Network Working Group                                         G. Klyne
Request for Comments: 2533                    Content Technologies/5GM
Category: Standards Track                                   March 1999

              A Syntax for Describing Media Feature Sets

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

  A number of Internet application protocols have a need to provide
  content negotiation for the resources with which they interact [1].
  A framework for such negotiation is described in [2], part of which
  is a way to describe the range of media features which can be handled
  by the sender, recipient or document transmission format of a
  message.  A format for a vocabulary of individual media features and
  procedures for feature registration are presented in [3].

  This document introduces and describes a syntax that can be used to
  define feature sets which are formed from combinations and relations
  involving individual media features.  Such feature sets are used to
  describe the media feature handling capabilities of message senders,
  recipients and file formats.

  An algorithm for feature set matching is also described here.

Table of Contents

  1. Introduction.............................................3
    1.1 Structure of this document ...........................3
    1.2 Document terminology and conventions .................4
    1.3 Discussion of this document ..........................4
  2. Content feature terminology and definitions..............4
  3. Media feature combinations and capabilities..............5
    3.1 Media features .......................................5
    3.2 Media feature collections and sets ...................5
    3.3 Media feature set descriptions .......................6
    3.4 Media feature combination scenario ...................7



Klyne                       Standards Track                     [Page 1]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


       3.4.1 Data resource options............................7
       3.4.2 Recipient capabilities...........................7
       3.4.3 Combined options.................................7
    3.5 Feature set predicates ...............................8
       3.5.1 Comparison with directory search filters.........8
    3.6 Describing preferences ...............................9
    3.7 Combining preferences ...............................10
  4. Feature set representation..............................11
    4.1 Textual representation of predicates ................11
    4.2 Interpretation of feature predicate syntax ..........12
       4.2.1 Filter syntax...................................12
       4.2.2 Feature comparison..............................13
       4.2.3 Feature tags....................................13
       4.2.4 Feature values..................................14
         4.2.4.1 Boolean values                              14
         4.2.4.2 Numeric values                              14
         4.2.4.3 Token values                                15
         4.2.4.4 String values                               15
       4.2.5 Notational conveniences.........................15
    4.3 Feature set definition example ......................16
  5. Matching feature sets...................................16
    5.1 Feature set matching strategy .......................18
    5.2 Formulating the goal predicate ......................19
    5.3 Replace set expressions .............................19
    5.4 Move logical negations inwards ......................20
    5.5 Replace comparisons and logical negations ...........20
    5.6 Conversion to canonical form ........................21
    5.7 Grouping of feature predicates ......................22
    5.8 Merge single-feature constraints ....................22
       5.8.1 Rules for simplifying ordered values............23
       5.8.2 Rules for simplifying unordered values..........23
  6. Other features and issues...............................24
    6.1 Named and auxiliary predicates ......................24
       6.1.1 Defining a named predicate......................24
       6.1.2 Invoking named predicates.......................25
       6.1.3 Auxiliary predicates in a filter................25
       6.1.4 Feature matching with named predicates..........25
       6.1.5 Example.........................................26
    6.2 Unit designations ...................................26
    6.3 Unknown feature value data types ....................27
  7. Examples and additional comments........................27
    7.1 Worked example ......................................27
    7.2 A note on feature tag scoping .......................31
  8. Security Considerations.................................34
  9. Acknowledgements........................................34
  10. References.............................................35
  11. Author's Address.......................................36
  Full Copyright Statement...................................37



Klyne                       Standards Track                     [Page 2]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999




1. Introduction

  A number of Internet application protocols have a need to provide
  content negotiation for the resources with which they interact [1].
  A framework for such negotiation is described in [2].  A part of this
  framework is a way to describe the range of media features which can
  be handled by the sender, recipient or document transmission format
  of a message.

  Descriptions of media feature capabilities need to be based upon some
  underlying vocabulary of individual media features.  A format for
  such a vocabulary and procedures for registering media features
  within this vocabulary are presented in [3].

  This document defines a syntax that can be used to describe feature
  sets which are formed from combinations and relations involving
  individual media features.  Such feature sets are used to describe
  the media handling capabilities of message senders, recipients and
  file formats.

  An algorithm for feature set matching is also described here.

  The feature set syntax is built upon the principle of using feature
  set predicates as "mathematical relations" which define constraints
  on feature handling capabilities.  This allows that the same form of
  feature set expression can be used to describe sender, receiver and
  file format capabilities.  This has been loosely modelled on the way
  that relational databases use Boolean expresions to describe a set of
  result values, and a syntax that is based upon LDAP search filters.

1.1 Structure of this document

  The main part of this memo addresses the following main areas:

  Section 2 introduces and references some terms which are used with
  special meaning.

  Section 3 introduces the concept of describing media handling
  capabilities as combinations of possible media features, and the idea
  of using Boolean expressions to express such combinations.

  Section 4 contains a description of a syntax for describing feature
  sets based on the previously-introduced idea of Boolean expressions
  used to describe media feature combinations.

  Section 5 describes an algorithm for feature set matching.



Klyne                       Standards Track                     [Page 3]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


  Section 6 discusses some additional media feature description and
  processing issues that may be viewed as extensions to the core
  framework.

  Section 7 contains a worked example of feature set matching, and some
  additional explanatory comments spurred by issues arising from
  applying this framework to fascimile transmissions.

1.2 Document terminology and conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119.

     NOTE:  Comments like this provide additional nonessential
     information about the rationale behind this document.  Such
     information is not needed for building a conformant
     implementation, but may help those who wish to understand the
     design in greater depth.

1.3 Discussion of this document

  Discussion of this document should take place on the content
  negotiation and media feature registration mailing list hosted by the
  Internet Mail Consortium (IMC):

  Please send comments regarding this document to:

     [email protected]

  To subscribe to this list, send a message with the body 'subscribe'
  to "[email protected]".

  To see what has gone on before you subscribed, please see the mailing
  list archive at:

     http://www.imc.org/ietf-medfree/

2. Content feature terminology and definitions

  Feature Collection
     is a collection of different media features and associated values.
     This might be viewed as describing a specific rendering of a
     specific instance of a document or resource by a specific
     recipient.

  Feature Set
     is a set of zero, one or more feature collections.



Klyne                       Standards Track                     [Page 4]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


     NOTE:  this term is used slightly differently by earlier work on
     Transparent Content Negotiation in HTTP [4].

  Feature set predicate
     A function of an arbitrary feature collection value which returns
     a Boolean result.  A TRUE result is taken to mean that the
     corresponding feature collection belongs to some set of media
     feature handling capabilities defined by this predicate.

  Other terms used in this memo are defined in [2].

3. Media feature combinations and capabilities

3.1 Media features

  This memo assumes that individual media feature values are simple
  atomic values:

     o  Boolean values.

     o  Enumerated values.

     o  Text string values (treated as atomic entities, like enumerated
        value tokens).

     o  Numeric values (Integer or rational).

  These values all have the property that they can be compared for
  equality ('='), and that numeric and ordered enumeration values can
  be compared for less-than and greater-than relationship ('<=', '>=').
  These basic comparison operations are used as the primitive building
  blocks for more comprehensive capability expressions.

3.2 Media feature collections and sets

  Any single media feature value can be thought of as just one
  component of a feature collection that describes some instance of a
  resource (e.g. a printed document, a displayed image, etc.).  Such a
  feature collection consists of a number of media feature tags (each
  per [3]) and associated feature values.

  A feature set is a set containing a number of feature collections.
  Thus, a feature set can describe a number of different data resource
  instances.  These can correspond to different treatments of a single
  data resource (e.g. different resolutions used for printing a given
  document), a number of different data resources subjected to a common
  treatment (e.g. the range of different images that can be rendered on
  a given display), or some combination of these (see examples below).



Klyne                       Standards Track                     [Page 5]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


  Thus, a description of a feature set can describe the capabilities of
  a data resource or some entity that processes or renders a data
  resource.

3.3 Media feature set descriptions

  A feature set may be unbounded.  For example, in principle, there is
  no limit on the number of different documents that may be output
  using a given printer.  But to be practically useful, a feature set
  description must be finite.

