Network Working Group                                      D. Maughan
Request for Comments: 2408                   National Security Agency
Category: Standards Track                                M. Schertler
                                                      Securify, Inc.
                                                        M. Schneider
                                            National Security Agency
                                                           J. Turner
                                             RABA Technologies, Inc.
                                                       November 1998


  Internet Security Association and Key Management Protocol (ISAKMP)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

Abstract

  This memo describes a protocol utilizing security concepts necessary
  for establishing Security Associations (SA) and cryptographic keys in
  an Internet environment.  A Security Association protocol that
  negotiates, establishes, modifies and deletes Security Associations
  and their attributes is required for an evolving Internet, where
  there will be numerous security mechanisms and several options for
  each security mechanism.  The key management protocol must be robust
  in order to handle public key generation for the Internet community
  at large and private key requirements for those private networks with
  that requirement.  The Internet Security Association and Key
  Management Protocol (ISAKMP) defines the procedures for
  authenticating a communicating peer, creation and management of
  Security Associations, key generation techniques, and threat
  mitigation (e.g.  denial of service and replay attacks).  All of
  these are necessary to establish and maintain secure communications
  (via IP Security Service or any other security protocol) in an
  Internet environment.







Maughan, et. al.            Standards Track                     [Page 1]

RFC 2408                         ISAKMP                    November 1998


Table of Contents

  1 Introduction                                                     4
    1.1 Requirements Terminology  . . . . . . . . . . . . . . . . .  5
    1.2 The Need for Negotiation  . . . . . . . . . . . . . . . . .  5
    1.3 What can be Negotiated?   . . . . . . . . . . . . . . . . .  6
    1.4 Security Associations and Management  . . . . . . . . . . .  7
      1.4.1 Security Associations and Registration  . . . . . . . .  7
      1.4.2 ISAKMP Requirements   . . . . . . . . . . . . . . . . .  8
    1.5 Authentication  . . . . . . . . . . . . . . . . . . . . . .  8
      1.5.1 Certificate Authorities   . . . . . . . . . . . . . . .  9
      1.5.2 Entity Naming   . . . . . . . . . . . . . . . . . . . .  9
      1.5.3 ISAKMP Requirements   . . . . . . . . . . . . . . . . . 10
    1.6 Public Key Cryptography . . . . . . . . . . . . . . . . . . 10
      1.6.1 Key Exchange Properties   . . . . . . . . . . . . . . . 11
      1.6.2 ISAKMP Requirements   . . . . . . . . . . . . . . . . . 12
    1.7 ISAKMP Protection . . . . . . . . . . . . . . . . . . . . . 12
      1.7.1 Anti-Clogging (Denial of Service)   . . . . . . . . . . 12
      1.7.2 Connection Hijacking  . . . . . . . . . . . . . . . . . 13
      1.7.3 Man-in-the-Middle Attacks   . . . . . . . . . . . . . . 13
    1.8 Multicast Communications  . . . . . . . . . . . . . . . . . 13
  2 Terminology and Concepts                                        14
    2.1 ISAKMP Terminology  . . . . . . . . . . . . . . . . . . . . 14
    2.2 ISAKMP Placement  . . . . . . . . . . . . . . . . . . . . . 16
    2.3 Negotiation Phases  . . . . . . . . . . . . . . . . . . . . 16
    2.4 Identifying Security Associations . . . . . . . . . . . . . 17
    2.5 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . 20
      2.5.1 Transport Protocol  . . . . . . . . . . . . . . . . . . 20
      2.5.2 RESERVED Fields   . . . . . . . . . . . . . . . . . . . 20
      2.5.3 Anti-Clogging Token ("Cookie") Creation   . . . . . . . 20
  3 ISAKMP Payloads                                                 21
    3.1 ISAKMP Header Format  . . . . . . . . . . . . . . . . . . . 21
    3.2 Generic Payload Header  . . . . . . . . . . . . . . . . . . 25
    3.3 Data Attributes . . . . . . . . . . . . . . . . . . . . . . 25
    3.4 Security Association Payload  . . . . . . . . . . . . . . . 27
    3.5 Proposal Payload  . . . . . . . . . . . . . . . . . . . . . 28
    3.6 Transform Payload . . . . . . . . . . . . . . . . . . . . . 29
    3.7 Key Exchange Payload  . . . . . . . . . . . . . . . . . . . 31
    3.8 Identification Payload  . . . . . . . . . . . . . . . . . . 32
    3.9 Certificate Payload . . . . . . . . . . . . . . . . . . . . 33
    3.10 Certificate Request Payload  . . . . . . . . . . . . . . . 34
    3.11 Hash Payload   . . . . . . . . . . . . . . . . . . . . . . 36
    3.12 Signature Payload  . . . . . . . . . . . . . . . . . . . . 37
    3.13 Nonce Payload  . . . . . . . . . . . . . . . . . . . . . . 37
    3.14 Notification Payload   . . . . . . . . . . . . . . . . . . 38
      3.14.1 Notify Message Types   . . . . . . . . . . . . . . . . 40
    3.15 Delete Payload   . . . . . . . . . . . . . . . . . . . . . 41
    3.16 Vendor ID Payload  . . . . . . . . . . . . . . . . . . . . 43



Maughan, et. al.            Standards Track                     [Page 2]

RFC 2408                         ISAKMP                    November 1998


  4 ISAKMP Exchanges                                                44
    4.1 ISAKMP Exchange Types . . . . . . . . . . . . . . . . . . . 45
      4.1.1 Notation  . . . . . . . . . . . . . . . . . . . . . . . 46
    4.2 Security Association Establishment  . . . . . . . . . . . . 46
      4.2.1 Security Association Establishment Examples   . . . . . 48
    4.3 Security Association Modification . . . . . . . . . . . . . 50
    4.4 Base Exchange . . . . . . . . . . . . . . . . . . . . . . . 51
    4.5 Identity Protection Exchange  . . . . . . . . . . . . . . . 52
    4.6 Authentication Only Exchange  . . . . . . . . . . . . . . . 54
    4.7 Aggressive Exchange . . . . . . . . . . . . . . . . . . . . 55
    4.8 Informational Exchange  . . . . . . . . . . . . . . . . . . 57
  5 ISAKMP Payload Processing                                       58
    5.1 General Message Processing  . . . . . . . . . . . . . . . . 58
    5.2 ISAKMP Header Processing  . . . . . . . . . . . . . . . . . 59
    5.3 Generic Payload Header Processing . . . . . . . . . . . . . 61
    5.4 Security Association Payload Processing . . . . . . . . . . 62
    5.5 Proposal Payload Processing . . . . . . . . . . . . . . . . 63
    5.6 Transform Payload Processing  . . . . . . . . . . . . . . . 64
    5.7 Key Exchange Payload Processing . . . . . . . . . . . . . . 65
    5.8 Identification Payload Processing . . . . . . . . . . . . . 66
    5.9 Certificate Payload Processing  . . . . . . . . . . . . . . 66
    5.10 Certificate Request Payload Processing   . . . . . . . . . 67
    5.11 Hash Payload Processing  . . . . . . . . . . . . . . . . . 69
    5.12 Signature Payload Processing   . . . . . . . . . . . . . . 69
    5.13 Nonce Payload Processing   . . . . . . . . . . . . . . . . 70
    5.14 Notification Payload Processing  . . . . . . . . . . . . . 71
    5.15 Delete Payload Processing  . . . . . . . . . . . . . . . . 73
  6 Conclusions                                                     75
  A ISAKMP Security Association Attributes                          77
    A.1 Background/Rationale  . . . . . . . . . . . . . . . . . . . 77
    A.2 Internet IP Security DOI Assigned Value . . . . . . . . . . 77
    A.3 Supported Security Protocols  . . . . . . . . . . . . . . . 77
    A.4 ISAKMP Identification Type Values . . . . . . . . . . . . . 78
      A.4.1 ID_IPV4_ADDR  . . . . . . . . . . . . . . . . . . . . . 78
      A.4.2 ID_IPV4_ADDR_SUBNET . . . . . . . . . . . . . . . . . . 78
      A.4.3 ID_IPV6_ADDR  . . . . . . . . . . . . . . . . . . . . . 78
      A.4.4 ID_IPV6_ADDR_SUBNET   . . . . . . . . . . . . . . . . . 78
  B Defining a new Domain of Interpretation                         79
    B.1 Situation . . . . . . . . . . . . . . . . . . . . . . . . . 79
    B.2 Security Policies . . . . . . . . . . . . . . . . . . . . . 80
    B.3 Naming Schemes  . . . . . . . . . . . . . . . . . . . . . . 80
    B.4 Syntax for Specifying Security Services . . . . . . . . . . 80
    B.5 Payload Specification . . . . . . . . . . . . . . . . . . . 80
    B.6 Defining new Exchange Types . . . . . . . . . . . . . . . . 80
  Security Considerations                                           81
  IANA Considerations                                               81
  Domain of Interpretation                                          81
  Supported Security Protocols                                      82



Maughan, et. al.            Standards Track                     [Page 3]

RFC 2408                         ISAKMP                    November 1998


  Acknowledgements                                                  82
  References                                                        82
  Authors' Addresses                                                85
  Full Copyright Statement                                          86

List of Figures

  1   ISAKMP Relationships  . . . . . . . . . . . . . . . . . . . 16
  2   ISAKMP Header Format  . . . . . . . . . . . . . . . . . . . 22
  3   Generic Payload Header  . . . . . . . . . . . . . . . . . . 25
  4   Data Attributes . . . . . . . . . . . . . . . . . . . . . . 26
  5   Security Association Payload  . . . . . . . . . . . . . . . 27
  6   Proposal Payload Format . . . . . . . . . . . . . . . . . . 28
  7   Transform Payload Format  . . . . . . . . . . . . . . . . . 30
  8   Key Exchange Payload Format . . . . . . . . . . . . . . . . 31
  9   Identification Payload Format . . . . . . . . . . . . . . . 32
  10  Certificate Payload Format  . . . . . . . . . . . . . . . . 33
  11  Certificate Request Payload Format  . . . . . . . . . . . . 34
  12  Hash Payload Format . . . . . . . . . . . . . . . . . . . . 36
  13  Signature Payload Format  . . . . . . . . . . . . . . . . . 37
  14  Nonce Payload Format  . . . . . . . . . . . . . . . . . . . 38
  15  Notification Payload Format . . . . . . . . . . . . . . . . 39
  16  Delete Payload Format . . . . . . . . . . . . . . . . . . . 42
  17  Vendor ID Payload Format  . . . . . . . . . . . . . . . . . 44

1 Introduction

  This document describes an Internet Security Association and Key
  Management Protocol (ISAKMP). ISAKMP combines the security concepts
  of authentication, key management, and security associations to
  establish the required security for government, commercial, and
  private communications on the Internet.

  The Internet Security Association and Key Management Protocol
  (ISAKMP) defines procedures and packet formats to establish,
  negotiate, modify and delete Security Associations (SA). SAs contain
  all the information required for execution of various network
  security services, such as the IP layer services (such as header
  authentication and payload encapsulation), transport or application
  layer services, or self-protection of negotiation traffic.  ISAKMP
  defines payloads for exchanging key generation and authentication
  data.  These formats provide a consistent framework for transferring
  key and authentication data which is independent of the key
  generation technique, encryption algorithm and authentication
  mechanism.






Maughan, et. al.            Standards Track                     [Page 4]

RFC 2408                         ISAKMP                    November 1998


  ISAKMP is distinct from key exchange protocols in order to cleanly
  separate the details of security association management (and key
  management) from the details of key exchange.  There may be many
  different key exchange protocols, each with different security
  properties.  However, a common framework is required for agreeing to
  the format of SA attributes, and for negotiating, modifying, and
  deleting SAs.  ISAKMP serves as this common framework.

  Separating the functionality into three parts adds complexity to the
  security analysis of a complete ISAKMP implementation.  However, the
  separation is critical for interoperability between systems with
  differing security requirements, and should also simplify the
  analysis of further evolution of a ISAKMP server.

  ISAKMP is intended to support the negotiation of SAs for security
  protocols at all layers of the network stack (e.g., IPSEC, TLS, TLSP,
  OSPF, etc.).  By centralizing the management of the security
  associations, ISAKMP reduces the amount of duplicated functionality
  within each security protocol.  ISAKMP can also reduce connection
  setup time, by negotiating a whole stack of services at once.

  The remainder of section 1 establishes the motivation for security
  negotiation and outlines the major components of ISAKMP, i.e.
  Security Associations and Management, Authentication, Public Key
  Cryptography, and Miscellaneous items.  Section 2 presents the
  terminology and concepts associated with ISAKMP. Section 3 describes
  the different ISAKMP payload formats.  Section 4 describes how the
  payloads of ISAKMP are composed together as exchange types to
  establish security associations and perform key exchanges in an
  authenticated manner.  Additionally, security association
  modification, deletion, and error notification are discussed.
  Section 5 describes the processing of each payload within the context
  of ISAKMP exchanges, including error handling and associated actions.
  The appendices provide the attribute values necessary for ISAKMP and
  requirement for defining a new Domain of Interpretation (DOI) within
  ISAKMP.

1.1 Requirements Terminology

  The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
  SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
  document, are to be interpreted as described in [RFC-2119].

1.2 The Need for Negotiation

  ISAKMP extends the assertion in [DOW92] that authentication and key
  exchanges must be combined for better security to include security
  association exchanges.  The security services required for



Maughan, et. al.            Standards Track                     [Page 5]

RFC 2408                         ISAKMP                    November 1998


  communications depends on the individual network configurations and
  environments.  Organizations are setting up Virtual Private Networks
  (VPN), also known as Intranets, that will require one set of security
  functions for communications within the VPN and possibly many
  different security functions for communications outside the VPN to
  support geographically separate organizational components, customers,
  suppliers, sub-contractors (with their own VPNs), government, and
  others.  Departments within large organizations may require a number
  of security associations to separate and protect data (e.g.
  personnel data, company proprietary data, medical) on internal
  networks and other security associations to communicate within the
  same department.  Nomadic users wanting to "phone home" represent
  another set of security requirements.  These requirements must be
  tempered with bandwidth challenges.  Smaller groups of people may
  meet their security requirements by setting up "Webs of Trust".
  ISAKMP exchanges provide these assorted networking communities the
  ability to present peers with the security functionality that the
  user supports in an authenticated and protected manner for agreement
  upon a common set of security attributes, i.e.  an interoperable
  security association.

1.3 What can be Negotiated?

  Security associations must support different encryption algorithms,
  authentication mechanisms, and key establishment algorithms for other
  security protocols, as well as IP Security.  Security associations
  must also support host-oriented certificates for lower layer
  protocols and user- oriented certificates for higher level protocols.
  Algorithm and mechanism independence is required in applications such
  as e-mail, remote login, and file transfer, as well as in session
  oriented protocols, routing protocols, and link layer protocols.
  ISAKMP provides a common security association and key establishment
  protocol for this wide range of security protocols, applications,
  security requirements, and network environments.

  ISAKMP is not bound to any specific cryptographic algorithm, key
  generation technique, or security mechanism.  This flexibility is
  beneficial for a number of reasons.  First, it supports the dynamic
  communications environment described above.  Second, the independence
  from specific security mechanisms and algorithms provides a forward
  migration path to better mechanisms and algorithms.  When improved
  security mechanisms are developed or new attacks against current
  encryption algorithms, authentication mechanisms and key exchanges
  are discovered, ISAKMP will allow the updating of the algorithms and
  mechanisms without having to develop a completely new KMP or patch
  the current one.





Maughan, et. al.            Standards Track                     [Page 6]

RFC 2408                         ISAKMP                    November 1998


  ISAKMP has basic requirements for its authentication and key exchange
  components.  These requirements guard against denial of service,
  replay / reflection, man-in-the-middle, and connection hijacking
  attacks.  This is important because these are the types of attacks
  that are targeted against protocols.  Complete Security Association
  (SA) support, which provides mechanism and algorithm independence,
  and protection from protocol threats are the strengths of ISAKMP.

1.4 Security Associations and Management

  A Security Association (SA) is a relationship between two or more
  entities that describes how the entities will utilize security
  services to communicate securely.  This relationship is represented
  by a set of information that can be considered a contract between the
  entities.  The information must be agreed upon and shared between all
  the entities.  Sometimes the information alone is referred to as an
  SA, but this is just a physical instantiation of the existing
  relationship.  The existence of this relationship, represented by the
  information, is what provides the agreed upon security information
  needed by entities to securely interoperate.  All entities must
  adhere to the SA for secure communications to be possible.  When
  accessing SA attributes, entities use a pointer or identifier refered
  to as the Security Parameter Index (SPI). [SEC-ARCH] provides details
  on IP Security Associations (SA) and Security Parameter Index (SPI)
  definitions.

1.4.1 Security Associations and Registration

  The SA attributes required and recommended for the IP Security (AH,
  ESP) are defined in [SEC-ARCH].  The attributes specified for an IP
  Security SA include, but are not limited to, authentication
  mechanism, cryptographic algorithm, algorithm mode, key length, and
  Initialization Vector (IV).  Other protocols that provide algorithm
  and mechanism independent security MUST define their requirements for
  SA attributes.  The separation of ISAKMP from a specific SA
  definition is important to ensure ISAKMP can es tablish SAs for all
  possible security protocols and applications.

  NOTE: See [IPDOI] for a discussion of SA attributes that should be
  considered when defining a security protocol or application.

  In order to facilitate easy identification of specific attributes
  (e.g.  a specific encryption algorithm) among different network
  entites the attributes must be assigned identifiers and these
  identifiers must be registered by a central authority.  The Internet
  Assigned Numbers Authority (IANA) provides this function for the
  Internet.




Maughan, et. al.            Standards Track                     [Page 7]

RFC 2408                         ISAKMP                    November 1998


1.4.2 ISAKMP Requirements

  Security Association (SA) establishment MUST be part of the key
  management protocol defined for IP based networks.  The SA concept is
  required to support security protocols in a diverse and dynamic
  networking environment.  Just as authentication and key exchange must
  be linked to provide assurance that the key is established with the
  authenticated party [DOW92], SA establishment must be linked with the
  authentication and the key exchange protocol.

  ISAKMP provides the protocol exchanges to establish a security
  association between negotiating entities followed by the
  establishment of a security association by these negotiating entities
  in behalf of some protocol (e.g.  ESP/AH). First, an initial protocol
  exchange allows a basic set of security attributes to be agreed upon.
  This basic set provides protection for subsequent ISAKMP exchanges.
  It also indicates the authentication method and key exchange that
  will be performed as part of the ISAKMP protocol.  If a basic set of
  security attributes is already in place between the negotiating
  server entities, the initial ISAKMP exchange may be skipped and the
  establishment of a security association can be done directly.  After
  the basic set of security attributes has been agreed upon, initial
  identity authenticated, and required keys generated, the established
  SA can be used for subsequent communications by the entity that
  invoked ISAKMP.  The basic set of SA attributes that MUST be
  implemented to provide ISAKMP interoperability are defined in
  Appendix A.

