Network Working Group                                     H. Schulzrinne
Request for Comments: 2326                                   Columbia U.
Category: Standards Track                                         A. Rao
                                                               Netscape
                                                            R. Lanphier
                                                           RealNetworks
                                                             April 1998

                 Real Time Streaming Protocol (RTSP)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

Abstract

  The Real Time Streaming Protocol, or RTSP, is an application-level
  protocol for control over the delivery of data with real-time
  properties. RTSP provides an extensible framework to enable
  controlled, on-demand delivery of real-time data, such as audio and
  video. Sources of data can include both live data feeds and stored
  clips. This protocol is intended to control multiple data delivery
  sessions, provide a means for choosing delivery channels such as UDP,
  multicast UDP and TCP, and provide a means for choosing delivery
  mechanisms based upon RTP (RFC 1889).

Table of Contents

  * 1 Introduction .................................................  5
       + 1.1 Purpose ...............................................  5
       + 1.2 Requirements ..........................................  6
       + 1.3 Terminology ...........................................  6
       + 1.4 Protocol Properties ...................................  9
       + 1.5 Extending RTSP ........................................ 11
       + 1.6 Overall Operation ..................................... 11
       + 1.7 RTSP States ........................................... 12
       + 1.8 Relationship with Other Protocols ..................... 13
  * 2 Notational Conventions ....................................... 14
  * 3 Protocol Parameters .......................................... 14
       + 3.1 RTSP Version .......................................... 14



Schulzrinne, et. al.        Standards Track                     [Page 1]

RFC 2326              Real Time Streaming Protocol            April 1998


       + 3.2 RTSP URL .............................................. 14
       + 3.3 Conference Identifiers ................................ 16
       + 3.4 Session Identifiers ................................... 16
       + 3.5 SMPTE Relative Timestamps ............................. 16
       + 3.6 Normal Play Time ...................................... 17
       + 3.7 Absolute Time ......................................... 18
       + 3.8 Option Tags ........................................... 18
            o 3.8.1 Registering New Option Tags with IANA .......... 18
  * 4 RTSP Message ................................................. 19
       + 4.1 Message Types ......................................... 19
       + 4.2 Message Headers ....................................... 19
       + 4.3 Message Body .......................................... 19
       + 4.4 Message Length ........................................ 20
  * 5 General Header Fields ........................................ 20
  * 6 Request ...................................................... 20
       + 6.1 Request Line .......................................... 21
       + 6.2 Request Header Fields ................................. 21
  * 7 Response ..................................................... 22
       + 7.1 Status-Line ........................................... 22
            o 7.1.1 Status Code and Reason Phrase .................. 22
            o 7.1.2 Response Header Fields ......................... 26
  * 8 Entity ....................................................... 27
       + 8.1 Entity Header Fields .................................. 27
       + 8.2 Entity Body ........................................... 28
  * 9 Connections .................................................. 28
       + 9.1 Pipelining ............................................ 28
       + 9.2 Reliability and Acknowledgements ...................... 28
  * 10 Method Definitions .......................................... 29
       + 10.1 OPTIONS .............................................. 30
       + 10.2 DESCRIBE ............................................. 31
       + 10.3 ANNOUNCE ............................................. 32
       + 10.4 SETUP ................................................ 33
       + 10.5 PLAY ................................................. 34
       + 10.6 PAUSE ................................................ 36
       + 10.7 TEARDOWN ............................................. 37
       + 10.8 GET_PARAMETER ........................................ 37
       + 10.9 SET_PARAMETER ........................................ 38
       + 10.10 REDIRECT ............................................ 39
       + 10.11 RECORD .............................................. 39
       + 10.12 Embedded (Interleaved) Binary Data .................. 40
  * 11 Status Code Definitions ..................................... 41
       + 11.1 Success 2xx .......................................... 41
            o 11.1.1 250 Low on Storage Space ...................... 41
       + 11.2 Redirection 3xx ...................................... 41
       + 11.3 Client Error 4xx ..................................... 42
            o 11.3.1 405 Method Not Allowed ........................ 42
            o 11.3.2 451 Parameter Not Understood .................. 42
            o 11.3.3 452 Conference Not Found ...................... 42



Schulzrinne, et. al.        Standards Track                     [Page 2]

RFC 2326              Real Time Streaming Protocol            April 1998


            o 11.3.4 453 Not Enough Bandwidth ...................... 42
            o 11.3.5 454 Session Not Found ......................... 42
            o 11.3.6 455 Method Not Valid in This State ............ 42
            o 11.3.7 456 Header Field Not Valid for Resource ....... 42
            o 11.3.8 457 Invalid Range ............................. 43
            o 11.3.9 458 Parameter Is Read-Only .................... 43
            o 11.3.10 459 Aggregate Operation Not Allowed .......... 43
            o 11.3.11 460 Only Aggregate Operation Allowed ......... 43
            o 11.3.12 461 Unsupported Transport .................... 43
            o 11.3.13 462 Destination Unreachable .................. 43
            o 11.3.14 551 Option not supported ..................... 43
  * 12 Header Field Definitions .................................... 44
       + 12.1 Accept ............................................... 46
       + 12.2 Accept-Encoding ...................................... 46
       + 12.3 Accept-Language ...................................... 46
       + 12.4 Allow ................................................ 46
       + 12.5 Authorization ........................................ 46
       + 12.6 Bandwidth ............................................ 46
       + 12.7 Blocksize ............................................ 47
       + 12.8 Cache-Control ........................................ 47
       + 12.9 Conference ........................................... 49
       + 12.10 Connection .......................................... 49
       + 12.11 Content-Base ........................................ 49
       + 12.12 Content-Encoding .................................... 49
       + 12.13 Content-Language .................................... 50
       + 12.14 Content-Length ...................................... 50
       + 12.15 Content-Location .................................... 50
       + 12.16 Content-Type ........................................ 50
       + 12.17 CSeq ................................................ 50
       + 12.18 Date ................................................ 50
       + 12.19 Expires ............................................. 50
       + 12.20 From ................................................ 51
       + 12.21 Host ................................................ 51
       + 12.22 If-Match ............................................ 51
       + 12.23 If-Modified-Since ................................... 52
       + 12.24 Last-Modified........................................ 52
       + 12.25 Location ............................................ 52
       + 12.26 Proxy-Authenticate .................................. 52
       + 12.27 Proxy-Require ....................................... 52
       + 12.28 Public .............................................. 53
       + 12.29 Range ............................................... 53
       + 12.30 Referer ............................................. 54
       + 12.31 Retry-After ......................................... 54
       + 12.32 Require ............................................. 54
       + 12.33 RTP-Info ............................................ 55
       + 12.34 Scale ............................................... 56
       + 12.35 Speed ............................................... 57
       + 12.36 Server .............................................. 57



Schulzrinne, et. al.        Standards Track                     [Page 3]

RFC 2326              Real Time Streaming Protocol            April 1998


       + 12.37 Session ............................................. 57
       + 12.38 Timestamp ........................................... 58
       + 12.39 Transport ........................................... 58
       + 12.40 Unsupported ......................................... 62
       + 12.41 User-Agent .......................................... 62
       + 12.42 Vary ................................................ 62
       + 12.43 Via ................................................. 62
       + 12.44 WWW-Authenticate .................................... 62
  * 13 Caching ..................................................... 62
  * 14 Examples .................................................... 63
       + 14.1 Media on Demand (Unicast) ............................ 63
       + 14.2 Streaming of a Container file ........................ 65
       + 14.3 Single Stream Container Files ........................ 67
       + 14.4 Live Media Presentation Using Multicast .............. 69
       + 14.5 Playing media into an existing session ............... 70
       + 14.6 Recording ............................................ 71
  * 15 Syntax ...................................................... 72
       + 15.1 Base Syntax .......................................... 72
  * 16 Security Considerations ..................................... 73
  * A RTSP Protocol State Machines ................................. 76
       + A.1 Client State Machine .................................. 76
       + A.2 Server State Machine .................................. 77
  * B Interaction with RTP ......................................... 79
  * C Use of SDP for RTSP Session Descriptions ..................... 80
       + C.1 Definitions ........................................... 80
            o C.1.1 Control URL .................................... 80
            o C.1.2 Media streams .................................. 81
            o C.1.3 Payload type(s) ................................ 81
            o C.1.4 Format-specific parameters ..................... 81
            o C.1.5 Range of presentation .......................... 82
            o C.1.6 Time of availability ........................... 82
            o C.1.7 Connection Information ......................... 82
            o C.1.8 Entity Tag ..................................... 82
       + C.2 Aggregate Control Not Available ....................... 83
       + C.3 Aggregate Control Available ........................... 83
  * D Minimal RTSP implementation .................................. 85
       + D.1 Client ................................................ 85
            o D.1.1 Basic Playback ................................. 86
            o D.1.2 Authentication-enabled ......................... 86
       + D.2 Server ................................................ 86
            o D.2.1 Basic Playback ................................. 87
            o D.2.2 Authentication-enabled ......................... 87
  * E Authors' Addresses ........................................... 88
  * F Acknowledgements ............................................. 89
  * References ..................................................... 90
  * Full Copyright Statement ....................................... 92





Schulzrinne, et. al.        Standards Track                     [Page 4]

RFC 2326              Real Time Streaming Protocol            April 1998


1 Introduction

1.1 Purpose

  The Real-Time Streaming Protocol (RTSP) establishes and controls
  either a single or several time-synchronized streams of continuous
  media such as audio and video. It does not typically deliver the
  continuous streams itself, although interleaving of the continuous
  media stream with the control stream is possible (see Section 10.12).
  In other words, RTSP acts as a "network remote control" for
  multimedia servers.

  The set of streams to be controlled is defined by a presentation
  description. This memorandum does not define a format for a
  presentation description.

  There is no notion of an RTSP connection; instead, a server maintains
  a session labeled by an identifier. An RTSP session is in no way tied
  to a transport-level connection such as a TCP connection. During an
  RTSP session, an RTSP client may open and close many reliable
  transport connections to the server to issue RTSP requests.
  Alternatively, it may use a connectionless transport protocol such as
  UDP.

  The streams controlled by RTSP may use RTP [1], but the operation of
  RTSP does not depend on the transport mechanism used to carry
  continuous media.  The protocol is intentionally similar in syntax
  and operation to HTTP/1.1 [2] so that extension mechanisms to HTTP
  can in most cases also be added to RTSP. However, RTSP differs in a
  number of important aspects from HTTP:

    * RTSP introduces a number of new methods and has a different
      protocol identifier.
    * An RTSP server needs to maintain state by default in almost all
      cases, as opposed to the stateless nature of HTTP.
    * Both an RTSP server and client can issue requests.
    * Data is carried out-of-band by a different protocol. (There is an
      exception to this.)
    * RTSP is defined to use ISO 10646 (UTF-8) rather than ISO 8859-1,
      consistent with current HTML internationalization efforts [3].
    * The Request-URI always contains the absolute URI. Because of
      backward compatibility with a historical blunder, HTTP/1.1 [2]
      carries only the absolute path in the request and puts the host
      name in a separate header field.

    This makes "virtual hosting" easier, where a single host with one
    IP address hosts several document trees.




Schulzrinne, et. al.        Standards Track                     [Page 5]

RFC 2326              Real Time Streaming Protocol            April 1998


  The protocol supports the following operations:

  Retrieval of media from media server:
         The client can request a presentation description via HTTP or
         some other method. If the presentation is being multicast, the
         presentation description contains the multicast addresses and
         ports to be used for the continuous media. If the presentation
         is to be sent only to the client via unicast, the client
         provides the destination for security reasons.

  Invitation of a media server to a conference:
         A media server can be "invited" to join an existing
         conference, either to play back media into the presentation or
         to record all or a subset of the media in a presentation. This
         mode is useful for distributed teaching applications. Several
         parties in the conference may take turns "pushing the remote
         control buttons."

  Addition of media to an existing presentation:
         Particularly for live presentations, it is useful if the
         server can tell the client about additional media becoming
         available.

  RTSP requests may be handled by proxies, tunnels and caches as in
  HTTP/1.1 [2].

1.2 Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [4].

1.3 Terminology

  Some of the terminology has been adopted from HTTP/1.1 [2]. Terms not
  listed here are defined as in HTTP/1.1.

  Aggregate control:
         The control of the multiple streams using a single timeline by
         the server. For audio/video feeds, this means that the client
         may issue a single play or pause message to control both the
         audio and video feeds.

  Conference:
         a multiparty, multimedia presentation, where "multi" implies
         greater than or equal to one.





Schulzrinne, et. al.        Standards Track                     [Page 6]

RFC 2326              Real Time Streaming Protocol            April 1998


  Client:
         The client requests continuous media data from the media
         server.

  Connection:
         A transport layer virtual circuit established between two
         programs for the purpose of communication.

  Container file:
         A file which may contain multiple media streams which often
         comprise a presentation when played together. RTSP servers may
         offer aggregate control on these files, though the concept of
         a container file is not embedded in the protocol.

  Continuous media:
         Data where there is a timing relationship between source and
         sink; that is, the sink must reproduce the timing relationship
         that existed at the source. The most common examples of
         continuous media are audio and motion video. Continuous media
         can be real-time (interactive), where there is a "tight"
         timing relationship between source and sink, or streaming
         (playback), where the relationship is less strict.

  Entity:
         The information transferred as the payload of a request or
         response. An entity consists of metainformation in the form of
         entity-header fields and content in the form of an entity-
         body, as described in Section 8.

  Media initialization:
         Datatype/codec specific initialization. This includes such
         things as clockrates, color tables, etc. Any transport-
         independent information which is required by a client for
         playback of a media stream occurs in the media initialization
         phase of stream setup.

  Media parameter:
         Parameter specific to a media type that may be changed before
         or during stream playback.

  Media server:
         The server providing playback or recording services for one or
         more media streams. Different media streams within a
         presentation may originate from different media servers. A
         media server may reside on the same or a different host as the
         web server the presentation is invoked from.





Schulzrinne, et. al.        Standards Track                     [Page 7]

RFC 2326              Real Time Streaming Protocol            April 1998


  Media server indirection:
         Redirection of a media client to a different media server.

  (Media) stream:
         A single media instance, e.g., an audio stream or a video
         stream as well as a single whiteboard or shared application
         group. When using RTP, a stream consists of all RTP and RTCP
         packets created by a source within an RTP session. This is
         equivalent to the definition of a DSM-CC stream([5]).