  The general approach to describing feature sets is to start from the
  assumption that anything is possible;  i.e. the feature set contains
  all possible document instances (feature collections).  Then
  constraints are applied that progressively remove document instances
  from this set;  e.g. for a monochrome printer, all document instances
  that use colour are removed, or for a document that must be rendered
  at some minimum resolution, all document instances with lesser
  resolutions are removed from the set.  The mechanism used to remove
  document instances from the set is the mathematical idea of a
  "relation";  i.e. a Boolean function (a "predicate") that takes a
  feature collection parameter and returns a Boolean value that is TRUE
  if the feature collection describes an acceptable document instance,
  or FALSE if it describes one that is excluded.

                    P(C)
      P(C) = TRUE <- : -> P(C) = FALSE
                     :
          +----------:----------+  This box represents some
          |          :          |  set of feature collections (C)
          | Included : Excluded |  that is constrained by the
          |          :          |  predicate P.
          +----------:----------+
                     :

  The result of applying a series of such constraints is a smaller set
  of feature collections that represent some media handling capability.
  Where the individual constraints are represented by predicates that
  each describe some media handling capability, the combined effect of
  these constraints is some subset of the individual constraint
  capabilities that can be represented by a predicate that is the
  logical-AND of the individual constraint predicates.

3.4 Media feature combination scenario

  This section develops some example scenarios, introducing the
  notation that is defined formally in section 4.




Klyne                       Standards Track                     [Page 6]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


3.4.1 Data resource options

  The following expression describes a data resource that can be
  displayed either:
  (a)  as a 750x500 pixel image using 15 colours, or
  (b)  at 150dpi on an A4 page.

     (| (& (pix-x=750) (pix-y=500) (color=15) )
        (& (dpi>=150) (papersize=iso-A4) ) )

3.4.2 Recipient capabilities

  The following expression describes a receiving system that has:
  (a)  a screen capable of displaying 640*480 pixels and 16 million
       colours (24 bits per pixel), 800*600 pixels and 64 thousand
       colours (16 bits per pixel) or 1024*768 pixels and 256 colours
       (8 bits per pixel), or
  (b)  a printer capable of rendering 300dpi on A4 paper.

        (| (& (| (& (pix-x<=640)  (pix-y<=480) (color<=16777216) )
                 (& (pix-x<=800)  (pix-y<=600) (color<=65535) )
                 (& (pix-x<=1024) (pix-y<=768) (color<=256) ) )
              (ua-media=screen) )
           (& (dpi=300)
              (ua-media=stationery) (papersize=iso-A4) ) )

  Note that this expression says nothing about the colour or grey-scale
  capabilities of the printer.  In the scheme presented here, it is
  presumed to be unconstrained in this respect (or, more realistically,
  any such constraints are handled out-of-band by anyone sending to
  this recipient).

3.4.3 Combined options

  The following example describes the range of document representations
  available when the resource described in the first example above is
  sent to the recipient described in the second example.  This is the
  result of combining their capability feature sets:

        (| (& (pix-x=750) (pix-y=500) (color=15) )
           (& (dpi=300) (ua-media=stationery) (papersize=iso-A4) ) )

  The feature set described by this expression is the intersection of
  the sets described by the previous two capability expressions.







Klyne                       Standards Track                     [Page 7]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


3.5 Feature set predicates

  There are many ways of representing a predicate.  The ideas in this
  memo were inspired by the programming language Prolog [5], and its
  use of predicates to describe sets of objects.

  For the purpose of media feature descriptions in networked
  application protocols, the format used for LDAP search filters [7,8]
  has been adopted, because it is a good match for the requirements of
  capability identification, and has a very simple structure that is
  easy to parse and process.

3.5.1 Comparison with directory search filters

  Observe that a feature collection is similar to a directory entry, in
  that it consists of a collection of named values.  Further, the
  semantics of the mechanism for selecting feature collections from a
  feature set is in many respects similar to selection of directory
  entries from a directory.

  A feature set predicate used to describe media handling capabilities
  is implicitly applied to some feature collection.  Within the
  predicate, members of the feature collection are identified by their
  feature tags, and are compared with known feature values.  (Compare
  with the way an LDAP search filter is applied to a directory entry,
  whose members are identified by attribute type names, and compared
  with known attribute values.)

  For example, in:

     (& (dpi>=150) (papersize=iso-A4) )

  the tokens 'dpi' and 'papersize' are feature tags, and '150' and '
  iso-A4' are feature values.  (In a corresponding LDAP search filter,
  they would be directory entry attribute types and attribute values.)

  Differences between directory selection (per [7]) and feature set
  selection are:

     o  Directory selection provides substring-, approximate- and
        extensible- matching for attribute values.  Such matching is
        not provided for feature set selection.

     o  Directory selection may be based on the presence of an
        attribute without regard to its value.  Within the semantic
        framework described by this document, Boolean-valued feature
        tests can be used to provide a similar effect.




Klyne                       Standards Track                     [Page 8]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


     o  Directory selection provides for matching rules that test for
        the presence or absence of a named attribute type.

     o  Directory selection provides for matching rules which are
        dependent upon the declared data type of an attribute value.

     o  Feature selection provides for the association of a quality
        value with a feature predicate as a way of ranking the selected
        value collections.

  Within the semantic framework described by this document, Boolean-
  valued feature tests can be used where presence tests would be used
  in a directory search filter.

  The idea of extensible matching and matching rules dependent upon
  data types are facets of a problem not addressed by this memo, but
  which do not necessarily affect the feature selection syntax.  An
  aspect that might bear on the syntax would be specification of an
  explicit matching rule as part of a selection expression.

3.6 Describing preferences

  A convenient way to describe preferences is by numeric "quality
  values".

  It has been suggested that numeric quality values are potentially
  misleading if used as more than just a way of ranking options.  For
  the purposes of this memo, ranking of options is sufficient.

  Numeric quality values in the range 0 to 1, with up to 3 fractional
  digits, are used to rank feature sets according to preference.
  Higher values are preferred over lower values, and equal values are
  presumed to be equally preferred.  Beyond this, the actual number
  used has no significance defined here.  Arithmetic operations on
  quality values are likely to produce unpredictable results unless
  appropriate semantics have been defined for the context where such
  operations are used.

  In the absence of any explicitly applied quality value, a value of
  "1" is assumed.

  Using the notation defined later, a quality value may be attached to
  any feature set predicate sub-expression:

     (| (& (pix-x=750) (pix-y=500) (color=15) );q=0.8
        (& (dpi>=150) (papersize=iso-A4) )     ;q=0.7 )





Klyne                       Standards Track                     [Page 9]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


  Section 3.7 below explains that quality values attached to
  sub-expressions are not always useful.

     NOTE:  the syntax for quality values used here taken from
     that defined for HTTP 'Accept:' headers in RFC 2068 [9],
     section 3.9.  However, the use of quality values defined
     here does not go as far as that defined in RFC 2068.

3.7 Combining preferences

  The general problem of describing and combining preferences among
  feature sets is very much more complex than simply describing
  allowable feature sets.  For example, given two feature sets:

     (& (a1);q=0.8 (b1);q=0.7 )
     (& (a2);q=0.5 (b2);q=0.9 )

  where:
     feature a1 is preferred over a2
     feature b2 is preferred over b1

  Which of these feature sets is preferred?  In the absence of
  additional information or assumptions, there is no generally
  satisfactory answer to this.

  The proposed resolution of this issue is simply to say that no rules
  are provided for combining preference information.  Applied to the
  above example, any preference information about (a1) in relation to
  (a2), or (b1) in relation to (b2) is not presumed to convey
  information about preference of (& (a1) (b1) ) in relation to (& (a2)
  (b2) ).

  In practical terms, this restricts the application of preference
  information to top-level predicate clauses.  A top-level clause
  completely defines an allowable feature set;  clauses combined by
  logical-AND operators cannot be top-level clauses (see canonical
  format for feature set predicates, described later).

