Network Working Group                                       R. Pereira
Request for Comments: 2451                        TimeStep Corporation
Category: Standards Track                                     R. Adams
                                                   Cisco Systems Inc.
                                                        November 1998


                  The ESP CBC-Mode Cipher Algorithms

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

Abstract

  This document describes how to use CBC-mode cipher algorithms with
  the IPSec ESP (Encapsulating Security Payload) Protocol.  It not only
  clearly states how to use certain cipher algorithms, but also how to
  use all CBC-mode cipher algorithms.

Table of Contents

  1. Introduction...................................................2
    1.1 Specification of Requirements...............................2
    1.2 Intellectual Property Rights Statement......................2
  2. Cipher Algorithms..............................................2
    2.1 Mode........................................................3
    2.2 Key Size....................................................3
    2.3 Weak Keys...................................................4
    2.4 Block Size and Padding......................................5
    2.5 Rounds......................................................6
    2.6 Backgrounds.................................................6
    2.7 Performance.................................................8
  3. ESP Payload....................................................8
    3.1 ESP Environmental Considerations............................9
    3.2 Keying Material.............................................9
  4. Security Considerations........................................9
  5. References....................................................10
  6. Acknowledgments...............................................11
  7. Editors' Addresses............................................12



Pereira & Adams             Standards Track                     [Page 1]

RFC 2451             ESP CBC-Mode Cipher Algorithms        November 1998


  8. Full Copyright Statement......................................14

1. Introduction

  The Encapsulating Security Payload (ESP) [Kent98] provides
  confidentiality for IP datagrams by encrypting the payload data to be
  protected.  This specification describes the ESP use of CBC-mode
  cipher algorithms.

  While this document does not describe the use of the default cipher
  algorithm DES, the reader should be familiar with that document.
  [Madson98]

  It is assumed that the reader is familiar with the terms and concepts
  described in the "Security Architecture for the Internet Protocol"
  [Atkinson95], "IP Security Document Roadmap" [Thayer97], and "IP
  Encapsulating Security Payload (ESP)" [Kent98] documents.

  Furthermore, this document is a companion to [Kent98] and MUST be
  read in its context.

1.1 Specification of Requirements

  The keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
  and "MAY" that appear in this document are to be interpreted as
  described in [Bradner97].

1.2 Intellectual Property Rights Statement

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementers or users of this specification can
  be obtained from the IETF Secretariat.

2. Cipher Algorithms

  All symmetric block cipher algorithms share common characteristics
  and variables.  These include mode, key size, weak keys, block size,
  and rounds.  All of which will be explained below.



Pereira & Adams             Standards Track                     [Page 2]

RFC 2451             ESP CBC-Mode Cipher Algorithms        November 1998


  While this document illustrates certain cipher algorithms such as
  Blowfish [Schneier93], CAST-128 [Adams97], 3DES, IDEA [Lai] [MOV],
  and RC5 [Baldwin96], any other block cipher algorithm may be used
  with ESP if all of the variables described within this document are
  clearly defined.

2.1 Mode

  All symmetric block cipher algorithms described or insinuated within
  this document use Cipher Block Chaining (CBC) mode.  This mode
  requires an Initialization Vector (IV) that is the same size as the
  block size.  Use of a randomly generated IV prevents generation of
  identical ciphertext from packets which have identical data that
  spans the first block of the cipher algorithm's blocksize.

  The IV is XOR'd with the first plaintext block, before it is
  encrypted.  Then for successive blocks, the previous ciphertext block
  is XOR'd with the current plaintext, before it is encrypted.

  More information on CBC mode can be obtained in [Schneier95].

2.2 Key Size

  Some cipher algorithms allow for variable sized keys, while others
  only allow a specific key size.  The length of the key correlates
  with the strength of that algorithm, thus larger keys are always
  harder to break than shorter ones.

  This document stipulates that all key sizes MUST be a multiple of 8
  bits.

  This document does specify the default key size for each cipher
  algorithm.  This size was chosen by consulting experts on the
  algorithm and by balancing strength of the algorithm with
  performance.
