  Message:
         The basic unit of RTSP communication, consisting of a
         structured sequence of octets matching the syntax defined in
         Section 15 and transmitted via a connection or a
         connectionless protocol.

  Participant:
         Member of a conference. A participant may be a machine, e.g.,
         a media record or playback server.

  Presentation:
         A set of one or more streams presented to the client as a
         complete media feed, using a presentation description as
         defined below. In most cases in the RTSP context, this implies
         aggregate control of those streams, but does not have to.

  Presentation description:
         A presentation description contains information about one or
         more media streams within a presentation, such as the set of
         encodings, network addresses and information about the
         content.  Other IETF protocols such as SDP (RFC 2327 [6]) use
         the term "session" for a live presentation. The presentation
         description may take several different formats, including but
         not limited to the session description format SDP.

  Response:
         An RTSP response. If an HTTP response is meant, that is
         indicated explicitly.

  Request:
         An RTSP request. If an HTTP request is meant, that is
         indicated explicitly.

  RTSP session:
         A complete RTSP "transaction", e.g., the viewing of a movie.
         A session typically consists of a client setting up a
         transport mechanism for the continuous media stream (SETUP),
         starting the stream with PLAY or RECORD, and closing the



Schulzrinne, et. al.        Standards Track                     [Page 8]

RFC 2326              Real Time Streaming Protocol            April 1998


         stream with TEARDOWN.

  Transport initialization:
         The negotiation of transport information (e.g., port numbers,
         transport protocols) between the client and the server.

1.4 Protocol Properties

  RTSP has the following properties:

  Extendable:
         New methods and parameters can be easily added to RTSP.

  Easy to parse:
         RTSP can be parsed by standard HTTP or MIME parsers.

  Secure:
         RTSP re-uses web security mechanisms. All HTTP authentication
         mechanisms such as basic (RFC 2068 [2, Section 11.1]) and
         digest authentication (RFC 2069 [8]) are directly applicable.
         One may also reuse transport or network layer security
         mechanisms.

  Transport-independent:
         RTSP may use either an unreliable datagram protocol (UDP) (RFC
         768 [9]), a reliable datagram protocol (RDP, RFC 1151, not
         widely used [10]) or a reliable stream protocol such as TCP
         (RFC 793 [11]) as it implements application-level reliability.

  Multi-server capable:
         Each media stream within a presentation can reside on a
         different server. The client automatically establishes several
         concurrent control sessions with the different media servers.
         Media synchronization is performed at the transport level.

  Control of recording devices:
         The protocol can control both recording and playback devices,
         as well as devices that can alternate between the two modes
         ("VCR").

  Separation of stream control and conference initiation:
         Stream control is divorced from inviting a media server to a
         conference. The only requirement is that the conference
         initiation protocol either provides or can be used to create a
         unique conference identifier. In particular, SIP [12] or H.323
         [13] may be used to invite a server to a conference.





Schulzrinne, et. al.        Standards Track                     [Page 9]

RFC 2326              Real Time Streaming Protocol            April 1998


  Suitable for professional applications:
         RTSP supports frame-level accuracy through SMPTE time stamps
         to allow remote digital editing.

  Presentation description neutral:
         The protocol does not impose a particular presentation
         description or metafile format and can convey the type of
         format to be used. However, the presentation description must
         contain at least one RTSP URI.

  Proxy and firewall friendly:
         The protocol should be readily handled by both application and
         transport-layer (SOCKS [14]) firewalls. A firewall may need to
         understand the SETUP method to open a "hole" for the UDP media
         stream.

  HTTP-friendly:
         Where sensible, RTSP reuses HTTP concepts, so that the
         existing infrastructure can be reused. This infrastructure
         includes PICS (Platform for Internet Content Selection
         [15,16]) for associating labels with content. However, RTSP
         does not just add methods to HTTP since the controlling
         continuous media requires server state in most cases.

  Appropriate server control:
         If a client can start a stream, it must be able to stop a
         stream. Servers should not start streaming to clients in such
         a way that clients cannot stop the stream.

  Transport negotiation:
         The client can negotiate the transport method prior to
         actually needing to process a continuous media stream.

  Capability negotiation:
         If basic features are disabled, there must be some clean
         mechanism for the client to determine which methods are not
         going to be implemented. This allows clients to present the
         appropriate user interface. For example, if seeking is not
         allowed, the user interface must be able to disallow moving a
         sliding position indicator.

    An earlier requirement in RTSP was multi-client capability.
    However, it was determined that a better approach was to make sure
    that the protocol is easily extensible to the multi-client
    scenario. Stream identifiers can be used by several control
    streams, so that "passing the remote" would be possible. The
    protocol would not address how several clients negotiate access;
    this is left to either a "social protocol" or some other floor



Schulzrinne, et. al.        Standards Track                    [Page 10]

RFC 2326              Real Time Streaming Protocol            April 1998


    control mechanism.

1.5 Extending RTSP

  Since not all media servers have the same functionality, media
  servers by necessity will support different sets of requests. For
  example:

    * A server may only be capable of playback thus has no need to
      support the RECORD request.
    * A server may not be capable of seeking (absolute positioning) if
      it is to support live events only.
    * Some servers may not support setting stream parameters and thus
      not support GET_PARAMETER and SET_PARAMETER.

  A server SHOULD implement all header fields described in Section 12.

  It is up to the creators of presentation descriptions not to ask the
  impossible of a server. This situation is similar in HTTP/1.1 [2],
  where the methods described in [H19.6] are not likely to be supported
  across all servers.

  RTSP can be extended in three ways, listed here in order of the
  magnitude of changes supported:

    * Existing methods can be extended with new parameters, as long as
      these parameters can be safely ignored by the recipient. (This is
      equivalent to adding new parameters to an HTML tag.) If the
      client needs negative acknowledgement when a method extension is
      not supported, a tag corresponding to the extension may be added
      in the Require: field (see Section 12.32).
    * New methods can be added. If the recipient of the message does
      not understand the request, it responds with error code 501 (Not
      implemented) and the sender should not attempt to use this method
      again. A client may also use the OPTIONS method to inquire about
      methods supported by the server. The server SHOULD list the
      methods it supports using the Public response header.
    * A new version of the protocol can be defined, allowing almost all
      aspects (except the position of the protocol version number) to
      change.

1.6 Overall Operation

  Each presentation and media stream may be identified by an RTSP URL.
  The overall presentation and the properties of the media the
  presentation is made up of are defined by a presentation description
  file, the format of which is outside the scope of this specification.
  The presentation description file may be obtained by the client using



Schulzrinne, et. al.        Standards Track                    [Page 11]

RFC 2326              Real Time Streaming Protocol            April 1998


  HTTP or other means such as email and may not necessarily be stored
  on the media server.

  For the purposes of this specification, a presentation description is
  assumed to describe one or more presentations, each of which
  maintains a common time axis. For simplicity of exposition and
  without loss of generality, it is assumed that the presentation
  description contains exactly one such presentation. A presentation
  may contain several media streams.

  The presentation description file contains a description of the media
  streams making up the presentation, including their encodings,
  language, and other parameters that enable the client to choose the
  most appropriate combination of media. In this presentation
  description, each media stream that is individually controllable by
  RTSP is identified by an RTSP URL, which points to the media server
  handling that particular media stream and names the stream stored on
  that server. Several media streams can be located on different
  servers; for example, audio and video streams can be split across
  servers for load sharing. The description also enumerates which
  transport methods the server is capable of.

  Besides the media parameters, the network destination address and
  port need to be determined. Several modes of operation can be
  distinguished:

  Unicast:
         The media is transmitted to the source of the RTSP request,
         with the port number chosen by the client. Alternatively, the
         media is transmitted on the same reliable stream as RTSP.

  Multicast, server chooses address:
         The media server picks the multicast address and port. This is
         the typical case for a live or near-media-on-demand
         transmission.

  Multicast, client chooses address:
         If the server is to participate in an existing multicast
         conference, the multicast address, port and encryption key are
         given by the conference description, established by means
         outside the scope of this specification.

1.7 RTSP States

  RTSP controls a stream which may be sent via a separate protocol,
  independent of the control channel. For example, RTSP control may
  occur on a TCP connection while the data flows via UDP. Thus, data
  delivery continues even if no RTSP requests are received by the media



Schulzrinne, et. al.        Standards Track                    [Page 12]

RFC 2326              Real Time Streaming Protocol            April 1998


  server. Also, during its lifetime, a single media stream may be
  controlled by RTSP requests issued sequentially on different TCP
  connections. Therefore, the server needs to maintain "session state"
  to be able to correlate RTSP requests with a stream. The state
  transitions are described in Section A.

  Many methods in RTSP do not contribute to state. However, the
  following play a central role in defining the allocation and usage of
  stream resources on the server: SETUP, PLAY, RECORD, PAUSE, and
  TEARDOWN.

  SETUP:
         Causes the server to allocate resources for a stream and start
         an RTSP session.

  PLAY and RECORD:
         Starts data transmission on a stream allocated via SETUP.

  PAUSE:
         Temporarily halts a stream without freeing server resources.

  TEARDOWN:
         Frees resources associated with the stream. The RTSP session
         ceases to exist on the server.

         RTSP methods that contribute to state use the Session header
         field (Section 12.37) to identify the RTSP session whose state
         is being manipulated. The server generates session identifiers
         in response to SETUP requests (Section 10.4).

1.8 Relationship with Other Protocols

  RTSP has some overlap in functionality with HTTP. It also may
  interact with HTTP in that the initial contact with streaming content
  is often to be made through a web page. The current protocol
  specification aims to allow different hand-off points between a web
  server and the media server implementing RTSP. For example, the
  presentation description can be retrieved using HTTP or RTSP, which
  reduces roundtrips in web-browser-based scenarios, yet also allows
  for standalone RTSP servers and clients which do not rely on HTTP at
  all.

  However, RTSP differs fundamentally from HTTP in that data delivery
  takes place out-of-band in a different protocol. HTTP is an
  asymmetric protocol where the client issues requests and the server
  responds. In RTSP, both the media client and media server can issue
  requests. RTSP requests are also not stateless; they may set
  parameters and continue to control a media stream long after the



Schulzrinne, et. al.        Standards Track                    [Page 13]

RFC 2326              Real Time Streaming Protocol            April 1998


  request has been acknowledged.

    Re-using HTTP functionality has advantages in at least two areas,
    namely security and proxies. The requirements are very similar, so
    having the ability to adopt HTTP work on caches, proxies and
    authentication is valuable.

  While most real-time media will use RTP as a transport protocol, RTSP
  is not tied to RTP.

  RTSP assumes the existence of a presentation description format that
  can express both static and temporal properties of a presentation
  containing several media streams.

2 Notational Conventions

  Since many of the definitions and syntax are identical to HTTP/1.1,
  this specification only points to the section where they are defined
  rather than copying it. For brevity, [HX.Y] is to be taken to refer
  to Section X.Y of the current HTTP/1.1 specification (RFC 2068 [2]).

  All the mechanisms specified in this document are described in both
  prose and an augmented Backus-Naur form (BNF) similar to that used in
  [H2.1]. It is described in detail in RFC 2234 [17], with the
  difference that this RTSP specification maintains the "1#" notation
  for comma-separated lists.

  In this memo, we use indented and smaller-type paragraphs to provide
  background and motivation. This is intended to give readers who were
  not involved with the formulation of the specification an
  understanding of why things are the way that they are in RTSP.

3 Protocol Parameters

3.1 RTSP Version

  [H3.1] applies, with HTTP replaced by RTSP.

3.2 RTSP URL

  The "rtsp" and "rtspu" schemes are used to refer to network resources
  via the RTSP protocol. This section defines the scheme-specific
  syntax and semantics for RTSP URLs.

  rtsp_URL  =   ( "rtsp:" | "rtspu:" )
                "//" host [ ":" port ] [ abs_path ]
  host      =   <A legal Internet host domain name of IP address
                (in dotted decimal form), as defined by Section 2.1



Schulzrinne, et. al.        Standards Track                    [Page 14]

RFC 2326              Real Time Streaming Protocol            April 1998


                of RFC 1123 \cite{rfc1123}>
  port      =   *DIGIT

  abs_path is defined in [H3.2.1].

    Note that fragment and query identifiers do not have a well-defined
    meaning at this time, with the interpretation left to the RTSP
    server.

  The scheme rtsp requires that commands are issued via a reliable
  protocol (within the Internet, TCP), while the scheme rtspu identifies
  an unreliable protocol (within the Internet, UDP).

  If the port is empty or not given, port 554 is assumed. The semantics
  are that the identified resource can be controlled by RTSP at the
  server listening for TCP (scheme "rtsp") connections or UDP (scheme
  "rtspu") packets on that port of host, and the Request-URI for the
  resource is rtsp_URL.

  The use of IP addresses in URLs SHOULD be avoided whenever possible
  (see RFC 1924 [19]).

  A presentation or a stream is identified by a textual media
  identifier, using the character set and escape conventions [H3.2] of
  URLs (RFC 1738 [20]). URLs may refer to a stream or an aggregate of
  streams, i.e., a presentation. Accordingly, requests described in
  Section 10 can apply to either the whole presentation or an individual
  stream within the presentation. Note that some request methods can
  only be applied to streams, not presentations and vice versa.

  For example, the RTSP URL:
    rtsp://media.example.com:554/twister/audiotrack

  identifies the audio stream within the presentation "twister", which
  can be controlled via RTSP requests issued over a TCP connection to
  port 554 of host media.example.com.

  Also, the RTSP URL:
    rtsp://media.example.com:554/twister

  identifies the presentation "twister", which may be composed of
  audio and video streams.

  This does not imply a standard way to reference streams in URLs.
  The presentation description defines the hierarchical relationships
  in the presentation and the URLs for the individual streams. A
  presentation description may name a stream "a.mov" and the whole
  presentation "b.mov".



Schulzrinne, et. al.        Standards Track                    [Page 15]

RFC 2326              Real Time Streaming Protocol            April 1998


  The path components of the RTSP URL are opaque to the client and do
  not imply any particular file system structure for the server.

    This decoupling also allows presentation descriptions to be used
    with non-RTSP media control protocols simply by replacing the
    scheme in the URL.