     NOTE: This memo does not apply specific meaning to quality values
     or rules for combining them.  Application of such meanings and
     rules is not prohibited, but is seen as an area for continuing
     research and experimentation.

     An example of a design that uses extended quality value semantics
     and combining operations is "Transparent Content Negotiation in
     HTTP" [4].  Other work that also extends quality values is the
     content negotiation algorithm in the Apache HTTP server [14].




Klyne                       Standards Track                    [Page 10]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


4. Feature set representation

  The foregoing sections have described a framework for defining
  feature sets with predicates applied to feature collections.  This
  section presents a concrete representation for feature set
  predicates.

4.1 Textual representation of predicates

  The text representation of a feature set is based on RFC 2254 "The
  String Representation of LDAP Search Filters" [8], excluding those
  elements not relevant to feature set selection (discussed above), and
  adding elements specific to feature set selection (e.g. options to
  associate quality values with predicates).

  The format of a feature predicate is defined by the production for
  "filter" in the following, using the syntax notation and core rules
  of RFC 2234 [10]:

     filter     =  "(" filtercomp ")" *( ";" parameter )
     parameter  =  "q" "=" qvalue
                /  ext-param "=" ext-value
     qvalue     =  ( "0" [ "." 0*3DIGIT ] )
                /  ( "1" [ "." 0*3("0") ] )
     ext-param  =  ALPHA *( ALPHA / DIGIT / "-" )
     ext-value  =  <parameter value, according to the named parameter>
     filtercomp =  and / or / not / item
     and        =  "&" filterlist
     or         =  "|" filterlist
     not        =  "!" filter
     filterlist =  1*filter
     item       =  simple / set / ext-pred
     set        =  attr "=" "[" setentry *( "," setentry ) "]"
     setentry   =  value "/" range
     range      =  value ".." value
     simple     =  attr filtertype value
     filtertype =  equal / greater / less
     equal      =  "="
     greater    =  ">="
     less       =  "<="
     attr       =  ftag
     value      =  fvalue
     ftag       =  <Feature tag, as defined in RFC 2506 [3]>
     fvalue     =  Boolean / number / token / string
     Boolean    =  "TRUE" / "FALSE"
     number     =  integer / rational
     integer    =  [ "+" / "-" ] 1*DIGIT
     rational   =  [ "+" / "-" ] 1*DIGIT "/" 1*DIGIT



Klyne                       Standards Track                    [Page 11]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


     token      =  ALPHA *( ALPHA / DIGIT / "-" )
     string     =  DQUOTE *(%x20-21 / %x23-7E) DQUOTE
                   ; quoted string of SP and VCHAR without DQUOTE
     ext-pred   =  <Extension constraint predicate, not defined here>

  (Subject to constraints imposed by the protocol that carries a
  feature predicate, whitespace characters may appear between any pair
  of syntax elements or literals that appear on the right hand side of
  these productions.)

  As described, the syntax permits parameters (including quality
  values) to be attached to any "filter" value in the predicate (not
  just top-level values).  Only top-level quality values are
  recognized.  If no explicit quality value is given, a value of '1.0'
  is applied.

     NOTE:  The flexible approach to quality values and other parameter
     values in this syntax has been adopted for two reasons:  (a) to
     make it easy to combine separately constructed feature predicates,
     and (b) to provide an extensible tagging mechanism for possible
     future use (for example, to incorporate a conceivable requirement
     to explicitly specify a matching rule).

4.2 Interpretation of feature predicate syntax

  A feature set predicate is described by the syntax production for '
  filter'.

4.2.1 Filter syntax

  A 'filter' is defined as either a simple feature comparison ('item',
  see below) or a composite filter ('and', 'or', 'not'), decorated with
  optional parameter values (including "q=qvalue").

  A composite filter is a logical combination of one or more 'filter'
  values:

  (& f1 f2 ... fn )   is the logical-AND of the filter values 'f1',
                      'f2' up to 'fn'.  That is, it is satisfied by
                      any feature collection that satisfies all of
                      the predicates represented by those filters.

  (| f1 f2 ... fn )   is the logical-OR of the filter values 'f1',
                      'f2' up to 'fn'.  That is, it is satisfied by
                      any feature collection that satisfies at least
                      one of the predicates represented by those
                      filters.




Klyne                       Standards Track                    [Page 12]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


  (! f1 )             is the logical negation of the filter value
                      'f1'.  That is, it is satusfied by any feature
                      collection that does NOT satisfy the predicate
                      represented by 'f1'.

4.2.2 Feature comparison

  A feature comparison is defined by the 'simple' option of the syntax
  production for 'item'. There are three basic forms:

  (ftag=value)        compares the feature named 'ftag' (in some
                      feature collection that is being tested) with
                      the supplied 'value', and matches if they are
                      equal.  This can be used with any type of
                      feaure value (numeric, Boolean, token or
                      string).

  (ftag<=value)       compares the numeric feature named 'ftag' with
                      the supplied 'value', and matches if the
                      feature is less than or equal to 'value'.

  (ftag>=value)       compares the numeric feature named 'ftag' with
                      the supplied 'value', and matches if the
                      feature is greater than or equal to 'value'.

  Less-than and greater-than tests may be performed with feature values
  that are not numeric but, in general, they amount to equality tests
  as there is no ordering relation on non-numeric values defined by
  this specification.  Specific applications may define such ordering
  relations on specific feature tags, but such definitions are beyond
  the scope of (and not required for conformance to) this
  specification.

4.2.3 Feature tags

  Feature tags conform to the syntax given in "Media Feature Tag
  Registration Procedure" [3].  Feature tags used to describe
  capabilities should be registered using the procedures described in
  that memo.  Unregistered feature tags should be allocated in the "URI
  tree", as discussed in the media feature registration procedures memo
  [3].

  If an unrecognized feature tag is encountered in the course of
  feature set predicate processing, it should be still be processed as
  a legitimate feature tag.  The feature set matching rules are
  designed to allow new feature tags to be introduced without affecting
  the validity of existing capability assertions.




Klyne                       Standards Track                    [Page 13]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


4.2.4 Feature values

  A feature may have a number, Boolean, token or string value.

4.2.4.1 Boolean values

  A Boolean is simply a token with two predefined values: "TRUE" and
  "FALSE".  (Upper- or lower- case letters may be used in any
  combination.)

4.2.4.2 Numeric values

  A numeric value is either a decimal integer, optionally preceded by a
  "+" or "-" sign, or rational number.

  A rational number is expressed as "n/m", optionally preceded by a "+"
  or "-" sign.  The "n" and "m" are unsigned decimal integers, and the
  value represented by "n/m" is "n" divided by "m".  Thus, the
  following are all valid representations of the number 1.5:

     3/2
     +15/10
     600/400

  Thus, several rational number forms may express the same value.  A
  canonical form of rational number is obtained by finding the highest
  common factor of "n" and "m", and dividing both "n" and "m" by that
  value.

  A simple integer value may be used anywhere in place of a rational
  number.  Thus, we have:

     +5 is equivalent to +5/1 or +50/10, etc.
     -2 is equivalent to -2/1 or -4/2, etc.

  Any sign in a rational number must precede the entire number, so the
  following are not valid rational numbers:

     3/+2, 15/-10      (**NOT VALID**)

4.2.4.3 Token values

  A token value is any sequence of letters, digits and '-' characters
  that conforms to the syntax for 'token' given above.  It is a name
  that stands for some (unspecified) value.






Klyne                       Standards Track                    [Page 14]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


4.2.4.4 String values

  A string value is any sequence of characters enclosed in double
  quotes that conform to the syntax for 'string' given above.

  The semantics of string defined by this memo are the same as those
  for a token value.  But a string allows a far greater variety of
  internal formats, and specific applications may choose to interpret
  the content in ways that go beyond those given here.  Where such
  interpretation is possible, the allowed string formats and the
  corresponding interpretations should be indicated in the media
  feature registration (per RFC 2506 [3]).