Pereira & Adams             Standards Track                     [Page 3]

RFC 2451             ESP CBC-Mode Cipher Algorithms        November 1998


  +==============+==================+=================+==========+
  | Algorithm    | Key Sizes (bits) | Popular Sizes   | Default  |
  +==============+==================+=================+==========+
  | CAST-128 [1] | 40 to 128        | 40, 64, 80, 128 | 128      |
  +--------------+------------------+-----------------+----------+
  | RC5          | 40 to 2040       | 40, 128, 160    | 128      |
  +--------------+------------------+-----------------+----------+
  | IDEA         | 128              | 128             | 128      |
  +--------------+------------------+-----------------+----------+
  | Blowfish     | 40 to 448        | 128             | 128      |
  +--------------+------------------+-----------------+----------+
  | 3DES [2]     | 192              | 192             | 192      |
  +--------------+------------------+-----------------+----------+

  Notes:

  [1] With CAST-128, keys less than 128 bits MUST be padded with zeros
  in the rightmost, or least significant, positions out to 128 bits
  since the CAST-128 key schedule assumes an input key of 128 bits.
  Thus if you had a key with a size of 80 bits '3B5D831CFE', it would
  be padded to produce a key with a size of 128 bits
  '3B5D831CFE000000'.

  [2] The first 3DES key is taken from the first 64 bits, the second
  from the next 64 bits, and the third from the last 64 bits.
  Implementations MUST take into consideration the parity bits when
  initially accepting a new set of keys.  Each of the three keys is
  really 56 bits in length with the extra 8 bits used for parity.

  The reader should note that the minimum key size for all of the above
  cipher algorithms is 40 bits, and that the authors strongly advise
  that implementations do NOT use key sizes smaller than 40 bits.

2.3 Weak Keys

  Weak key checks SHOULD be performed.  If such a key is found, the key
  SHOULD be rejected and a new SA requested.  Some cipher algorithms
  have weak keys or keys that MUST not be used due to their weak
  nature.

  New weak keys might be discovered, so this document does not in any
  way contain all possible weak keys for these ciphers.  Please check
  with other sources of cryptography such as [MOV] and [Schneier] for
  further weak keys.

  CAST-128:

  No known weak keys.



Pereira & Adams             Standards Track                     [Page 4]

RFC 2451             ESP CBC-Mode Cipher Algorithms        November 1998


  RC5:

  No known weak keys when used with 16 rounds.


  IDEA:

  IDEA has been found to have weak keys.  Please check with [MOV] and
  [Schneier] for more information.


  Blowfish:

  Weak keys for Blowfish have been discovered.  Weak keys are keys that
  produce the identical entries in a given S-box.  Unfortunately, there
  is no way to test for weak keys before the S- box values are
  generated.  However, the chances of randomly generating such a key
  are small.


  3DES:

  DES has 64 known weak keys, including so-called semi-weak keys and
  possibly-weak keys [Schneier95, pp 280-282].  The likelihood of
  picking one at random is negligible.

  For DES-EDE3, there is no known need to reject weak or
  complementation keys.  Any weakness is obviated by the use of
  multiple keys.

  However, if the first two or last two independent 64-bit keys are
  equal (k1 == k2 or k2 == k3), then the 3DES operation is simply the
  same as DES.  Implementers MUST reject keys that exhibit this
  property.

2.4 Block Size and Padding

  All of the algorithms described in this document use a block size of
  eight octets (64 bits).

  Padding is used to align the payload type and pad length octets as
  specified in [Kent98].  Padding must be sufficient to align the data
  to be encrypted to an eight octet (64 bit) boundary.








Pereira & Adams             Standards Track                     [Page 5]

RFC 2451             ESP CBC-Mode Cipher Algorithms        November 1998


2.5 Rounds

  This variable determines how many times a block is encrypted.  While
  this variable MAY be negotiated, a default value MUST always exist
  when it is not negotiated.