3.3 Conference Identifiers

  Conference identifiers are opaque to RTSP and are encoded using
  standard URI encoding methods (i.e., LWS is escaped with %). They can
  contain any octet value. The conference identifier MUST be globally
  unique. For H.323, the conferenceID value is to be used.

conference-id =   1*xchar

    Conference identifiers are used to allow RTSP sessions to obtain
    parameters from multimedia conferences the media server is
    participating in. These conferences are created by protocols
    outside the scope of this specification, e.g., H.323 [13] or SIP
    [12]. Instead of the RTSP client explicitly providing transport
    information, for example, it asks the media server to use the
    values in the conference description instead.

3.4 Session Identifiers

  Session identifiers are opaque strings of arbitrary length. Linear
  white space must be URL-escaped. A session identifier MUST be chosen
  randomly and MUST be at least eight octets long to make guessing it
  more difficult. (See Section 16.)

    session-id   =   1*( ALPHA | DIGIT | safe )

3.5 SMPTE Relative Timestamps

  A SMPTE relative timestamp expresses time relative to the start of
  the clip. Relative timestamps are expressed as SMPTE time codes for
  frame-level access accuracy. The time code has the format
  hours:minutes:seconds:frames.subframes, with the origin at the start
  of the clip. The default smpte format is "SMPTE 30 drop" format, with
  frame rate is 29.97 frames per second. Other SMPTE codes MAY be
  supported (such as "SMPTE 25") through the use of alternative use of
  "smpte time". For the "frames" field in the time value can assume
  the values 0 through 29. The difference between 30 and 29.97 frames
  per second is handled by dropping the first two frame indices (values
  00 and 01) of every minute, except every tenth minute. If the frame
  value is zero, it may be omitted. Subframes are measured in
  one-hundredth of a frame.



Schulzrinne, et. al.        Standards Track                    [Page 16]

RFC 2326              Real Time Streaming Protocol            April 1998


  smpte-range  =   smpte-type "=" smpte-time "-" [ smpte-time ]
  smpte-type   =   "smpte" | "smpte-30-drop" | "smpte-25"
                                  ; other timecodes may be added
  smpte-time   =   1*2DIGIT ":" 1*2DIGIT ":" 1*2DIGIT [ ":" 1*2DIGIT ]
                      [ "." 1*2DIGIT ]

  Examples:
    smpte=10:12:33:20-
    smpte=10:07:33-
    smpte=10:07:00-10:07:33:05.01
    smpte-25=10:07:00-10:07:33:05.01

3.6 Normal Play Time

  Normal play time (NPT) indicates the stream absolute position
  relative to the beginning of the presentation. The timestamp consists
  of a decimal fraction. The part left of the decimal may be expressed
  in either seconds or hours, minutes, and seconds. The part right of
  the decimal point measures fractions of a second.

  The beginning of a presentation corresponds to 0.0 seconds. Negative
  values are not defined. The special constant now is defined as the
  current instant of a live event. It may be used only for live events.

  NPT is defined as in DSM-CC: "Intuitively, NPT is the clock the
  viewer associates with a program. It is often digitally displayed on
  a VCR. NPT advances normally when in normal play mode (scale = 1),
  advances at a faster rate when in fast scan forward (high positive
  scale ratio), decrements when in scan reverse (high negative scale
  ratio) and is fixed in pause mode. NPT is (logically) equivalent to
  SMPTE time codes." [5]

  npt-range    =   ( npt-time "-" [ npt-time ] ) | ( "-" npt-time )
  npt-time     =   "now" | npt-sec | npt-hhmmss
  npt-sec      =   1*DIGIT [ "." *DIGIT ]
  npt-hhmmss   =   npt-hh ":" npt-mm ":" npt-ss [ "." *DIGIT ]
  npt-hh       =   1*DIGIT     ; any positive number
  npt-mm       =   1*2DIGIT    ; 0-59
  npt-ss       =   1*2DIGIT    ; 0-59

  Examples:
    npt=123.45-125
    npt=12:05:35.3-
    npt=now-

    The syntax conforms to ISO 8601. The npt-sec notation is optimized
    for automatic generation, the ntp-hhmmss notation for consumption
    by human readers. The "now" constant allows clients to request to



Schulzrinne, et. al.        Standards Track                    [Page 17]

RFC 2326              Real Time Streaming Protocol            April 1998


    receive the live feed rather than the stored or time-delayed
    version. This is needed since neither absolute time nor zero time
    are appropriate for this case.

3.7 Absolute Time

    Absolute time is expressed as ISO 8601 timestamps, using UTC (GMT).
    Fractions of a second may be indicated.

    utc-range    =   "clock" "=" utc-time "-" [ utc-time ]
    utc-time     =   utc-date "T" utc-time "Z"
    utc-date     =   8DIGIT                    ; < YYYYMMDD >
    utc-time     =   6DIGIT [ "." fraction ]   ; < HHMMSS.fraction >

    Example for November 8, 1996 at 14h37 and 20 and a quarter seconds
    UTC:

    19961108T143720.25Z

3.8 Option Tags

  Option tags are unique identifiers used to designate new options in
  RTSP. These tags are used in Require (Section 12.32) and Proxy-
  Require (Section 12.27) header fields.

  Syntax:

    option-tag   =   1*xchar

  The creator of a new RTSP option should either prefix the option with
  a reverse domain name (e.g., "com.foo.mynewfeature" is an apt name
  for a feature whose inventor can be reached at "foo.com"), or
  register the new option with the Internet Assigned Numbers Authority
  (IANA).

3.8.1 Registering New Option Tags with IANA

  When registering a new RTSP option, the following information should
  be provided:

    * Name and description of option. The name may be of any length,
      but SHOULD be no more than twenty characters long. The name MUST
      not contain any spaces, control characters or periods.
    * Indication of who has change control over the option (for
      example, IETF, ISO, ITU-T, other international standardization
      bodies, a consortium or a particular company or group of
      companies);




Schulzrinne, et. al.        Standards Track                    [Page 18]

RFC 2326              Real Time Streaming Protocol            April 1998


    * A reference to a further description, if available, for example
      (in order of preference) an RFC, a published paper, a patent
      filing, a technical report, documented source code or a computer
      manual;
    * For proprietary options, contact information (postal and email
      address);

4 RTSP Message

  RTSP is a text-based protocol and uses the ISO 10646 character set in
  UTF-8 encoding (RFC 2279 [21]). Lines are terminated by CRLF, but
  receivers should be prepared to also interpret CR and LF by
  themselves as line terminators.

    Text-based protocols make it easier to add optional parameters in a
    self-describing manner. Since the number of parameters and the
    frequency of commands is low, processing efficiency is not a
    concern. Text-based protocols, if done carefully, also allow easy
    implementation of research prototypes in scripting languages such
    as Tcl, Visual Basic and Perl.

    The 10646 character set avoids tricky character set switching, but
    is invisible to the application as long as US-ASCII is being used.
    This is also the encoding used for RTCP. ISO 8859-1 translates
    directly into Unicode with a high-order octet of zero. ISO 8859-1
    characters with the most-significant bit set are represented as
    1100001x 10xxxxxx. (See RFC 2279 [21])

  RTSP messages can be carried over any lower-layer transport protocol
  that is 8-bit clean.

  Requests contain methods, the object the method is operating upon and
  parameters to further describe the method. Methods are idempotent,
  unless otherwise noted. Methods are also designed to require little
  or no state maintenance at the media server.

4.1 Message Types

  See [H4.1]

4.2 Message Headers

  See [H4.2]

4.3 Message Body

  See [H4.3]




Schulzrinne, et. al.        Standards Track                    [Page 19]

RFC 2326              Real Time Streaming Protocol            April 1998


4.4 Message Length

  When a message body is included with a message, the length of that
  body is determined by one of the following (in order of precedence):

  1.     Any response message which MUST NOT include a message body
         (such as the 1xx, 204, and 304 responses) is always terminated
         by the first empty line after the header fields, regardless of
         the entity-header fields present in the message. (Note: An
         empty line consists of only CRLF.)

  2.     If a Content-Length header field (section 12.14) is present,
         its value in bytes represents the length of the message-body.
         If this header field is not present, a value of zero is
         assumed.

  3.     By the server closing the connection. (Closing the connection
         cannot be used to indicate the end of a request body, since
         that would leave no possibility for the server to send back a
         response.)

  Note that RTSP does not (at present) support the HTTP/1.1 "chunked"
  transfer coding(see [H3.6]) and requires the presence of the
  Content-Length header field.

    Given the moderate length of presentation descriptions returned,
    the server should always be able to determine its length, even if
    it is generated dynamically, making the chunked transfer encoding
    unnecessary. Even though Content-Length must be present if there is
    any entity body, the rules ensure reasonable behavior even if the
    length is not given explicitly.

5 General Header Fields

  See [H4.5], except that Pragma, Transfer-Encoding and Upgrade headers
  are not defined:

     general-header     =     Cache-Control     ; Section 12.8
                        |     Connection        ; Section 12.10
                        |     Date              ; Section 12.18
                        |     Via               ; Section 12.43

6 Request

  A request message from a client to a server or vice versa includes,
  within the first line of that message, the method to be applied to
  the resource, the identifier of the resource, and the protocol
  version in use.



Schulzrinne, et. al.        Standards Track                    [Page 20]

RFC 2326              Real Time Streaming Protocol            April 1998


      Request      =       Request-Line          ; Section 6.1
                   *(      general-header        ; Section 5
                   |       request-header        ; Section 6.2
                   |       entity-header )       ; Section 8.1
                           CRLF
                           [ message-body ]      ; Section 4.3

6.1 Request Line

 Request-Line = Method SP Request-URI SP RTSP-Version CRLF

  Method         =         "DESCRIBE"              ; Section 10.2
                 |         "ANNOUNCE"              ; Section 10.3
                 |         "GET_PARAMETER"         ; Section 10.8
                 |         "OPTIONS"               ; Section 10.1
                 |         "PAUSE"                 ; Section 10.6
                 |         "PLAY"                  ; Section 10.5
                 |         "RECORD"                ; Section 10.11
                 |         "REDIRECT"              ; Section 10.10
                 |         "SETUP"                 ; Section 10.4
                 |         "SET_PARAMETER"         ; Section 10.9
                 |         "TEARDOWN"              ; Section 10.7
                 |         extension-method

 extension-method = token

 Request-URI = "*" | absolute_URI

 RTSP-Version = "RTSP" "/" 1*DIGIT "." 1*DIGIT

6.2 Request Header Fields

 request-header  =          Accept                   ; Section 12.1
                 |          Accept-Encoding          ; Section 12.2
                 |          Accept-Language          ; Section 12.3
                 |          Authorization            ; Section 12.5
                 |          From                     ; Section 12.20
                 |          If-Modified-Since        ; Section 12.23
                 |          Range                    ; Section 12.29
                 |          Referer                  ; Section 12.30
                 |          User-Agent               ; Section 12.41

  Note that in contrast to HTTP/1.1 [2], RTSP requests always contain
  the absolute URL (that is, including the scheme, host and port)
  rather than just the absolute path.






Schulzrinne, et. al.        Standards Track                    [Page 21]

RFC 2326              Real Time Streaming Protocol            April 1998


    HTTP/1.1 requires servers to understand the absolute URL, but
    clients are supposed to use the Host request header. This is purely
    needed for backward-compatibility with HTTP/1.0 servers, a
    consideration that does not apply to RTSP.

  The asterisk "*" in the Request-URI means that the request does not
  apply to a particular resource, but to the server itself, and is only
  allowed when the method used does not necessarily apply to a
  resource.  One example would be:

    OPTIONS * RTSP/1.0

7 Response

  [H6] applies except that HTTP-Version is replaced by RTSP-Version.
  Also, RTSP defines additional status codes and does not define some
  HTTP codes. The valid response codes and the methods they can be used
  with are defined in Table 1.

  After receiving and interpreting a request message, the recipient
  responds with an RTSP response message.

    Response    =     Status-Line         ; Section 7.1
                *(    general-header      ; Section 5
                |     response-header     ; Section 7.1.2
                |     entity-header )     ; Section 8.1
                      CRLF
                      [ message-body ]    ; Section 4.3

7.1 Status-Line

  The first line of a Response message is the Status-Line, consisting
  of the protocol version followed by a numeric status code, and the
  textual phrase associated with the status code, with each element
  separated by SP characters. No CR or LF is allowed except in the
  final CRLF sequence.

  Status-Line =   RTSP-Version SP Status-Code SP Reason-Phrase CRLF

7.1.1 Status Code and Reason Phrase

  The Status-Code element is a 3-digit integer result code of the
  attempt to understand and satisfy the request. These codes are fully
  defined in Section 11. The Reason-Phrase is intended to give a short
  textual description of the Status-Code. The Status-Code is intended
  for use by automata and the Reason-Phrase is intended for the human
  user. The client is not required to examine or display the Reason-
  Phrase.



Schulzrinne, et. al.        Standards Track                    [Page 22]

RFC 2326              Real Time Streaming Protocol            April 1998


  The first digit of the Status-Code defines the class of response. The
  last two digits do not have any categorization role. There are 5
  values for the first digit:

    * 1xx: Informational - Request received, continuing process
    * 2xx: Success - The action was successfully received, understood,
      and accepted
    * 3xx: Redirection - Further action must be taken in order to
      complete the request
    * 4xx: Client Error - The request contains bad syntax or cannot be
      fulfilled
    * 5xx: Server Error - The server failed to fulfill an apparently
      valid request

  The individual values of the numeric status codes defined for
  RTSP/1.0, and an example set of corresponding Reason-Phrase's, are
  presented below. The reason phrases listed here are only recommended
  - they may be replaced by local equivalents without affecting the
  protocol. Note that RTSP adopts most HTTP/1.1 [2] status codes and
  adds RTSP-specific status codes starting at x50 to avoid conflicts
  with newly defined HTTP status codes.






