1.5 Authentication

  A very important step in establishing secure network communications
  is authentication of the entity at the other end of the
  communication.  Many authentication mechanisms are available.
  Authentication mechanisms fall into two catagories of strength - weak
  and strong.  Sending cleartext keys or other unprotected
  authenticating information over a network is weak, due to the threat
  of reading them with a network sniffer.  Additionally, sending one-
  way hashed poorly-chosen keys with low entropy is also weak, due to
  the threat of brute-force guessing attacks on the sniffed messages.
  While passwords can be used for establishing identity, they are not
  considered in this context because of recent statements from the
  Internet Architecture Board [IAB].  Digital signatures, such as the
  Digital Signature Standard (DSS) and the Rivest-Shamir-Adleman (RSA)
  signature, are public key based strong authentication mechanisms.
  When using public key digital signatures each entity requires a
  public key and a private key.  Certificates are an essential part of
  a digital signature authentication mechanism.  Certificates bind a
  specific entity's identity (be it host, network, user, or



Maughan, et. al.            Standards Track                     [Page 8]

RFC 2408                         ISAKMP                    November 1998


  application) to its public keys and possibly other security-related
  information such as privileges, clearances, and compartments.
  Authentication based on digital signatures requires a trusted third
  party or certificate authority to create, sign and properly
  distribute certificates.  For more detailed information on digital
  signatures, such as DSS and RSA, and certificates see [Schneier].

1.5.1 Certificate Authorities

  Certificates require an infrastructure for generation, verification,
  revocation, management and distribution.  The Internet Policy
  Registration Authority (IPRA) [RFC-1422] has been established to
  direct this infrastructure for the IETF. The IPRA certifies Policy
  Certification Authorities (PCA). PCAs control Certificate Authorities
  (CA) which certify users and subordinate entities.  Current
  certificate related work includes the Domain Name System (DNS)
  Security Extensions [DNSSEC] which will provide signed entity keys in
  the DNS. The Public Key Infrastucture (PKIX) working group is
  specifying an Internet profile for X.509 certificates.  There is also
  work going on in industry to develop X.500 Directory Services which
  would provide X.509 certificates to users.  The U.S. Post Office is
  developing a (CA) hierarchy.  The NIST Public Key Infrastructure
  Working Group has also been doing work in this area.  The DOD Multi
  Level Information System Security Initiative (MISSI) program has
  begun deploying a certificate infrastructure for the U.S. Government.
  Alternatively, if no infrastructure exists, the PGP Web of Trust
  certificates can be used to provide user authentication and privacy
  in a community of users who know and trust each other.

1.5.2 Entity Naming

  An entity's name is its identity and is bound to its public keys in
  certificates.  The CA MUST define the naming semantics for the
  certificates it issues.  See the UNINETT PCA Policy Statements
  [Berge] for an example of how a CA defines its naming policy.  When
  the certificate is verified, the name is verified and that name will
  have meaning within the realm of that CA. An example is the DNS
  security extensions which make DNS servers CAs for the zones and
  nodes they serve.  Resource records are provided for public keys and
  signatures on those keys.  The names associated with the keys are IP
  addresses and domain names which have meaning to entities accessing
  the DNS for this information.  A Web of Trust is another example.
  When webs of trust are set up, names are bound with the public keys.
  In PGP the name is usually the entity's e-mail address which has
  meaning to those, and only those, who understand e-mail.  Another web
  of trust could use an entirely different naming scheme.





Maughan, et. al.            Standards Track                     [Page 9]

RFC 2408                         ISAKMP                    November 1998


1.5.3 ISAKMP Requirements

  Strong authentication MUST be provided on ISAKMP exchanges.  Without
  being able to authenticate the entity at the other end, the Security
  Association (SA) and session key established are suspect.  Without
  authentication you are unable to trust an entity's identification,
  which makes access control questionable.  While encryption (e.g.
  ESP) and integrity (e.g.  AH) will protect subsequent communications
  from passive eavesdroppers, without authentication it is possible
  that the SA and key may have been established with an adversary who
  performed an active man-in-the-middle attack and is now stealing all
  your personal data.

  A digital signature algorithm MUST be used within ISAKMP's
  authentication component.  However, ISAKMP does not mandate a
  specific signature algorithm or certificate authority (CA). ISAKMP
  allows an entity initiating communications to indicate which CAs it
  supports.  After selection of a CA, the protocol provides the
  messages required to support the actual authentication exchange.  The
  protocol provides a facility for identification of different
  certificate authorities, certificate types (e.g.  X.509, PKCS #7,
  PGP, DNS SIG and KEY records), and the exchange of the certificates
  identified.

  ISAKMP utilizes digital signatures, based on public key cryptography,
  for authentication.  There are other strong authentication systems
  available, which could be specified as additional optional
  authentication mechanisms for ISAKMP. Some of these authentication
  systems rely on a trusted third party called a key distribution
  center (KDC) to distribute secret session keys.  An example is
  Kerberos, where the trusted third party is the Kerberos server, which
  holds secret keys for all clients and servers within its network
  domain.  A client's proof that it holds its secret key provides
  authenticaton to a server.

  The ISAKMP specification does not specify the protocol for
  communicating with the trusted third parties (TTP) or certificate
  directory services.  These protocols are defined by the TTP and
  directory service themselves and are outside the scope of this
  specification.  The use of these additional services and protocols
  will be described in a Key Exchange specific document.

1.6 Public Key Cryptography

  Public key cryptography is the most flexible, scalable, and efficient
  way for users to obtain the shared secrets and session keys needed to
  support the large number of ways Internet users will interoperate.
  Many key generation algorithms, that have different properties, are



Maughan, et. al.            Standards Track                    [Page 10]

RFC 2408                         ISAKMP                    November 1998


  available to users (see [DOW92], [ANSI], and [Oakley]).  Properties
  of key exchange protocols include the key establishment method,
  authentication, symmetry, perfect forward secrecy, and back traffic
  protection.

  NOTE: Cryptographic keys can protect information for a considerable
  length of time.  However, this is based on the assumption that keys
  used for protection of communications are destroyed after use and not
  kept for any reason.

1.6.1 Key Exchange Properties

  Key Establishment (Key Generation / Key Transport): The two common
  methods of using public key cryptography for key establishment are
  key transport and key generation.  An example of key transport is the
  use of the RSA algorithm to encrypt a randomly generated session key
  (for encrypting subsequent communications) with the recipient's
  public key.  The encrypted random key is then sent to the recipient,
  who decrypts it using his private key.  At this point both sides have
  the same session key, however it was created based on input from only
  one side of the communications.  The benefit of the key transport
  method is that it has less computational overhead than the following
  method.  The Diffie-Hellman (D-H) algorithm illustrates key
  generation using public key cryptography.  The D-H algorithm is begun
  by two users exchanging public information.  Each user then
  mathematically combines the other's public information along with
  their own secret information to compute a shared secret value.  This
  secret value can be used as a session key or as a key encryption key
  for encrypting a randomly generated session key.  This method
  generates a session key based on public and secret information held
  by both users.  The benefit of the D-H algorithm is that the key used
  for encrypting messages is based on information held by both users
  and the independence of keys from one key exchange to another
  provides perfect forward secrecy.  Detailed descriptions of these
  algorithms can be found in [Schneier].  There are a number of
  variations on these two key generation schemes and these variations
  do not necessarily interoperate.

  Key Exchange Authentication: Key exchanges may be authenticated
  during the protocol or after protocol completion.  Authentication of
  the key exchange during the protocol is provided when each party
  provides proof it has the secret session key before the end of the
  protocol.  Proof can be provided by encrypting known data in the
  secret session key during the protocol echange.  Authentication after
  the protocol must occur in subsequent commu nications.
  Authentication during the protocol is preferred so subsequent
  communications are not initiated if the secret session key is not
  established with the desired party.



Maughan, et. al.            Standards Track                    [Page 11]

RFC 2408                         ISAKMP                    November 1998


  Key Exchange Symmetry: A key exchange provides symmetry if either
  party can initiate the exchange and exchanged messages can cross in
  transit without affecting the key that is generated.  This is
  desirable so that computation of the keys does not require either
  party to know who initated the exchange.  While key exchange symmetry
  is desirable, symmetry in the entire key management protocol may
  provide a vulnerablity to reflection attacks.

  Perfect Forward Secrecy: As described in [DOW92], an authenticated
  key exchange protocol provides perfect forward secrecy if disclosure
  of longterm secret keying material does not compromise the secrecy of
  the exchanged keys from previous communications.  The property of
  perfect forward secrecy does not apply to key exchange without
  authentication.

1.6.2 ISAKMP Requirements

  An authenticated key exchange MUST be supported by ISAKMP. Users
  SHOULD choose additional key establishment algorithms based on their
  requirements.  ISAKMP does not specify a specific key exchange.
  However, [IKE] describes a proposal for using the Oakley key exchange
  [Oakley] in conjunction with ISAKMP. Requirements that should be
  evaluated when choosing a key establishment algorithm include
  establishment method (generation vs.  transport), perfect forward
  secrecy, computational overhead, key escrow, and key strength.  Based
  on user requirements, ISAKMP allows an entity initiating
  communications to indicate which key exchanges it supports.  After
  selection of a key exchange, the protocol provides the messages
  required to support the actual key establishment.

1.7 ISAKMP Protection

1.7.1 Anti-Clogging (Denial of Service)

  Of the numerous security services available, protection against
  denial of service always seems to be one of the most difficult to
  address.  A "cookie" or anti-clogging token (ACT) is aimed at
  protecting the computing resources from attack without spending
  excessive CPU resources to determine its authenticity.  An exchange
  prior to CPU-intensive public key operations can thwart some denial
  of service attempts (e.g.  simple flooding with bogus IP source
  addresses).  Absolute protection against denial of service is
  impossible, but this anti-clogging token provides a technique for
  making it easier to handle.  The use of an anti-clogging token was
  introduced by Karn and Simpson in [Karn].






Maughan, et. al.            Standards Track                    [Page 12]

RFC 2408                         ISAKMP                    November 1998


  It should be noted that in the exchanges shown in section 4, the
  anticlogging mechanism should be used in conjuction with a garbage-
  state collection mechanism; an attacker can still flood a server
  using packets with bogus IP addresses and cause state to be created.
  Such aggressive memory management techniques SHOULD be employed by
  protocols using ISAKMP that do not go through an initial, anti-
  clogging only phase, as was done in [Karn].

1.7.2 Connection Hijacking

  ISAKMP prevents connection hijacking by linking the authentication,
  key exchange and security association exchanges.  This linking
  prevents an attacker from allowing the authentication to complete and
  then jumping in and impersonating one entity to the other during the
  key and security association exchanges.

1.7.3 Man-in-the-Middle Attacks

  Man-in-the-Middle attacks include interception, insertion, deletion,
  and modification of messages, reflecting messages back at the sender,
  replaying old messages and redirecting messages.  ISAKMP features
  prevent these types of attacks from being successful.  The linking of
  the ISAKMP exchanges prevents the insertion of messages in the
  protocol exchange.  The ISAKMP protocol state machine is defined so
  deleted messages will not cause a partial SA to be created, the state
  machine will clear all state and return to idle.  The state machine
  also prevents reflection of a message from causing harm.  The
  requirement for a new cookie with time variant material for each new
  SA establishment prevents attacks that involve replaying old
  messages.  The ISAKMP strong authentication requirement prevents an
  SA from being established with anyone other than the intended party.
  Messages may be redirected to a different destination or modified but
  this will be detected and an SA will not be established.  The ISAKMP
  specification defines where abnormal processing has occurred and
  recommends notifying the appropriate party of this abnormality.

1.8 Multicast Communications

  It is expected that multicast communications will require the same
  security services as unicast communications and may introduce the
  need for additional security services.  The issues of distributing
  SPIs for multicast traffic are presented in [SEC-ARCH].  Multicast
  security issues are also discussed in [RFC-1949] and [BC].  A future
  extension to ISAKMP will support multicast key distribution.  For an
  introduction to the issues related to multicast security, consult the
  Internet Drafts, [RFC-2094] and [RFC-2093], describing Sparta's
  research in this area.




Maughan, et. al.            Standards Track                    [Page 13]

RFC 2408                         ISAKMP                    November 1998


2 Terminology and Concepts

2.1 ISAKMP Terminology

  Security Protocol: A Security Protocol consists of an entity at a
  single point in the network stack, performing a security service for
  network communication.  For example, IPSEC ESP and IPSEC AH are two
  different security protocols.  TLS is another example.  Security
  Protocols may perform more than one service, for example providing
  integrity and confidentiality in one module.

  Protection Suite: A protection suite is a list of the security
  services that must be applied by various security protocols.  For
  example, a protection suite may consist of DES encryption in IP ESP,
  and keyed MD5 in IP AH. All of the protections in a suite must be
  treated as a single unit.  This is necessary because security
  services in different security protocols can have subtle
  interactions, and the effects of a suite must be analyzed and
  verified as a whole.

  Security Association (SA): A Security Association is a security-
  protocol- specific set of parameters that completely defines the
  services and mechanisms necessary to protect traffic at that security
  protocol location.  These parameters can include algorithm
  identifiers, modes, cryptographic keys, etc.  The SA is referred to
  by its associated security protocol (for example, "ISAKMP SA", "ESP
  SA", "TLS SA").

  ISAKMP SA: An SA used by the ISAKMP servers to protect their own
  traffic.  Sections 2.3 and 2.4 provide more details about ISAKMP SAs.

  Security Parameter Index (SPI): An identifier for a Security
  Assocation, relative to some security protocol.  Each security
  protocol has its own "SPI-space".  A (security protocol, SPI) pair
  may uniquely identify an SA. The uniqueness of the SPI is
  implementation dependent, but could be based per system, per
  protocol, or other options.  Depending on the DOI, additional
  information (e.g.  host address) may be necessary to identify an SA.
  The DOI will also determine which SPIs (i.e.  initiator's or
  responder's) are sent during communication.

  Domain of Interpretation: A Domain of Interpretation (DOI) defines
  payload formats, exchange types, and conventions for naming
  security-relevant information such as security policies or
  cryptographic algorithms and modes.  A Domain of Interpretation (DOI)
  identifier is used to interpret the payloads of ISAKMP payloads.  A
  system SHOULD support multiple Domains of Interpretation
  simultaneously.  The concept of a DOI is based on previous work by



Maughan, et. al.            Standards Track                    [Page 14]

RFC 2408                         ISAKMP                    November 1998


  the TSIG CIPSO Working Group, but extends beyond security label
  interpretation to include naming and interpretation of security
  services.  A DOI defines:

   o  A "situation":  the set of information that will be used to
      determine the required security services.

   o  The set of security policies that must, and may, be supported.

   o  A syntax for the specification of proposed security services.

   o  A scheme for naming security-relevant information, including
      encryption algorithms, key exchange algorithms, security policy
      attributes, and certificate authorities.

   o  The specific formats of the various payload contents.

   o  Additional exchange types, if required.

  The rules for the IETF IP Security DOI are presented in [IPDOI].
  Specifications of the rules for customized DOIs will be presented in
  separate documents.

  Situation: A situation contains all of the security-relevant
  information that a system considers necessary to decide the security
  services required to protect the session being negotiated.  The
  situation may include addresses, security classifications, modes of
  operation (normal vs.  emergency), etc.

  Proposal: A proposal is a list, in decreasing order of preference, of
  the protection suites that a system considers acceptable to protect
  traffic under a given situation.

  Payload: ISAKMP defines several types of payloads, which are used to
  transfer information such as security association data, or key
  exchange data, in DOI-defined formats.  A payload consists of a
  generic payload header and a string of octects that is opaque to
  ISAKMP. ISAKMP uses DOI- specific functionality to synthesize and
  interpret these payloads.  Multiple payloads can be sent in a single
  ISAKMP message.  See section 3 for more details on the payload types,
  and [IPDOI] for the formats of the IETF IP Security DOI payloads.

  Exchange Type: An exchange type is a specification of the number of
  messages in an ISAKMP exchange, and the payload types that are
  contained in each of those messages.  Each exchange type is designed
  to provide a particular set of security services, such as anonymity
  of the participants, perfect forward secrecy of the keying material,
  authentication of the participants, etc.  Section 4.1 defines the



Maughan, et. al.            Standards Track                    [Page 15]

RFC 2408                         ISAKMP                    November 1998


  default set of ISAKMP exchange types.  Other exchange types can be
  added to support additional key exchanges, if required.

2.2 ISAKMP Placement

  Figure 1 is a high level view of the placement of ISAKMP within a
  system context in a network architecture.  An important part of
  negotiating security services is to consider the entire "stack" of
  individual SAs as a unit.  This is referred to as a "protection
  suite".

    +------------+        +--------+                +--------------+
    !     DOI    !        !        !                !  Application !
    ! Definition ! <----> ! ISAKMP !                !    Process   !
    +------------+    --> !        !                !--------------!
   +--------------+   !   +--------+                ! Appl Protocol!
   ! Key Exchange !   !     ^  ^                    +--------------+
   !  Definition  !<--      !  !                           ^
   +--------------+         !  !                           !
                            !  !                           !
           !----------------!  !                           !
           v                   !                           !
       +-------+               v                           v
       !  API  !        +---------------------------------------------+
       +-------+        !                Socket Layer                 !
           !            !---------------------------------------------!
           v            !        Transport Protocol (TCP / UDP)       !
    +----------+        !---------------------------------------------!
    ! Security ! <----> !                     IP                      !
    ! Protocol !        !---------------------------------------------!
    +----------+        !             Link Layer Protocol             !
                        +---------------------------------------------+


                    Figure 1:  ISAKMP Relationships

2.3 Negotiation Phases

  ISAKMP offers two "phases" of negotiation.  In the first phase, two
  entities (e.g.  ISAKMP servers) agree on how to protect further
  negotiation traffic between themselves, establishing an ISAKMP SA.
  This ISAKMP SA is then used to protect the negotiations for the
  Protocol SA being requested.  Two entities (e.g.  ISAKMP servers) can
  negotiate (and have active) multiple ISAKMP SAs.







Maughan, et. al.            Standards Track                    [Page 16]

RFC 2408                         ISAKMP                    November 1998


  The second phase of negotiation is used to establish security
  associations for other security protocols.  This second phase can be
  used to establish many security associations.  The security
  associations established by ISAKMP during this phase can be used by a
  security protocol to protect many message/data exchanges.

  While the two-phased approach has a higher start-up cost for most
  simple scenarios, there are several reasons that it is beneficial for
  most cases.

  First, entities (e.g.  ISAKMP servers) can amortize the cost of the
  first phase across several second phase negotiations.  This allows
  multiple SAs to be established between peers over time without having
  to start over for each communication.

  Second, security services negotiated during the first phase provide
  security properties for the second phase.  For example, after the
  first phase of negotiation, the encryption provided by the ISAKMP SA
  can provide identity protection, potentially allowing the use of
  simpler second-phase exchanges.  On the other hand, if the channel
  established during the first phase is not adequate to protect
  identities, then the second phase must negotiate adequate security
  mechanisms.

  Third, having an ISAKMP SA in place considerably reduces the cost of
  ISAKMP management activity - without the "trusted path" that an
  ISAKMP SA gives you, the entities (e.g.  ISAKMP servers) would have
  to go through a complete re-authentication for each error
  notification or deletion of an SA.