  +====================+============+======================+
  | Algorithm          | Negotiable | Default Rounds       |
  +====================+============+======================+
  | CAST-128           | No         | key<=80 bits, 12     |
  |                    |            | key>80 bits, 16      |
  +--------------------+------------+----------------------+
  | RC5                | No         | 16                   |
  +--------------------+------------+----------------------+
  | IDEA               | No         | 8                    |
  +--------------------+------------+----------------------+
  | Blowfish           | No         | 16                   |
  +--------------------+------------+----------------------+
  | 3DES               | No         | 48 (16x3)            |
  +--------------------+------------+----------------------+

2.6 Backgrounds

  CAST-128:

  The CAST design procedure was originally developed by Carlisle Adams
  and Stafford Tavares at Queen's University, Kingston, Ontario,
  Canada.  Subsequent enhancements have been made over the years by
  Carlisle Adams and Michael Wiener of Entrust Technologies.  CAST-128
  is the result of applying the CAST Design Procedure as outlined in
  [Adams97].


  RC5:

  The RC5 encryption algorithm was developed by Ron Rivest for RSA Data
  Security Inc. in order to address the need for a high- performance
  software and hardware ciphering alternative to DES. It is patented
  (pat.no. 5,724,428).  A description of RC5 may be found in [MOV] and
  [Schneier].


  IDEA:

  Xuejia Lai and James Massey developed the IDEA (International Data
  Encryption Algorithm) algorithm.  The algorithm is described in
  detail in [Lai], [Schneier] and [MOV].




Pereira & Adams             Standards Track                     [Page 6]

RFC 2451             ESP CBC-Mode Cipher Algorithms        November 1998


  The IDEA algorithm is patented in Europe and in the United States
  with patent application pending in Japan.  Licenses are required for
  commercial uses of IDEA.

  For patent and licensing information, contact:

        Ascom Systec AG, Dept. CMVV
        Gewerbepark, CH-5506
        Magenwil, Switzerland
        Phone: +41 64 56 59 83
        Fax: +41 64 56 59 90
        [email protected]
        http://www.ascom.ch/Web/systec/policy/normal/exhibit1.html

  Blowfish:

  Bruce Schneier of Counterpane Systems developed the Blowfish block
  cipher algorithm.  The algorithm is described in detail in
  [Schneier93], [Schneier95] and [Schneier].

  3DES:

  This DES variant, colloquially known as "Triple DES" or as DES-EDE3,
  processes each block three times, each time with a different key.
  This technique of using more than one DES operation was proposed in
  [Tuchman79].

                       P1             P2             Pi
                        |              |              |
                 IV->->(X)    +>->->->(X)    +>->->->(X)
                        v     ^        v     ^        v
                     +-----+  ^     +-----+  ^     +-----+
                 k1->|  E  |  ^ k1->|  E  |  ^ k1->|  E  |
                     +-----+  ^     +-----+  ^     +-----+
                        |     ^        |     ^        |
                        v     ^        v     ^        v
                     +-----+  ^     +-----+  ^     +-----+
                 k2->|  D  |  ^ k2->|  D  |  ^ k2->|  D  |
                     +-----+  ^     +-----+  ^     +-----+
                        |     ^        |     ^        |
                        v     ^        v     ^        v
                     +-----+  ^     +-----+  ^     +-----+
                 k3->|  E  |  ^ k3->|  E  |  ^ k3->|  E  |
                     +-----+  ^     +-----+  ^     +-----+
                        |     ^        |     ^        |
                        +>->->+        +>->->+        +>->->
                        |              |              |
                        C1             C2             Ci



Pereira & Adams             Standards Track                     [Page 7]

RFC 2451             ESP CBC-Mode Cipher Algorithms        November 1998


  The DES-EDE3-CBC algorithm is a simple variant of the DES-CBC
  algorithm [FIPS-46].  The "outer" chaining technique is used.

  In DES-EDE3-CBC, an Initialization Vector (IV) is XOR'd with the
  first 64-bit (8 byte) plaintext block (P1).  The keyed DES function
  is iterated three times, an encryption (Ek1) followed by a decryption
  (Dk2) followed by an encryption (Ek3), and generates the ciphertext
  (C1) for the block.  Each iteration uses an independent key: k1, k2
  and k3.

  For successive blocks, the previous ciphertext block is XOR'd with
  the current plaintext (Pi).  The keyed DES-EDE3 encryption function
  generates the ciphertext (Ci) for that block.

  To decrypt, the order of the functions is reversed: decrypt with k3,
  encrypt with k2, decrypt with k1, and XOR the previous ciphertext
  block.

