cisco Systems)
    Brian O'Keefe (Hewlett Packard)
    Marshall T. Rose (Dover Beach Consulting)
    Jon Saperia (BGS Systems Inc.)
    Steve Waldbusser (International Network Services)
    Glenn W. Waters (Bell-Northern Research Ltd.)

10.  Security Considerations

  The SNMP applications described in this document typically have
  direct access to MIB instrumentation.  Thus, it is very important
  that these applications be strict in their application of access
  control as described in this document.

  In addition, there may be some types of notification generator
  applications which, rather than accessing MIB instrumentation using
  access control, will obtain MIB information through other means (such
  as from a command line).  The implementors and users of such
  applications must be responsible for not divulging MIB information
  that normally would be inaccessible due to access control.

  Finally, the MIBs described in this document contain potentially
  sensitive information.  A security administrator may wish to limit
  access to these MIBs.

11.  References

  [COEX]      The SNMPv3 Working Group, Frye, R.,Levi, D., Wijnen, B.,
              "Coexistence between Version 1, Version 2, and Version 3
              of the Internet-standard Network Management Framework",
              Work in Progress.



Levi, et al.                Standards Track                    [Page 67]

RFC 2573                   SNMP Applications                  April 1999


  [RFC1157]   Case, J., Fedor, M., Schoffstall, M. and J. Davin,
              "Simple Network Management Protocol", STD 15, RFC 1157,
              May 1990.

  [RFC1213]   McCloghrie, K. and M. Rose, Editors, "Management
              Information Base for Network Management of TCP/IP-based
              internets: MIB-II", STD 17, RFC 1213, March 1991.

  [RFC2578]   McCloghrie, K., Perkins, D. and J. Schoenwaelder,
              "Structure of Management Information Version 2 (SMIv2)",
              STD 58, RFC 2578, April 1999.

  [RFC2579]   McCloghrie, K., Perkins, D. and J.  Schoenwaelder,
              "Textual Conventions for SMIv2", STD 58, RFC 2579, April
              1999.

  [RFC1905]   SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M.
              and S.  Waldbusser, "Protocol Operations for Version 2 of
              the Simple Network Management Protocol (SNMPv2)",
              RFC1905, January 1996.

  [RFC1907]   SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M.
              and S.  Waldbusser, "Management Information Base for
              Version 2 of the Simple Network Management Protocol
              (SNMPv2)", RFC1905, January 1996.

  [RFC1908]   SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M.
              and S.  Waldbusser, "Coexistence between Version 1 and
              Version 2 of the Internet-standard Network Management
              Framework", RFC1905, January 1996.

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC2119, March 1997.

  [RFC2571] Harrington, D., Presuhn, R. and B. Wijnen, "An Architecture
              for Describing SNMP Management Frameworks", RFC 2571,
              April 1999.

  [RFC2572]   Case, J., Harrington, D., Presuhn, R. and B. Wijnen,
              "Message Processing and Dispatching for the Simple
              Network Management Protocol (SNMP)", RFC 2572, April
              1999.

  [RFC2575]  Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
              Access Control Model for the Simple Network Management
              Protocol (SNMP)", RFC 2575, April 1999.





Levi, et al.                Standards Track                    [Page 68]

RFC 2573                   SNMP Applications                  April 1999


  [RFC2573] Levi, D. B., Meyer, P. and B. Stewart, "SNMP Applications",
              RFC 2573, April 1999.

12.  Editors' Addresses

  David B. Levi
  SNMP Research, Inc.
  3001 Kimberlin Heights Road
  Knoxville, TN 37920-9716
  U.S.A.

  Phone: +1 423 573 1434
  EMail: [email protected]


  Paul Meyer
  Secure Computing Corporation
  2675 Long Lake Road
  Roseville, MN 55113
  U.S.A.

  Phone: +1 651 628 1592
  EMail: [email protected]


  Bob Stewart
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA 95134-1706
  U.S.A.

  Phone: +1 603 654 2686
  EMail: [email protected]


















Levi, et al.                Standards Track                    [Page 69]

RFC 2573                   SNMP Applications                  April 1999


APPENDIX A - Trap Configuration Example

  This section describes an example configuration for a Notification
  Generator application which implements the snmpNotifyBasicCompliance
  level.  The example configuration specifies that the Notification
  Generator should send notifications to 3 separate managers, using
  authentication and no privacy for the first 2 managers, and using
  both authentication and privacy for the third manager.