4.2.5 Notational conveniences

  The 'set' option of the syntax production for 'item' is simply a
  shorthand notation for some common situations that can be expressed
  using 'simple' constructs.  Occurrences of 'set' items can eliminated
  by applying the following identities:

     T = [ E1, E2, ... En ]  -->  (| (T=[E1]) (T=[E2]) ... (T=[En]) )
     (T=[R1..R2])            -->  (& (T>=R1) (T<=R2) )
     (T=[E])                 -->  (T=E)

  Examples:

  The expression:
     ( paper-size=[A4,B4] )
  can be used to express a capability to print documents on either A4
  or B4 sized paper.

  The expression:
     ( width=[4..17/2] )
  might be used to express a capability to print documents that are
  anywhere between 4 and 8.5 inches wide.

  The set construct is designed so that enumerated values and ranges
  can be combined in a single expression, e.g.:
     ( width=[3,4,6..17/2] )

4.3 Feature set definition example

  The following is an example of a feature predicate that describes a
  number of image size and resolution combinations, presuming the
  registration and use of 'Pix-x', 'Pix-y', 'Res-x' and 'Res-y' feature
  tags:

     (| (& (Pix-x=1024)



Klyne                       Standards Track                    [Page 15]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


           (Pix-y=768)
           (| (& (Res-x=150) (Res-y=150) )
              (& (Res-x=150) (Res-y=300) )
              (& (Res-x=300) (Res-y=300) )
              (& (Res-x=300) (Res-y=600) )
              (& (Res-x=600) (Res-y=600) ) ) )
        (& (Pix-x=800)
           (Pix-y=600)
           (| (& (Res-x=150) (Res-y=150) )
              (& (Res-x=150) (Res-y=300) )
              (& (Res-x=300) (Res-y=300) )
              (& (Res-x=300) (Res-y=600) )
              (& (Res-x=600) (Res-y=600) ) ) ) ;q=0.9
        (& (Pix-x=640)
           (Pix-y=480)
           (| (& (Res-x=150) (Res-y=150) )
              (& (Res-x=150) (Res-y=300) )
              (& (Res-x=300) (Res-y=300) )
              (& (Res-x=300) (Res-y=600) )
              (& (Res-x=600) (Res-y=600) ) ) ) ;q=0.8 )

5. Matching feature sets

  This section presents a procedure for combining feature sets to
  determine the common feature collections to which they refer, if
  there are any.  Making a selection from the possible feature
  collections (based on q-values or otherwise) is not covered here.

  Matching a feature set to some given feature collection is
  essentially very straightforward:  the feature set predicate is
  simply evaluated for the given feature collection, and the result
  (TRUE or FALSE) indicates whether the feature collection matches the
  capabilities, and the associated quality value can be used for
  selecting among alternative feature collections.

  Matching a feature set to some other feature set is less
  straightforward.  Here, the problem is to determine whether or not
  there is at least one feature collection that matches both feature
  sets (e.g. is there an overlap between the feature capabilities of a
  given file format and the feature capabilities of a given recipient?)

  This feature set matching is accomplished by logical manipulation of
  the predicate expressions as described in the following sub-sections.

  For this procedure to work reliably, the predicates must be reduced
  to a canonical form.  The canonical form used here is "disjunctive
  normal form".  A syntax for disjunctive normal form is:




Klyne                       Standards Track                    [Page 16]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


     filter     =  orlist
     orlist     =  "(" "|" andlist ")" / term
     andlist    =  "(" "&" termlist ")" / term
     termlist   =  1*term
     term       =  "(" "!" simple ")" / simple

  where "simple" is as described previously in section 4.1.  Thus, the
  canonicalized form has at most three levels:  an outermost "(|...)"
  disjunction of "(&...)" conjunctions of possibly negated feature
  value tests.

     NOTE:  The usual canonical form for predicate expressions is
     "clausal form".  Procedures for converting general predicate
     expressions are given in [5] (section 10.2), [11] (section 2.13)
     and [12] (section 5.3.2).

     "Clausal form" for a predicate is similar to "conjunctive normal
     form" for a proposition, being a conjunction (logical AND) of
     disjunctions (logical ORs).  The related form used here, better
     suited to feature set matching, is "disjunctive normal form",
     which is a logical disjunction (OR) of conjunctions (ANDs).  In
     this form, the aim of feature set matching is to show that at
     least one of the disjunctions can be satisfied by some feature
     collection.

     Is this consideration of canonical forms really required?  After
     all, the feature predicates are just Boolean expressions, aren't
     they?  Well, no: a feature predicate is a Boolean expression
     containing primitive feature value tests (comparisons),
     represented by 'item' in the feature predicate syntax.  If these
     tests could all be assumed to be independently TRUE or FALSE, then
     each could be regarded as an atomic proposition, and the whole
     predicate could be dealt with according to the (relatively simple)
     rules of Propositional Calculus.

     But, in general, the same feature tag may appear in more than one
     predicate 'item', so the tests cannot be regarded as independent.
     Indeed, interdependence is needed in any meaningful application of
     feature set matching, and it is important to capture these
     dependencies (e.g. does the set of resolutions that a sender can
     supply overlap the set of resolutions that a recipient can
     handle?).  Thus, we have to deal with elements of the Predicate
     Calculus, with some additional rules for algebraic manipulation.

     A description of both the Propositional and Predicate calculi can
     be found in [12].





Klyne                       Standards Track                    [Page 17]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


     We aim to show that these additional rules are more unfamiliar
     than complicated.  The construction and use of feature predicates
     actually avoids some of the complexity of dealing with fully-
     generalized Predicate Calculus.

5.1 Feature set matching strategy

  The overall strategy for matching feature sets, expanded below, is:

  1. Formulate the feature set match hypothesis.

  2. Replace "set" expressions with equivalent comparisons.

  3. Move logical negations "inwards", so that they are all applied
     directly to feature comparisons.

  4. Eliminate logical negations, and express all feature comparisons
     in terms of just four comparison operators

  5. Reduce the hypothesis to canonical disjunctive normal form (a
     disjunction of conjunctions).

  6. For each of the conjunctions, attempt to show that it can be
     satisfied by some feature collection.

     6.1  Separate the feature value tests into independent feature
        groups, such that each group contains tests involving just one
        feature tag.  Thus, no predicate in a feature group contains a
        feature tag that also appears in some other group.

     6.2  For each feature group, merge the various constraints to a
        minimum form.  This process either yields a reduced expression
        for the allowable range of feature values, or an expression
        containing the value FALSE, which is an indication that no
        combination of feature values can satisfy the constraints (in
        which case the corresponding conjunction can never be
        satisfied).

  7. If the remaining disjunction contains at least one satisfiable
     conjunction, then the constraints are shown to be satisfiable.

  The final expression obtained by this procedure, if it is non-empty,
  can be used as a statement of the resulting feature set for possible
  further matching operations.  That is, it can be used as a starting
  point for combining with additional feature set constraint predicate
  to determine a feature set that is constrained by the capabilities of
  several entities in a message transfer path.




Klyne                       Standards Track                    [Page 18]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


     NOTE: as presented, the feature matching process evaluates (and
     stores) all conjunctions of the disjunctive normal form before
     combining feature tag comparisons and eliminating unsatisfiable
     conjunctions.  For low-memory systems an alternative approach is
     possible, in which each normal form conjunction is enumerated and
     evaluated in turn, with only those that are satisfiable being
     retained for further use.

5.2 Formulating the goal predicate

  A formal statement of the problem we need to solve can be given as:
  given two feature set predicates, '(P x)' and '(Q x)', where 'x' is
  some feature collection, we wish to establish the truth or otherwise
  of the proposition:

     EXISTS(x) : (P x) AND (Q x)

  i.e. does there exist a feature collection 'x' that satisfies both
  predicates, 'P' and 'Q'?

  Then, if feature sets to be matched are described by predicates 'P'
  and 'Q', the problem is to determine if there is any feature set
  satisfying the goal predicate:

     (& P Q)

  i.e. to determine whether the set thus described is non-empty.