  Note that when all three keys (k1, k2 and k3) are the same, DES-
  EDE3-CBC is equivalent to DES-CBC.  This property allows the DES-EDE3
  hardware implementations to operate in DES mode without modification.

  For more explanation and implementation information for Triple DES,
  see [Schneier95].

2.7 Performance

  For a comparison table of the estimated speed of any of these and
  other cipher algorithms, please see [Schneier97] or for an up-to-date
  performance comparison, please see [Bosseleaers].

3. ESP Payload

  The ESP payload is made up of the IV followed by raw cipher-text.
  Thus the payload field, as defined in [Kent98], is broken down
  according to the following diagram:

  +---------------+---------------+---------------+---------------+
  |                                                               |
  +               Initialization Vector (8 octets)                +
  |                                                               |
  +---------------+---------------+---------------+---------------+
  |                                                               |
  ~              Encrypted Payload (variable length)              ~
  |                                                               |
  +---------------------------------------------------------------+
   1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8




Pereira & Adams             Standards Track                     [Page 8]

RFC 2451             ESP CBC-Mode Cipher Algorithms        November 1998


  The IV field MUST be same size as the block size of the cipher
  algorithm being used.  The IV MUST be chosen at random.  Common
  practice is to use random data for the first IV and the last block of
  encrypted data from an encryption process as the IV for the next
  encryption process.

  Including the IV in each datagram ensures that decryption of each
  received datagram can be performed, even when some datagrams are
  dropped, or datagrams are re-ordered in transit.

  To avoid ECB encryption of very similar plaintext blocks in different
  packets, implementations MUST NOT use a counter or other low-Hamming
  distance source for IVs.

3.1 ESP Environmental Considerations

  Currently, there are no known issues regarding interactions between
  these algorithms and other aspects of ESP, such as use of certain
  authentication schemes.

3.2 Keying Material

  The minimum number of bits sent from the key exchange protocol to
  this ESP algorithm must be greater or equal to the key size.

  The cipher's encryption and decryption key is taken from the first
  <x> bits of the keying material, where <x> represents the required
  key size.

4. Security Considerations

  Implementations are encouraged to use the largest key sizes they can
  when taking into account performance considerations for their
  particular hardware and software configuration.  Note that encryption
  necessarily impacts both sides of a secure channel, so such
  consideration must take into account not only the client side, but
  the server as well.

  For information on the case for using random values please see
  [Bell97].

  For further security considerations, the reader is encouraged to read
  the documents that describe the actual cipher algorithms.








Pereira & Adams             Standards Track                     [Page 9]

RFC 2451             ESP CBC-Mode Cipher Algorithms        November 1998


5. References

  [Adams97]   Adams, C, "The CAST-128 Encryption Algorithm",
              RFC2144, 1997.

  [Atkinson98]Kent, S. and R. Atkinson, "Security Architecture for the
              Internet Protocol", RFC 2401, November 1998.

  [Baldwin96] Baldwin, R. and R. Rivest, "The RC5, RC5-CBC, RC5-CBC-
              Pad, and RC5-CTS Algorithms", RFC 2040, October 1996.

  [Bell97]    S. Bellovin, "Probable Plaintext Cryptanalysis of the IP
              Security Protocols", Proceedings of the Symposium on
              Network and Distributed System Security, San Diego, CA,
              pp. 155-160, February 1997 (also
              http://www.research.att.com/~smb/probtxt.{ps, pdf}).

  [Bosselaers]A. Bosselaers, "Performance of Pentium implementations",
              http://www.esat.kuleuven.ac.be/~bosselae/

  [Bradner97] Bradner, S., "Key words for use in RFCs to indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [Crypto93]  J. Daemen, R. Govaerts, J. Vandewalle, "Weak Keys for
              IDEA", Advances in Cryptology, CRYPTO 93 Proceedings,
              Springer-Verlag, pp. 224-230.

  [FIPS-46]   US National Bureau of Standards, "Data Encryption
              Standard", Federal Information Processing Standard (FIPS)
              Publication 46, January 1977.

  [Kent98]    Kent, S. and R. Atkinson, "IP Encapsulating Security
              Payload (ESP)", RFC 2406, November 1998.