  Negotiation during each phase is accomplished using ISAKMP-defined
  exchanges (see section 4) or exchanges defined for a key exchange
  within a DOI.

  Note that security services may be applied differently in each
  negotiation phase.  For example, different parties are being
  authenticated during each of the phases of negotiation.  During the
  first phase, the parties being authenticated may be the ISAKMP
  servers/hosts, while during the second phase, users or application
  level programs are being authenticated.

2.4 Identifying Security Associations

  While bootstrapping secure channels between systems, ISAKMP cannot
  assume the existence of security services, and must provide some
  protections for itself.  Therefore, ISAKMP considers an ISAKMP
  Security Association to be different than other types, and manages
  ISAKMP SAs itself, in their own name space.  ISAKMP uses the two



Maughan, et. al.            Standards Track                    [Page 17]

RFC 2408                         ISAKMP                    November 1998


  cookie fields in the ISAKMP header to identify ISAKMP SAs.  The
  Message ID in the ISAKMP Header and the SPI field in the Proposal
  payload are used during SA establishment to identify the SA for other
  security protocols.  The interpretation of these four fields is
  dependent on the operation taking place.

  The following table shows the presence or absence of several fields
  during SA establishment.  The following fields are necessary for
  various operations associated with SA establishment: cookies in the
  ISAKMP header, the ISAKMP Header Message ID field, and the SPI field
  in the Proposal payload.  An 'X' in the column means the value MUST
  be present.  An 'NA' in the column means a value in the column is Not
  Applicable to the operation.

 #             Operation            I-Cookie  R-Cookie  Message ID  SPI
(1)  Start ISAKMP SA negotiation    X         0         0           0
(2)  Respond ISAKMP SA negotiation  X         X         0           0
(3)  Init other SA negotiation      X         X         X           X
(4)  Respond other SA negotiation   X         X         X           X
(5)  Other (KE, ID, etc.)           X         X         X/0         NA
(6)  Security Protocol (ESP, AH)    NA        NA        NA          X

  In the first line (1) of the table, the initiator includes the
  Initiator Cookie field in the ISAKMP Header, using the procedures
  outlined in sections 2.5.3 and 3.1.

  In the second line (2) of the table, the responder includes the
  Initiator and Responder Cookie fields in the ISAKMP Header, using the
  procedures outlined in sections 2.5.3 and 3.1.  Additional messages
  may be exchanged between ISAKMP peers, depending on the ISAKMP
  exchange type used during the phase 1 negotiation.  Once the phase 1
  exchange is completed, the Initiator and Responder cookies are
  included in the ISAKMP Header of all subsequent communications
  between the ISAKMP peers.

  During phase 1 negotiations, the initiator and responder cookies
  determine the ISAKMP SA. Therefore, the SPI field in the Proposal
  payload is redundant and MAY be set to 0 or it MAY contain the
  transmitting entity's cookie.

  In the third line (3) of the table, the initiator associates a
  Message ID with the Protocols contained in the SA Proposal.  This
  Message ID and the initiator's SPI(s) to be associated with each
  protocol in the Proposal are sent to the responder.  The SPI(s) will
  be used by the security protocols once the phase 2 negotiation is
  completed.





Maughan, et. al.            Standards Track                    [Page 18]

RFC 2408                         ISAKMP                    November 1998


  In the fourth line (4) of the table, the responder includes the same
  Message ID and the responder's SPI(s) to be associated with each
  protocol in the accepted Proposal.  This information is returned to
  the initiator.

  In the fifth line (5) of the table, the initiator and responder use
  the Message ID field in the ISAKMP Header to keep track of the in-
  progress protocol negotiation.  This is only applicable for a phase 2
  exchange and the value MUST be 0 for a phase 1 exchange because the
  combined cookies identify the ISAKMP SA. The SPI field in the
  Proposal payload is not applicable because the Proposal payload is
  only used during the SA negotiation message exchange (steps 3 and 4).

  In the sixth line (6) of the table, the phase 2 negotiation is
  complete.  The security protocols use the SPI(s) to determine which
  security services and mechanisms to apply to the communication
  between them.  The SPI value shown in the sixth line (6) is not the
  SPI field in the Proposal payload, but the SPI field contained within
  the security protocol header.

  During the SA establishment, a SPI MUST be generated.  ISAKMP is
  designed to handle variable sized SPIs.  This is accomplished by
  using the SPI Size field within the Proposal payload during SA
  establishment.  Handling of SPIs will be outlined by the DOI
  specification (e.g.  [IPDOI]).

  When a security association (SA) is initially established, one side
  assumes the role of initiator and the other the role of responder.
  Once the SA is established, both the original initiator and responder
  can initiate a phase 2 negotiation with the peer entity.  Thus,
  ISAKMP SAs are bidirectional in nature.

  Additionally, ISAKMP allows both initiator and responder to have some
  control during the negotiation process.  While ISAKMP is designed to
  allow an SA negotiation that includes multiple proposals, the
  initiator can maintain some control by only making one proposal in
  accordance with the initiator's local security policy.  Once the
  initiator sends a proposal containing more than one proposal (which
  are sent in decreasing preference order), the initiator relinquishes
  control to the responder.  Once the responder is controlling the SA
  establishment, the responder can make its policy take precedence over
  the initiator within the context of the multiple options offered by
  the initiator.  This is accomplished by selecting the proposal best
  suited for the responder's local security policy and returning this
  selection to the initiator.






Maughan, et. al.            Standards Track                    [Page 19]

RFC 2408                         ISAKMP                    November 1998


2.5 Miscellaneous

2.5.1 Transport Protocol

  ISAKMP can be implemented over any transport protocol or over IP
  itself.  Implementations MUST include send and receive capability for
  ISAKMP using the User Datagram Protocol (UDP) on port 500.  UDP Port
  500 has been assigned to ISAKMP by the Internet Assigned Numbers
  Authority (IANA). Implementations MAY additionally support ISAKMP
  over other transport protocols or over IP itself.

2.5.2 RESERVED Fields

  The existence of RESERVED fields within ISAKMP payloads are used
  strictly to preserve byte alignment.  All RESERVED fields in the
  ISAKMP protocol MUST be set to zero (0) when a packet is issued.  The
  receiver SHOULD check the RESERVED fields for a zero (0) value and
  discard the packet if other values are found.

2.5.3 Anti-Clogging Token ("Cookie") Creation

  The details of cookie generation are implementation dependent, but
  MUST satisfy these basic requirements (originally stated by Phil Karn
  in [Karn]):

     1.    The cookie must depend on the specific parties.  This
           prevents an attacker from obtaining a cookie using a real IP
           address and UDP port, and then using it to swamp the victim
           with Diffie-Hellman requests from randomly chosen IP
           addresses or ports.

     2.    It must not be possible for anyone other than the issuing
           entity to generate cookies that will be accepted by that
           entity.  This implies that the issuing entity must use local
           secret information in the generation and subsequent
           verification of a cookie.  It must not be possible to deduce
           this secret information from any particular cookie.

     3.    The cookie generation function must be fast to thwart
           attacks intended to sabotage CPU resources.

  Karn's suggested method for creating the cookie is to perform a fast
  hash (e.g.  MD5) over the IP Source and Destination Address, the UDP
  Source and Destination Ports and a locally generated secret random
  value.  ISAKMP requires that the cookie be unique for each SA
  establishment to help prevent replay attacks, therefore, the date and
  time MUST be added to the information hashed.  The generated cookies
  are placed in the ISAKMP Header (described in section 3.1) Initiator



Maughan, et. al.            Standards Track                    [Page 20]

RFC 2408                         ISAKMP                    November 1998


  and Responder cookie fields.  These fields are 8 octets in length,
  thus, requiring a generated cookie to be 8 octets.  Notify and Delete
  messages (see sections 3.14, 3.15, and 4.8) are uni-directional
  transmissions and are done under the protection of an existing ISAKMP
  SA, thus, not requiring the generation of a new cookie.  One
  exception to this is the transmission of a Notify message during a
  Phase 1 exchange, prior to completing the establishment of an SA.
  Sections 3.14 and 4.8 provide additional details.

3 ISAKMP Payloads

  ISAKMP payloads provide modular building blocks for constructing
  ISAKMP messages.  The presence and ordering of payloads in ISAKMP is
  defined by and dependent upon the Exchange Type Field located in the
  ISAKMP Header (see Figure 2).  The ISAKMP payload types are discussed
  in sections 3.4 through 3.15.  The descriptions of the ISAKMP
  payloads, messages, and exchanges (see Section 4) are shown using
  network octet ordering.

3.1 ISAKMP Header Format

  An ISAKMP message has a fixed header format, shown in Figure 2,
  followed by a variable number of payloads.  A fixed header simplifies
  parsing, providing the benefit of protocol parsing software that is
  less complex and easier to implement.  The fixed header contains the
  information required by the protocol to maintain state, process
  payloads and possibly prevent denial of service or replay attacks.

  The ISAKMP Header fields are defined as follows:

   o  Initiator Cookie (8 octets) - Cookie of entity that initiated SA
      establishment, SA notification, or SA deletion.

   o  Responder Cookie (8 octets) - Cookie of entity that is responding
      to an SA establishment request, SA notification, or SA deletion.
















Maughan, et. al.            Standards Track                    [Page 21]

RFC 2408                         ISAKMP                    November 1998


                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   !                          Initiator                            !
   !                            Cookie                             !
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   !                          Responder                            !
   !                            Cookie                             !
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   !  Next Payload ! MjVer ! MnVer ! Exchange Type !     Flags     !
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   !                          Message ID                           !
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   !                            Length                             !
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                Figure 2:  ISAKMP Header Format

   o  Next Payload (1 octet) - Indicates the type of the first payload
      in the message.  The format for each payload is defined in
      sections 3.4 through 3.16.  The processing for the payloads is
      defined in section 5.


                       Next Payload Type       Value
                   NONE                           0
                   Security Association (SA)      1
                   Proposal (P)                   2
                   Transform (T)                  3
                   Key Exchange (KE)              4
                   Identification (ID)            5
                   Certificate (CERT)             6
                   Certificate Request (CR)       7
                   Hash (HASH)                    8
                   Signature (SIG)                9
                   Nonce (NONCE)                 10
                   Notification (N)              11
                   Delete (D)                    12
                   Vendor ID (VID)               13
                   RESERVED                   14 - 127
                   Private USE               128 - 255

   o  Major Version (4 bits) - indicates the major version of the ISAKMP
      protocol in use.  Implementations based on this version of the
      ISAKMP Internet-Draft MUST set the Major Version to 1.
      Implementations based on previous versions of ISAKMP Internet-
      Drafts MUST set the Major Version to 0.  Implementations SHOULD



Maughan, et. al.            Standards Track                    [Page 22]

RFC 2408                         ISAKMP                    November 1998


      never accept packets with a major version number larger than its
      own.

   o  Minor Version (4 bits) - indicates the minor version of the
      ISAKMP protocol in use.  Implementations based on this version of
      the ISAKMP Internet-Draft MUST set the Minor Version to 0.
      Implementations based on previous versions of ISAKMP Internet-
      Drafts MUST set the Minor Version to 1.  Implementations SHOULD
      never accept packets with a minor version number larger than its
      own, given the major version numbers are identical.

   o  Exchange Type (1 octet) - indicates the type of exchange being
      used.  This dictates the message and payload orderings in the
      ISAKMP exchanges.


                           Exchange Type      Value
                        NONE                    0
                        Base                    1
                        Identity Protection     2
                        Authentication Only     3
                        Aggressive              4
                        Informational           5
                        ISAKMP Future Use     6 - 31
                        DOI Specific Use     32 - 239
                        Private Use         240 - 255

   o  Flags (1 octet) - indicates specific options that are set for the
      ISAKMP exchange.  The flags listed below are specified in the
      Flags field beginning with the least significant bit, i.e the
      Encryption bit is bit 0 of the Flags field, the Commit bit is bit
      1 of the Flags field, and the Authentication Only bit is bit 2 of
      the Flags field.  The remaining bits of the Flags field MUST be
      set to 0 prior to transmission.

     --  E(ncryption Bit) (1 bit) - If set (1), all payloads following
         the header are encrypted using the encryption algorithm
         identified in the ISAKMP SA. The ISAKMP SA Identifier is the
         combination of the initiator and responder cookie.  It is
         RECOMMENDED that encryption of communications be done as soon
         as possible between the peers.  For all ISAKMP exchanges
         described in section 4.1, the encryption SHOULD begin after
         both parties have exchanged Key Exchange payloads.  If the
         E(ncryption Bit) is not set (0), the payloads are not
         encrypted.






Maughan, et. al.            Standards Track                    [Page 23]

RFC 2408                         ISAKMP                    November 1998


     -- C(ommit Bit) (1 bit) - This bit is used to signal key exchange
         synchronization.  It is used to ensure that encrypted material
         is not received prior to completion of the SA establishment.
         The Commit Bit can be set (at anytime) by either party
         participating in the SA establishment, and can be used during
         both phases of an ISAKMP SA establishment.  However, the value
         MUST be reset after the Phase 1 negotiation.  If set(1), the
         entity which did not set the Commit Bit MUST wait for an
         Informational Exchange containing a Notify payload (with the
         CONNECTED Notify Message) from the entity which set the Commit
         Bit.  In this instance, the Message ID field of the
         Informational Exchange MUST contain the Message ID of the
         original ISAKMP Phase 2 SA negotiation.  This is done to
         ensure that the Informational Exchange with the CONNECTED
         Notify Message can be associated with the correct Phase 2 SA.
         The receipt and processing of the Informational Exchange
         indicates that the SA establishment was successful and either
         entity can now proceed with encrypted traffic communication.
         In addition to synchronizing key exchange, the Commit Bit can
         be used to protect against loss of transmissions over
         unreliable networks and guard against the need for multiple
         re-transmissions.

         NOTE: It is always possible that the final message of an
         exchange can be lost.  In this case, the entity expecting to
         receive the final message of an exchange would receive the
         Phase 2 SA negotiation message following a Phase 1 exchange or
         encrypted traffic following a Phase 2 exchange.  Handling of
         this situation is not standardized, but we propose the
         following possibilities.  If the entity awaiting the
         Informational Exchange can verify the received message (i.e.
         Phase 2 SA negotiation message or encrypted traffic), then
         they MAY consider the SA was established and continue
         processing.  The other option is to retransmit the last ISAKMP
         message to force the other entity to retransmit the final
         message.  This suggests that implementations may consider
         retaining the last message (locally) until they are sure the
         SA is established.

     --  A(uthentication Only Bit) (1 bit) - This bit is intended for
         use with the Informational Exchange with a Notify payload and
         will allow the transmission of information with integrity
         checking, but no encryption (e.g.  "emergency mode").  Section
         4.8 states that a Phase 2 Informational Exchange MUST be sent
         under the protection of an ISAKMP SA. This is the only
         exception to that policy.  If the Authentication Only bit is
         set (1), only authentication security services will be applied
         to the entire Notify payload of the Informational Exchange and



Maughan, et. al.            Standards Track                    [Page 24]

RFC 2408                         ISAKMP                    November 1998


         the payload will not be encrypted.

   o  Message ID (4 octets) - Unique Message Identifier used to
      identify protocol state during Phase 2 negotiations.  This value
      is randomly generated by the initiator of the Phase 2
      negotiation.  In the event of simultaneous SA establishments
      (i.e.  collisions), the value of this field will likely be
      different because they are independently generated and, thus, two
      security associations will progress toward establishment.
      However, it is unlikely there will be absolute simultaneous
      establishments.  During Phase 1 negotiations, the value MUST be
      set to 0.

   o  Length (4 octets) - Length of total message (header + payloads)
      in octets.  Encryption can expand the size of an ISAKMP message.

3.2 Generic Payload Header

  Each ISAKMP payload defined in sections 3.4 through 3.16 begins with
  a generic header, shown in Figure 3, which provides a payload
  "chaining" capability and clearly defines the boundaries of a
  payload.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !   RESERVED    !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 3:  Generic Payload Header

  The Generic Payload Header fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  If the current payload is the last
      in the message, then this field will be 0.  This field provides
      the "chaining" capability.

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the current
      payload, including the generic payload header.

3.3 Data Attributes

  There are several instances within ISAKMP where it is necessary to
  represent Data Attributes.  An example of this is the Security
  Association (SA) Attributes contained in the Transform payload



Maughan, et. al.            Standards Track                    [Page 25]

RFC 2408                         ISAKMP                    November 1998


  (described in section 3.6).  These Data Attributes are not an ISAKMP
  payload, but are contained within ISAKMP payloads.  The format of the
  Data Attributes provides the flexibility for representation of many
  different types of information.  There can be multiple Data
  Attributes within a payload.  The length of the Data Attributes will
  either be 4 octets or defined by the Attribute Length field.  This is
  done using the Attribute Format bit described below.  Specific
  information about the attributes for each domain will be described in
  a DOI document, e.g.  IPSEC DOI [IPDOI].

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !A!       Attribute Type        !    AF=0  Attribute Length     !
    !F!                             !    AF=1  Attribute Value      !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                   AF=0  Attribute Value                       .
    .                   AF=1  Not Transmitted                       .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                    Figure 4:  Data Attributes

  The Data Attributes fields are defined as follows:

   o  Attribute Type (2 octets) - Unique identifier for each type of
      attribute.  These attributes are defined as part of the DOI-
      specific information.

      The most significant bit, or Attribute Format (AF), indicates
      whether the data attributes follow the Type/Length/Value (TLV)
      format or a shortened Type/Value (TV) format.  If the AF bit is a
      zero (0), then the Data Attributes are of the Type/Length/Value
      (TLV) form.  If the AF bit is a one (1), then the Data Attributes
      are of the Type/Value form.

   o  Attribute Length (2 octets) - Length in octets of the Attribute
      Value.  When the AF bit is a one (1), the Attribute Value is only
      2 octets and the Attribute Length field is not present.

   o  Attribute Value (variable length) - Value of the attribute
      associated with the DOI-specific Attribute Type.  If the AF bit
      is a zero (0), this field has a variable length defined by the
      Attribute Length field.  If the AF bit is a one (1), the
      Attribute Value has a length of 2 octets.






Maughan, et. al.            Standards Track                    [Page 26]

RFC 2408                         ISAKMP                    November 1998


3.4 Security Association Payload

  The Security Association Payload is used to negotiate security
  attributes and to indicate the Domain of Interpretation (DOI) and
  Situation under which the negotiation is taking place.  Figure 5
  shows the format of the Security Association payload.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Next Payload  !   RESERVED    !         Payload Length        !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !              Domain of Interpretation  (DOI)                  !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !                                                               !
    ~                           Situation                           ~
    !                                                               !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


             Figure 5:  Security Association Payload

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  If the current payload is the last
      in the message, then this field will be 0.  This field MUST NOT
      contain the values for the Proposal or Transform payloads as they
      are considered part of the security association negotiation.  For
      example, this field would contain the value "10" (Nonce payload)
      in the first message of a Base Exchange (see Section 4.4) and the
      value "0" in the first message of an Identity Protect Exchange
      (see Section 4.5).