5.3 Replace set expressions

  Replace all "set" instances in the goal predicate with equivalent
  "simple" forms:

     T = [ E1, E2, ... En ]  -->  (| (T=[E1]) (T=[E2]) ... (T=[En]) )
     (T=[R1..R2])            -->  (& (T>=R1) (T<=R2) )
     (T=[E])                 -->  (T=E)

5.4 Move logical negations inwards

  The goal of this step is to move all logical negations so that they
  are applied directly to feature comparisons.  During the following
  step, these logical negations are replaced by alternative comparison
  operators.

  This is achieved by repeated application of the following
  transformation rules:





Klyne                       Standards Track                    [Page 19]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


     (! (& A1 A2 ... Am ) )  -->  (| (! A1 ) (! A2 ) ... (! Am ) )
     (! (| A1 A2 ... Am ) )  -->  (& (! A1 ) (! A2 ) ... (! Am ) )
     (! (! A ) )             -->  A

  The first two rules are extended forms of De Morgan's law, and the
  third is elimination of double negatives.

5.5 Replace comparisons and logical negations

  The predicates are derived from the syntax described previously, and
  contain primitive value testing functions '=', '<=', '>='.  The
  primitive tests have a number of well known properties that are
  exploited to reach a useful conclusion; e.g.

     (A = B)  & (B = C)  => (A = C)
     (A <= B) & (B <= C) => (A <= C)

  These rules form a core body of logic statements against which the
  goal predicate can be evaluated.  The form in which these statements
  are expressed is important to realizing an effective predicate
  matching algorithm (i.e. one that doesn't loop or fail to find a
  valid result).  The first step in formulating these rules is to
  simplify the framework of primitive predicates.

  The primitive predicates from which feature set definitions are
  constructed are '=', '<=' and '>='.  Observe that, given any pair of
  feature values, the relationship between them must be exactly one of
  the following:

     (LT a b): 'a' is less than 'b'.
     (EQ a b): 'a' is equal to 'b'.
     (GT a b): 'a' is greater than 'b'.
     (NE a b): 'a' is not equal to 'b', and is not less than
               or greater than 'b'.

  (The final case arises when two values are compared for which no
  ordering relationship is defined, and the values are not equal; e.g.
  two unequal string values.)

  These four cases can be captured by a pair of primitive predicates:

     (LE a b): 'a' is less than or equal to 'b'.
     (GE a b): 'a' is greater than or equal to 'b'.

  The four cases described above are prepresented by the following
  combinations of primitive predicate values:





Klyne                       Standards Track                    [Page 20]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


     (LE a b)   (GE a b) | relationship
     ----------------------------------
        TRUE      FALSE  | (LT a b)
        TRUE       TRUE  | (EQ a b)
       FALSE       TRUE  | (GT a b)
       FALSE      FALSE  | (NE a b)

  Thus, the original 3 primitive tests can be translated to
  combinations of just LE and GE, reducing the number of additional
  relationships that must be subsequently captured:

     (a <= b)  -->  (LE a b)
     (a >= b)  -->  (GE a b)
     (a = b)   -->  (& (LE a b) (GE a b) )

  Further, logical negations of the original 3 primitive tests can be
  eliminated by the introduction of 'not-greater' and 'not-less'
  primitives

     (NG a b)  ==  (! (GE a b) )
     (NL a b)  ==  (! (LE a b) )

  using the following transformation rules:

     (! (a = b) )   -->  (| (NL a b) (NG a b) )
     (! (a <= b) )  -->  (NL a b)
     (! (a >= b) )  -->  (NG a b)

  Thus, we have rules to transform all comparisons and logical
  negations into combinations of just 4 relational operators.

5.6 Conversion to canonical form

     NOTE: Logical negations have been eliminated in the previous step.

  Expand bracketed disjunctions, and flatten bracketed conjunctions and
  disjunctions:

     (& (| A1 A2 ... Am ) B1 B2 ... Bn )
       -->  (| (& A1 B1 B2 ... Bn )
               (& A2 B1 B2 ... Bn )
                :
               (& Am B1 B2 ... Bn ) )
     (& (& A1 A2 ... Am ) B1 B2 ... Bn )
       -->  (& A1 A2 ... Am B1 B2 ... Bn )
     (| (| A1 A2 ... Am ) B1 B2 ... Bn )
       -->  (| A1 A2 ... Am B1 B2 ... Bn )




Klyne                       Standards Track                    [Page 21]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


  The result is in "disjunctive normal form", a disjunction of
  conjunctions:

     (| (& S11 S12 ... )
        (& S21 S22 ... )
         :
        (& Sm1 Sm2 ... Smn ) )

  where the "Sij" elements are simple feature comparison forms
  constructed during the step at section 5.5.  Each term within the
  top-level "(|...)" construct represents a single possible feature set
  that satisfies the goal.  Note that the order of entries within the
  top-level '(|...)', and within each '(&...)', is immaterial.

  From here on, each conjunction '(&...)' is processed separately.
  Only one of these needs to be satisfiable for the original goal to be
  satisfiable.

  (A textbook conversion to clausal form [5,11] uses slightly different
  rules to yield a "conjunctive normal form".)

5.7 Grouping of feature predicates

     NOTE:  Remember that from here on, each conjunction is treated
     separately.

  Each simple feature predicate contains a "left-hand" feature tag and
  a "right-hand" feature value with which it is compared.

  To arrange these into independent groups, simple predicates are
  grouped according to their left hand feature tag ('f').

5.8 Merge single-feature constraints

  Within each group, apply the predicate simplification rules given
  below to eliminate redundant single-feature constraints.  All
  single-feature predicates are reduced to an equality or range
  constraint on that feature, possibly combined with a number of non-
  equality statements.

  If the constraints on any feature are found to be contradictory (i.e.
  resolved to FALSE according to the applied rules), the containing
  conjunction is not satisfiable and may be discarded.  Otherwise, the
  resulting description is a minimal form of that particular
  conjunction of the feature set definition.






Klyne                       Standards Track                    [Page 22]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


5.8.1 Rules for simplifying ordered values

  These rules are applicable where there is an ordering relationship
  between the given values 'a' and 'b':

     (LE f a)  (LE f b)      -->  (LE f a),   a<=b
                                  (LE f b),   otherwise
     (LE f a)  (GE f b)      -->  FALSE,      a<b
     (LE f a)  (NL f b)      -->  FALSE,      a<=b
     (LE f a)  (NG f b)      -->  (LE f a),   a<b
                                  (NG f b),   otherwise

     (GE f a)  (GE f b)      -->  (GE f a),   a>=b
                                  (GE f b),   otherwise
     (GE f a)  (NL f b)      -->  (GE f a)    a>b
                                  (NL f b),   otherwise
     (GE f a)  (NG f b)      -->  FALSE,      a>=b

     (NL f a)  (NL f b)      -->  (NL f a),   a>=b
                                  (NL f b),   otherwise
     (NL f a)  (NG f b)      -->  FALSE,      a>=b

     (NG f a)  (NG f b)      -->  (NG f a),   a<=b
                                  (NG f b),   otherwise

5.8.2 Rules for simplifying unordered values

  These rules are applicable where there is no ordering relationship
  applicable to the given values 'a' and 'b':

     (LE f a)  (LE f b)      -->  (LE f a),   a=b
                                  FALSE,      otherwise
     (LE f a)  (GE f b)      -->  FALSE,      a!=b
     (LE f a)  (NL f b)      -->  (LE f a)    a!=b
                                  FALSE,      otherwise
     (LE f a)  (NG f b)      -->  (LE f a),   a!=b
                                  FALSE,      otherwise

     (GE f a)  (GE f b)      -->  (GE f a),   a=b
                                  FALSE,      otherwise
     (GE f a)  (NL f b)      -->  (GE f a)    a!=b
                                  FALSE,      otherwise
     (GE f a)  (NG f b)      -->  (GE f a)    a!=b
                                  FALSE,      otherwise







Klyne                       Standards Track                    [Page 23]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


     (NL f a)  (NL f b)      -->  (NL f a),   a=b
     (NL f a)  (NG f b)      -->  (NL f a),   a=b

     (NG f a)  (NG f b)      -->  (NG f a),   a=b

6. Other features and issues

6.1 Named and auxiliary predicates

  Named and auxiliary predicates can serve two purposes:

     (a)  making complex predicates easier to write and understand, and

     (b)  providing a possible basis for naming and registering feature
          sets.