  [Lai]       X. Lai, "On the Design and Security of Block Ciphers",
              ETH Series in Information Processing, v. 1, Konstanz:
              Hartung-Gorre Verlag, 1992.

  [Madson98]  Madson, C. and N. Dorswamy, "The ESP DES-CBC Cipher
              Algorithm With Explicit IV", RFC 2405, November 1998.

  [MOV]       A. Menezes, P. Van Oorschot, S. Vanstone, "Handbook of
              Applied Cryptography", CRC Press, 1997. ISBN 0-8493-
              8523-7

  [Schneier]  B. Schneier, "Applied Cryptography Second Edition", John
              Wiley & Sons, New York, NY, 1995.  ISBN 0-471-12845-7




Pereira & Adams             Standards Track                    [Page 10]

RFC 2451             ESP CBC-Mode Cipher Algorithms        November 1998


  [Schneier93]B. Schneier, "Description of a New Variable-Length Key,
              64-Bit Block Cipher", from "Fast Software Encryption,
              Cambridge Security Workshop Proceedings", Springer-
              Verlag, 1994, pp. 191-204.
              http://www.counterpane.com/bfsverlag.html

  [Schneier95]B. Schneier, "The Blowfish Encryption Algorithm - One
              Year Later", Dr. Dobb's Journal, September 1995,
              http://www.counterpane.com/bfdobsoyl.html

  [Schneier97]B. Scheier, "Speed Comparisons of Block Ciphers on a
              Pentium." February 1997,
              http://www.counterpane.com/speed.html

  [Thayer97]  Thayer, R., Doraswamy, N. and R. Glenn, "IP Security
              Document Roadmap", RFC 2411, November 1998.

  [Tuchman79] Tuchman, W, "Hellman Presents No Shortcut Solutions to
              DES", IEEE Spectrum, v. 16 n. 7, July 1979, pp. 40-41.

6. Acknowledgments

  This document is a merger of most of the ESP cipher algorithm
  documents.  This merger was done to facilitate greater understanding
  of the commonality of all of the ESP algorithms and to further the
  development of these algorithm within ESP.

  The content of this document is based on suggestions originally from
  Stephen Kent and subsequent discussions from the IPSec mailing list
  as well as other IPSec documents.

  Special thanks to Carlisle Adams and Paul Van Oorschot both of
  Entrust Technologies who provided input and review of CAST.

  Thanks to all of the editors of the previous ESP 3DES documents; W.
  Simpson, N. Doraswamy, P. Metzger, and P. Karn.

  Thanks to Brett Howard from TimeStep for his original work of ESP-
  RC5.

  Thanks to Markku-Juhani Saarinen, Helger Lipmaa and Bart Preneel for
  their input on IDEA and other ciphers.









Pereira & Adams             Standards Track                    [Page 11]

RFC 2451             ESP CBC-Mode Cipher Algorithms        November 1998


7. Editors' Addresses

  Roy Pereira
  TimeStep Corporation

  Phone: +1 (613) 599-3610 x 4808
  EMail: [email protected]


  Rob Adams
  Cisco Systems Inc.

  Phone: +1 (408) 457-5397
  EMail: [email protected]


  Contributors:

  Robert W. Baldwin
  RSA Data Security, Inc.

  Phone: +1 (415) 595-8782
  EMail: [email protected] or [email protected]


  Greg Carter
  Entrust Technologies

  Phone: +1 (613) 763-1358
  EMail: [email protected]


  Rodney Thayer
  Sable Technology Corporation

  Phone: +1 (617) 332-7292
  EMail: [email protected]














Pereira & Adams             Standards Track                    [Page 12]

RFC 2451             ESP CBC-Mode Cipher Algorithms        November 1998


  The IPSec working group can be contacted via the IPSec working
  group's mailing list ([email protected]) or through its chairs:

  Robert Moskowitz
  International Computer Security Association

  EMail: [email protected]


  Theodore Y. Ts'o
  Massachusetts Institute of Technology

  EMail: [email protected]






































Pereira & Adams             Standards Track                    [Page 13]

RFC 2451             ESP CBC-Mode Cipher Algorithms        November 1998


8.  Full Copyright Statement

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























Pereira & Adams             Standards Track                    [Page 14]