Schulzrinne, et. al.        Standards Track                    [Page 23]

RFC 2326              Real Time Streaming Protocol            April 1998


  Status-Code  =     "100"      ; Continue
               |     "200"      ; OK
               |     "201"      ; Created
               |     "250"      ; Low on Storage Space
               |     "300"      ; Multiple Choices
               |     "301"      ; Moved Permanently
               |     "302"      ; Moved Temporarily
               |     "303"      ; See Other
               |     "304"      ; Not Modified
               |     "305"      ; Use Proxy
               |     "400"      ; Bad Request
               |     "401"      ; Unauthorized
               |     "402"      ; Payment Required
               |     "403"      ; Forbidden
               |     "404"      ; Not Found
               |     "405"      ; Method Not Allowed
               |     "406"      ; Not Acceptable
               |     "407"      ; Proxy Authentication Required
               |     "408"      ; Request Time-out
               |     "410"      ; Gone
               |     "411"      ; Length Required
               |     "412"      ; Precondition Failed
               |     "413"      ; Request Entity Too Large
               |     "414"      ; Request-URI Too Large
               |     "415"      ; Unsupported Media Type
               |     "451"      ; Parameter Not Understood
               |     "452"      ; Conference Not Found
               |     "453"      ; Not Enough Bandwidth
               |     "454"      ; Session Not Found
               |     "455"      ; Method Not Valid in This State
               |     "456"      ; Header Field Not Valid for Resource
               |     "457"      ; Invalid Range
               |     "458"      ; Parameter Is Read-Only
               |     "459"      ; Aggregate operation not allowed
               |     "460"      ; Only aggregate operation allowed
               |     "461"      ; Unsupported transport
               |     "462"      ; Destination unreachable
               |     "500"      ; Internal Server Error
               |     "501"      ; Not Implemented
               |     "502"      ; Bad Gateway
               |     "503"      ; Service Unavailable
               |     "504"      ; Gateway Time-out
               |     "505"      ; RTSP Version not supported
               |     "551"      ; Option not supported
               |     extension-code






Schulzrinne, et. al.        Standards Track                    [Page 24]

RFC 2326              Real Time Streaming Protocol            April 1998


  extension-code  =     3DIGIT

  Reason-Phrase  =     *<TEXT, excluding CR, LF>

  RTSP status codes are extensible. RTSP applications are not required
  to understand the meaning of all registered status codes, though such
  understanding is obviously desirable. However, applications MUST
  understand the class of any status code, as indicated by the first
  digit, and treat any unrecognized response as being equivalent to the
  x00 status code of that class, with the exception that an
  unrecognized response MUST NOT be cached. For example, if an
  unrecognized status code of 431 is received by the client, it can
  safely assume that there was something wrong with its request and
  treat the response as if it had received a 400 status code. In such
  cases, user agents SHOULD present to the user the entity returned
  with the response, since that entity is likely to include human-
  readable information which will explain the unusual status.

  Code           reason

  100            Continue                         all

  200            OK                               all
  201            Created                          RECORD
  250            Low on Storage Space             RECORD

  300            Multiple Choices                 all
  301            Moved Permanently                all
  302            Moved Temporarily                all
  303            See Other                        all
  305            Use Proxy                        all




















Schulzrinne, et. al.        Standards Track                    [Page 25]

RFC 2326              Real Time Streaming Protocol            April 1998


  400            Bad Request                      all
  401            Unauthorized                     all
  402            Payment Required                 all
  403            Forbidden                        all
  404            Not Found                        all
  405            Method Not Allowed               all
  406            Not Acceptable                   all
  407            Proxy Authentication Required    all
  408            Request Timeout                  all
  410            Gone                             all
  411            Length Required                  all
  412            Precondition Failed              DESCRIBE, SETUP
  413            Request Entity Too Large         all
  414            Request-URI Too Long             all
  415            Unsupported Media Type           all
  451            Invalid parameter                SETUP
  452            Illegal Conference Identifier    SETUP
  453            Not Enough Bandwidth             SETUP
  454            Session Not Found                all
  455            Method Not Valid In This State   all
  456            Header Field Not Valid           all
  457            Invalid Range                    PLAY
  458            Parameter Is Read-Only           SET_PARAMETER
  459            Aggregate Operation Not Allowed  all
  460            Only Aggregate Operation Allowed all
  461            Unsupported Transport            all
  462            Destination Unreachable          all

  500            Internal Server Error            all
  501            Not Implemented                  all
  502            Bad Gateway                      all
  503            Service Unavailable              all
  504            Gateway Timeout                  all
  505            RTSP Version Not Supported       all
  551            Option not support               all


     Table 1: Status codes and their usage with RTSP methods

7.1.2 Response Header Fields

  The response-header fields allow the request recipient to pass
  additional information about the response which cannot be placed in
  the Status-Line. These header fields give information about the
  server and about further access to the resource identified by the
  Request-URI.





Schulzrinne, et. al.        Standards Track                    [Page 26]

RFC 2326              Real Time Streaming Protocol            April 1998


  response-header  =     Location             ; Section 12.25
                   |     Proxy-Authenticate   ; Section 12.26
                   |     Public               ; Section 12.28
                   |     Retry-After          ; Section 12.31
                   |     Server               ; Section 12.36
                   |     Vary                 ; Section 12.42
                   |     WWW-Authenticate     ; Section 12.44

  Response-header field names can be extended reliably only in
  combination with a change in the protocol version. However, new or
  experimental header fields MAY be given the semantics of response-
  header fields if all parties in the communication recognize them to
  be response-header fields. Unrecognized header fields are treated as
  entity-header fields.

8 Entity

  Request and Response messages MAY transfer an entity if not otherwise
  restricted by the request method or response status code. An entity
  consists of entity-header fields and an entity-body, although some
  responses will only include the entity-headers.

  In this section, both sender and recipient refer to either the client
  or the server, depending on who sends and who receives the entity.

8.1 Entity Header Fields

  Entity-header fields define optional metainformation about the
  entity-body or, if no body is present, about the resource identified
  by the request.

    entity-header       =    Allow               ; Section 12.4
                        |    Content-Base        ; Section 12.11
                        |    Content-Encoding    ; Section 12.12
                        |    Content-Language    ; Section 12.13
                        |    Content-Length      ; Section 12.14
                        |    Content-Location    ; Section 12.15
                        |    Content-Type        ; Section 12.16
                        |    Expires             ; Section 12.19
                        |    Last-Modified       ; Section 12.24
                        |    extension-header
    extension-header    =    message-header

  The extension-header mechanism allows additional entity-header fields
  to be defined without changing the protocol, but these fields cannot
  be assumed to be recognizable by the recipient. Unrecognized header
  fields SHOULD be ignored by the recipient and forwarded by proxies.




Schulzrinne, et. al.        Standards Track                    [Page 27]

RFC 2326              Real Time Streaming Protocol            April 1998


8.2 Entity Body

  See [H7.2]

9 Connections

  RTSP requests can be transmitted in several different ways:

    * persistent transport connections used for several
      request-response transactions;
    * one connection per request/response transaction;
    * connectionless mode.

  The type of transport connection is defined by the RTSP URI (Section
  3.2). For the scheme "rtsp", a persistent connection is assumed,
  while the scheme "rtspu" calls for RTSP requests to be sent without
  setting up a connection.

  Unlike HTTP, RTSP allows the media server to send requests to the
  media client. However, this is only supported for persistent
  connections, as the media server otherwise has no reliable way of
  reaching the client. Also, this is the only way that requests from
  media server to client are likely to traverse firewalls.

9.1 Pipelining

  A client that supports persistent connections or connectionless mode
  MAY "pipeline" its requests (i.e., send multiple requests without
  waiting for each response). A server MUST send its responses to those
  requests in the same order that the requests were received.

9.2 Reliability and Acknowledgements

  Requests are acknowledged by the receiver unless they are sent to a
  multicast group. If there is no acknowledgement, the sender may
  resend the same message after a timeout of one round-trip time (RTT).
  The round-trip time is estimated as in TCP (RFC 1123) [18], with an
  initial round-trip value of 500 ms. An implementation MAY cache the
  last RTT measurement as the initial value for future connections.

  If a reliable transport protocol is used to carry RTSP, requests MUST
  NOT be retransmitted; the RTSP application MUST instead rely on the
  underlying transport to provide reliability.

    If both the underlying reliable transport such as TCP and the RTSP
    application retransmit requests, it is possible that each packet
    loss results in two retransmissions. The receiver cannot typically
    take advantage of the application-layer retransmission since the



Schulzrinne, et. al.        Standards Track                    [Page 28]

RFC 2326              Real Time Streaming Protocol            April 1998


    transport stack will not deliver the application-layer
    retransmission before the first attempt has reached the receiver.
    If the packet loss is caused by congestion, multiple
    retransmissions at different layers will exacerbate the congestion.

    If RTSP is used over a small-RTT LAN, standard procedures for
    optimizing initial TCP round trip estimates, such as those used in
    T/TCP (RFC 1644) [22], can be beneficial.

  The Timestamp header (Section 12.38) is used to avoid the
  retransmission ambiguity problem [23, p. 301] and obviates the need
  for Karn's algorithm.

  Each request carries a sequence number in the CSeq header (Section
  12.17), which is incremented by one for each distinct request
  transmitted. If a request is repeated because of lack of
  acknowledgement, the request MUST carry the original sequence number
  (i.e., the sequence number is not incremented).

  Systems implementing RTSP MUST support carrying RTSP over TCP and MAY
  support UDP. The default port for the RTSP server is 554 for both UDP
  and TCP.

  A number of RTSP packets destined for the same control end point may
  be packed into a single lower-layer PDU or encapsulated into a TCP
  stream. RTSP data MAY be interleaved with RTP and RTCP packets.
  Unlike HTTP, an RTSP message MUST contain a Content-Length header
  whenever that message contains a payload. Otherwise, an RTSP packet
  is terminated with an empty line immediately following the last
  message header.

10 Method Definitions

  The method token indicates the method to be performed on the resource
  identified by the Request-URI. The method is case-sensitive.  New
  methods may be defined in the future. Method names may not start with
  a $ character (decimal 24) and must be a token. Methods are
  summarized in Table 2.













Schulzrinne, et. al.        Standards Track                    [Page 29]

RFC 2326              Real Time Streaming Protocol            April 1998


     method            direction        object     requirement
     DESCRIBE          C->S             P,S        recommended
     ANNOUNCE          C->S, S->C       P,S        optional
     GET_PARAMETER     C->S, S->C       P,S        optional
     OPTIONS           C->S, S->C       P,S        required
                                                   (S->C: optional)
     PAUSE             C->S             P,S        recommended
     PLAY              C->S             P,S        required
     RECORD            C->S             P,S        optional
     REDIRECT          S->C             P,S        optional
     SETUP             C->S             S          required
     SET_PARAMETER     C->S, S->C       P,S        optional
     TEARDOWN          C->S             P,S        required

     Table 2: Overview of RTSP methods, their direction, and what
     objects (P: presentation, S: stream) they operate on

  Notes on Table 2: PAUSE is recommended, but not required in that a
  fully functional server can be built that does not support this
  method, for example, for live feeds. If a server does not support a
  particular method, it MUST return "501 Not Implemented" and a client
  SHOULD not try this method again for this server.

10.1 OPTIONS

  The behavior is equivalent to that described in [H9.2]. An OPTIONS
  request may be issued at any time, e.g., if the client is about to
  try a nonstandard request. It does not influence server state.

  Example:

    C->S:  OPTIONS * RTSP/1.0
           CSeq: 1
           Require: implicit-play
           Proxy-Require: gzipped-messages

    S->C:  RTSP/1.0 200 OK
           CSeq: 1
           Public: DESCRIBE, SETUP, TEARDOWN, PLAY, PAUSE

  Note that these are necessarily fictional features (one would hope
  that we would not purposefully overlook a truly useful feature just
  so that we could have a strong example in this section).








Schulzrinne, et. al.        Standards Track                    [Page 30]

RFC 2326              Real Time Streaming Protocol            April 1998


10.2 DESCRIBE

  The DESCRIBE method retrieves the description of a presentation or
  media object identified by the request URL from a server. It may use
  the Accept header to specify the description formats that the client
  understands. The server responds with a description of the requested
  resource. The DESCRIBE reply-response pair constitutes the media
  initialization phase of RTSP.

  Example:

    C->S: DESCRIBE rtsp://server.example.com/fizzle/foo RTSP/1.0
          CSeq: 312
          Accept: application/sdp, application/rtsl, application/mheg

    S->C: RTSP/1.0 200 OK
          CSeq: 312
          Date: 23 Jan 1997 15:35:06 GMT
          Content-Type: application/sdp
          Content-Length: 376

          v=0
          o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
          s=SDP Seminar
          i=A Seminar on the session description protocol
          u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
          [email protected] (Mark Handley)
          c=IN IP4 224.2.17.12/127
          t=2873397496 2873404696
          a=recvonly
          m=audio 3456 RTP/AVP 0
          m=video 2232 RTP/AVP 31
          m=whiteboard 32416 UDP WB
          a=orient:portrait

  The DESCRIBE response MUST contain all media initialization
  information for the resource(s) that it describes. If a media client
  obtains a presentation description from a source other than DESCRIBE
  and that description contains a complete set of media initialization
  parameters, the client SHOULD use those parameters and not then
  request a description for the same media via RTSP.

  Additionally, servers SHOULD NOT use the DESCRIBE response as a means
  of media indirection.

    Clear ground rules need to be established so that clients have an
    unambiguous means of knowing when to request media initialization
    information via DESCRIBE, and when not to. By forcing a DESCRIBE



Schulzrinne, et. al.        Standards Track                    [Page 31]

RFC 2326              Real Time Streaming Protocol            April 1998


    response to contain all media initialization for the set of streams
    that it describes, and discouraging use of DESCRIBE for media
    indirection, we avoid looping problems that might result from other
    approaches.

    Media initialization is a requirement for any RTSP-based system,
    but the RTSP specification does not dictate that this must be done
    via the DESCRIBE method. There are three ways that an RTSP client
    may receive initialization information:

    * via RTSP's DESCRIBE method;
    * via some other protocol (HTTP, email attachment, etc.);
    * via the command line or standard input (thus working as a browser
      helper application launched with an SDP file or other media
      initialization format).

    In the interest of practical interoperability, it is highly
    recommended that minimal servers support the DESCRIBE method, and
    highly recommended that minimal clients support the ability to act
    as a "helper application" that accepts a media initialization file
    from standard input, command line, and/or other means that are
    appropriate to the operating environment of the client.