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the entire
      Security Association payload, including the SA payload, all
      Proposal payloads, and all Transform payloads associated with the
      proposed Security Association.

   o  Domain of Interpretation (4 octets) - Identifies the DOI (as
      described in Section 2.1) under which this negotiation is taking
      place.  The DOI is a 32-bit unsigned integer.  A DOI value of 0
      during a Phase 1 exchange specifies a Generic ISAKMP SA which can
      be used for any protocol during the Phase 2 exchange.  The
      necessary SA Attributes are defined in A.4.  A DOI value of 1 is
      assigned to the IPsec DOI [IPDOI].  All other DOI values are
      reserved to IANA for future use.  IANA will not normally assign a
      DOI value without referencing some public specification, such as



Maughan, et. al.            Standards Track                    [Page 27]

RFC 2408                         ISAKMP                    November 1998


      an Internet RFC. Other DOI's can be defined using the description
      in appendix B.  This field MUST be present within the Security
      Association payload.

   o  Situation (variable length) - A DOI-specific field that
      identifies the situation under which this negotiation is taking
      place.  The Situation is used to make policy decisions regarding
      the security attributes being negotiated.  Specifics for the IETF
      IP Security DOI Situation are detailed in [IPDOI].  This field
      MUST be present within the Security Association payload.

3.5 Proposal Payload

  The Proposal Payload contains information used during Security
  Association negotiation.  The proposal consists of security
  mechanisms, or transforms, to be used to secure the communications
  channel.  Figure 6 shows the format of the Proposal Payload.  A
  description of its use can be found in section 4.2.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Next Payload  !   RESERVED    !         Payload Length        !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !  Proposal #   !  Protocol-Id  !    SPI Size   !# of Transforms!
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !                        SPI (variable)                         !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                Figure 6:  Proposal Payload Format

  The Proposal Payload fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  This field MUST only contain the
      value "2" or "0".  If there are additional Proposal payloads in
      the message, then this field will be 2.  If the current Proposal
      payload is the last within the security association proposal,
      then this field will be 0.

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the entire
      Proposal payload, including generic payload header, the Proposal
      payload, and all Transform payloads associated with this
      proposal.  In the event there are multiple proposals with the
      same proposal number (see section 4.2), the Payload Length field



Maughan, et. al.            Standards Track                    [Page 28]

RFC 2408                         ISAKMP                    November 1998


      only applies to the current Proposal payload and not to all
      Proposal payloads.

   o  Proposal # (1 octet) - Identifies the Proposal number for the
      current payload.  A description of the use of this field is found
      in section 4.2.

   o  Protocol-Id (1 octet) - Specifies the protocol identifier for the
      current negotiation.  Examples might include IPSEC ESP, IPSEC AH,
      OSPF, TLS, etc.

   o  SPI Size (1 octet) - Length in octets of the SPI as defined by
      the Protocol-Id.  In the case of ISAKMP, the Initiator and
      Responder cookie pair from the ISAKMP Header is the ISAKMP SPI,
      therefore, the SPI Size is irrelevant and MAY be from zero (0) to
      sixteen (16).  If the SPI Size is non-zero, the content of the
      SPI field MUST be ignored.  If the SPI Size is not a multiple of
      4 octets it will have some impact on the SPI field and the
      alignment of all payloads in the message.  The Domain of
      Interpretation (DOI) will dictate the SPI Size for other
      protocols.

   o  # of Transforms (1 octet) - Specifies the number of transforms
      for the Proposal.  Each of these is contained in a Transform
      payload.

   o  SPI (variable) - The sending entity's SPI. In the event the SPI
      Size is not a multiple of 4 octets, there is no padding applied
      to the payload, however, it can be applied at the end of the
      message.

  The payload type for the Proposal Payload is two (2).

3.6 Transform Payload

  The Transform Payload contains information used during Security
  Association negotiation.  The Transform payload consists of a
  specific security mechanism, or transforms, to be used to secure the
  communications channel.  The Transform payload also contains the
  security association attributes associated with the specific
  transform.  These SA attributes are DOI-specific.  Figure 7 shows the
  format of the Transform Payload.  A description of its use can be
  found in section 4.2.








Maughan, et. al.            Standards Track                    [Page 29]

RFC 2408                         ISAKMP                    November 1998


                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Next Payload  !   RESERVED    !         Payload Length        !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !  Transform #  !  Transform-Id !           RESERVED2           !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !                                                               !
    ~                        SA Attributes                          ~
    !                                                               !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


               Figure 7:  Transform Payload Format

  The Transform Payload fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  This field MUST only contain the
      value "3" or "0".  If there are additional Transform payloads in
      the proposal, then this field will be 3.  If the current
      Transform payload is the last within the proposal, then this
      field will be 0.

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the current
      payload, including the generic payload header, Transform values,
      and all SA Attributes.

   o  Transform # (1 octet) - Identifies the Transform number for the
      current payload.  If there is more than one transform proposed
      for a specific protocol within the Proposal payload, then each
      Transform payload has a unique Transform number.  A description
      of the use of this field is found in section 4.2.

   o  Transform-Id (1 octet) - Specifies the Transform identifier for
      the protocol within the current proposal.  These transforms are
      defined by the DOI and are dependent on the protocol being
      negotiated.

   o  RESERVED2 (2 octets) - Unused, set to 0.

   o  SA Attributes (variable length) - This field contains the
      security association attributes as defined for the transform
      given in the Transform-Id field.  The SA Attributes SHOULD be
      represented using the Data Attributes format described in section
      3.3.  If the SA Attributes are not aligned on 4-byte boundaries,



Maughan, et. al.            Standards Track                    [Page 30]

RFC 2408                         ISAKMP                    November 1998


      then subsequent payloads will not be aligned and any padding will
      be added at the end of the message to make the message 4-octet
      aligned.

  The payload type for the Transform Payload is three (3).

3.7 Key Exchange Payload

  The Key Exchange Payload supports a variety of key exchange
  techniques.  Example key exchanges are Oakley [Oakley], Diffie-
  Hellman, the enhanced Diffie-Hellman key exchange described in X9.42
  [ANSI], and the RSA-based key exchange used by PGP. Figure 8 shows
  the format of the Key Exchange payload.

  The Key Exchange Payload fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      nextpayload in the message.  If the current payload is the last
      in the message, then this field will be 0.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Next Payload  !   RESERVED    !         Payload Length        !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !                                                               !
    ~                       Key Exchange Data                       ~
    !                                                               !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


              Figure 8:  Key Exchange Payload Format

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the current
      payload, including the generic payload header.

   o  Key Exchange Data (variable length) - Data required to generate a
      session key.  The interpretation of this data is specified by the
      DOI and the associated Key Exchange algorithm.  This field may
      also contain pre-placed key indicators.

  The payload type for the Key Exchange Payload is four (4).







Maughan, et. al.            Standards Track                    [Page 31]

RFC 2408                         ISAKMP                    November 1998


3.8 Identification Payload

  The Identification Payload contains DOI-specific data used to
  exchange identification information.  This information is used for
  determining the identities of communicating peers and may be used for
  determining authenticity of information.  Figure 9 shows the format
  of the Identification Payload.

  The Identification Payload fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  If the current payload is the last
      in the message, then this field will be 0.

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the current
      payload, including the generic payload header.

   o  ID Type (1 octet) - Specifies the type of Identification being
      used.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Next Payload  !   RESERVED    !         Payload Length        !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !   ID Type     !             DOI Specific ID Data              !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !                                                               !
    ~                   Identification Data                         ~
    !                                                               !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


             Figure 9:  Identification Payload Format

      This field is DOI-dependent.

   o  DOI Specific ID Data (3 octets) - Contains DOI specific
      Identification data.  If unused, then this field MUST be set to
      0.

   o  Identification Data (variable length) - Contains identity
      information.  The values for this field are DOI-specific and the
      format is specified by the ID Type field.  Specific details for
      the IETF IP Security DOI Identification Data are detailed in
      [IPDOI].



Maughan, et. al.            Standards Track                    [Page 32]

RFC 2408                         ISAKMP                    November 1998


  The payload type for the Identification Payload is five (5).

3.9 Certificate Payload

  The Certificate Payload provides a means to transport certificates or
  other certificate-related information via ISAKMP and can appear in
  any ISAKMP message.  Certificate payloads SHOULD be included in an
  exchange whenever an appropriate directory service (e.g.  Secure DNS
  [DNSSEC]) is not available to distribute certificates.  The
  Certificate payload MUST be accepted at any point during an exchange.
  Figure 10 shows the format of the Certificate Payload.

  NOTE: Certificate types and formats are not generally bound to a DOI
  - it is expected that there will only be a few certificate types, and
  that most DOIs will accept all of these types.

  The Certificate Payload fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  If the current payload is the last
      in the message, then this field will be 0.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Next Payload  !   RESERVED    !         Payload Length        !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Cert Encoding !                                               !
    +-+-+-+-+-+-+-+-+                                               !
    ~                       Certificate Data                        ~
    !                                                               !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


              Figure 10:  Certificate Payload Format

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the current
      payload, including the generic payload header.

   o  Certificate Encoding (1 octet) - This field indicates the type of
      certificate or certificate-related information contained in the
      Certificate Data field.







Maughan, et. al.            Standards Track                    [Page 33]

RFC 2408                         ISAKMP                    November 1998


                         Certificate Type            Value
                 NONE                                   0
                 PKCS #7 wrapped X.509 certificate      1
                 PGP Certificate                        2
                 DNS Signed Key                         3
                 X.509 Certificate - Signature          4
                 X.509 Certificate - Key Exchange       5
                 Kerberos Tokens                        6
                 Certificate Revocation List (CRL)      7
                 Authority Revocation List (ARL)        8
                 SPKI Certificate                       9
                 X.509 Certificate - Attribute         10
                 RESERVED                           11 - 255

   o  Certificate Data (variable length) - Actual encoding of
      certificate data.  The type of certificate is indicated by the
      Certificate Encoding field.

  The payload type for the Certificate Payload is six (6).

3.10 Certificate Request Payload

  The Certificate Request Payload provides a means to request
  certificates via ISAKMP and can appear in any message.  Certificate
  Request payloads SHOULD be included in an exchange whenever an
  appropriate directory service (e.g.  Secure DNS [DNSSEC]) is not
  available to distribute certificates.  The Certificate Request
  payload MUST be accepted at any point during the exchange.  The
  responder to the Certificate Request payload MUST send its
  certificate, if certificates are supported, based on the values
  contained in the payload.  If multiple certificates are required,
  then multiple Certificate Request payloads SHOULD be transmitted.
  Figure 11 shows the format of the Certificate Request Payload.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Next Payload  !   RESERVED    !         Payload Length        !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !  Cert. Type   !                                               !
    +-+-+-+-+-+-+-+-+                                               !
    ~                    Certificate Authority                      ~
    !                                                               !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


          Figure 11:  Certificate Request Payload Format




Maughan, et. al.            Standards Track                    [Page 34]

RFC 2408                         ISAKMP                    November 1998


  The Certificate Payload fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  If the current payload is the last
      in the message, then this field will be 0.

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the current
      payload, including the generic payload header.

   o  Certificate Type (1 octet) - Contains an encoding of the type of
      certificate requested.  Acceptable values are listed in section
      3.9.

   o  Certificate Authority (variable length) - Contains an encoding of
      an acceptable certificate authority for the type of certificate
      requested.  As an example, for an X.509 certificate this field
      would contain the Distinguished Name encoding of the Issuer Name
      of an X.509 certificate authority acceptable to the sender of
      this payload.  This would be included to assist the responder in
      determining how much of the certificate chain would need to be
      sent in response to this request.  If there is no specific
      certificate authority requested, this field SHOULD not be
      included.

  The payload type for the Certificate Request Payload is seven (7).
























Maughan, et. al.            Standards Track                    [Page 35]

RFC 2408                         ISAKMP                    November 1998


3.11 Hash Payload

  The Hash Payload contains data generated by the hash function
  (selected during the SA establishment exchange), over some part of
  the message and/or ISAKMP state.  This payload may be used to verify
  the integrity of the data in an ISAKMP message or for authentication
  of the negotiating entities.  Figure 12 shows the format of the Hash
  Payload.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Next Payload  !   RESERVED    !         Payload Length        !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !                                                               !
    ~                           Hash Data                           ~
    !                                                               !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                 Figure 12:  Hash Payload Format

  The Hash Payload fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  If the current payload is the last
      in the message, then this field will be 0.

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the current
      payload, including the generic payload header.

   o  Hash Data (variable length) - Data that results from applying the
      hash routine to the ISAKMP message and/or state.
















Maughan, et. al.            Standards Track                    [Page 36]

RFC 2408                         ISAKMP                    November 1998


3.12 Signature Payload

  The Signature Payload contains data generated by the digital
  signature function (selected during the SA establishment exchange),
  over some part of the message and/or ISAKMP state.  This payload is
  used to verify the integrity of the data in the ISAKMP message, and
  may be of use for non-repudiation services.  Figure 13 shows the
  format of the Signature Payload.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Next Payload  !   RESERVED    !         Payload Length        !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !                                                               !
    ~                         Signature Data                        ~
    !                                                               !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


               Figure 13:  Signature Payload Format

  The Signature Payload fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  If the current payload is the last
      in the message, then this field will be 0.

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the current
      payload, including the generic payload header.

   o  Signature Data (variable length) - Data that results from
      applying the digital signature function to the ISAKMP message
      and/or state.

  The payload type for the Signature Payload is nine (9).

3.13 Nonce Payload

  The Nonce Payload contains random data used to guarantee liveness
  during an exchange and protect against replay attacks.  Figure 14
  shows the format of the Nonce Payload.  If nonces are used by a
  particular key exchange, the use of the Nonce payload will be
  dictated by the key exchange.  The nonces may be transmitted as part
  of the key exchange data, or as a separate payload.  However, this is
  defined by the key exchange, not by ISAKMP.



Maughan, et. al.            Standards Track                    [Page 37]

RFC 2408                         ISAKMP                    November 1998


                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Next Payload  !   RESERVED    !         Payload Length        !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !                                                               !
    ~                            Nonce Data                         ~
    !                                                               !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                 Figure 14:  Nonce Payload Format

  The Nonce Payload fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  If the current payload is the last
      in the message, then this field will be 0.

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the current
      payload, including the generic payload header.

   o  Nonce Data (variable length) - Contains the random data generated
      by the transmitting entity.

  The payload type for the Nonce Payload is ten (10).

3.14 Notification Payload

  The Notification Payload can contain both ISAKMP and DOI-specific
  data and is used to transmit informational data, such as error
  conditions, to an ISAKMP peer.  It is possible to send multiple
  Notification payloads in a single ISAKMP message.  Figure 15 shows
  the format of the Notification Payload.

  Notification which occurs during, or is concerned with, a Phase 1
  negotiation is identified by the Initiator and Responder cookie pair
  in the ISAKMP Header.  The Protocol Identifier, in this case, is
  ISAKMP and the SPI value is 0 because the cookie pair in the ISAKMP
  Header identifies the ISAKMP SA. If the notification takes place
  prior to the completed exchange of keying information, then the
  notification will be unprotected.







Maughan, et. al.            Standards Track                    [Page 38]

RFC 2408                         ISAKMP                    November 1998


  Notification which occurs during, or is concerned with, a Phase 2
  negotiation is identified by the Initiator and Responder cookie pair
  in the ISAKMP Header and the Message ID and SPI associated with the
  current negotiation.  One example for this type of notification is to
  indicate why a proposal was rejected.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Next Payload  !   RESERVED    !         Payload Length        !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !              Domain of Interpretation  (DOI)                  !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !  Protocol-ID  !   SPI Size    !      Notify Message Type      !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !                                                               !
    ~                Security Parameter Index (SPI)                 ~
    !                                                               !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !                                                               !
    ~                       Notification Data                       ~
    !                                                               !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


             Figure 15:  Notification Payload Format

  The Notification Payload fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  If the current payload is the last
      in the message, then this field will be 0.

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the current
      payload, including the generic payload header.

   o  Domain of Interpretation (4 octets) - Identifies the DOI (as
      described in Section 2.1) under which this notification is taking
      place.  For ISAKMP this value is zero (0) and for the IPSEC DOI
      it is one (1).  Other DOI's can be defined using the description
      in appendix B.

   o  Protocol-Id (1 octet) - Specifies the protocol identifier for the
      current notification.  Examples might include ISAKMP, IPSEC ESP,
      IPSEC AH, OSPF, TLS, etc.




Maughan, et. al.            Standards Track                    [Page 39]

RFC 2408                         ISAKMP                    November 1998


   o  SPI Size (1 octet) - Length in octets of the SPI as defined by
      the Protocol-Id.  In the case of ISAKMP, the Initiator and
      Responder cookie pair from the ISAKMP Header is the ISAKMP SPI,
      therefore, the SPI Size is irrelevant and MAY be from zero (0) to
      sixteen (16).  If the SPI Size is non-zero, the content of the
      SPI field MUST be ignored.  The Domain of Interpretation (DOI)
      will dictate the SPI Size for other protocols.

   o  Notify Message Type (2 octets) - Specifies the type of
      notification message (see section 3.14.1).  Additional text, if
      specified by the DOI, is placed in the Notification Data field.

   o  SPI (variable length) - Security Parameter Index.  The receiving
      entity's SPI. The use of the SPI field is described in section
      2.4.  The length of this field is determined by the SPI Size
      field and is not necessarily aligned to a 4 octet boundary.

   o  Notification Data (variable length) - Informational or error data
      transmitted in addition to the Notify Message Type.  Values for
      this field are DOI-specific.

  The payload type for the Notification Payload is eleven (11).

3.14.1 Notify Message Types

  Notification information can be error messages specifying why an SA
  could not be established.  It can also be status data that a process
  managing an SA database wishes to communicate with a peer process.
  For example, a secure front end or security gateway may use the
  Notify message to synchronize SA communication.  The table below
  lists the Nofitication messages and their corresponding values.
  Values in the Private Use range are expected to be DOI-specific
  values.