6.1.1 Defining a named predicate

  A named predicate definition has the following form:

     named-pred =  "(" fname *pname ")" ":-" filter
     fname      =  ftag        ; Feature predicate name
     pname      =  token       ; Formal parameter name

  'fname' is the name of the predicate.

  'pname' is the name of a formal parameter which may appear in the
  predicate body, and which is replaced by some supplied value when the
  predicate is invoked.

  'filter' is the predicate body. It may contain references to the
  formal parameters, and may also contain references to feature tags
  and other values defined in the environment in which the predicate is
  invoked.  References to formal parameters may appear anywhere where a
  reference to a feature tag ('ftag') is permitted by the syntax for '
  filter'.

  The only specific mechanism defined by this memo for introducing a
  named predicate into a feature set definition is the "auxiliary
  predicate" described later.  Specific negotiating protocols or other
  specifications may define other mechanisms.

     NOTE:  There has been some suggestion of creating a registry for
     feature sets as well as individual feature values.  Such a
     registry might be used to introduce named predicates corresponding
     to these feature sets into the environment of a capability
     assertion.  Further discussion of this idea is beyond the scope of
     this memo.



Klyne                       Standards Track                    [Page 24]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


6.1.2 Invoking named predicates

  Assuming a named predicate has been introduced into the environment
  of some other predicate, it can be invoked by a filter 'ext-pred' of
  the form:

     ext-pred   =  fname *param
     param      =  expr

  The number of parameters must match the definition of the named
  predicate that is invoked.

6.1.3 Auxiliary predicates in a filter

  A auxiliary predicate is attached to a filter definition by the
  following extension to the "filter" syntax:

     filter     =/ "(" filtercomp *( ";" parameter ) ")"
                   "where" 1*( named-pred ) "end"

  The named predicates introduced by "named-pred" are visible from the
  body of the "filtercomp" of the filter to which they are attached,
  but are not visible from each other.  They all have access to the
  same environment as "filter", plus their own formal parameters.
  (Normal scoping rules apply: a formal parameter with the same name as
  a value in the environment of "filter" effectively hides the
  environment value from the body of the predicate to which it
  applies.)

     NOTE:  Recursive predicates are not permitted.  The scoping rules
     should ensure this.

6.1.4 Feature matching with named predicates

  The preceding procedures can be extended to deal with named
  predicates simply by instantiating (i.e. substituting) the predicates
  wherever they are invoked, before performing the conversion to
  disjunctive normal form.  In the absence of recursive predicates,
  this procedure is guaranteed to terminate.

  When substituting the body of a precdicate at its point of
  invocation, instances of formal parameters within the predicate body
  must be replaced by the corresponding actual parameter from the point
  of invocation.







Klyne                       Standards Track                    [Page 25]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


6.1.5 Example

  This example restates that given in section 4.3 using an auxiliary
  predicate named 'Res':

     (| (& (Pix-x=1024) (Pix-y=768) (Res Res-x Res-y) )
        (& (Pix-x=800)  (Pix-y=600) (Res Res-x Res-y) );q=0.9
        (& (Pix-x=640)  (Pix-y=480) (Res Res-x Res-y) );q=0.8 )
     where
     (Res Res-x Res-y) :-
        (| (& (Res-x=150) (Res-y=150) )
           (& (Res-x=150) (Res-y=300) )
           (& (Res-x=300) (Res-y=300) )
           (& (Res-x=300) (Res-y=600) )
           (& (Res-x=600) (Res-y=600) ) )
     end

  Note that the formal parameters of "Res", "Res-x" and "Res-y",
  prevent the body of the named predicate from referencing similarly-
  named feature values.

6.2 Unit designations

  In some exceptional cases, there may be differing conventions for the
  units of measurement of a given feature.  For example, resolution is
  commonly expressed as dots per inch (dpi) or dots per centimetre
  (dpcm) in different applications (e.g. printing vs faxing).

  In such cases, a unit designator may be appended to a feature value
  according to the conventions indicated below (see also [3]).  These
  considerations apply only to features with numeric values.

  Every feature tag has a standard unit of measurement.  Any expression
  of a feature value that uses this unit is given without a unit
  designation -- this is the normal case.  When the feature value is
  expressed in some other unit, a unit designator is appended to the
  numeric feature value.

  The registration of a feature tag indicates the standard unit of
  measurement for a feature, and also any alternate units and
  corresponding unit designators that may be used, according to RFC
  2506 [3].

  Thus, if the standard unit of measure for resolution is 'dpcm', then
  the feature predicate '(res=200)' would be used to indicate a
  resolution of 200 dots-per-centimetre, and '(res=72dpi)' might be
  used to indicate 72 dots-per-inch.




Klyne                       Standards Track                    [Page 26]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


  Unit designators are accommodated by the following extension to the
  feature predicate syntax:

     fvalue     =/ number *WSP token

  When performing feature set matching, feature comparisons with and
  without unit designators, or feature comparisons with different unit
  designators, are treated as if they were different features.  Thus,
  the feature predicate '(res=200)' would not, in general, fail to
  match with the predicate '(res=200dpi)'.

     NOTE:  A protocol processor with specific knowledge of the feature
     and units concerned might recognize the relationship between the
     feature predicates in the above example, and fail to match these
     predicates.

     This appears to be a natural behaviour in this simple example, but
     can cause additional complexity in more general cases.
     Accordingly, this is not considered to be required or normal
     behaviour.  It is presumed that an application concerned will
     ensure consistent feature processing by adopting a consistent unit
     for any given feature.

6.3 Unknown feature value data types

  This memo has dealt with feature values that have well-understood
  comparison properties: numbers, with equality, less-than, greater-
  than relationships, and other values with equality relationships
  only.

  Some feature values may have comparison operations that are not
  covered by this framework.  For example, strings containing multi-
  part version numbers: "x.y.z".  Such feature comparisons are not
  covered by this memo.

  Specific applications may recognize and process feature tags that are
  associated with such values.  Future work may define ways to
  introduce new feature value data types in a way that allows them to
  be used by applications that do not contain built-in knowledge of
  their properties.

7. Examples and additional comments

7.1 Worked example

  This example considers sending a document to a high-end black-and-
  white fax system with the following receiver capabilities:




Klyne                       Standards Track                    [Page 27]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


     (& (dpi=[200,300])
        (grey=2) (color=0)
        (image-coding=[MH,MR]) )

  Turning to the document itself, assume it is available to the sender
  in three possible formats, A4 high resolution, B4 low resolution and
  A4 high resolution colour, described by:

     (& (dpi=300)
        (grey=2)
        (image-coding=MR) )

     (& (dpi=200)
        (grey=2)
        (image-coding=[MH,MMR]) )

     (& (dpi=300) (dpi-xyratio=1)
        (color<=256)
        (image-coding=JPEG) )

  These three image formats can be combined into a composite capability
  statement by a logical-OR operation (to describe format-1 OR format-2
  OR format-3):

     (| (& (dpi=300)
           (grey=2)
           (image-coding=MR) )
        (& (dpi=200)
           (grey=2)
           (image-coding=[MH,MMR]) )
        (& (dpi=300)
           (color<=256)
           (image-coding=JPEG) ) )

  The composite document description can be matched with the receiver
  capability description by combining the capability descriptions with
  a logical AND operation:

     (& (& (dpi=[200,300])
             (grey=2) (color=0)
           (image-coding=[MH,MR]) )
        (| (& (dpi=300)
              (grey=2)
              (image-coding=MR) )
           (& (dpi=200)
              (grey=2)
              (image-coding=[MH,MMR]) )
           (& (dpi=300)



Klyne                       Standards Track                    [Page 28]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