  The configuration consists of three rows in the snmpTargetAddrTable,
  and two rows in the snmpTargetTable.

         snmpTargetAddrName         SnmpAdminString,
         snmpTargetAddrTDomain      TDomain,
         snmpTargetAddrTAddress     TAddress,
         snmpTargetAddrTimeout      TimeInterval,
         snmpTargetAddrRetryCount   Integer32,
         snmpTargetAddrTagList      SnmpAdminString,
         snmpTargetAddrParams       SnmpAdminString,
         snmpTargetAddrStorageType  StorageType,
         snmpTargetAddrRowStatus    RowStatus

       * snmpTargetAddrName        = "addr1"
         snmpTargetAddrTDomain     = snmpUDPDomain
         snmpTargetAddrTAddress    = 128.1.2.3/162
         snmpTargetAddrTagList     = "group1"
         snmpTargetAddrParams      = "AuthNoPriv-joe"
         snmpTargetAddrStorageType = readOnly(5)
         snmpTargetAddrRowStatus   = active(1)

       * snmpTargetAddrName        = "addr2"
         snmpTargetAddrTDomain     = snmpUDPDomain
         snmpTargetAddrTAddress    = 128.2.4.6/162
         snmpTargetAddrTagList     = "group1"
         snmpTargetAddrParams      = "AuthNoPriv-joe"
         snmpTargetAddrStorageType = readOnly(5)
         snmpTargetAddrRowStatus   = active(1)

       * snmpTargetAddrName        = "addr3"
         snmpTargetAddrTDomain     = snmpUDPDomain
         snmpTargetAddrTAddress    = 128.1.2.3/162
         snmpTargetAddrTagList     = "group2"
         snmpTargetAddrParams      = "AuthPriv-bob"
         snmpTargetAddrStorageType = readOnly(5)
         snmpTargetAddrRowStatus   = active(1)

       * snmpTargetParamsName                   = "AuthNoPriv-joe"
         snmpTargetParamsMPModel                = 3m



Levi, et al.                Standards Track                    [Page 70]

RFC 2573                   SNMP Applications                  April 1999


         snmpTargetParamsSecurityModel          = 3 (USM)
         snmpTargetParamsSecurityName           = "joe"
         snmpTargetParamsSecurityLevel          = authNoPriv(2)
         snmpTargetParamsStorageType            = readOnly(5)
         snmpTargetParamsRowStatus              = active(1)

       * snmpTargetParamsName                   = "AuthPriv-bob"
         snmpTargetParamsMPModel                = 3
         snmpTargetParamsSecurityModel          = 3 (USM)
         snmpTargetParamsSecurityName           = "bob"
         snmpTargetParamsSecurityLevel          = authPriv(3)
         snmpTargetParamsStorageType            = readOnly(5)
         snmpTargetParamsRowStatus              = active(1)

       * snmpNotifyName         = "group1"
         snmpNotifyTag          = "group1"
         snmpNotifyType         = trap(1)
         snmpNotifyStorageType  = readOnly(5)
         snmpNotifyRowStatus    = active(1)

       * snmpNotifyName         = "group2"
         snmpNotifyTag          = "group2"
         snmpNotifyType         = trap(1)
         snmpNotifyStorageType  = readOnly(5)
         snmpNotifyRowStatus    = active(1)

  These entries define two groups of management targets.  The first
  group contains two management targets:

                               first target      second target
                               ------------      -------------
      messageProcessingModel   SNMPv3            SNMPv3
               securityModel   3 (USM)           3 (USM)
                securityName   "joe"             "joe"
               securityLevel   authNoPriv(2)     authNoPriv(2)
             transportDomain   snmpUDPDomain     snmpUDPDomain
            transportAddress   128.1.2.3/162     128.2.4.6/162

  And the second group contains a single management target:

      messageProcessingModel   SNMPv3
               securityLevel   authPriv(3)
               securityModel   3 (USM)
                securityName   "bob"
             transportDomain   snmpUDPDomain
            transportAddress   128.1.5.9/162





Levi, et al.                Standards Track                    [Page 71]

RFC 2573                   SNMP Applications                  April 1999


Appendix B.  Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by
  the Internet Society.





















Levi, et al.                Standards Track                    [Page 72]