10.3 ANNOUNCE

  The ANNOUNCE method serves two purposes:

  When sent from client to server, ANNOUNCE posts the description of a
  presentation or media object identified by the request URL to a
  server. When sent from server to client, ANNOUNCE updates the session
  description in real-time.

  If a new media stream is added to a presentation (e.g., during a live
  presentation), the whole presentation description should be sent
  again, rather than just the additional components, so that components
  can be deleted.

  Example:

    C->S: ANNOUNCE rtsp://server.example.com/fizzle/foo RTSP/1.0
          CSeq: 312
          Date: 23 Jan 1997 15:35:06 GMT
          Session: 47112344
          Content-Type: application/sdp
          Content-Length: 332

          v=0
          o=mhandley 2890844526 2890845468 IN IP4 126.16.64.4



Schulzrinne, et. al.        Standards Track                    [Page 32]

RFC 2326              Real Time Streaming Protocol            April 1998


          s=SDP Seminar
          i=A Seminar on the session description protocol
          u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
          [email protected] (Mark Handley)
          c=IN IP4 224.2.17.12/127
          t=2873397496 2873404696
          a=recvonly
          m=audio 3456 RTP/AVP 0
          m=video 2232 RTP/AVP 31

    S->C: RTSP/1.0 200 OK
          CSeq: 312

10.4 SETUP

  The SETUP request for a URI specifies the transport mechanism to be
  used for the streamed media. A client can issue a SETUP request for a
  stream that is already playing to change transport parameters, which
  a server MAY allow. If it does not allow this, it MUST respond with
  error "455 Method Not Valid In This State". For the benefit of any
  intervening firewalls, a client must indicate the transport
  parameters even if it has no influence over these parameters, for
  example, where the server advertises a fixed multicast address.

    Since SETUP includes all transport initialization information,
    firewalls and other intermediate network devices (which need this
    information) are spared the more arduous task of parsing the
    DESCRIBE response, which has been reserved for media
    initialization.

  The Transport header specifies the transport parameters acceptable to
  the client for data transmission; the response will contain the
  transport parameters selected by the server.

   C->S: SETUP rtsp://example.com/foo/bar/baz.rm RTSP/1.0
         CSeq: 302
         Transport: RTP/AVP;unicast;client_port=4588-4589

   S->C: RTSP/1.0 200 OK
         CSeq: 302
         Date: 23 Jan 1997 15:35:06 GMT
         Session: 47112344
         Transport: RTP/AVP;unicast;
           client_port=4588-4589;server_port=6256-6257

  The server generates session identifiers in response to SETUP
  requests. If a SETUP request to a server includes a session
  identifier, the server MUST bundle this setup request into the



Schulzrinne, et. al.        Standards Track                    [Page 33]

RFC 2326              Real Time Streaming Protocol            April 1998


  existing session or return error "459 Aggregate Operation Not
  Allowed" (see Section 11.3.10).

10.5 PLAY

  The PLAY method tells the server to start sending data via the
  mechanism specified in SETUP. A client MUST NOT issue a PLAY request
  until any outstanding SETUP requests have been acknowledged as
  successful.

  The PLAY request positions the normal play time to the beginning of
  the range specified and delivers stream data until the end of the
  range is reached. PLAY requests may be pipelined (queued); a server
  MUST queue PLAY requests to be executed in order. That is, a PLAY
  request arriving while a previous PLAY request is still active is
  delayed until the first has been completed.

    This allows precise editing.

  For example, regardless of how closely spaced the two PLAY requests
  in the example below arrive, the server will first play seconds 10
  through 15, then, immediately following, seconds 20 to 25, and
  finally seconds 30 through the end.

    C->S: PLAY rtsp://audio.example.com/audio RTSP/1.0
          CSeq: 835
          Session: 12345678
          Range: npt=10-15

    C->S: PLAY rtsp://audio.example.com/audio RTSP/1.0
          CSeq: 836
          Session: 12345678
          Range: npt=20-25

    C->S: PLAY rtsp://audio.example.com/audio RTSP/1.0
          CSeq: 837
          Session: 12345678
          Range: npt=30-

  See the description of the PAUSE request for further examples.

  A PLAY request without a Range header is legal. It starts playing a
  stream from the beginning unless the stream has been paused. If a
  stream has been paused via PAUSE, stream delivery resumes at the
  pause point. If a stream is playing, such a PLAY request causes no
  further action and can be used by the client to test server liveness.





Schulzrinne, et. al.        Standards Track                    [Page 34]

RFC 2326              Real Time Streaming Protocol            April 1998


  The Range header may also contain a time parameter. This parameter
  specifies a time in UTC at which the playback should start. If the
  message is received after the specified time, playback is started
  immediately. The time parameter may be used to aid in synchronization
  of streams obtained from different sources.

  For a on-demand stream, the server replies with the actual range that
  will be played back. This may differ from the requested range if
  alignment of the requested range to valid frame boundaries is
  required for the media source. If no range is specified in the
  request, the current position is returned in the reply. The unit of
  the range in the reply is the same as that in the request.

  After playing the desired range, the presentation is automatically
  paused, as if a PAUSE request had been issued.

  The following example plays the whole presentation starting at SMPTE
  time code 0:10:20 until the end of the clip. The playback is to start
  at 15:36 on 23 Jan 1997.

    C->S: PLAY rtsp://audio.example.com/twister.en RTSP/1.0
          CSeq: 833
          Session: 12345678
          Range: smpte=0:10:20-;time=19970123T153600Z

    S->C: RTSP/1.0 200 OK
          CSeq: 833
          Date: 23 Jan 1997 15:35:06 GMT
          Range: smpte=0:10:22-;time=19970123T153600Z

  For playing back a recording of a live presentation, it may be
  desirable to use clock units:

    C->S: PLAY rtsp://audio.example.com/meeting.en RTSP/1.0
          CSeq: 835
          Session: 12345678
          Range: clock=19961108T142300Z-19961108T143520Z

    S->C: RTSP/1.0 200 OK
          CSeq: 835
          Date: 23 Jan 1997 15:35:06 GMT

  A media server only supporting playback MUST support the npt format
  and MAY support the clock and smpte formats.







Schulzrinne, et. al.        Standards Track                    [Page 35]

RFC 2326              Real Time Streaming Protocol            April 1998


10.6 PAUSE

  The PAUSE request causes the stream delivery to be interrupted
  (halted) temporarily. If the request URL names a stream, only
  playback and recording of that stream is halted. For example, for
  audio, this is equivalent to muting. If the request URL names a
  presentation or group of streams, delivery of all currently active
  streams within the presentation or group is halted. After resuming
  playback or recording, synchronization of the tracks MUST be
  maintained. Any server resources are kept, though servers MAY close
  the session and free resources after being paused for the duration
  specified with the timeout parameter of the Session header in the
  SETUP message.

  Example:

    C->S: PAUSE rtsp://example.com/fizzle/foo RTSP/1.0
          CSeq: 834
          Session: 12345678

    S->C: RTSP/1.0 200 OK
          CSeq: 834
          Date: 23 Jan 1997 15:35:06 GMT

  The PAUSE request may contain a Range header specifying when the
  stream or presentation is to be halted. We refer to this point as the
  "pause point". The header must contain exactly one value rather than
  a time range. The normal play time for the stream is set to the pause
  point. The pause request becomes effective the first time the server
  is encountering the time point specified in any of the currently
  pending PLAY requests. If the Range header specifies a time outside
  any currently pending PLAY requests, the error "457 Invalid Range" is
  returned. If a media unit (such as an audio or video frame) starts
  presentation at exactly the pause point, it is not played or
  recorded.  If the Range header is missing, stream delivery is
  interrupted immediately on receipt of the message and the pause point
  is set to the current normal play time.

  A PAUSE request discards all queued PLAY requests. However, the pause
  point in the media stream MUST be maintained. A subsequent PLAY
  request without Range header resumes from the pause point.

  For example, if the server has play requests for ranges 10 to 15 and
  20 to 29 pending and then receives a pause request for NPT 21, it
  would start playing the second range and stop at NPT 21. If the pause
  request is for NPT 12 and the server is playing at NPT 13 serving the
  first play request, the server stops immediately. If the pause
  request is for NPT 16, the server stops after completing the first



Schulzrinne, et. al.        Standards Track                    [Page 36]

RFC 2326              Real Time Streaming Protocol            April 1998


  play request and discards the second play request.

  As another example, if a server has received requests to play ranges
  10 to 15 and then 13 to 20 (that is, overlapping ranges), the PAUSE
  request for NPT=14 would take effect while the server plays the first
  range, with the second PLAY request effectively being ignored,
  assuming the PAUSE request arrives before the server has started
  playing the second, overlapping range. Regardless of when the PAUSE
  request arrives, it sets the NPT to 14.

  If the server has already sent data beyond the time specified in the
  Range header, a PLAY would still resume at that point in time, as it
  is assumed that the client has discarded data after that point. This
  ensures continuous pause/play cycling without gaps.

10.7 TEARDOWN

  The TEARDOWN request stops the stream delivery for the given URI,
  freeing the resources associated with it. If the URI is the
  presentation URI for this presentation, any RTSP session identifier
  associated with the session is no longer valid. Unless all transport
  parameters are defined by the session description, a SETUP request
  has to be issued before the session can be played again.

  Example:
    C->S: TEARDOWN rtsp://example.com/fizzle/foo RTSP/1.0
          CSeq: 892
          Session: 12345678
    S->C: RTSP/1.0 200 OK
          CSeq: 892

10.8 GET_PARAMETER

  The GET_PARAMETER request retrieves the value of a parameter of a
  presentation or stream specified in the URI. The content of the reply
  and response is left to the implementation. GET_PARAMETER with no
  entity body may be used to test client or server liveness ("ping").

  Example:

    S->C: GET_PARAMETER rtsp://example.com/fizzle/foo RTSP/1.0
          CSeq: 431
          Content-Type: text/parameters
          Session: 12345678
          Content-Length: 15

          packets_received
          jitter



Schulzrinne, et. al.        Standards Track                    [Page 37]

RFC 2326              Real Time Streaming Protocol            April 1998


    C->S: RTSP/1.0 200 OK
          CSeq: 431
          Content-Length: 46
          Content-Type: text/parameters

          packets_received: 10
          jitter: 0.3838

    The "text/parameters" section is only an example type for
    parameter. This method is intentionally loosely defined with the
    intention that the reply content and response content will be
    defined after further experimentation.

10.9 SET_PARAMETER

    This method requests to set the value of a parameter for a
    presentation or stream specified by the URI.

    A request SHOULD only contain a single parameter to allow the client
    to determine why a particular request failed. If the request contains
    several parameters, the server MUST only act on the request if all of
    the parameters can be set successfully. A server MUST allow a
    parameter to be set repeatedly to the same value, but it MAY disallow
    changing parameter values.

    Note: transport parameters for the media stream MUST only be set with
    the SETUP command.

    Restricting setting transport parameters to SETUP is for the
    benefit of firewalls.

    The parameters are split in a fine-grained fashion so that there
    can be more meaningful error indications. However, it may make
    sense to allow the setting of several parameters if an atomic
    setting is desirable. Imagine device control where the client does
    not want the camera to pan unless it can also tilt to the right
    angle at the same time.

  Example:

    C->S: SET_PARAMETER rtsp://example.com/fizzle/foo RTSP/1.0
          CSeq: 421
          Content-length: 20
          Content-type: text/parameters

          barparam: barstuff

    S->C: RTSP/1.0 451 Invalid Parameter



Schulzrinne, et. al.        Standards Track                    [Page 38]

RFC 2326              Real Time Streaming Protocol            April 1998


          CSeq: 421
          Content-length: 10
          Content-type: text/parameters

          barparam

    The "text/parameters" section is only an example type for
    parameter. This method is intentionally loosely defined with the
    intention that the reply content and response content will be
    defined after further experimentation.

10.10 REDIRECT

  A redirect request informs the client that it must connect to another
  server location. It contains the mandatory header Location, which
  indicates that the client should issue requests for that URL. It may
  contain the parameter Range, which indicates when the redirection
  takes effect. If the client wants to continue to send or receive
  media for this URI, the client MUST issue a TEARDOWN request for the
  current session and a SETUP for the new session at the designated
  host.

  This example request redirects traffic for this URI to the new server
  at the given play time:

    S->C: REDIRECT rtsp://example.com/fizzle/foo RTSP/1.0
          CSeq: 732
          Location: rtsp://bigserver.com:8001
          Range: clock=19960213T143205Z-

10.11 RECORD

  This method initiates recording a range of media data according to
  the presentation description. The timestamp reflects start and end
  time (UTC). If no time range is given, use the start or end time
  provided in the presentation description. If the session has already
  started, commence recording immediately.

  The server decides whether to store the recorded data under the
  request-URI or another URI. If the server does not use the request-
  URI, the response SHOULD be 201 (Created) and contain an entity which
  describes the status of the request and refers to the new resource,
  and a Location header.

  A media server supporting recording of live presentations MUST
  support the clock range format; the smpte format does not make sense.





Schulzrinne, et. al.        Standards Track                    [Page 39]

RFC 2326              Real Time Streaming Protocol            April 1998


  In this example, the media server was previously invited to the
  conference indicated.

    C->S: RECORD rtsp://example.com/meeting/audio.en RTSP/1.0
          CSeq: 954
          Session: 12345678
          Conference: 128.16.64.19/32492374

10.12 Embedded (Interleaved) Binary Data

  Certain firewall designs and other circumstances may force a server
  to interleave RTSP methods and stream data. This interleaving should
  generally be avoided unless necessary since it complicates client and
  server operation and imposes additional overhead. Interleaved binary
  data SHOULD only be used if RTSP is carried over TCP.

  Stream data such as RTP packets is encapsulated by an ASCII dollar
  sign (24 hexadecimal), followed by a one-byte channel identifier,
  followed by the length of the encapsulated binary data as a binary,
  two-byte integer in network byte order. The stream data follows
  immediately afterwards, without a CRLF, but including the upper-layer
  protocol headers. Each $ block contains exactly one upper-layer
  protocol data unit, e.g., one RTP packet.

  The channel identifier is defined in the Transport header with the
  interleaved parameter(Section 12.39).

  When the transport choice is RTP, RTCP messages are also interleaved
  by the server over the TCP connection. As a default, RTCP packets are
  sent on the first available channel higher than the RTP channel. The
  client MAY explicitly request RTCP packets on another channel. This
  is done by specifying two channels in the interleaved parameter of
  the Transport header(Section 12.39).