                     NOTIFY MESSAGES - ERROR TYPES

                          Errors               Value
                INVALID-PAYLOAD-TYPE             1
                DOI-NOT-SUPPORTED                2
                SITUATION-NOT-SUPPORTED          3
                INVALID-COOKIE                   4
                INVALID-MAJOR-VERSION            5
                INVALID-MINOR-VERSION            6
                INVALID-EXCHANGE-TYPE            7
                INVALID-FLAGS                    8
                INVALID-MESSAGE-ID               9
                INVALID-PROTOCOL-ID             10
                INVALID-SPI                     11



Maughan, et. al.            Standards Track                    [Page 40]

RFC 2408                         ISAKMP                    November 1998


                INVALID-TRANSFORM-ID            12
                ATTRIBUTES-NOT-SUPPORTED        13
                NO-PROPOSAL-CHOSEN              14
                BAD-PROPOSAL-SYNTAX             15
                PAYLOAD-MALFORMED               16
                INVALID-KEY-INFORMATION         17
                INVALID-ID-INFORMATION          18
                INVALID-CERT-ENCODING           19
                INVALID-CERTIFICATE             20
                CERT-TYPE-UNSUPPORTED           21
                INVALID-CERT-AUTHORITY          22
                INVALID-HASH-INFORMATION        23
                AUTHENTICATION-FAILED           24
                INVALID-SIGNATURE               25
                ADDRESS-NOTIFICATION            26
                NOTIFY-SA-LIFETIME              27
                CERTIFICATE-UNAVAILABLE         28
                UNSUPPORTED-EXCHANGE-TYPE       29
                UNEQUAL-PAYLOAD-LENGTHS         30
                RESERVED (Future Use)        31 - 8191
                Private Use                8192 - 16383



                     NOTIFY MESSAGES - STATUS TYPES
                         Status              Value
                 CONNECTED                   16384
                 RESERVED (Future Use)   16385 - 24575
                 DOI-specific codes     24576 - 32767
                 Private Use            32768 - 40959
                 RESERVED (Future Use)  40960 - 65535

3.15 Delete Payload

  The Delete Payload contains a protocol-specific security association
  identifier that the sender has removed from its security association
  database and is, therefore, no longer valid.  Figure 16 shows the
  format of the Delete Payload.  It is possible to send multiple SPIs
  in a Delete payload, however, each SPI MUST be for the same protocol.
  Mixing of Protocol Identifiers MUST NOT be performed with the Delete
  payload.

  Deletion which is concerned with an ISAKMP SA will contain a
  Protocol-Id of ISAKMP and the SPIs are the initiator and responder
  cookies from the ISAKMP Header.  Deletion which is concerned with a
  Protocol SA, such as ESP or AH, will contain the Protocol-Id of that
  protocol (e.g.  ESP, AH) and the SPI is the sending entity's SPI(s).




Maughan, et. al.            Standards Track                    [Page 41]

RFC 2408                         ISAKMP                    November 1998


  NOTE: The Delete Payload is not a request for the responder to delete
  an SA, but an advisory from the initiator to the responder.  If the
  responder chooses to ignore the message, the next communication from
  the responder to the initiator, using that security association, will
  fail.  A responder is not expected to acknowledge receipt of a Delete
  payload.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Next Payload  !   RESERVED    !         Payload Length        !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !              Domain of Interpretation  (DOI)                  !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !  Protocol-Id  !   SPI Size    !           # of SPIs           !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !                                                               !
    ~               Security Parameter Index(es) (SPI)              ~
    !                                                               !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                Figure 16:  Delete Payload Format

  The Delete Payload fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  If the current payload is the last
      in the message, then this field will be 0.

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the current
      payload, including the generic payload header.

   o  Domain of Interpretation (4 octets) - Identifies the DOI (as
      described in Section 2.1) under which this deletion is taking
      place.  For ISAKMP this value is zero (0) and for the IPSEC DOI
      it is one (1).  Other DOI's can be defined using the description
      in appendix B.

   o  Protocol-Id (1 octet) - ISAKMP can establish security
      associations for various protocols, including ISAKMP and IPSEC.
      This field identifies which security association database to
      apply the delete request.






Maughan, et. al.            Standards Track                    [Page 42]

RFC 2408                         ISAKMP                    November 1998


   o  SPI Size (1 octet) - Length in octets of the SPI as defined by
      the Protocol-Id.  In the case of ISAKMP, the Initiator and
      Responder cookie pair is the ISAKMP SPI. In this case, the SPI
      Size would be 16 octets for each SPI being deleted.

   o  # of SPIs (2 octets) - The number of SPIs contained in the Delete
      payload.  The size of each SPI is defined by the SPI Size field.

   o  Security Parameter Index(es) (variable length) - Identifies the
      specific security association(s) to delete.  Values for this
      field are DOI and protocol specific.  The length of this field is
      determined by the SPI Size and # of SPIs fields.

  The payload type for the Delete Payload is twelve (12).

3.16 Vendor ID Payload

  The Vendor ID Payload contains a vendor defined constant.  The
  constant is used by vendors to identify and recognize remote
  instances of their implementations.  This mechanism allows a vendor
  to experiment with new features while maintaining backwards
  compatibility.  This is not a general extension facility of ISAKMP.
  Figure 17 shows the format of the Vendor ID Payload.

  The Vendor ID payload is not an announcement from the sender that it
  will send private payload types.  A vendor sending the Vendor ID MUST
  not make any assumptions about private payloads that it may send
  unless a Vendor ID is received as well.  Multiple Vendor ID payloads
  MAY be sent.  An implementation is NOT REQUIRED to understand any
  Vendor ID payloads.  An implementation is NOT REQUIRED to send any
  Vendor ID payload at all.  If a private payload was sent without
  prior agreement to send it, a compliant implementation may reject a
  proposal with a notify message of type INVALID-PAYLOAD-TYPE.

  If a Vendor ID payload is sent, it MUST be sent during the Phase 1
  negotiation.  Reception of a familiar Vendor ID payload in the Phase
  1 negotiation allows an implementation to make use of Private USE
  payload numbers (128-255), described in section 3.1 for vendor
  specific extensions during Phase 2 negotiations.  The definition of
  "familiar" is left to implementations to determine.  Some vendors may
  wish to implement another vendor's extension prior to
  standardization.  However, this practice SHOULD not be widespread and
  vendors should work towards standardization instead.

  The vendor defined constant MUST be unique.  The choice of hash and
  text to hash is left to the vendor to decide.  As an example, vendors
  could generate their vendor id by taking a plain (non-keyed) hash of
  a string containing the product name, and the version of the product.



Maughan, et. al.            Standards Track                    [Page 43]

RFC 2408                         ISAKMP                    November 1998


  A hash is used instead of a vendor registry to avoid local
  cryptographic policy problems with having a list of "approved"
  products, to keep away from maintaining a list of vendors, and to
  allow classified products to avoid having to appear on any list.  For
  instance:

  "Example Company IPsec.  Version 97.1"

  (not including the quotes) has MD5 hash:
  48544f9b1fe662af98b9b39e50c01a5a, when using MD5file.  Vendors may
  include all of the hash, or just a portion of it, as the payload
  length will bound the data.  There are no security implications of
  this hash, so its choice is arbitrary.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Next Payload  !   RESERVED    !         Payload Length        !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !                                                               !
    ~                        Vendor ID (VID)                        ~
    !                                                               !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


               Figure 17:  Vendor ID Payload Format

  The Vendor ID Payload fields are defined as follows:

   o  Next Payload (1 octet) - Identifier for the payload type of the
      next payload in the message.  If the current payload is the last
      in the message, then this field will be 0.

   o  RESERVED (1 octet) - Unused, set to 0.

   o  Payload Length (2 octets) - Length in octets of the current
      payload, including the generic payload header.

   o  Vendor ID (variable length) - Hash of the vendor string plus
      version (as described above).

  The payload type for the Vendor ID Payload is thirteen (13).

4 ISAKMP Exchanges

  ISAKMP supplies the basic syntax of a message exchange.  The basic
  building blocks for ISAKMP messages are the payload types described
  in section 3.  This section describes the procedures for SA



Maughan, et. al.            Standards Track                    [Page 44]

RFC 2408                         ISAKMP                    November 1998


  establishment and SA modification, followed by a default set of
  exchanges that MAY be used for initial interoperability.  Other
  exchanges will be defined depending on the DOI and key exchange.
  [IPDOI] and [IKE] are examples of how this is achieved.  Appendix B
  explains the procedures for accomplishing these additions.

4.1 ISAKMP Exchange Types

  ISAKMP allows the creation of exchanges for the establishment of
  Security Associations and keying material.  There are currently five
  default Exchange Types defined for ISAKMP. Sections 4.4 through 4.8
  describe these exchanges.  Exchanges define the content and ordering
  of ISAKMP messages during communications between peers.  Most
  exchanges will include all the basic payload types - SA, KE, ID, SIG
  - and may include others.  The primary difference between exchange
  types is the ordering of the messages and the payload ordering within
  each message.  While the ordering of payloads within messages is not
  mandated, for processing efficiency it is RECOMMENDED that the
  Security Association payload be the first payload within an exchange.
  Processing of each payload within an exchange is described in section
  5.

  Sections 4.4 through 4.8 provide a default set of ISAKMP exchanges.
  These exchanges provide different security protection for the
  exchange itself and information exchanged.  The diagrams in each of
  the following sections show the message ordering for each exchange
  type as well as the payloads included in each message, and provide
  basic notes describing what has happened after each message exchange.
  None of the examples include any "optional payloads", like
  certificate and certificate request.  Additionally, none of the
  examples include an initial exchange of ISAKMP Headers (containing
  initiator and responder cookies) which would provide protection
  against clogging (see section 2.5.3).

  The defined exchanges are not meant to satisfy all DOI and key
  exchange protocol requirements.  If the defined exchanges meet the
  DOI requirements, then they can be used as outlined.  If the defined
  exchanges do not meet the security requirements defined by the DOI,
  then the DOI MUST specify new exchange type(s) and the valid
  sequences of payloads that make up a successful exchange, and how to
  build and interpret those payloads.  All ISAKMP implementations MUST
  implement the Informational Exchange and SHOULD implement the other
  four exchanges.  However, this is dependent on the definition of the
  DOI and associated key exchange protocols.







Maughan, et. al.            Standards Track                    [Page 45]

RFC 2408                         ISAKMP                    November 1998


  As discussed above, these exchange types can be used in either phase
  of negotiation.  However, they may provide different security
  properties in each of the phases.  With each of these exchanges, the
  combination of cookies and SPI fields identifies whether this
  exchange is being used in the first or second phase of a negotiation.

4.1.1 Notation

  The following notation is used to describe the ISAKMP exchange types,
  shown in the next section, with the message formats and associated
  payloads:

    HDR is an ISAKMP header whose exchange type defines the payload
         orderings
    SA is an SA negotiation payload with one or more Proposal and
         Transform payloads. An initiator MAY provide multiple proposals
         for negotiation; a responder MUST reply with only one.
    KE is the key exchange payload.
    IDx is the identity payload for "x". x can be: "ii" or "ir"
         for the ISAKMP initiator and responder, respectively, or x can
         be: "ui", "ur" (when the ISAKMP daemon is a proxy negotiator),
         for the user initiator and responder, respectively.
    HASH is the hash payload.
    SIG is the signature payload. The data to sign is exchange-specific.
    AUTH is a generic authentication mechanism, such as HASH or SIG.
    NONCE is the nonce payload.
    '*' signifies payload encryption after the ISAKMP header. This
         encryption MUST begin immediately after the ISAKMP header and
         all payloads following the ISAKMP header MUST be encrypted.

    => signifies "initiator to responder" communication
    <= signifies "responder to initiator" communication

4.2 Security Association Establishment

  The Security Association, Proposal, and Transform payloads are used
  to build ISAKMP messages for the negotiation and establishment of
  SAs.  An SA establishment message consists of a single SA payload
  followed by at least one, and possibly many, Proposal payloads and at
  least one, and possibly many, Transform payloads associated with each
  Proposal payload.  Because these payloads are considered together,
  the SA payload will point to any following payloads and not to the
  Proposal payload included with the SA payload.  The SA Payload
  contains the DOI and Situation for the proposed SA. Each Proposal
  payload contains a Security Parameter Index (SPI) and ensures that
  the SPI is associated with the Protocol-Id in accordance with the
  Internet Security Architecture [SEC-ARCH].  Proposal payloads may or
  may not have the same SPI, as this is implementation dependent.  Each



Maughan, et. al.            Standards Track                    [Page 46]

RFC 2408                         ISAKMP                    November 1998


  Transform Payload contains the specific security mechanisms to be
  used for the designated protocol.  It is expected that the Proposal
  and Transform payloads will be used only during SA establishment
  negotiation.  The creation of payloads for security association
  negotiation and establishment described here in this section are
  applicable for all ISAKMP exchanges described later in sections 4.4
  through 4.8.  The examples shown in 4.2.1 contain only the SA,
  Proposal, and Transform payloads and do not contain other payloads
  that might exist for a given ISAKMP exchange.

  The Proposal payload provides the initiating entity with the
  capability to present to the responding entity the security protocols
  and associated security mechanisms for use with the security
  association being negotiated.  If the SA establishment negotiation is
  for a combined protection suite consisting of multiple protocols,
  then there MUST be multiple Proposal payloads each with the same
  Proposal number.  These proposals MUST be considered as a unit and
  MUST NOT be separated by a proposal with a different proposal number.
  The use of the same Proposal number in multiple Proposal payloads
  provides a logical AND operation, i.e.  Protocol 1 AND Protocol 2.
  The first example below shows an ESP AND AH protection suite.  If the
  SA establishment negotiation is for different protection suites, then
  there MUST be multiple Proposal payloads each with a monotonically
  increasing Proposal number.  The different proposals MUST be
  presented in the initiator's preference order.  The use of different
  Proposal numbers in multiple Proposal payloads provides a logical OR
  operation, i.e.  Proposal 1 OR Proposal 2, where each proposal may
  have more than one protocol.  The second example below shows either
  an AH AND ESP protection suite OR just an ESP protection suite.  Note
  that the Next Payload field of the Proposal payload points to another
  Proposal payload (if it exists).  The existence of a Proposal payload
  implies the existence of one or more Transform payloads.

  The Transform payload provides the initiating entity with the
  capability to present to the responding entity multiple mechanisms,
  or transforms, for a given protocol.  The Proposal payload identifies
  a Protocol for which services and mechanisms are being negotiated.
  The Transform payload allows the initiating entity to present several
  possible supported transforms for that proposed protocol.  There may
  be several transforms associated with a specific Proposal payload
  each identified in a separate Transform payload.  The multiple
  transforms MUST be presented with monotonically increasing numbers in
  the initiator's preference order.  The receiving entity MUST select a
  single transform for each protocol in a proposal or reject the entire
  proposal.  The use of the Transform number in multiple Transform
  payloads provides a second level OR operation, i.e.  Transform 1 OR
  Transform 2 OR Transform 3.  Example 1 below shows two possible
  transforms for ESP and a single transform for AH. Example 2 below



Maughan, et. al.            Standards Track                    [Page 47]

RFC 2408                         ISAKMP                    November 1998


  shows one transform for AH AND one transform for ESP OR two
  transforms for ESP alone.  Note that the Next Payload field of the
  Transform payload points to another Transform payload or 0.  The
  Proposal payload delineates the different proposals.

  When responding to a Security Association payload, the responder MUST
  send a Security Association payload with the selected proposal, which
  may consist of multiple Proposal payloads and their associated
  Transform payloads.  Each of the Proposal payloads MUST contain a
  single Transform payload associated with the Protocol.  The responder
  SHOULD retain the Proposal # field in the Proposal payload and the
  Transform # field in each Transform payload of the selected Proposal.
  Retention of Proposal and Transform numbers should speed the
  initiator's protocol processing by negating the need to compare the
  respondor's selection with every offered option.  These values enable
  the initiator to perform the comparison directly and quickly.  The
  initiator MUST verify that the Security Association payload received
  from the responder matches one of the proposals sent initially.

4.2.1 Security Association Establishment Examples

  This example shows a Proposal for a combined protection suite with
  two different protocols.  The first protocol is presented with two
  transforms supported by the proposer.  The second protocol is
  presented with a single transform.  An example for this proposal
  might be: Protocol 1 is ESP with Transform 1 as 3DES and Transform 2
  as DES AND Protocol 2 is AH with Transform 1 as SHA. The responder
  MUST select from the two transforms proposed for ESP. The resulting
  protection suite will be either (1) 3DES AND SHA OR (2) DES AND SHA,
  depending on which ESP transform was selected by the responder.  Note
  this example is shown using the Base Exchange.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     /+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    / ! NP = Nonce    !   RESERVED    !         Payload Length        !
   /  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
SA Pay !                 Domain of Interpretation (DOI)                !
   \  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \ !                           Situation                           !
     >+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    / ! NP = Proposal !   RESERVED    !         Payload Length        !
   /  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Prop 1 ! Proposal # = 1!  Protocol-Id  !    SPI Size   !# of Trans. = 2!
Prot 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \ !                         SPI (variable)                        !
     >+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    / ! NP = Transform!   RESERVED    !         Payload Length        !



Maughan, et. al.            Standards Track                    [Page 48]

RFC 2408                         ISAKMP                    November 1998


   /  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tran 1 ! Transform # 1 ! Transform ID  !           RESERVED2           !
   \  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \ !                         SA Attributes                         !
     >+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    / ! NP = 0        !   RESERVED    !         Payload Length        !
   /  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tran 2 ! Transform # 2 ! Transform ID  !           RESERVED2           !
   \  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \ !                         SA Attributes                         !
     >+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    / ! NP = 0        !   RESERVED    !         Payload Length        !
   /  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Prop 1 ! Proposal # = 1!  Protocol ID  !    SPI Size   !# of Trans. = 1!
Prot 2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \ !                         SPI (variable)                        !
     >+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    / ! NP = 0        !   RESERVED    !         Payload Length        !
   /  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tran 1 ! Transform # 1 ! Transform ID  !           RESERVED2           !
   \  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \ !                         SA Attributes                         !
     \+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  This second example shows a Proposal for two different protection
  suites.  The SA Payload was omitted for space reasons.  The first
  protection suite is presented with one transform for the first
  protocol and one transform for the second protocol.  The second
  protection suite is presented with two transforms for a single
  protocol.  An example for this proposal might be:  Proposal 1 with
  Protocol 1 as AH with Transform 1 as MD5 AND Protocol 2 as ESP with
  Transform 1 as 3DES. This is followed by Proposal 2 with Protocol 1
  as ESP with Transform 1 as DES and Transform 2 as 3DES. The responder
  MUST select from the two different proposals.  If the second Proposal
  is selected, the responder MUST select from the two transforms for
  ESP. The resulting protection suite will be either (1) MD5 AND 3DES
  OR the selection between (2) DES OR (3) 3DES.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     /+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    / ! NP = Proposal !   RESERVED    !         Payload Length        !
   /  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Prop 1 ! Proposal # = 1!  Protocol ID  !    SPI Size   !# of Trans. = 1!
Prot 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \ !                         SPI (variable)                        !
     >+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    / ! NP = 0        !   RESERVED    !         Payload Length        !