              (color<=256)
              (image-coding=JPEG) ) ) )

  -->  Expand value-set notation:

     (& (& (| (dpi=200) (dpi=300) )
           (grey=2) (color=0)
           (| (image-coding=MH) (image-coding=MR) ) )
        (| (& (dpi=300)
              (grey=2)
              (image-coding=MR) )
           (& (dpi=200)
              (grey=2)
              (| (image-coding=MH) (image-coding=MMR) ) )
           (& (dpi=300)
              (color<=256)
              (image-coding=JPEG) ) ) )

  -->  Flatten nested '(&...)':

     (& (| (dpi=200) (dpi=300) )
        (grey=2) (color=0)
        (| (image-coding=MH) (image-coding=MR) )
        (| (& (dpi=300)
              (grey=2)
              (image-coding=MR) )
           (& (dpi=200)
              (grey=2)
              (| (image-coding=MH) (image-coding=MMR) ) )
           (& (dpi=300)
              (color<=256)
              (image-coding=JPEG) ) ) )

  -->  (distribute '(&...)' over inner '(|...)'):

     (& (| (dpi=200) (dpi=300) )
        (grey=2) (color=0)
        (| (image-coding=MH) (image-coding=MR) )
        (| (& (dpi=300) (grey=2) (image-coding=MR) )
           (& (dpi=200) (grey=2) (image-coding=MH) )
           (& (dpi=200) (grey=2) (image-coding=MMR) )
           (& (dpi=300) (color<=256) (image-coding=JPEG) ) ) )

  -->  continue to distribute '(&...)' over '(|...)', and flattening
       nested '(&...)' and '(|...)' ...:

     (| (& (dpi=200) (grey=2) (color=0) (image-coding=MH)
           (| (& (dpi=300) (grey=2) (image-coding=MR) )



Klyne                       Standards Track                    [Page 29]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


              (& (dpi=200) (grey=2) (image-coding=MH) )
              (& (dpi=200) (grey=2) (image-coding=MMR) )
              (& (dpi=300) (color<=256) (image-coding=JPEG) ) ) )
        (& (dpi=200) (grey=2) (color=0) (image-coding=MR)
           (| (& (dpi=300) (grey=2) (image-coding=MR) )
              (& (dpi=200) (grey=2) (image-coding=MH) )
              (& (dpi=200) (grey=2) (image-coding=MMR) )
              (& (dpi=300) (color<=256) (image-coding=JPEG) ) ) )
        (& (dpi=300) (grey=2) (color=0) (image-coding=MH)
           (| (& (dpi=300) (grey=2) (image-coding=MR) )
              (& (dpi=200) (grey=2) (image-coding=MH) )
              (& (dpi=200) (grey=2) (image-coding=MMR) )
              (& (dpi=300) (color<=256) (image-coding=JPEG) ) ) )
        (& (dpi=300) (grey=2) (color=0) (image-coding=MR)
           (| (& (dpi=300) (grey=2) (image-coding=MR) )
              (& (dpi=200) (grey=2) (image-coding=MH) )
              (& (dpi=200) (grey=2) (image-coding=MMR) )
              (& (dpi=300) (color<=256) (image-coding=JPEG) ) ) ) )

  -->  ... until normal form is achieved:

     (| (& (dpi=200) (grey=2) (color=0) (image-coding=MH)
           (dpi=300) (grey=2) (image-coding=MR) )
        (& (dpi=200) (grey=2) (color=0) (image-coding=MR)
           (dpi=300) (grey=2) (image-coding=MR) )
        (& (dpi=300) (grey=2) (color=0) (image-coding=MH)
           (dpi=300) (grey=2) (image-coding=MR) )
        (& (dpi=300) (grey=2) (color=0) (image-coding=MR)
           (dpi=300) (grey=2) (image-coding=MR) )
        (& (dpi=200) (grey=2) (color=0) (image-coding=MH)
           (dpi=200) (grey=2) (image-coding=MH) )
        (& (dpi=200) (grey=2) (color=0) (image-coding=MR)
           (dpi=200) (grey=2) (image-coding=MH) )
        (& (dpi=300) (grey=2) (color=0) (image-coding=MH)
           (dpi=200) (grey=2) (image-coding=MH) )
        (& (dpi=300) (grey=2) (color=0) (image-coding=MR)
           (dpi=200) (grey=2) (image-coding=MH) )
        (& (dpi=200) (grey=2) (color=0) (image-coding=MH)
           (dpi=200) (grey=2) (image-coding=MMR) )
        (& (dpi=200) (grey=2) (color=0) (image-coding=MR)
           (dpi=200) (grey=2) (image-coding=MMR) )
        (& (dpi=300) (grey=2) (color=0) (image-coding=MH)
           (dpi=200) (grey=2) (image-coding=MMR) )
        (& (dpi=300) (grey=2) (color=0) (image-coding=MR)
           (dpi=200) (grey=2) (image-coding=MMR) )
        (& (dpi=200) (grey=2) (color=0) (image-coding=MH)
           (dpi=300) (color<=256) (image-coding=JPEG) ) ) )
        (& (dpi=200) (grey=2) (color=0) (image-coding=MR)



Klyne                       Standards Track                    [Page 30]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


           (dpi=300) (color<=256) (image-coding=JPEG) ) ) )
        (& (dpi=300) (grey=2) (color=0) (image-coding=MH)
           (dpi=300) (color<=256) (image-coding=JPEG) ) ) )
        (& (dpi=300) (grey=2) (color=0) (image-coding=MR)
           (dpi=300) (color<=256) (image-coding=JPEG) ) )

  -->  Group terms in each conjunction by feature tag:

     (| (& (dpi=200) (dpi=300) (grey=2) (grey=2) (color=0)
           (image-coding=MH) (image-coding=MR) )
        (& (dpi=200) (dpi=300) (grey=2) (grey=2) (color=0)
           (image-coding=MR) (image-coding=MR) )
            :
           (etc.)
            :
        (& (dpi=300) (dpi=300) (grey=2) (color=0) (color<=256)
           (image-coding=MR) (image-coding=JPEG) ) )

  -->  Combine feature tag comparisons and eliminate unsatisfiable
       conjunctions:

     (| (& (dpi=300) (grey=2) (color=0) (image-coding=MR) )
        (& (dpi=200) (grey=2) (color=0) (image-coding=MH) ) )

  Thus, we see that this combination of sender and receiver options can
  transfer a bi-level image, either at 300dpi using MR coding, or at
  200dpi using MH coding.

  Points to note about the feature matching process:

     o  The colour document option is eliminated because the receiver
        cannot handle either colour (indicated by '(color=0)') or JPEG
        coding.

     o  The high resolution version of the document with '(dpi=300)'
        must be sent using '(image-coding=MR)' because this is the only
        available coding of the image data that the receiver can use
        for high resolution documents.  (The available 300dpi document
        codings here are MMR and MH, and the receiver capabilities are
        MH and MR.)

7.2 A note on feature tag scoping

  This section contains some additional commentary on the
  interpretation of feture set predicates.  It does not extend or
  modify what has been described previously.  Rather, it attempts to
  clarify an area of possible misunderstanding.




Klyne                       Standards Track                    [Page 31]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


  The essential fact that needs to be established here is:

     Within a given feature collection, each feature tag may have only
     one value.

  This idea is explained below in the context of using the media
  feature framework to describe the characteristics of transmitted
  image data.

  In this context, we have the requirement that any feature tag value
  must apply to the entire image, and cannot have different values for
  different parts of an image.  This is a consequence of the way that
  the framework of feature predicates is used to describe different
  possible images, such as the different images that can be rendered by
  a given recipient.

  This idea is illustrated here using an example of a flawed feature
  set description based on the TIFF image format defined for use by
  Internet fax [13]:

     (& (& (MRC-mode=1) (stripe-size=256) )
        (| (& (image-coding=JBIG-2-LEVEL) (stripe-size=128) )
           (image-coding=[MH,MR,MMR]) ) )

  This example is revealing because the 'stripe-size' attribute is
  applied differently to different attributes on an MRC-formatted data:
  it can be applied to the MRC format as a whole, and it can be applied
  separately to a JBIG image that may appear as part of the MRC data.