    RTCP is needed for synchronization when two or more streams are
    interleaved in such a fashion. Also, this provides a convenient way
    to tunnel RTP/RTCP packets through the TCP control connection when
    required by the network configuration and transfer them onto UDP
    when possible.

    C->S: SETUP rtsp://foo.com/bar.file RTSP/1.0
          CSeq: 2
          Transport: RTP/AVP/TCP;interleaved=0-1

    S->C: RTSP/1.0 200 OK
          CSeq: 2
          Date: 05 Jun 1997 18:57:18 GMT
          Transport: RTP/AVP/TCP;interleaved=0-1



Schulzrinne, et. al.        Standards Track                    [Page 40]

RFC 2326              Real Time Streaming Protocol            April 1998


          Session: 12345678

    C->S: PLAY rtsp://foo.com/bar.file RTSP/1.0
          CSeq: 3
          Session: 12345678

    S->C: RTSP/1.0 200 OK
          CSeq: 3
          Session: 12345678
          Date: 05 Jun 1997 18:59:15 GMT
          RTP-Info: url=rtsp://foo.com/bar.file;
            seq=232433;rtptime=972948234

    S->C: $\000{2 byte length}{"length" bytes data, w/RTP header}
    S->C: $\000{2 byte length}{"length" bytes data, w/RTP header}
    S->C: $\001{2 byte length}{"length" bytes  RTCP packet}

11 Status Code Definitions

  Where applicable, HTTP status [H10] codes are reused. Status codes
  that have the same meaning are not repeated here. See Table 1 for a
  listing of which status codes may be returned by which requests.

11.1 Success 2xx

11.1.1 250 Low on Storage Space

  The server returns this warning after receiving a RECORD request that
  it may not be able to fulfill completely due to insufficient storage
  space. If possible, the server should use the Range header to
  indicate what time period it may still be able to record. Since other
  processes on the server may be consuming storage space
  simultaneously, a client should take this only as an estimate.

11.2 Redirection 3xx

  See [H10.3].

  Within RTSP, redirection may be used for load balancing or
  redirecting stream requests to a server topologically closer to the
  client.  Mechanisms to determine topological proximity are beyond the
  scope of this specification.









Schulzrinne, et. al.        Standards Track                    [Page 41]

RFC 2326              Real Time Streaming Protocol            April 1998


11.3 Client Error 4xx

11.3.1 405 Method Not Allowed

  The method specified in the request is not allowed for the resource
  identified by the request URI. The response MUST include an Allow
  header containing a list of valid methods for the requested resource.
  This status code is also to be used if a request attempts to use a
  method not indicated during SETUP, e.g., if a RECORD request is
  issued even though the mode parameter in the Transport header only
  specified PLAY.

11.3.2 451 Parameter Not Understood

  The recipient of the request does not support one or more parameters
  contained in the request.

11.3.3 452 Conference Not Found

  The conference indicated by a Conference header field is unknown to
  the media server.

11.3.4 453 Not Enough Bandwidth

  The request was refused because there was insufficient bandwidth.
  This may, for example, be the result of a resource reservation
  failure.

11.3.5 454 Session Not Found

  The RTSP session identifier in the Session header is missing,
  invalid, or has timed out.

11.3.6 455 Method Not Valid in This State

  The client or server cannot process this request in its current
  state.  The response SHOULD contain an Allow header to make error
  recovery easier.

11.3.7 456 Header Field Not Valid for Resource

  The server could not act on a required request header. For example,
  if PLAY contains the Range header field but the stream does not allow
  seeking.







Schulzrinne, et. al.        Standards Track                    [Page 42]

RFC 2326              Real Time Streaming Protocol            April 1998


11.3.8 457 Invalid Range

  The Range value given is out of bounds, e.g., beyond the end of the
  presentation.

11.3.9 458 Parameter Is Read-Only

  The parameter to be set by SET_PARAMETER can be read but not
  modified.

11.3.10 459 Aggregate Operation Not Allowed

  The requested method may not be applied on the URL in question since
  it is an aggregate (presentation) URL. The method may be applied on a
  stream URL.

11.3.11 460 Only Aggregate Operation Allowed

  The requested method may not be applied on the URL in question since
  it is not an aggregate (presentation) URL. The method may be applied
  on the presentation URL.

11.3.12 461 Unsupported Transport

  The Transport field did not contain a supported transport
  specification.

11.3.13 462 Destination Unreachable

  The data transmission channel could not be established because the
  client address could not be reached. This error will most likely be
  the result of a client attempt to place an invalid Destination
  parameter in the Transport field.

11.3.14 551 Option not supported

  An option given in the Require or the Proxy-Require fields was not
  supported. The Unsupported header should be returned stating the
  option for which there is no support.












Schulzrinne, et. al.        Standards Track                    [Page 43]

RFC 2326              Real Time Streaming Protocol            April 1998


12 Header Field Definitions

  HTTP/1.1 [2] or other, non-standard header fields not listed here
  currently have no well-defined meaning and SHOULD be ignored by the
  recipient.

  Table 3 summarizes the header fields used by RTSP. Type "g"
  designates general request headers to be found in both requests and
  responses, type "R" designates request headers, type "r" designates
  response headers, and type "e" designates entity header fields.
  Fields marked with "req." in the column labeled "support" MUST be
  implemented by the recipient for a particular method, while fields
  marked "opt." are optional. Note that not all fields marked "req."
  will be sent in every request of this type. The "req."  means only
  that client (for response headers) and server (for request headers)
  MUST implement the fields. The last column lists the method for which
  this header field is meaningful; the designation "entity" refers to
  all methods that return a message body. Within this specification,
  DESCRIBE and GET_PARAMETER fall into this class.
































Schulzrinne, et. al.        Standards Track                    [Page 44]

RFC 2326              Real Time Streaming Protocol            April 1998


  Header               type   support   methods
  Accept               R      opt.      entity
  Accept-Encoding      R      opt.      entity
  Accept-Language      R      opt.      all
  Allow                r      opt.      all
  Authorization        R      opt.      all
  Bandwidth            R      opt.      all
  Blocksize            R      opt.      all but OPTIONS, TEARDOWN
  Cache-Control        g      opt.      SETUP
  Conference           R      opt.      SETUP
  Connection           g      req.      all
  Content-Base         e      opt.      entity
  Content-Encoding     e      req.      SET_PARAMETER
  Content-Encoding     e      req.      DESCRIBE, ANNOUNCE
  Content-Language     e      req.      DESCRIBE, ANNOUNCE
  Content-Length       e      req.      SET_PARAMETER, ANNOUNCE
  Content-Length       e      req.      entity
  Content-Location     e      opt.      entity
  Content-Type         e      req.      SET_PARAMETER, ANNOUNCE
  Content-Type         r      req.      entity
  CSeq                 g      req.      all
  Date                 g      opt.      all
  Expires              e      opt.      DESCRIBE, ANNOUNCE
  From                 R      opt.      all
  If-Modified-Since    R      opt.      DESCRIBE, SETUP
  Last-Modified        e      opt.      entity
  Proxy-Authenticate
  Proxy-Require        R      req.      all
  Public               r      opt.      all
  Range                R      opt.      PLAY, PAUSE, RECORD
  Range                r      opt.      PLAY, PAUSE, RECORD
  Referer              R      opt.      all
  Require              R      req.      all
  Retry-After          r      opt.      all
  RTP-Info             r      req.      PLAY
  Scale                Rr     opt.      PLAY, RECORD
  Session              Rr     req.      all but SETUP, OPTIONS
  Server               r      opt.      all
  Speed                Rr     opt.      PLAY
  Transport            Rr     req.      SETUP
  Unsupported          r      req.      all
  User-Agent           R      opt.      all
  Via                  g      opt.      all
  WWW-Authenticate     r      opt.      all







Schulzrinne, et. al.        Standards Track                    [Page 45]

RFC 2326              Real Time Streaming Protocol            April 1998


  Overview of RTSP header fields

12.1 Accept

  The Accept request-header field can be used to specify certain
  presentation description content types which are acceptable for the
  response.

    The "level" parameter for presentation descriptions is properly
    defined as part of the MIME type registration, not here.

  See [H14.1] for syntax.

  Example of use:
    Accept: application/rtsl, application/sdp;level=2

12.2 Accept-Encoding

    See [H14.3]

12.3 Accept-Language

  See [H14.4]. Note that the language specified applies to the
  presentation description and any reason phrases, not the media
  content.

12.4 Allow

  The Allow response header field lists the methods supported by the
  resource identified by the request-URI. The purpose of this field is
  to strictly inform the recipient of valid methods associated with the
  resource. An Allow header field must be present in a 405 (Method not
  allowed) response.

  Example of use:
    Allow: SETUP, PLAY, RECORD, SET_PARAMETER

12.5 Authorization

    See [H14.8]

12.6 Bandwidth

  The Bandwidth request header field describes the estimated bandwidth
  available to the client, expressed as a positive integer and measured
  in bits per second. The bandwidth available to the client may change
  during an RTSP session, e.g., due to modem retraining.




Schulzrinne, et. al.        Standards Track                    [Page 46]

RFC 2326              Real Time Streaming Protocol            April 1998


  Bandwidth = "Bandwidth" ":" 1*DIGIT

  Example:
    Bandwidth: 4000

12.7 Blocksize

  This request header field is sent from the client to the media server
  asking the server for a particular media packet size. This packet
  size does not include lower-layer headers such as IP, UDP, or RTP.
  The server is free to use a blocksize which is lower than the one
  requested. The server MAY truncate this packet size to the closest
  multiple of the minimum, media-specific block size, or override it
  with the media-specific size if necessary. The block size MUST be a
  positive decimal number, measured in octets. The server only returns
  an error (416) if the value is syntactically invalid.

12.8 Cache-Control

  The Cache-Control general header field is used to specify directives
  that MUST be obeyed by all caching mechanisms along the
  request/response chain.

  Cache directives must be passed through by a proxy or gateway
  application, regardless of their significance to that application,
  since the directives may be applicable to all recipients along the
  request/response chain. It is not possible to specify a cache-
  directive for a specific cache.

  Cache-Control should only be specified in a SETUP request and its
  response. Note: Cache-Control does not govern the caching of
  responses as for HTTP, but rather of the stream identified by the
  SETUP request.  Responses to RTSP requests are not cacheable, except
  for responses to DESCRIBE.

  Cache-Control            =   "Cache-Control" ":" 1#cache-directive
  cache-directive          =   cache-request-directive
                           |   cache-response-directive
  cache-request-directive  =   "no-cache"
                           |   "max-stale"
                           |   "min-fresh"
                           |   "only-if-cached"
                           |   cache-extension
  cache-response-directive =   "public"
                           |   "private"
                           |   "no-cache"
                           |   "no-transform"
                           |   "must-revalidate"



Schulzrinne, et. al.        Standards Track                    [Page 47]

RFC 2326              Real Time Streaming Protocol            April 1998


                           |   "proxy-revalidate"
                           |   "max-age" "=" delta-seconds
                           |   cache-extension
  cache-extension          =   token [ "=" ( token | quoted-string ) ]

  no-cache:
         Indicates that the media stream MUST NOT be cached anywhere.
         This allows an origin server to prevent caching even by caches
         that have been configured to return stale responses to client
         requests.

  public:
         Indicates that the media stream is cacheable by any cache.

  private:
         Indicates that the media stream is intended for a single user
         and MUST NOT be cached by a shared cache. A private (non-
         shared) cache may cache the media stream.

  no-transform:
         An intermediate cache (proxy) may find it useful to convert
         the media type of a certain stream. A proxy might, for
         example, convert between video formats to save cache space or
         to reduce the amount of traffic on a slow link. Serious
         operational problems may occur, however, when these
         transformations have been applied to streams intended for
         certain kinds of applications. For example, applications for
         medical imaging, scientific data analysis and those using
         end-to-end authentication all depend on receiving a stream
         that is bit-for-bit identical to the original entity-body.
         Therefore, if a response includes the no-transform directive,
         an intermediate cache or proxy MUST NOT change the encoding of
         the stream. Unlike HTTP, RTSP does not provide for partial
         transformation at this point, e.g., allowing translation into
         a different language.

  only-if-cached:
         In some cases, such as times of extremely poor network
         connectivity, a client may want a cache to return only those
         media streams that it currently has stored, and not to receive
         these from the origin server. To do this, the client may
         include the only-if-cached directive in a request. If it
         receives this directive, a cache SHOULD either respond using a
         cached media stream that is consistent with the other
         constraints of the request, or respond with a 504 (Gateway
         Timeout) status. However, if a group of caches is being
         operated as a unified system with good internal connectivity,
         such a request MAY be forwarded within that group of caches.



Schulzrinne, et. al.        Standards Track                    [Page 48]

RFC 2326              Real Time Streaming Protocol            April 1998


  max-stale:
         Indicates that the client is willing to accept a media stream
         that has exceeded its expiration time. If max-stale is
         assigned a value, then the client is willing to accept a
         response that has exceeded its expiration time by no more than
         the specified number of seconds. If no value is assigned to
         max-stale, then the client is willing to accept a stale
         response of any age.

  min-fresh:
         Indicates that the client is willing to accept a media stream
         whose freshness lifetime is no less than its current age plus
         the specified time in seconds. That is, the client wants a
         response that will still be fresh for at least the specified
         number of seconds.

  must-revalidate:
         When the must-revalidate directive is present in a SETUP
         response received by a cache, that cache MUST NOT use the
         entry after it becomes stale to respond to a subsequent
         request without first revalidating it with the origin server.
         That is, the cache must do an end-to-end revalidation every
         time, if, based solely on the origin server's Expires, the
         cached response is stale.)

12.9 Conference

  This request header field establishes a logical connection between a
  pre-established conference and an RTSP stream. The conference-id must
  not be changed for the same RTSP session.

  Conference = "Conference" ":" conference-id Example:
    Conference: [email protected]%20Starr

  A response code of 452 (452 Conference Not Found) is returned if the
  conference-id is not valid.