Maughan, et. al.            Standards Track                    [Page 49]

RFC 2408                         ISAKMP                    November 1998


   /  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tran 1 ! Transform # 1 ! Transform ID  !           RESERVED2           !
   \  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \ !                         SA Attributes                         !
     >+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    / ! NP = Proposal !   RESERVED    !         Payload Length        !
   /  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Prop 1 ! Proposal # = 1! Protocol ID   !    SPI Size   !# of Trans. = 1!
Prot 2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \ !                         SPI (variable)                        !
     >+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    / ! NP = 0        !   RESERVED    !         Payload Length        !
   /  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tran 1 ! Transform # 1 ! Transform ID  !           RESERVED2           !
   \  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \ !                         SA Attributes                         !
     >+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    / ! NP = 0        !   RESERVED    !         Payload Length        !
   /  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Prop 2 ! Proposal # = 2! Protocol ID   !    SPI Size   !# of Trans. = 2!
Prot 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \ !                         SPI (variable)                        !
     >+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    / ! NP = Transform!   RESERVED    !         Payload Length        !
   /  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tran 1 ! Transform # 1 ! Transform ID  !           RESERVED2           !
   \  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \ !                         SA Attributes                         !
     >+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    / ! NP = 0        !   RESERVED    !         Payload Length        !
   /  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tran 2 ! Transform # 2 ! Transform ID  !           RESERVED2           !
   \  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    \ !                         SA Attributes                         !
     \+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.3 Security Association Modification

  Security Association modification within ISAKMP is accomplished by
  creating a new SA and initiating communications using that new SA.
  Deletion of the old SA can be done anytime after the new SA is
  established.  Deletion of the old SA is dependent on local security
  policy.  Modification of SAs by using a "Create New SA followed by
  Delete Old SA" method is done to avoid potential vulnerabilities in
  synchronizing modification of existing SA attributes.  The procedure
  for creating new SAs is outlined in section 4.2.  The procedure for
  deleting SAs is outlined in section 5.15.




Maughan, et. al.            Standards Track                    [Page 50]

RFC 2408                         ISAKMP                    November 1998


  Modification of an ISAKMP SA (phase 1 negotiation) follows the same
  procedure as creation of an ISAKMP SA. There is no relationship
  between the two SAs and the initiator and responder cookie pairs
  SHOULD be different, as outlined in section 2.5.3.

  Modification of a Protocol SA (phase 2 negotiation) follows the same
  procedure as creation of a Protocol SA. The creation of a new SA is
  protected by the existing ISAKMP SA. There is no relationship between
  the two Protocol SAs.  A protocol implementation SHOULD begin using
  the newly created SA for outbound traffic and SHOULD continue to
  support incoming traffic on the old SA until it is deleted or until
  traffic is received under the protection of the newly created SA. As
  stated previously in this section, deletion of an old SA is then
  dependent on local security policy.

4.4 Base Exchange

  The Base Exchange is designed to allow the Key Exchange and
  Authentication related information to be transmitted together.
  Combining the Key Exchange and Authentication-related information
  into one message reduces the number of round-trips at the expense of
  not providing identity protection.  Identity protection is not
  provided because identities are exchanged before a common shared
  secret has been established and, therefore, encryption of the
  identities is not possible.  The following diagram shows the messages
  with the possible payloads sent in each message and notes for an
  example of the Base Exchange.

                        BASE EXCHANGE

#  Initiator Direction  Responder            NOTE
(1)  HDR; SA; NONCE  =>           Begin ISAKMP-SA or Proxy negotiation

(2)                  <=  HDR; SA; NONCE
                                 Basic SA agreed upon
(3)  HDR; KE;        =>
    IDii; AUTH                   Key Generated (by responder)
                                 Initiator Identity Verified by
                                 Responder
(4)                  <=  HDR; KE;
                        IDir; AUTH
                                 Responder Identity Verified by
                                 Initiator Key Generated (by
                                 initiator) SA established







Maughan, et. al.            Standards Track                    [Page 51]

RFC 2408                         ISAKMP                    November 1998


  In the first message (1), the initiator generates a proposal it
  considers adequate to protect traffic for the given situation.  The
  Security Association, Proposal, and Transform payloads are included
  in the Security Association payload (for notation purposes).  Random
  information which is used to guarantee liveness and protect against
  replay attacks is also transmitted.  Random information provided by
  both parties SHOULD be used by the authentication mechanism to
  provide shared proof of participation in the exchange.

  In the second message (2), the responder indicates the protection
  suite it has accepted with the Security Association, Proposal, and
  Transform payloads.  Again, random information which is used to
  guarantee liveness and protect against replay attacks is also
  transmitted.  Random information provided by both parties SHOULD be
  used by the authentication mechanism to provide shared proof of
  participation in the exchange.  Local security policy dictates the
  action of the responder if no proposed protection suite is accepted.
  One possible action is the transmission of a Notify payload as part
  of an Informational Exchange.

  In the third (3) and fourth (4) messages, the initiator and
  responder, respectively, exchange keying material used to arrive at a
  common shared secret and identification information.  This
  information is transmitted under the protection of the agreed upon
  authentication function.  Local security policy dictates the action
  if an error occurs during these messages.  One possible action is the
  transmission of a Notify payload as part of an Informational
  Exchange.

4.5 Identity Protection Exchange

  The Identity Protection Exchange is designed to separate the Key
  Exchange information from the Identity and Authentication related
  information.  Separating the Key Exchange from the Identity and
  Authentication related information provides protection of the
  communicating identities at the expense of two additional messages.
  Identities are exchanged under the protection of a previously
  established common shared secret.  The following diagram shows the
  messages with the possible payloads sent in each message and notes
  for an example of the Identity Protection Exchange.











Maughan, et. al.            Standards Track                    [Page 52]

RFC 2408                         ISAKMP                    November 1998


                   IDENTITY PROTECTION EXCHANGE

#      Initiator       Direction    Responder      NOTE
(1)  HDR; SA               =>                       Begin ISAKMP-SA or
                                                   Proxy negotiation
(2)                        <=     HDR; SA
                                                   Basic SA agreed upon
(3)  HDR; KE; NONCE        =>
(4)                        <=     HDR; KE; NONCE
                                                   Key Generated (by
                                                   Initiator and
                                                   Responder)
(5)  HDR*; IDii; AUTH      =>
                                                   Initiator Identity
                                                   Verified by
                                                   Responder
(6)                        <=     HDR*; IDir; AUTH
                                                   Responder Identity
                                                   Verified by
                                                   Initiator
                                                   SA established

  In the first message (1), the initiator generates a proposal it
  considers adequate to protect traffic for the given situation.  The
  Security Association, Proposal, and Transform payloads are included
  in the Security Association payload (for notation purposes).

  In the second message (2), the responder indicates the protection
  suite it has accepted with the Security Association, Proposal, and
  Transform payloads.  Local security policy dictates the action of the
  responder if no proposed protection suite is accepted.  One possible
  action is the transmission of a Notify payload as part of an
  Informational Exchange.

  In the third (3) and fourth (4) messages, the initiator and
  responder, respectively, exchange keying material used to arrive at a
  common shared secret and random information which is used to
  guarantee liveness and protect against replay attacks.  Random
  information provided by both parties SHOULD be used by the
  authentication mechanism to provide shared proof of participation in
  the exchange.  Local security policy dictates the action if an error
  occurs during these messages.  One possible action is the
  transmission of a Notify payload as part of an Informational
  Exchange.

  In the fifth (5) and sixth (6) messages, the initiator and responder,
  respectively, exchange identification information and the results of
  the agreed upon authentication function.  This information is



Maughan, et. al.            Standards Track                    [Page 53]

RFC 2408                         ISAKMP                    November 1998


  transmitted under the protection of the common shared secret.  Local
  security policy dictates the action if an error occurs during these
  messages.  One possible action is the transmission of a Notify
  payload as part of an Informational Exchange.

4.6 Authentication Only Exchange

  The Authentication Only Exchange is designed to allow only
  Authentication related information to be transmitted.  The benefit of
  this exchange is the ability to perform only authentication without
  the computational expense of computing keys.  Using this exchange
  during negotiation, none of the transmitted information will be
  encrypted.  However, the information may be encrypted in other
  places.  For example, if encryption is negotiated during the first
  phase of a negotiation and the authentication only exchange is used
  in the second phase of a negotiation, then the authentication only
  exchange will be encrypted by the ISAKMP SAs negotiated in the first
  phase.  The following diagram shows the messages with possible
  payloads sent in each message and notes for an example of the
  Authentication Only Exchange.

                    AUTHENTICATION ONLY EXCHANGE

#      Initiator     Direction     Responder     NOTE
(1)  HDR; SA; NONCE      =>                       Begin ISAKMP-SA or
                                                 Proxy negotiation
(2)                       <=     HDR; SA; NONCE;
                                IDir; AUTH
                                                 Basic SA agreed upon
                                                 Responder Identity
                                                 Verified by Initiator
(3)  HDR; IDii; AUTH      =>
                                                 Initiator Identity
                                                 Verified by Responder
                                                 SA established

  In the first message (1), the initiator generates a proposal it
  considers adequate to protect traffic for the given situation.  The
  Security Association, Proposal, and Transform payloads are included
  in the Security Association payload (for notation purposes).  Random
  information which is used to guarantee liveness and protect against
  replay attacks is also transmitted.  Random information provided by
  both parties SHOULD be used by the authentication mechanism to
  provide shared proof of participation in the exchange.

  In the second message (2), the responder indicates the protection
  suite it has accepted with the Security Association, Proposal, and
  Transform payloads.  Again, random information which is used to



Maughan, et. al.            Standards Track                    [Page 54]

RFC 2408                         ISAKMP                    November 1998


  guarantee liveness and protect against replay attacks is also
  transmitted.  Random information provided by both parties SHOULD be
  used by the authentication mechanism to provide shared proof of
  participation in the exchange.  Additionally, the responder transmits
  identification information.  All of this information is transmitted
  under the protection of the agreed upon authentication function.
  Local security policy dictates the action of the responder if no
  proposed protection suite is accepted.  One possible action is the
  transmission of a Notify payload as part of an Informational
  Exchange.

  In the third message (3), the initiator transmits identification
  information.  This information is transmitted under the protection of
  the agreed upon authentication function.  Local security policy
  dictates the action if an error occurs during these messages.  One
  possible action is the transmission of a Notify payload as part of an
  Informational Exchange.

4.7 Aggressive Exchange

  The Aggressive Exchange is designed to allow the Security
  Association, Key Exchange and Authentication related payloads to be
  transmitted together.  Combining the Security Association, Key
  Exchange, and Authentication-related information into one message
  reduces the number of round-trips at the expense of not providing
  identity protection.  Identity protection is not provided because
  identities are exchanged before a common shared secret has been
  established and, therefore, encryption of the identities is not
  possible.  Additionally, the Aggressive Exchange is attempting to
  establish all security relevant information in a single exchange.
  The following diagram shows the messages with possible payloads sent
  in each message and notes for an example of the Aggressive Exchange.



















Maughan, et. al.            Standards Track                    [Page 55]

RFC 2408                         ISAKMP                    November 1998


                       AGGRESSIVE EXCHANGE

#     Initiator   Direction      Responder      NOTE
(1)  HDR; SA; KE;      =>                        Begin ISAKMP-SA or
                                                Proxy negotiation
    NONCE; IDii                                 and Key Exchange

(2)                    <=     HDR; SA; KE;
                             NONCE; IDir; AUTH
                                                Initiator Identity
                                                Verified by Responder
                                                Key Generated
                                                Basic SA agreed upon
(3)  HDR*; AUTH        =>
                                                Responder Identity
                                                Verified by Initiator
                                                SA established

  In the first message (1), the initiator generates a proposal it
  considers adequate to protect traffic for the given situation.  The
  Security Association, Proposal, and Transform payloads are included
  in the Security Association payload (for notation purposes).  There
  can be only one Proposal and one Transform offered (i.e.  no choices)
  in order for the aggressive exchange to work.  Keying material used
  to arrive at a common shared secret and random information which is
  used to guarantee liveness and protect against replay attacks are
  also transmitted.  Random information provided by both parties SHOULD
  be used by the authentication mechanism to provide shared proof of
  participation in the exchange.  Additionally, the initiator transmits
  identification information.

  In the second message (2), the responder indicates the protection
  suite it has accepted with the Security Association, Proposal, and
  Transform payloads.  Keying material used to arrive at a common
  shared secret and random information which is used to guarantee
  liveness and protect against replay attacks is also transmitted.
  Random information provided by both parties SHOULD be used by the
  authentication mechanism to provide shared proof of participation in
  the exchange.  Additionally, the responder transmits identification
  information.  All of this information is transmitted under the
  protection of the agreed upon authentication function.  Local
  security policy dictates the action of the responder if no proposed
  protection suite is accepted.  One possible action is the
  transmission of a Notify payload as part of an Informational
  Exchange.






Maughan, et. al.            Standards Track                    [Page 56]

RFC 2408                         ISAKMP                    November 1998


  In the third (3) message, the initiator transmits the results of the
  agreed upon authentication function.  This information is transmitted
  under the protection of the common shared secret.  Local security
  policy dictates the action if an error occurs during these messages.
  One possible action is the transmission of a Notify payload as part
  of an Informational Exchange.

4.8 Informational Exchange

  The Informational Exchange is designed as a one-way transmittal of
  information that can be used for security association management.
  The following diagram shows the messages with possible payloads sent
  in each message and notes for an example of the Informational
  Exchange.

                     INFORMATIONAL EXCHANGE

   #   Initiator  Direction Responder  NOTE
  (1)  HDR*; N/D     =>                Error Notification or Deletion

  In the first message (1), the initiator or responder transmits an
  ISAKMP Notify or Delete payload.

  If the Informational Exchange occurs prior to the exchange of keying
  meterial during an ISAKMP Phase 1 negotiation, there will be no
  protection provided for the Informational Exchange.  Once keying
  material has been exchanged or an ISAKMP SA has been established, the
  Informational Exchange MUST be transmitted under the protection
  provided by the keying material or the ISAKMP SA.

  All exchanges are similar in that with the beginning of any exchange,
  cryptographic synchronization MUST occur.  The Informational Exchange
  is an exchange and not an ISAKMP message.  Thus, the generation of an
  Message ID (MID) for an Informational Exchange SHOULD be independent
  of IVs of other on-going communication.  This will ensure
  cryptographic synchronization is maintained for existing
  communications and the Informational Exchange will be processed
  correctly.  The only exception to this is when the Commit Bit of the
  ISAKMP Header is set.  When the Commit Bit is set, the Message ID
  field of the Informational Exchange MUST contain the Message ID of
  the original ISAKMP Phase 2 SA negotiation, rather than a new Message
  ID (MID). This is done to ensure that the Informational Exchange with
  the CONNECTED Notify Message can be associated with the correct Phase
  2 SA. For a description of the Commit Bit, see section 3.1.







Maughan, et. al.            Standards Track                    [Page 57]

RFC 2408                         ISAKMP                    November 1998


5 ISAKMP Payload Processing

  Section 3 describes the ISAKMP payloads.  These payloads are used in
  the exchanges described in section 4 and can be used in exchanges
  defined for a specific DOI. This section describes the processing for
  each of the payloads.  This section suggests the logging of events to
  a system audit file.  This action is controlled by a system security
  policy and is, therefore, only a suggested action.

5.1 General Message Processing

  Every ISAKMP message has basic processing applied to insure protocol
  reliability, and to minimize threats, such as denial of service and
  replay attacks.  All processing SHOULD include packet length checks
  to insure the packet received is at least as long as the length given
  in the ISAKMP Header.  If the ISAKMP message length and the value in
  the Payload Length field of the ISAKMP Header are not the same, then
  the ISAKMP message MUST be rejected.  The receiving entity (initiator
  or responder) MUST do the following:

  1.  The event, UNEQUAL PAYLOAD LENGTHS, MAY be logged in the
      appropriate system audit file.

  2.  An Informational Exchange with a Notification payload containing
      the UNEQUAL-PAYLOAD-LENGTHS message type MAY be sent to the
      transmitting entity.  This action is dictated by a system
      security policy.

  When transmitting an ISAKMP message, the transmitting entity
  (initiator or responder) MUST do the following:

  1.  Set a timer and initialize a retry counter.

      NOTE: Implementations MUST NOT use a fixed timer.  Instead,
      transmission timer values should be adjusted dynamically based on
      measured round trip times.  In addition, successive
      retransmissions of the same packet should be separated by
      increasingly longer time intervals (e.g., exponential backoff).

  2.  If the timer expires, the ISAKMP message is resent and the retry
      counter is decremented.

  3.  If the retry counter reaches zero (0), the event, RETRY LIMIT
      REACHED, MAY be logged in the appropriate system audit file.

  4.  The ISAKMP protocol machine clears all states and returns to
      IDLE.




Maughan, et. al.            Standards Track                    [Page 58]

RFC 2408                         ISAKMP                    November 1998


5.2 ISAKMP Header Processing

  When creating an ISAKMP message, the transmitting entity (initiator
  or responder) MUST do the following:

  1.  Create the respective cookie.  See section 2.5.3 for details.

  2.  Determine the relevant security characteristics of the session
      (i.e. DOI and situation).

  3.  Construct an ISAKMP Header with fields as described in section
      3.1.

  4.  Construct other ISAKMP payloads, depending on the exchange type.

  5.  Transmit the message to the destination host as described in
      section5.1.

  When an ISAKMP message is received, the receiving entity (initiator
  or responder) MUST do the following:

  1.  Verify the Initiator and Responder "cookies".  If the cookie
      validation fails, the message is discarded and the following
      actions are taken:

      (a)  The event, INVALID COOKIE, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-COOKIE message type MAY be sent to
           the transmitting entity.  This action is dictated by a
           system security policy.

  2.  Check the Next Payload field to confirm it is valid.  If the Next
      Payload field validation fails, the message is discarded and the
      following actions are taken:

      (a)  The event, INVALID NEXT PAYLOAD, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-PAYLOAD-TYPE message type MAY be sent
           to the transmitting entity.  This action is dictated by a
           system security policy.

  3.  Check the Major and Minor Version fields to confirm they are
      correct (see section 3.1).  If the Version field validation
      fails, the message is discarded and the following actions are



Maughan, et. al.            Standards Track                    [Page 59]

RFC 2408                         ISAKMP                    November 1998


      taken:

      (a)  The event, INVALID ISAKMP VERSION, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-MAJOR-VERSION or INVALID-MINOR-
           VERSION message type MAY be sent to the transmitting entity.
           This action is dictated by a system security policy.

  4.  Check the Exchange Type field to confirm it is valid.  If the
      Exchange Type field validation fails, the message is discarded
      and the following actions are taken:

      (a)  The event, INVALID EXCHANGE TYPE, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-EXCHANGE-TYPE message type MAY be
           sent to the transmitting entity.  This action is dictated by
           a system security policy.

  5.  Check the Flags field to ensure it contains correct values.  If
      the Flags field validation fails, the message is discarded and
      the following actions are taken:

      (a)  The event, INVALID FLAGS, MAY be logged in the appropriate
           systemaudit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-FLAGS message type MAY be sent to the
           transmitting entity.  This action is dictated by a system
           security policy.

  6.  Check the Message ID field to ensure it contains correct values.
      If the Message ID validation fails, the message is discarded and
      the following actions are taken:

      (a)  The event, INVALID MESSAGE ID, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-MESSAGE-ID message type MAY be sent
           to the transmitting entity.  This action is dictated by a
           system security policy.