  One might imagine that this example describes a stripe size of 256
  when applied to the MRC image format, and a separate stripe size of
  128 when applied to a JBIG-2-LEVEL coded image within the MRC-
  formatted data.  But it doesn't work that way:  the predicates used
  obey the normal laws of Boolean logic, and would be transformed as
  follows:

     --> [flatten nested (&...)]:
         (& (MRC-mode=1) (stripe-size=256)
            (| (& (image-coding=JBIG-2-LEVEL) (stripe-size=128) )
               (image-coding=[MH,MR,MMR]) ) )

     --> [Distribute (&...) over (|...)]:
          (| (& (MRC-mode=1) (stripe-size=256)
                (& (image-coding=JBIG-2-LEVEL) (stripe-size=128) ) )
             (& (MRC-mode=1) (stripe-size=[0..256])
                (image-coding=[MH,MR,MMR]) ) )





Klyne                       Standards Track                    [Page 32]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


     --> [Flatten nested (&...) and group feature tags]:
          (| (& (MRC-mode=1)
                (stripe-size=256)
                (stripe-size=128)
                (image-coding=JBIG-2-LEVEL) )
             (& (MRC-mode=1)
                (stripe-size=256)
                (image-coding=[MH,MR,MMR]) ) )

  Examination of this final expression shows that it requires both '
  stripe-size=128' and 'stripe-size=256' within the same conjunction.
  This is manifestly false, so the entire conjunction must be false,
  reducing the entire predicate expression to:

          (& (MRC-mode=1)
             (stripe-size=256)
             (image-coding=[MH,MR,MMR]) ) )

  This indicates that no MRC formatted data containing a JBIG-2-LEVEL
  coded image is permitted within the feature set, which is not what
  was intended in this case.

  The only way to avoid this in situations when a given characteristic
  has different constraints in different parts of a resource is to use
  separate feature tags.  In this example, 'MRC-stripe-size' and '
  JBIG-stripe-size' could be used to capture the intent:

     (& (& (MRC-mode=1) (MRC-stripe-size=256) )
        (| (& (image-coding=JBIG-2-LEVEL) (JBIG-stripe-size=128) )
           (image-coding=[MH,MR,MMR]) ) )

  which would reduce to:

          (| (& (MRC-mode=1)
                (MRC-stripe-size=256)
                (JBIG-stripe-size=128)
                (image-coding=JBIG-2-LEVEL) )
             (& (MRC-mode=1)
                (MRC-stripe-size=256)
                (image-coding=[MH,MR,MMR]) ) )

  The property of the capability description framework explicated above
  is captured by the idea of a "feature collection" which (in this
  context) describes the feature values that apply to a single
  resource.  Within a feature collection, each feature tag may have no
  more than one value.





Klyne                       Standards Track                    [Page 33]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


  The characteristics of an image sender or receiver are described by a
  "Feature set", which is formally a set of feature collections.  Here,
  the feature set predicate is applied to some image feature collection
  to determine whether or not it belongs to the set that can be handled
  by an image receiver.

8. Security Considerations

  Some security considerations for content negotiation are raised in
  [1,2,3].

  The following are primary security concerns for capability
  identification mechanisms:

     o  Unintentional disclosure of private information through the
        announcement of capabilities or user preferences.

     o  Disruption to system operation caused by accidental or
        malicious provision of incorrect capability information.

     o  Use of a capability identification mechanism might be used to
        probe a network (e.g. by identifying specific hosts used, and
        exploiting their known weaknesses).

  The most contentious security concerns are raised by mechanisms which
  automatically send capability identification data in response to a
  query from some unknown system.  Use of directory services (based on
  LDAP [7], etc.) seem to be less problematic because proper
  authentication mechanisms are available.

  Mechanisms that provide capability information when sending a message
  are less contentious, presumably because some intention can be
  inferred that person whose details are disclosed wishes to
  communicate with the recipient of those details.  This does not,
  however, solve problems of spoofed supply of incorrect capability
  information.

  The use of format converting gateways may prove problematic because
  such systems would tend to defeat any message integrity and
  authenticity checking mechanisms that are employed.

9. Acknowledgements

  Thanks are due to Larry Masinter for demonstrating the breadth of the
  media feature issue, and encouraging the development of some early
  thoughts.





Klyne                       Standards Track                    [Page 34]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


  Many of the ideas presented derive from the "Transparent Content
  Negotiation in HTTP" work of Koen Holtman and Andy Mutz [4].

  Early discussions of ideas with the IETF HTTP and FAX working groups
  led to further useful inputs from Koen Holtman, Ted Hardie and Dan
  Wing.  The debate later moved to the IETF 'conneg' working group,
  where Al Gilman and Koen Holtman were particularly helpful in
  refining the feature set algebra.  Ideas for dealing with preferences
  and specific units were suggested by Larry Masinter.

  This work was supported by Content Technologies Ltd and 5th
  Generation Messaging Ltd.

10. References

  [1]  Hardie, T., "Scenarios for the Delivery of Negotiated Content",
       Work in Progress.

  [2]  Klyne, G., "Requirements for protocol-independent content
       negotiation", Work in Progress.

  [3]  Holtman, K., Mutz, A., and T. Hardie, "Media Feature Tag
       Registration Procedure", BCP 31, RFC 2506, March 1999.

  [4]  Holtman, K. and A. Mutz, "Transparent Content Negotiation in
       HTTP", RFC 2295, March 1998.

  [5]  "Programming in Prolog" (2nd edition), W. F. Clocksin and C. S.
       Mellish, Springer Verlag, ISBN 3-540-15011-0 / 0-387-15011-0,
       1984.

  [6]  Masinter, L., Holtman, K., Mutz, A., and D. Wing, "Media
       Features for Display, Print, and Fax", RFC 2534, March 1999.

  [7]  Wahl, M., Howes, T. and S. Kille, "Lightweight Directory Access
       Protocol (v3)", RFC 2251, December 1997.

  [8]  Howes, T., "The String Representation of LDAP Search Filters",
       RFC 2254, December 1997.

  [9]  Fielding, R., Gettys, J., Mogul, J., Frytyk, H. and T. Berners-
       Lee, "Hyptertext Transfer Protocol -- HTTP/1.1", RFC 2068,
       January 1997.

  [10] Crocker, D., Editor, and P. Overell, "Augmented BNF for Syntax
       Specifications:  ABNF", RFC 2234, November 1997.





Klyne                       Standards Track                    [Page 35]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


  [11] "Logic, Algebra and Databases", Peter Gray, Ellis Horwood
       Series: Computers and their Applications, ISBN 0-85312-709-3/0-
       85312-803-3 (Ellis Horwood Ltd), ISBN 0-470-20103-7/0-470-
       20259-9 (Halstead Press), 1984.

  [12] "Logic and its Applications", Edmund Burk and Eric Foxley,
       Prentice Hall, Series in computer science, ISBN 0-13-030263-5,
       1996.

  [13] McIntyre, L., Buckley, R., Venable, D., Zilles, S., Parsons, G.
       and J. Rafferty, "File Format for Internet Fax", RFC 2301, March
       1998.

  [14] Apache content negotiation algorithm,
       <http://www.apache.org/docs/content-negotiation.html>

11. Author's Address

  Graham Klyne
  Content Technologies Ltd.        5th Generation Messaging Ltd.
  Forum 1                          5 Watlington Street
  Station Road                     Nettlebed
  Theale                           Henley-on-Thames
  Reading, RG7 4RA                 RG9 5AB
  United Kingdom                   United Kingdom.

  Phone:     +44 118 930 1300      +44 1491 641 641
  Facsimile: +44 118 930 1301      +44 1491 641 611
  EMail:     [email protected]






















Klyne                       Standards Track                    [Page 36]

RFC 2533       A Syntax for Describing Media Feature Sets     March 1999


Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























Klyne                       Standards Track                    [Page 37]