12.10 Connection

  See [H14.10]

12.11 Content-Base

  See [H14.11]

12.12 Content-Encoding

  See [H14.12]



Schulzrinne, et. al.        Standards Track                    [Page 49]

RFC 2326              Real Time Streaming Protocol            April 1998


12.13 Content-Language

  See [H14.13]

12.14 Content-Length

  This field contains the length of the content of the method (i.e.
  after the double CRLF following the last header). Unlike HTTP, it
  MUST be included in all messages that carry content beyond the header
  portion of the message. If it is missing, a default value of zero is
  assumed. It is interpreted according to [H14.14].

12.15 Content-Location

  See [H14.15]

12.16 Content-Type

  See [H14.18]. Note that the content types suitable for RTSP are
  likely to be restricted in practice to presentation descriptions and
  parameter-value types.

12.17 CSeq

  The CSeq field specifies the sequence number for an RTSP request-
  response pair. This field MUST be present in all requests and
  responses. For every RTSP request containing the given sequence
  number, there will be a corresponding response having the same
  number.  Any retransmitted request must contain the same sequence
  number as the original (i.e. the sequence number is not incremented
  for retransmissions of the same request).

12.18 Date

  See [H14.19].

12.19 Expires

  The Expires entity-header field gives a date and time after which the
  description or media-stream should be considered stale. The
  interpretation depends on the method:

  DESCRIBE response:
         The Expires header indicates a date and time after which the
         description should be considered stale.






Schulzrinne, et. al.        Standards Track                    [Page 50]

RFC 2326              Real Time Streaming Protocol            April 1998


  A stale cache entry may not normally be returned by a cache (either a
  proxy cache or an user agent cache) unless it is first validated with
  the origin server (or with an intermediate cache that has a fresh
  copy of the entity). See section 13 for further discussion of the
  expiration model.

  The presence of an Expires field does not imply that the original
  resource will change or cease to exist at, before, or after that
  time.

  The format is an absolute date and time as defined by HTTP-date in
  [H3.3]; it MUST be in RFC1123-date format:

  Expires = "Expires" ":" HTTP-date

  An example of its use is

    Expires: Thu, 01 Dec 1994 16:00:00 GMT

  RTSP/1.0 clients and caches MUST treat other invalid date formats,
  especially including the value "0", as having occurred in the past
  (i.e., "already expired").

  To mark a response as "already expired," an origin server should use
  an Expires date that is equal to the Date header value. To mark a
  response as "never expires," an origin server should use an Expires
  date approximately one year from the time the response is sent.
  RTSP/1.0 servers should not send Expires dates more than one year in
  the future.

  The presence of an Expires header field with a date value of some
  time in the future on a media stream that otherwise would by default
  be non-cacheable indicates that the media stream is cacheable, unless
  indicated otherwise by a Cache-Control header field (Section 12.8).

12.20 From

  See [H14.22].

12.21 Host

  This HTTP request header field is not needed for RTSP. It should be
  silently ignored if sent.

12.22 If-Match

  See [H14.25].




Schulzrinne, et. al.        Standards Track                    [Page 51]

RFC 2326              Real Time Streaming Protocol            April 1998


  This field is especially useful for ensuring the integrity of the
  presentation description, in both the case where it is fetched via
  means external to RTSP (such as HTTP), or in the case where the
  server implementation is guaranteeing the integrity of the
  description between the time of the DESCRIBE message and the SETUP
  message.

  The identifier is an opaque identifier, and thus is not specific to
  any particular session description language.

12.23 If-Modified-Since

  The If-Modified-Since request-header field is used with the DESCRIBE
  and SETUP methods to make them conditional. If the requested variant
  has not been modified since the time specified in this field, a
  description will not be returned from the server (DESCRIBE) or a
  stream will not be set up (SETUP). Instead, a 304 (not modified)
  response will be returned without any message-body.

  If-Modified-Since = "If-Modified-Since" ":" HTTP-date

  An example of the field is:

    If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

12.24 Last-Modified

  The Last-Modified entity-header field indicates the date and time at
  which the origin server believes the presentation description or
  media stream was last modified. See [H14.29]. For the methods
  DESCRIBE or ANNOUNCE, the header field indicates the last
  modification date and time of the description, for SETUP that of the
  media stream.

12.25 Location

  See [H14.30].

12.26 Proxy-Authenticate

  See [H14.33].

12.27 Proxy-Require

  The Proxy-Require header is used to indicate proxy-sensitive features
  that MUST be supported by the proxy. Any Proxy-Require header
  features that are not supported by the proxy MUST be negatively
  acknowledged by the proxy to the client if not supported. Servers



Schulzrinne, et. al.        Standards Track                    [Page 52]

RFC 2326              Real Time Streaming Protocol            April 1998


  should treat this field identically to the Require field.

  See Section 12.32 for more details on the mechanics of this message
  and a usage example.

12.28 Public

  See [H14.35].

12.29 Range

  This request and response header field specifies a range of time.
  The range can be specified in a number of units. This specification
  defines the smpte (Section 3.5), npt (Section 3.6), and clock
  (Section 3.7) range units. Within RTSP, byte ranges [H14.36.1] are
  not meaningful and MUST NOT be used. The header may also contain a
  time parameter in UTC, specifying the time at which the operation is
  to be made effective. Servers supporting the Range header MUST
  understand the NPT range format and SHOULD understand the SMPTE range
  format. The Range response header indicates what range of time is
  actually being played or recorded. If the Range header is given in a
  time format that is not understood, the recipient should return "501
  Not Implemented".

  Ranges are half-open intervals, including the lower point, but
  excluding the upper point. In other words, a range of a-b starts
  exactly at time a, but stops just before b. Only the start time of a
  media unit such as a video or audio frame is relevant. As an example,
  assume that video frames are generated every 40 ms. A range of 10.0-
  10.1 would include a video frame starting at 10.0 or later time and
  would include a video frame starting at 10.08, even though it lasted
  beyond the interval. A range of 10.0-10.08, on the other hand, would
  exclude the frame at 10.08.

  Range            = "Range" ":" 1\#ranges-specifier
                         [ ";" "time" "=" utc-time ]
  ranges-specifier = npt-range | utc-range | smpte-range

  Example:
    Range: clock=19960213T143205Z-;time=19970123T143720Z

    The notation is similar to that used for the HTTP/1.1 [2] byte-
    range header. It allows clients to select an excerpt from the media
    object, and to play from a given point to the end as well as from
    the current location to a given point. The start of playback can be
    scheduled for any time in the future, although a server may refuse
    to keep server resources for extended idle periods.




Schulzrinne, et. al.        Standards Track                    [Page 53]

RFC 2326              Real Time Streaming Protocol            April 1998


12.30 Referer

  See [H14.37]. The URL refers to that of the presentation description,
  typically retrieved via HTTP.

12.31 Retry-After

  See [H14.38].

12.32 Require

  The Require header is used by clients to query the server about
  options that it may or may not support. The server MUST respond to
  this header by using the Unsupported header to negatively acknowledge
  those options which are NOT supported.

    This is to make sure that the client-server interaction will
    proceed without delay when all options are understood by both
    sides, and only slow down if options are not understood (as in the
    case above). For a well-matched client-server pair, the interaction
    proceeds quickly, saving a round-trip often required by negotiation
    mechanisms. In addition, it also removes state ambiguity when the
    client requires features that the server does not understand.

  Require =   "Require" ":"  1#option-tag

  Example:
    C->S:   SETUP rtsp://server.com/foo/bar/baz.rm RTSP/1.0
            CSeq: 302
            Require: funky-feature
            Funky-Parameter: funkystuff

    S->C:   RTSP/1.0 551 Option not supported
            CSeq: 302
            Unsupported: funky-feature

    C->S:   SETUP rtsp://server.com/foo/bar/baz.rm RTSP/1.0
            CSeq: 303

    S->C:   RTSP/1.0 200 OK
            CSeq: 303

  In this example, "funky-feature" is the feature tag which indicates
  to the client that the fictional Funky-Parameter field is required.
  The relationship between "funky-feature" and Funky-Parameter is not
  communicated via the RTSP exchange, since that relationship is an
  immutable property of "funky-feature" and thus should not be
  transmitted with every exchange.



Schulzrinne, et. al.        Standards Track                    [Page 54]

RFC 2326              Real Time Streaming Protocol            April 1998


  Proxies and other intermediary devices SHOULD ignore features that
  are not understood in this field. If a particular extension requires
  that intermediate devices support it, the extension should be tagged
  in the Proxy-Require field instead (see Section 12.27).

12.33 RTP-Info

  This field is used to set RTP-specific parameters in the PLAY
  response.

  url:
         Indicates the stream URL which for which the following RTP
         parameters correspond.

  seq:
         Indicates the sequence number of the first packet of the
         stream. This allows clients to gracefully deal with packets
         when seeking. The client uses this value to differentiate
         packets that originated before the seek from packets that
         originated after the seek.

  rtptime:
         Indicates the RTP timestamp corresponding to the time value in
         the Range response header. (Note: For aggregate control, a
         particular stream may not actually generate a packet for the
         Range time value returned or implied. Thus, there is no
         guarantee that the packet with the sequence number indicated
         by seq actually has the timestamp indicated by rtptime.) The
         client uses this value to calculate the mapping of RTP time to
         NPT.

    A mapping from RTP timestamps to NTP timestamps (wall clock) is
    available via RTCP. However, this information is not sufficient to
    generate a mapping from RTP timestamps to NPT. Furthermore, in
    order to ensure that this information is available at the necessary
    time (immediately at startup or after a seek), and that it is
    delivered reliably, this mapping is placed in the RTSP control
    channel.

    In order to compensate for drift for long, uninterrupted
    presentations, RTSP clients should additionally map NPT to NTP,
    using initial RTCP sender reports to do the mapping, and later
    reports to check drift against the mapping.








Schulzrinne, et. al.        Standards Track                    [Page 55]

RFC 2326              Real Time Streaming Protocol            April 1998


  Syntax:

  RTP-Info        = "RTP-Info" ":" 1#stream-url 1*parameter
  stream-url      = "url" "=" url
  parameter       = ";" "seq" "=" 1*DIGIT
                  | ";" "rtptime" "=" 1*DIGIT

  Example:

    RTP-Info: url=rtsp://foo.com/bar.avi/streamid=0;seq=45102,
              url=rtsp://foo.com/bar.avi/streamid=1;seq=30211

12.34 Scale

  A scale value of 1 indicates normal play or record at the normal
  forward viewing rate. If not 1, the value corresponds to the rate
  with respect to normal viewing rate. For example, a ratio of 2
  indicates twice the normal viewing rate ("fast forward") and a ratio
  of 0.5 indicates half the normal viewing rate. In other words, a
  ratio of 2 has normal play time increase at twice the wallclock rate.
  For every second of elapsed (wallclock) time, 2 seconds of content
  will be delivered. A negative value indicates reverse direction.

  Unless requested otherwise by the Speed parameter, the data rate
  SHOULD not be changed. Implementation of scale changes depends on the
  server and media type. For video, a server may, for example, deliver
  only key frames or selected key frames. For audio, it may time-scale
  the audio while preserving pitch or, less desirably, deliver
  fragments of audio.

  The server should try to approximate the viewing rate, but may
  restrict the range of scale values that it supports. The response
  MUST contain the actual scale value chosen by the server.

  If the request contains a Range parameter, the new scale value will
  take effect at that time.

  Scale = "Scale" ":" [ "-" ] 1*DIGIT [ "." *DIGIT ]

  Example of playing in reverse at 3.5 times normal rate:

    Scale: -3.5









Schulzrinne, et. al.        Standards Track                    [Page 56]

RFC 2326              Real Time Streaming Protocol            April 1998


12.35 Speed

  This request header fields parameter requests the server to deliver
  data to the client at a particular speed, contingent on the server's
  ability and desire to serve the media stream at the given speed.
  Implementation by the server is OPTIONAL. The default is the bit rate
  of the stream.

  The parameter value is expressed as a decimal ratio, e.g., a value of
  2.0 indicates that data is to be delivered twice as fast as normal. A
  speed of zero is invalid. If the request contains a Range parameter,
  the new speed value will take effect at that time.

  Speed = "Speed" ":" 1*DIGIT [ "." *DIGIT ]

  Example:
    Speed: 2.5

  Use of this field changes the bandwidth used for data delivery. It is
  meant for use in specific circumstances where preview of the
  presentation at a higher or lower rate is necessary. Implementors
  should keep in mind that bandwidth for the session may be negotiated
  beforehand (by means other than RTSP), and therefore re-negotiation
  may be necessary. When data is delivered over UDP, it is highly
  recommended that means such as RTCP be used to track packet loss
  rates.

12.36 Server

  See [H14.39]

12.37 Session

  This request and response header field identifies an RTSP session
  started by the media server in a SETUP response and concluded by
  TEARDOWN on the presentation URL. The session identifier is chosen by
  the media server (see Section 3.4). Once a client receives a Session
  identifier, it MUST return it for any request related to that
  session.  A server does not have to set up a session identifier if it
  has other means of identifying a session, such as dynamically
  generated URLs.

Session  = "Session" ":" session-id [ ";" "timeout" "=" delta-seconds ]

  The timeout parameter is only allowed in a response header. The
  server uses it to indicate to the client how long the server is
  prepared to wait between RTSP commands before closing the session due
  to lack of activity (see Section A). The timeout is measured in



Schulzrinne, et. al.        Standards Track                    [Page 57]

RFC 2326              Real Time Streaming Protocol            April 1998


  seconds, with a default of 60 seconds (1 minute).

  Note that a session identifier identifies a RTSP session across
  transport sessions or connections. Control messages for more than one
  RTSP URL may be sent within a single RTSP session. Hence, it is
  possible that clients use the same session for controlling many
  streams constituting a presentation, as long as all the streams come
  from the same server. (See example in Section 14). However, multiple
  "user" sessions for the same URL from the same client MUST use
  different session identifiers.

    The session identifier is needed to distinguish several delivery
    requests for the same URL coming from the same client.

  The response 454 (Session Not Found) is returned if the session
  identifier is invalid.

12.38 Timestamp

  The timestamp general header describes when the client sent the
  request to the server. The value of the timestamp is of significance
  only to the client and may use any timescale. The server MUST echo
  the exact same value and MAY, if it has accurate information about
  this, add a floating point number indicating the number of seconds
  that has elapsed since it has received the request. The timestamp is
  used by the client to compute the round-trip time to the server so
  that it can adjust the timeout value for retransmissions.