  7.  Processing of the ISAKMP message continues using the value in the
      Next Payload field.



Maughan, et. al.            Standards Track                    [Page 60]

RFC 2408                         ISAKMP                    November 1998


5.3 Generic Payload Header Processing

  When creating any of the ISAKMP Payloads described in sections 3.4
  through 3.15 a Generic Payload Header is placed at the beginning of
  these payloads.  When creating the Generic Payload Header, the
  transmitting entity (initiator or responder) MUST do the following:

  1.  Place the value of the Next Payload in the Next Payload field.
      These values are described in section 3.1.

  2.  Place the value zero (0) in the RESERVED field.

  3.  Place the length (in octets) of the payload in the Payload Length
      field.

  4.  Construct the payloads as defined in the remainder of this
      section.

  When any of the ISAKMP Payloads are received, the receiving entity
  (initiator or responder) MUST do the following:

  1.  Check the Next Payload field to confirm it is valid.  If the Next
      Payload field validation fails, the message is discarded and the
      following actions are taken:

      (a)  The event, INVALID NEXT PAYLOAD, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-PAYLOAD-TYPE message type MAY be sent
           to the transmitting entity.  This action is dictated by a
           system security policy.

  2.  Verify the RESERVED field contains the value zero.  If the value
      in the RESERVED field is not zero, the message is discarded and
      the following actions are taken:

      (a)  The event, INVALID RESERVED FIELD, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the BAD-PROPOSAL-SYNTAX or PAYLOAD-MALFORMED
           message type MAY be sent to the transmitting entity.  This
           action is dictated by a system security policy.

  3.  Process the remaining payloads as defined by the Next Payload
      field.




Maughan, et. al.            Standards Track                    [Page 61]

RFC 2408                         ISAKMP                    November 1998


5.4 Security Association Payload Processing

  When creating a Security Association Payload, the transmitting entity
  (initiator or responder) MUST do the following:

  1.  Determine the Domain of Interpretation for which this negotiation
      is being performed.

  2.  Determine the situation within the determined DOI for which this
      negotiation is being performed.

  3.  Determine the proposal(s) and transform(s) within the situation.
      These are described, respectively, in sections 3.5 and 3.6.

  4.  Construct a Security Association payload.

  5.  Transmit the message to the receiving entity as described in
      section 5.1.

  When a Security Association payload is received, the receiving entity
  (initiator or responder) MUST do the following:

  1.  Determine if the Domain of Interpretation (DOI) is supported.  If
      the DOI determination fails, the message is discarded and the
      following actions are taken:

      (a)  The event, INVALID DOI, MAY be logged in the appropriate
           system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the DOI-NOT-SUPPORTED message type MAY be sent to
           the transmitting entity.  This action is dictated by a
           system security policy.

  2.  Determine if the given situation can be protected.  If the
      Situation determination fails, the message is discarded and the
      following actions are taken:

      (a)  The event, INVALID SITUATION, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the SITUATION-NOT-SUPPORTED message type MAY be
           sent to the transmitting entity.  This action is dictated by
           a system security policy.

  3.  Process the remaining payloads (i.e.  Proposal, Transform) of the
      Security Association Payload.  If the Security Association



Maughan, et. al.            Standards Track                    [Page 62]

RFC 2408                         ISAKMP                    November 1998


      Proposal (as described in sections 5.5 and 5.6) is not accepted,
      then the following actions are taken:

      (a)  The event, INVALID PROPOSAL, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the NO-PROPOSAL-CHOSEN message type MAY be sent
           to the transmitting entity.  This action is dictated by a
           system security policy.

5.5 Proposal Payload Processing

  When creating a Proposal Payload, the transmitting entity (initiator
  or responder) MUST do the following:

  1.  Determine the Protocol for this proposal.

  2.  Determine the number of proposals to be offered for this protocol
      and the number of transforms for each proposal.  Transforms are
      described in section 3.6.

  3.  Generate a unique pseudo-random SPI.

  4.  Construct a Proposal payload.

  When a Proposal payload is received, the receiving entity (initiator
  or responder) MUST do the following:

  1.  Determine if the Protocol is supported.  If the Protocol-ID field
      is invalid, the payload is discarded and the following actions
      are taken:

      (a)  The event, INVALID PROTOCOL, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-PROTOCOL-ID message type MAY be sent
           to the transmitting entity.  This action is dictated by a
           system security policy.

  2.  Determine if the SPI is valid.  If the SPI is invalid, the
      payload is discarded and the following actions are taken:

      (a)  The event, INVALID SPI, MAY be logged in the appropriate
           system audit file.





Maughan, et. al.            Standards Track                    [Page 63]

RFC 2408                         ISAKMP                    November 1998


      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-SPI message type MAY be sent to the
           transmitting entity.  This action is dictated by a system
           security policy.

  3.  Ensure the Proposals are presented according to the details given
      in section 3.5 and 4.2.  If the proposals are not formed
      correctly, the following actions are taken:

      (a)  Possible events, BAD PROPOSAL SYNTAX, INVALID PROPOSAL, are
           logged in the appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the BAD-PROPOSAL-SYNTAX or PAYLOAD-MALFORMED
           message type MAY be sent to the transmitting entity.  This
           action is dictated by a system security policy.

  4.  Process the Proposal and Transform payloads as defined by the
      Next Payload field.  Examples of processing these payloads are
      given in section 4.2.1.

5.6 Transform Payload Processing

  When creating a Transform Payload, the transmitting entity (initiator
  or responder) MUST do the following:

  1.  Determine the Transform # for this transform.

  2.  Determine the number of transforms to be offered for this
      proposal.  Transforms are described in sections 3.6.

  3.  Construct a Transform payload.

  When a Transform payload is received, the receiving entity (initiator
  or responder) MUST do the following:

  1.  Determine if the Transform is supported.  If the Transform-ID
      field contains an unknown or unsupported value, then that
      Transform payload MUST be ignored and MUST NOT cause the
      generation of an INVALID TRANSFORM event.  If the Transform-ID
      field is invalid, the payload is discarded and the following
      actions are taken:

      (a)  The event, INVALID TRANSFORM, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-TRANSFORM-ID message type MAY be sent



Maughan, et. al.            Standards Track                    [Page 64]

RFC 2408                         ISAKMP                    November 1998


           to the transmitting entity.  This action is dictated by a
           system security policy.

  2.  Ensure the Transforms are presented according to the details
      given in section 3.6 and 4.2.  If the transforms are not formed
      correctly, the following actions are taken:

      (a)  Possible events, BAD PROPOSAL SYNTAX, INVALID TRANSFORM,
           INVALID ATTRIBUTES, are logged in the appropriate system
           audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the BAD-PROPOSAL-SYNTAX, PAYLOAD-MALFORMED or
           ATTRIBUTES-NOT-SUPPORTED message type MAY be sent to the
           transmitting entity.  This action is dictated by a system
           security policy.

  3.  Process the subsequent Transform and Proposal payloads as defined
      by the Next Payload field.  Examples of processing these payloads
      are given in section 4.2.1.

5.7 Key Exchange Payload Processing

  When creating a Key Exchange Payload, the transmitting entity
  (initiator or responder) MUST do the following:

  1.  Determine the Key Exchange to be used as defined by the DOI.

  2.  Determine the usage of the Key Exchange Data field as defined by
      the DOI.

  3.  Construct a Key Exchange payload.

  4.  Transmit the message to the receiving entity as described in
      section 5.1.

  When a Key Exchange payload is received, the receiving entity
  (initiator or responder) MUST do the following:

  1.  Determine if the Key Exchange is supported.  If the Key Exchange
      determination fails, the message is discarded and the following
      actions are taken:

      (a)  The event, INVALID KEY INFORMATION, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-KEY-INFORMATION message type MAY be



Maughan, et. al.            Standards Track                    [Page 65]

RFC 2408                         ISAKMP                    November 1998


           sent to the transmitting entity.  This action is dictated by
           a system security policy.

5.8 Identification Payload Processing

  When creating an Identification Payload, the transmitting entity
  (initiator or responder) MUST do the following:

  1.  Determine the Identification information to be used as defined by
      the DOI (and possibly the situation).

  2.  Determine the usage of the Identification Data field as defined
      by the DOI.

  3.  Construct an Identification payload.

  4.  Transmit the message to the receiving entity as described in
      section 5.1.

  When an Identification payload is received, the receiving entity
  (initiator or responder) MUST do the following:

  1.  Determine if the Identification Type is supported.  This may be
      based on the DOI and Situation.  If the Identification
      determination fails, the message is discarded and the following
      actions are taken:

      (a)  The event, INVALID ID INFORMATION, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-ID-INFORMATION message type MAY be
           sent to the transmitting entity.  This action is dictated by
           a system security policy.

5.9 Certificate Payload Processing

  When creating a Certificate Payload, the transmitting entity
  (initiator or responder) MUST do the following:

  1.  Determine the Certificate Encoding to be used.  This may be
      specified by the DOI.

  2.  Ensure the existence of a certificate formatted as defined by the
      Certificate Encoding.

  3.  Construct a Certificate payload.




Maughan, et. al.            Standards Track                    [Page 66]

RFC 2408                         ISAKMP                    November 1998


  4.  Transmit the message to the receiving entity as described in
      section 5.1.

  When a Certificate payload is received, the receiving entity
  (initiator or responder) MUST do the following:

  1.  Determine if the Certificate Encoding is supported.  If the
      Certificate Encoding is not supported, the payload is discarded
      and the following actions are taken:

      (a)  The event, INVALID CERTIFICATE TYPE, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-CERT-ENCODING message type MAY be
           sent to the transmitting entity.  This action is dictated by
           a system security policy.

  2.  Process the Certificate Data field.  If the Certificate Data is
      invalid or improperly formatted, the payload is discarded and the
      following actions are taken:

      (a)  The event, INVALID CERTIFICATE, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-CERTIFICATE message type MAY be sent
           to the transmitting entity.  This action is dictated by a
           system security policy.

5.10 Certificate Request Payload Processing

  When creating a Certificate Request Payload, the transmitting entity
  (initiator or responder) MUST do the following:

  1.  Determine the type of Certificate Encoding to be requested.  This
      may be specified by the DOI.

  2.  Determine the name of an acceptable Certificate Authority which
      is to be requested (if applicable).

  3.  Construct a Certificate Request payload.

  4.  Transmit the message to the receiving entity as described in
      section 5.1.

  When a Certificate Request payload is received, the receiving entity
  (initiator or responder) MUST do the following:



Maughan, et. al.            Standards Track                    [Page 67]

RFC 2408                         ISAKMP                    November 1998


  1.  Determine if the Certificate Encoding is supported.  If the
      Certificate Encoding is invalid, the payload is discarded and the
      following actions are taken:

      (a)  The event, INVALID CERTIFICATE TYPE, MAY be logged in
           the appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-CERT-ENCODING message type MAY be
           sent to the transmitting entity.  This action is dictated by
           a system security policy.

      If the Certificate Encoding is not supported, the payload is
      discarded and the following actions are taken:

      (a)  The event, CERTIFICATE TYPE UNSUPPORTED, MAY be logged in
           the appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the CERT-TYPE-UNSUPPORTED message type MAY be
           sent to the transmitting entity.  This action is dictated by
           a system security policy.

  2.  Determine if the Certificate Authority is supported for the
      specified Certificate Encoding.  If the Certificate Authority is
      invalid or improperly formatted, the payload is discarded and the
      following actions are taken:

      (a)  The event, INVALID CERTIFICATE AUTHORITY, MAY be logged in
           the appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-CERT-AUTHORITY message type MAY be
           sent to the transmitting entity.  This action is dictated by
           a system security policy.

  3.  Process the Certificate Request.  If a requested Certificate Type
      with the specified Certificate Authority is not available, then
      the payload is discarded and the following actions are taken:

      (a)  The event, CERTIFICATE-UNAVAILABLE, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the CERTIFICATE-UNAVAILABLE message type MAY be
           sent to the transmitting entity.  This action is dictated by
           a system security policy.




Maughan, et. al.            Standards Track                    [Page 68]

RFC 2408                         ISAKMP                    November 1998


5.11 Hash Payload Processing

  When creating a Hash Payload, the transmitting entity (initiator or
  responder) MUST do the following:

  1.  Determine the Hash function to be used as defined by the SA
      negotiation.

  2.  Determine the usage of the Hash Data field as defined by the DOI.

  3.  Construct a Hash payload.

  4.  Transmit the message to the receiving entity as described in
      section 5.1.

  When a Hash payload is received, the receiving entity (initiator or
  responder) MUST do the following:

  1.  Determine if the Hash is supported.  If the Hash determination
      fails, the message is discarded and the following actions are
      taken:

      (a)  The event, INVALID HASH INFORMATION, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-HASH-INFORMATION message type MAY be
           sent to the transmitting entity.  This action is dictated by
           a system security policy.

  2.  Perform the Hash function as outlined in the DOI and/or Key
      Exchange protocol documents.  If the Hash function fails, the
      message is discarded and the following actions are taken:

      (a)  The event, INVALID HASH VALUE, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the AUTHENTICATION-FAILED message type MAY be
           sent to the transmitting entity.  This action is dictated by
           a system security policy.

5.12 Signature Payload Processing

  When creating a Signature Payload, the transmitting entity (initiator
  or responder) MUST do the following:





Maughan, et. al.            Standards Track                    [Page 69]

RFC 2408                         ISAKMP                    November 1998


  1.  Determine the Signature function to be used as defined by the SA
      negotiation.

  2.  Determine the usage of the Signature Data field as defined by the
      DOI.

  3.  Construct a Signature payload.

  4.  Transmit the message to the receiving entity as described in
      section 5.1.

  When a Signature payload is received, the receiving entity (initiator
  or responder) MUST do the following:

  1.  Determine if the Signature is supported.  If the Signature
      determination fails, the message is discarded and the following
      actions are taken:

      (a)  The event, INVALID SIGNATURE INFORMATION, MAY be logged in
           the appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the INVALID-SIGNATURE message type MAY be sent to
           the transmitting entity.  This action is dictated by a
           system security policy.

  2.  Perform the Signature function as outlined in the DOI and/or Key
      Exchange protocol documents.  If the Signature function fails,
      the message is discarded and the following actions are taken:

      (a)  The event, INVALID SIGNATURE VALUE, MAY be logged in the
           appropriate system audit file.

      (b)  An Informational Exchange with a Notification payload
           containing the AUTHENTICATION-FAILED message type MAY be
           sent to the transmitting entity.  This action is dictated by
           a system security policy.

5.13 Nonce Payload Processing

  When creating a Nonce Payload, the transmitting entity (initiator or
  responder) MUST do the following:

  1.  Create a unique random value to be used as a nonce.

  2.  Construct a Nonce payload.





Maughan, et. al.            Standards Track                    [Page 70]

RFC 2408                         ISAKMP                    November 1998


  3.  Transmit the message to the receiving entity as described in
      section 5.1.

  When a Nonce payload is received, the receiving entity (initiator or
  responder) MUST do the following:

  1.  There are no specific procedures for handling Nonce payloads.
      The procedures are defined by the exchange types (and possibly
      the DOI and Key Exchange descriptions).

5.14 Notification Payload Processing

  During communications it is possible that errors may occur.  The
  Informational Exchange with a Notify Payload provides a controlled
  method of informing a peer entity that errors have occurred during
  protocol processing.  It is RECOMMENDED that Notify Payloads be sent
  in a separate Informational Exchange rather than appending a Notify
  Payload to an existing exchange.

  When creating a Notification Payload, the transmitting entity
  (initiator or responder) MUST do the following:

  1.  Determine the DOI for this Notification.

  2.  Determine the Protocol-ID for this Notification.

  3.  Determine the SPI size based on the Protocol-ID field.  This
      field is necessary because different security protocols have
      different SPI sizes.  For example, ISAKMP combines the Initiator
      and Responder cookie pair (16 octets) as a SPI, while ESP and AH
      have 4 octet SPIs.

  4.  Determine the Notify Message Type based on the error or status
      message desired.

  5.  Determine the SPI which is associated with this notification.

  6.  Determine if additional Notification Data is to be included.
      This is additional information specified by the DOI.

  7.  Construct a Notification payload.

  8.  Transmit the message to the receiving entity as described in
      section 5.1.

  Because the Informational Exchange with a Notification payload is a
  unidirectional message a retransmission will not be performed.  The
  local security policy will dictate the procedures for continuing.



Maughan, et. al.            Standards Track                    [Page 71]

RFC 2408                         ISAKMP                    November 1998


  However, we RECOMMEND that a NOTIFICATION PAYLOAD ERROR event be
  logged in the appropriate system audit file by the receiving entity.

  If the Informational Exchange occurs prior to the exchange of keying
  material during an ISAKMP Phase 1 negotiation there will be no
  protection provided for the Informational Exchange.  Once the keying
  material has been exchanged or the ISAKMP SA has been established,
  the Informational Exchange MUST be transmitted under the protection
  provided by the keying material or the ISAKMP SA.

  When a Notification payload is received, the receiving entity
  (initiator or responder) MUST do the following:

  1.  Determine if the Informational Exchange has any protection
      applied to it by checking the Encryption Bit and the
      Authentication Only Bit in the ISAKMP Header.  If the Encryption
      Bit is set, i.e.  the Informational Exchange is encrypted, then
      the message MUST be decrypted using the (in-progress or
      completed) ISAKMP SA. Once the decryption is complete the
      processing can continue as described below.  If the
      Authentication Only Bit is set, then the message MUST be
      authenticated using the (in-progress or completed) ISAKMP SA.
      Once the authentication is completed, the processing can continue
      as described below.  If the Informational Exchange is not
      encrypted or authentication, the payload processing can continue
      as described below.

  2.  Determine if the Domain of Interpretation (DOI) is supported.  If
      the DOI determination fails, the payload is discarded and the
      following action is taken:

      (a)  The event, INVALID DOI, MAY be logged in the appropriate
           system audit file.

  3.  Determine if the Protocol-Id is supported.  If the Protocol-Id
      determination fails, the payload is discarded and the following
      action is taken:

      (a)  The event, INVALID PROTOCOL-ID, MAY be logged in the
           appropriate system audit file.

  4.  Determine if the SPI is valid.  If the SPI is invalid, the
      payload is discarded and the following action is taken:

      (a)  The event, INVALID SPI, MAY be logged in the appropriate
           system audit file.





Maughan, et. al.            Standards Track                    [Page 72]

RFC 2408                         ISAKMP                    November 1998


  5.  Determine if the Notify Message Type is valid.  If the Notify
      Message Type is invalid, the payload is discarded and the
      following action is taken:

      (a)  The event, INVALID MESSAGE TYPE, MAY be logged in the
           appropriate system audit file.

  6.  Process the Notification payload, including additional
      Notification Data, and take appropriate action, according to
      local security policy.

5.15 Delete Payload Processing

  During communications it is possible that hosts may be compromised or
  that information may be intercepted during transmission.  Determining
  whether this has occurred is not an easy task and is outside the
  scope of this memo.  However, if it is discovered that transmissions
  are being compromised, then it is necessary to establish a new SA and
  delete the current SA.

  The Informational Exchange with a Delete Payload provides a
  controlled method of informing a peer entity that the transmitting
  entity has deleted the SA(s).  Deletion of Security Associations MUST
  always be performed under the protection of an ISAKMP SA. The
  receiving entity SHOULD clean up its local SA database.  However,
  upon receipt of a Delete message the SAs listed in the Security
  Parameter Index (SPI) field of the Delete payload cannot be used with
  the transmitting entity.  The SA Establishment procedure must be
  invoked to re-establish secure communications.

  When creating a Delete Payload, the transmitting entity (initiator or
  responder) MUST do the following:

  1.  Determine the DOI for this Deletion.

  2.  Determine the Protocol-ID for this Deletion.

  3.  Determine the SPI size based on the Protocol-ID field.  This
      field is necessary because different security protocols have
      different SPI sizes.  For example, ISAKMP combines the Initiator
      and Responder cookie pair (16 octets) as a SPI, while ESP and AH
      have 4 octet SPIs.

  4.  Determine the # of SPIs to be deleted for this protocol.

  5.  Determine the SPI(s) which is (are) associated with this
      deletion.




Maughan, et. al.            Standards Track                    [Page 73]

RFC 2408                         ISAKMP                    November 1998


  6.  Construct a Delete payload.

  7.  Transmit the message to the receiving entity as described in
      section 5.1.

  Because the Informational Exchange with a Delete payload is a
  unidirectional message a retransmission will not be performed.  The
  local security policy will dictate the procedures for continuing.
  However, we RECOMMEND that a DELETE PAYLOAD ERROR event be logged in
  the appropriate system audit file by the receiving entity.

  As described above, the Informational Exchange with a Delete payload
  MUST be transmitted under the protection provided by an ISAKMP SA.

  When a Delete payload is received, the receiving entity (initiator or
  responder) MUST do the following:

  1.  Because the Informational Exchange is protected by some security
      service (e.g.  authentication for an Auth-Only SA, encryption for
      other exchanges), the message MUST have these security services
      applied using the ISAKMP SA. Once the security service processing
      is complete the processing can continue as described below.  Any
      errors that occur during the security service processing will be
      evident when checking information in the Delete payload.  The
      local security policy SHOULD dictate any action to be taken as a
      result of security service processing errors.

  2.  Determine if the Domain of Interpretation (DOI) is supported.  If
      the DOI determination fails, the payload is discarded and the
      following action is taken:

      (a)  The event, INVALID DOI, MAY be logged in the appropriate
           system audit file.

  3.  Determine if the Protocol-Id is supported.  If the Protocol-Id
      determination fails, the payload is discarded and the following
      action is taken:

      (a)  The event, INVALID PROTOCOL-ID, MAY be logged in the
           appropriate system audit file.

  4.  Determine if the SPI is valid for each SPI included in the Delete
      payload.  For each SPI that is invalid, the following action is
      taken:

      (a)  The event, INVALID SPI, MAY be logged in the appropriate
           system audit file.




Maughan, et. al.            Standards Track                    [Page 74]

RFC 2408                         ISAKMP                    November 1998


  5.  Process the Delete payload and take appropriate action, according
      to local security policy.  As described above, one appropriate
      action SHOULD include cleaning up the local SA database.

6 Conclusions

  The Internet Security Association and Key Management Protocol
  (ISAKMP) is a well designed protocol aimed at the Internet of the
  future.  The massive growth of the Internet will lead to great
  diversity in network utilization, communications, security
  requirements, and security mechanisms.  ISAKMP contains all the
  features that will be needed for this dynamic and expanding
  communications environment.

  ISAKMP's Security Association (SA) feature coupled with
  authentication and key establishment provides the security and
  flexibility that will be needed for future growth and diversity.
  This security diversity of multiple key exchange techniques,
  encryption algorithms, authentication mechanisms, security services,
  and security attributes will allow users to select the appropriate
  security for their network, communications, and security needs.  The
  SA feature allows users to specify and negotiate security
  requirements with other users.  An additional benefit of supporting
  multiple techniques in a single protocol is that as new techniques
  are developed they can easily be added to the protocol.  This
  provides a path for the growth of Internet security services.  ISAKMP
  supports both publicly or privately defined SAs, making it ideal for
  government, commercial, and private communications.

  ISAKMP provides the ability to establish SAs for multiple security
  protocols and applications.  These protocols and applications may be
  session-oriented or sessionless.  Having one SA establishment
  protocol that supports multiple security protocols eliminates the
  need for multiple, nearly identical authentication, key exchange and
  SA establishment protocols when more than one security protocol is in
  use or desired.  Just as IP has provided the common networking layer
  for the Internet, a common security establishment protocol is needed
  if security is to become a reality on the Internet.  ISAKMP provides
  the common base that allows all other security protocols to
  interoperate.

  ISAKMP follows good security design principles.  It is not coupled to
  other insecure transport protocols, therefore it is not vulnerable or
  weakened by attacks on other protocols.  Also, when more secure
  transport protocols are developed, ISAKMP can be easily migrated to
  them.  ISAKMP also provides protection against protocol related
  attacks.  This protection provides the assurance that the SAs and
  keys established are with the desired party and not with an attacker.



Maughan, et. al.            Standards Track                    [Page 75]

RFC 2408                         ISAKMP                    November 1998


  ISAKMP also follows good protocol design principles.  Protocol
  specific information only is in the protocol header, following the
  design principles of IPv6.  The data transported by the protocol is
  separated into functional payloads.  As the Internet grows and
  evolves, new payloads to support new security functionality can be
  added without modifying the entire protocol.













































Maughan, et. al.            Standards Track                    [Page 76]

RFC 2408                         ISAKMP                    November 1998


A ISAKMP Security Association Attributes

A.1 Background/Rationale

  As detailed in previous sections, ISAKMP is designed to provide a
  flexible and extensible framework for establishing and managing
  Security Associations and cryptographic keys.  The framework provided
  by ISAKMP consists of header and payload definitions, exchange types
  for guiding message and payload exchanges, and general processing
  guidelines.  ISAKMP does not define the mechanisms that will be used
  to establish and manage Security Associations and cryptographic keys
  in an authenticated and confidential manner.  The definition of
  mechanisms and their application is the purview of individual Domains
  of Interpretation (DOIs).

  This section describes the ISAKMP values for the Internet IP Security
  DOI, supported security protocols, and identification values for
  ISAKMP Phase 1 negotiations.  The Internet IP Security DOI is
  MANDATORY to implement for IP Security.  [Oakley] and [IKE] describe,
  in detail, the mechanisms and their application for establishing and
  managing Security Associations and cryptographic keys for IP
  Security.

A.2 Internet IP Security DOI Assigned Value

  As described in [IPDOI], the Internet IP Security DOI Assigned Number
  is one (1).

A.3 Supported Security Protocols

  Values for supported security protocols are specified in the most
  recent "Assigned Numbers" RFC [STD-2].  Presented in the following
  table are the values for the security protocols supported by ISAKMP
  for the Internet IP Security DOI.


                      Protocol Assigned Value
                      RESERVED        0
                      ISAKMP          1

  All DOIs MUST reserve ISAKMP with a Protocol-ID of 1.  All other
  security protocols within that DOI will be numbered accordingly.

  Security protocol values 2-15359 are reserved to IANA for future use.
  Values 15360-16383 are permanently reserved for private use amongst
  mutually consenting implementations.  Such private use values are
  unlikely to be interoperable across different implementations.




Maughan, et. al.            Standards Track                    [Page 77]

RFC 2408                         ISAKMP                    November 1998


A.4 ISAKMP Identification Type Values

  The following table lists the assigned values for the Identification
  Type field found in the Identification payload during a generic Phase
  1 exchange, which is not for a specific protocol.


                             ID Type       Value
                       ID_IPV4_ADDR          0
                       ID_IPV4_ADDR_SUBNET   1
                       ID_IPV6_ADDR          2
                       ID_IPV6_ADDR_SUBNET   3

A.4.1 ID_IPV4_ADDR

  The ID_IPV4_ADDR type specifies a single four (4) octet IPv4 address.

A.4.2 ID_IPV4_ADDR_SUBNET

  The ID_IPV4_ADDR_SUBNET type specifies a range of IPv4 addresses,
  represented by two four (4) octet values.  The first value is an IPv4
  address.  The second is an IPv4 network mask.  Note that ones (1s) in
  the network mask indicate that the corresponding bit in the address
  is fixed, while zeros (0s) indicate a "wildcard" bit.

A.4.3 ID_IPV6_ADDR

  The ID_IPV6_ADDR type specifies a single sixteen (16) octet IPv6
  address.

A.4.4 ID_IPV6_ADDR_SUBNET

  The ID_IPV6_ADDR_SUBNET type specifies a range of IPv6 addresses,
  represented by two sixteen (16) octet values.  The first value is an
  IPv6 address.  The second is an IPv6 network mask.  Note that ones
  (1s) in the network mask indicate that the corresponding bit in the
  address is fixed, while zeros (0s) indicate a "wildcard" bit.














Maughan, et. al.            Standards Track                    [Page 78]

RFC 2408                         ISAKMP                    November 1998


B Defining a new Domain of Interpretation

  The Internet DOI may be sufficient to meet the security requirements
  of a large portion of the internet community.  However, some groups
  may have a need to customize some aspect of a DOI, perhaps to add a
  different set of cryptographic algorithms, or perhaps because they
  want to make their security-relevant decisions based on something
  other than a host id or user id.  Also, a particular group may have a
  need for a new exchange type, for example to support key management
  for multicast groups.

  This section discusses guidelines for defining a new DOI. The full
  specification for the Internet DOI can be found in [IPDOI].

  Defining a new DOI is likely to be a time-consuming process.  If at
  all possible, it is recommended that the designer begin with an
  existing DOI and customize only the parts that are unacceptable.

  If a designer chooses to start from scratch, the following MUST be
  defined:

   o  A "situation":  the set of information that will be used to
      determine the required security services.

   o  The set of security policies that must be supported.

   o  A scheme for naming security-relevant information, including
      encryption algorithms, key exchange algorithms, etc.

   o  A syntax for the specification of proposed security services,
      attributes, and certificate authorities.

   o  The specific formats of the various payload contents.

   o  Additional exchange types, if required.

B.1 Situation

  The situation is the basis for deciding how to protect a
  communications channel.  It must contain all of the data that will be
  used to determine the types and strengths of protections applied in
  an SA. For example, a US Department of Defense DOI would probably use
  unpublished algorithms and have additional special attributes to
  negotiate.  These additional security attributes would be included in
  the situation.






Maughan, et. al.            Standards Track                    [Page 79]

RFC 2408                         ISAKMP                    November 1998


B.2 Security Policies

  Security policies define how various types of information must be
  categorized and protected.  The DOI must define the set of security
  policies supported, because both parties in a negotiation must trust
  that the other party understands a situation, and will protect
  information appropriately, both in transit and in storage.  In a
  corporate setting, for example, both parties in a negotiation must
  agree to the meaning of the term "proprietary information" before
  they can negotiate how to protect it.

  Note that including the required security policies in the DOI only
  specifies that the participating hosts understand and implement those
  policies in a full system context.

B.3 Naming Schemes

  Any DOI must define a consistent way to name cryptographic
  algorithms, certificate authorities, etc.  This can usually be done
  by using IANA naming conventions, perhaps with some private
  extensions.

B.4 Syntax for Specifying Security Services

  In addition to simply specifying how to name entities, the DOI must
  also specify the format for complete proposals of how to protect
  traffic under a given situation.

B.5 Payload Specification

  The DOI must specify the format of each of the payload types.  For
  several of the payload types, ISAKMP has included fields that would
  have to be present across all DOI (such as a certificate authority in
  the certificate payload, or a key exchange identifier in the key
  exchange payload).

B.6 Defining new Exchange Types

  If the basic exchange types are inadequate to meet the requirements
  within a DOI, a designer can define up to thirteen extra exchange
  types per DOI.  The designer creates a new exchange type by choosing
  an unused exchange type value, and defining a sequence of messages
  composed of strings of the ISAKMP payload types.

  Note that any new exchange types must be rigorously analyzed for
  vulnerabilities.  Since this is an expensive and imprecise
  undertaking, a new exchange type should only be created when
  absolutely necessary.



Maughan, et. al.            Standards Track                    [Page 80]

RFC 2408                         ISAKMP                    November 1998


Security Considerations

  Cryptographic analysis techniques are improving at a steady pace.
  The continuing improvement in processing power makes once
  computationally prohibitive cryptographic attacks more realistic.
  New cryptographic algorithms and public key generation techniques are
  also being developed at a steady pace.  New security services and
  mechanisms are being developed at an accelerated pace.  A consistent
  method of choosing from a variety of security services and mechanisms
  and to exchange attributes required by the mechanisms is important to
  security in the complex structure of the Internet.  However, a system
  that locks itself into a single cryptographic algorithm, key exchange
  technique, or security mechanism will become increasingly vulnerable
  as time passes.

  UDP is an unreliable datagram protocol and therefore its use in
  ISAKMP introduces a number of security considerations.  Since UDP is
  unreliable, but a key management protocol must be reliable, the
  reliability is built into ISAKMP. While ISAKMP utilizes UDP as its
  transport mechanism, it doesn't rely on any UDP information (e.g.
  checksum, length) for its processing.

  Another issue that must be considered in the development of ISAKMP is
  the effect of firewalls on the protocol.  Many firewalls filter out
  all UDP packets, making reliance on UDP questionable in certain
  environments.

  A number of very important security considerations are presented in
  [SEC-ARCH].  One bears repeating.  Once a private session key is
  created, it must be safely stored.  Failure to properly protect the
  private key from access both internal and external to the system
  completely nullifies any protection provided by the IP Security
  services.

IANA Considerations

  This document contains many "magic" numbers to be maintained by the
  IANA.  This section explains the criteria to be used by the IANA to
  assign additional numbers in each of these lists.

Domain of Interpretation

  The Domain of Interpretation (DOI) is a 32-bit field which identifies
  the domain under which the security association negotiation is taking
  place.  Requests for assignments of new DOIs must be accompanied by a
  standards-track RFC which describes the specific domain.





Maughan, et. al.            Standards Track                    [Page 81]

RFC 2408                         ISAKMP                    November 1998


Supported Security Protocols

  ISAKMP is designed to provide security association negotiation and
  key management for many security protocols.  Requests for identifiers
  for additional security protocols must be accompanied by a
  standards-track RFC which describes the security protocol and its
  relationship to ISAKMP.

Acknowledgements

  Dan Harkins, Dave Carrel, and Derrell Piper of Cisco Systems provided
  design assistance with the protocol and coordination for the [IKE]
  and [IPDOI] documents.

  Hilarie Orman, via the Oakley key exchange protocol, has
  significantly influenced the design of ISAKMP.

  Marsha Gross, Bill Kutz, Mike Oehler, Pete Sell, and Ruth Taylor
  provided significant input and review to this document.

  Scott Carlson ported the TIS DNSSEC prototype to FreeBSD for use with
  the ISAKMP prototype.

  Jeff Turner and Steve Smalley contributed to the prototype
  development and integration with ESP and AH.

  Mike Oehler and Pete Sell performed interoperability testing with
  other ISAKMP implementors.

  Thanks to Carl Muckenhirn of SPARTA, Inc.  for his assistance with
  LaTeX.

References

  [ANSI]     ANSI, X9.42:  Public Key Cryptography for the Financial
             Services Industry -- Establishment of Symmetric Algorithm
             Keys Using Diffie-Hellman, Working Draft, April 19, 1996.

  [BC]       Ballardie, A., and J. Crowcroft, Multicast-specific
             Security Threats and Countermeasures, Proceedings of 1995
             ISOC Symposium on Networks & Distributed Systems Security,
             pp. 17-30, Internet Society, San Diego, CA, February 1995.

  [Berge]    Berge, N., "UNINETT PCA Policy Statements", RFC 1875,
             December 1995.






Maughan, et. al.            Standards Track                    [Page 82]

RFC 2408                         ISAKMP                    November 1998


  [CW87]     Clark, D.D. and D.R. Wilson, A Comparison of Commercial
             and Military Computer Security Policies, Proceedings of
             the IEEE Symposium on Security & Privacy, Oakland, CA,
             1987, pp. 184-193.

  [DNSSEC]   D. Eastlake III, Domain Name System Protocol Security
             Extensions, Work in Progress.

  [DOW92]    Diffie, W., M.Wiener, P. Van Oorschot, Authentication and
             Authenticated Key Exchanges, Designs, Codes, and
             Cryptography, 2, 107-125, Kluwer Academic Publishers,
             1992.

  [IAB]      Bellovin, S., "Report of the IAB Security Architecture
             Workshop", RFC 2316, April 1998.

  [IKE]      Harkins, D., and D. Carrel, "The Internet Key Exchange
             (IKE)", RFC 2409, November 1998.

  [IPDOI]    Piper, D., "The Internet IP Security Domain of
             Interpretation for ISAKMP", RFC 2407, November 1998.

  [Karn]     Karn, P., and B. Simpson, Photuris:  Session Key
             Management Protocol, Work in Progress.

  [Kent94]   Steve Kent, IPSEC SMIB, e-mail to [email protected], August
             10, 1994.

  [Oakley]   Orman, H., "The Oakley Key Determination Protocol",  RFC
             2412, November 1998.

  [RFC-1422] Kent, S., "Privacy Enhancement for Internet Electronic
             Mail:  Part II: Certificate-Based Key Management", RFC
             1422, February 1993.

  [RFC-1949] Ballardie, A., "Scalable Multicast Key Distribution", RFC
             1949, May 1996.

  [RFC-2093] Harney, H., and C. Muckenhirn, "Group Key Management
             Protocol (GKMP) Specification", RFC 2093, July 1997.

  [RFC-2094] Harney, H., and C. Muckenhirn, "Group Key Management
             Protocol (GKMP) Architecture", RFC 2094, July 1997.

  [RFC-2119] Bradner, S., "Key Words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.





Maughan, et. al.            Standards Track                    [Page 83]

RFC 2408                         ISAKMP                    November 1998


  [Schneier] Bruce Schneier, Applied Cryptography - Protocols,
             Algorithms, and Source Code in C (Second Edition), John
             Wiley & Sons, Inc., 1996.

  [SEC-ARCH] Atkinson, R., and S. Kent, "Security Architecture for the
             Internet Protocol", RFC 2401, November 1998.

  [STD-2]   Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC
             1700, October 1994.  See also:
             http://www.iana.org/numbers.html









































Maughan, et. al.            Standards Track                    [Page 84]

RFC 2408                         ISAKMP                    November 1998


Authors' Addresses

  Douglas Maughan
  National Security Agency
  ATTN: R23
  9800 Savage Road
  Ft.  Meade, MD. 20755-6000

  Phone:  301-688-0847
  EMail:[email protected]


  Mark Schneider
  National Security Agency
  ATTN: R23
  9800 Savage Road
  Ft.  Meade, MD. 20755-6000

  Phone:  301-688-0851
  EMail:[email protected]


  Mark Schertler
  Securify, Inc.
  2415-B Charleston Road
  Mountain View, CA 94043

  Phone:  650-934-9303
  EMail:[email protected]


  Jeff Turner
  RABA Technologies, Inc.
  10500 Little Patuxent Parkway
  Columbia, MD. 21044

  Phone:  410-715-9399
  EMail:[email protected]













Maughan, et. al.            Standards Track                    [Page 85]

RFC 2408                         ISAKMP                    November 1998


Full Copyright Statement

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























Maughan, et. al.            Standards Track                    [Page 86]