  Timestamp  = "Timestamp" ":" *(DIGIT) [ "." *(DIGIT) ] [ delay ]
  delay      =  *(DIGIT) [ "." *(DIGIT) ]

12.39 Transport

  This request header indicates which transport protocol is to be used
  and configures its parameters such as destination address,
  compression, multicast time-to-live and destination port for a single
  stream. It sets those values not already determined by a presentation
  description.

  Transports are comma separated, listed in order of preference.
  Parameters may be added to each transport, separated by a semicolon.

  The Transport header MAY also be used to change certain transport
  parameters. A server MAY refuse to change parameters of an existing
  stream.

  The server MAY return a Transport response header in the response to
  indicate the values actually chosen.



Schulzrinne, et. al.        Standards Track                    [Page 58]

RFC 2326              Real Time Streaming Protocol            April 1998


  A Transport request header field may contain a list of transport
  options acceptable to the client. In that case, the server MUST
  return a single option which was actually chosen.

  The syntax for the transport specifier is

      transport/profile/lower-transport.

  The default value for the "lower-transport" parameters is specific to
  the profile. For RTP/AVP, the default is UDP.

  Below are the configuration parameters associated with transport:

  General parameters:

  unicast | multicast:
         mutually exclusive indication of whether unicast or multicast
         delivery will be attempted. Default value is multicast.
         Clients that are capable of handling both unicast and
         multicast transmission MUST indicate such capability by
         including two full transport-specs with separate parameters
         for each.

  destination:
         The address to which a stream will be sent. The client may
         specify the multicast address with the destination parameter.
         To avoid becoming the unwitting perpetrator of a remote-
         controlled denial-of-service attack, a server SHOULD
         authenticate the client and SHOULD log such attempts before
         allowing the client to direct a media stream to an address not
         chosen by the server. This is particularly important if RTSP
         commands are issued via UDP, but implementations cannot rely
         on TCP as reliable means of client identification by itself. A
         server SHOULD not allow a client to direct media streams to an
         address that differs from the address commands are coming
         from.

  source:
         If the source address for the stream is different than can be
         derived from the RTSP endpoint address (the server in playback
         or the client in recording), the source MAY be specified.

    This information may also be available through SDP. However, since
    this is more a feature of transport than media initialization, the
    authoritative source for this information should be in the SETUP
    response.





Schulzrinne, et. al.        Standards Track                    [Page 59]

RFC 2326              Real Time Streaming Protocol            April 1998


  layers:
         The number of multicast layers to be used for this media
         stream. The layers are sent to consecutive addresses starting
         at the destination address.

  mode:
         The mode parameter indicates the methods to be supported for
         this session. Valid values are PLAY and RECORD. If not
         provided, the default is PLAY.

  append:
         If the mode parameter includes RECORD, the append parameter
         indicates that the media data should append to the existing
         resource rather than overwrite it. If appending is requested
         and the server does not support this, it MUST refuse the
         request rather than overwrite the resource identified by the
         URI. The append parameter is ignored if the mode parameter
         does not contain RECORD.

  interleaved:
         The interleaved parameter implies mixing the media stream with
         the control stream in whatever protocol is being used by the
         control stream, using the mechanism defined in Section 10.12.
         The argument provides the channel number to be used in the $
         statement. This parameter may be specified as a range, e.g.,
         interleaved=4-5 in cases where the transport choice for the
         media stream requires it.

    This allows RTP/RTCP to be handled similarly to the way that it is
    done with UDP, i.e., one channel for RTP and the other for RTCP.

  Multicast specific:

  ttl:
         multicast time-to-live

  RTP Specific:

  port:
         This parameter provides the RTP/RTCP port pair for a multicast
         session. It is specified as a range, e.g., port=3456-3457.

  client_port:
         This parameter provides the unicast RTP/RTCP port pair on
         which the client has chosen to receive media data and control
         information.  It is specified as a range, e.g.,
         client_port=3456-3457.




Schulzrinne, et. al.        Standards Track                    [Page 60]

RFC 2326              Real Time Streaming Protocol            April 1998


  server_port:
         This parameter provides the unicast RTP/RTCP port pair on
         which the server has chosen to receive media data and control
         information.  It is specified as a range, e.g.,
         server_port=3456-3457.

  ssrc:
         The ssrc parameter indicates the RTP SSRC [24, Sec. 3] value
         that should be (request) or will be (response) used by the
         media server. This parameter is only valid for unicast
         transmission. It identifies the synchronization source to be
         associated with the media stream.

  Transport           =    "Transport" ":"
                           1\#transport-spec
  transport-spec      =    transport-protocol/profile[/lower-transport]
                           *parameter
  transport-protocol  =    "RTP"
  profile             =    "AVP"
  lower-transport     =    "TCP" | "UDP"
  parameter           =    ( "unicast" | "multicast" )
                      |    ";" "destination" [ "=" address ]
                      |    ";" "interleaved" "=" channel [ "-" channel ]
                      |    ";" "append"
                      |    ";" "ttl" "=" ttl
                      |    ";" "layers" "=" 1*DIGIT
                      |    ";" "port" "=" port [ "-" port ]
                      |    ";" "client_port" "=" port [ "-" port ]
                      |    ";" "server_port" "=" port [ "-" port ]
                      |    ";" "ssrc" "=" ssrc
                      |    ";" "mode" = <"> 1\#mode <">
  ttl                 =    1*3(DIGIT)
  port                =    1*5(DIGIT)
  ssrc                =    8*8(HEX)
  channel             =    1*3(DIGIT)
  address             =    host
  mode                =    <"> *Method <"> | Method


  Example:
    Transport: RTP/AVP;multicast;ttl=127;mode="PLAY",
               RTP/AVP;unicast;client_port=3456-3457;mode="PLAY"

    The Transport header is restricted to describing a single RTP
    stream. (RTSP can also control multiple streams as a single
    entity.) Making it part of RTSP rather than relying on a multitude
    of session description formats greatly simplifies designs of
    firewalls.



Schulzrinne, et. al.        Standards Track                    [Page 61]

RFC 2326              Real Time Streaming Protocol            April 1998


12.40 Unsupported

  The Unsupported response header lists the features not supported by
  the server. In the case where the feature was specified via the
  Proxy-Require field (Section 12.32), if there is a proxy on the path
  between the client and the server, the proxy MUST insert a message
  reply with an error message "551 Option Not Supported".

  See Section 12.32 for a usage example.

12.41 User-Agent

  See [H14.42]

12.42 Vary

  See [H14.43]

12.43 Via

  See [H14.44].

12.44 WWW-Authentica

  See [H14.46].

13 Caching

  In HTTP, response-request pairs are cached. RTSP differs
  significantly in that respect. Responses are not cacheable, with the
  exception of the presentation description returned by DESCRIBE or
  included with ANNOUNCE. (Since the responses for anything but
  DESCRIBE and GET_PARAMETER do not return any data, caching is not
  really an issue for these requests.) However, it is desirable for the
  continuous media data, typically delivered out-of-band with respect
  to RTSP, to be cached, as well as the session description.

  On receiving a SETUP or PLAY request, a proxy ascertains whether it
  has an up-to-date copy of the continuous media content and its
  description. It can determine whether the copy is up-to-date by
  issuing a SETUP or DESCRIBE request, respectively, and comparing the
  Last-Modified header with that of the cached copy. If the copy is not
  up-to-date, it modifies the SETUP transport parameters as appropriate
  and forwards the request to the origin server. Subsequent control
  commands such as PLAY or PAUSE then pass the proxy unmodified. The
  proxy delivers the continuous media data to the client, while
  possibly making a local copy for later reuse. The exact behavior
  allowed to the cache is given by the cache-response directives



Schulzrinne, et. al.        Standards Track                    [Page 62]

RFC 2326              Real Time Streaming Protocol            April 1998


  described in Section 12.8. A cache MUST answer any DESCRIBE requests
  if it is currently serving the stream to the requestor, as it is
  possible that low-level details of the stream description may have
  changed on the origin-server.

  Note that an RTSP cache, unlike the HTTP cache, is of the "cut-
  through" variety. Rather than retrieving the whole resource from the
  origin server, the cache simply copies the streaming data as it
  passes by on its way to the client. Thus, it does not introduce
  additional latency.

  To the client, an RTSP proxy cache appears like a regular media
  server, to the media origin server like a client. Just as an HTTP
  cache has to store the content type, content language, and so on for
  the objects it caches, a media cache has to store the presentation
  description. Typically, a cache eliminates all transport-references
  (that is, multicast information) from the presentation description,
  since these are independent of the data delivery from the cache to
  the client. Information on the encodings remains the same. If the
  cache is able to translate the cached media data, it would create a
  new presentation description with all the encoding possibilities it
  can offer.

14 Examples

  The following examples refer to stream description formats that are
  not standards, such as RTSL. The following examples are not to be
  used as a reference for those formats.

14.1 Media on Demand (Unicast)

  Client C requests a movie from media servers A ( audio.example.com)
  and V (video.example.com). The media description is stored on a web
  server W . The media description contains descriptions of the
  presentation and all its streams, including the codecs that are
  available, dynamic RTP payload types, the protocol stack, and content
  information such as language or copyright restrictions. It may also
  give an indication about the timeline of the movie.

  In this example, the client is only interested in the last part of
  the movie.

    C->W: GET /twister.sdp HTTP/1.1
          Host: www.example.com
          Accept: application/sdp

    W->C: HTTP/1.0 200 OK
          Content-Type: application/sdp



Schulzrinne, et. al.        Standards Track                    [Page 63]

RFC 2326              Real Time Streaming Protocol            April 1998


          v=0
          o=- 2890844526 2890842807 IN IP4 192.16.24.202
          s=RTSP Session
          m=audio 0 RTP/AVP 0
          a=control:rtsp://audio.example.com/twister/audio.en
          m=video 0 RTP/AVP 31
          a=control:rtsp://video.example.com/twister/video

    C->A: SETUP rtsp://audio.example.com/twister/audio.en RTSP/1.0
          CSeq: 1
          Transport: RTP/AVP/UDP;unicast;client_port=3056-3057

    A->C: RTSP/1.0 200 OK
          CSeq: 1
          Session: 12345678
          Transport: RTP/AVP/UDP;unicast;client_port=3056-3057;
                     server_port=5000-5001

    C->V: SETUP rtsp://video.example.com/twister/video RTSP/1.0
          CSeq: 1
          Transport: RTP/AVP/UDP;unicast;client_port=3058-3059

    V->C: RTSP/1.0 200 OK
          CSeq: 1
          Session: 23456789
          Transport: RTP/AVP/UDP;unicast;client_port=3058-3059;
                     server_port=5002-5003

    C->V: PLAY rtsp://video.example.com/twister/video RTSP/1.0
          CSeq: 2
          Session: 23456789
          Range: smpte=0:10:00-

    V->C: RTSP/1.0 200 OK
          CSeq: 2
          Session: 23456789
          Range: smpte=0:10:00-0:20:00
          RTP-Info: url=rtsp://video.example.com/twister/video;
            seq=12312232;rtptime=78712811

    C->A: PLAY rtsp://audio.example.com/twister/audio.en RTSP/1.0
          CSeq: 2
          Session: 12345678
          Range: smpte=0:10:00-

    A->C: RTSP/1.0 200 OK
          CSeq: 2
          Session: 12345678



Schulzrinne, et. al.        Standards Track                    [Page 64]

RFC 2326              Real Time Streaming Protocol            April 1998


          Range: smpte=0:10:00-0:20:00
          RTP-Info: url=rtsp://audio.example.com/twister/audio.en;
            seq=876655;rtptime=1032181

    C->A: TEARDOWN rtsp://audio.example.com/twister/audio.en RTSP/1.0
          CSeq: 3
          Session: 12345678

    A->C: RTSP/1.0 200 OK
          CSeq: 3

    C->V: TEARDOWN rtsp://video.example.com/twister/video RTSP/1.0
          CSeq: 3
          Session: 23456789

    V->C: RTSP/1.0 200 OK
          CSeq: 3

  Even though the audio and video track are on two different servers,
  and may start at slightly different times and may drift with respect
  to each other, the client can synchronize the two using standard RTP
  methods, in particular the time scale contained in the RTCP sender
  reports.

14.2 Streaming of a Container file

  For purposes of this example, a container file is a storage entity in
  which multiple continuous media types pertaining to the same end-user
  presentation are present. In effect, the container file represents an
  RTSP presentation, with each of its components being RTSP streams.
  Container files are a widely used means to store such presentations.
  While the components are transported as independent streams, it is
  desirable to maintain a common context for those streams at the
  server end.

    This enables the server to keep a single storage handle open
    easily. It also allows treating all the streams equally in case of
    any prioritization of streams by the server.

  It is also possible that the presentation author may wish to prevent
  selective retrieval of the streams by the client in order to preserve
  the artistic effect of the combined media presentation. Similarly, in
  such a tightly bound presentation, it is desirable to be able to
  control all the streams via a single control message using an
  aggregate URL.

  The following is an example of using a single RTSP session to control
  multiple streams. It also illustrates the use of aggregate URLs.



Schulzrinne, et. al.        Standards Track                    [Page 65]

RFC 2326              Real Time Streaming Protocol            April 1998


  Client C requests a presentation from media server M . The movie is
  stored in a container file. The client has obtained an RTSP URL to
  the container file.

    C->M: DESCRIBE rtsp://foo/twister RTSP/1.0
          CSeq: 1

    M->C: RTSP/1.0 200 OK
          CSeq: 1
          Content-Type: application/sdp
          Content-Length: 164

          v=0
          o=- 2890844256 2890842807 IN IP4 172.16.2.93
          s=RTSP Session
          i=An Example of RTSP Session Usage
          a=control:rtsp://foo/twister
          t=0 0
          m=audio 0 RTP/AVP 0
          a=control:rtsp://foo/twister/audio
          m=video 0 RTP/AVP 26
          a=control:rtsp://foo/twister/video

    C->M: SETUP rtsp://foo/twister/audio RTSP/1.0
          CSeq: 2
          Transport: RTP/AVP;unicast;client_port=8000-8001

    M->C: RTSP/1.0 200 OK
          CSeq: 2
          Transport: RTP/AVP;unicast;client_port=8000-8001;
                     server_port=9000-9001
          Session: 12345678

    C->M: SETUP rtsp://foo/twister/video RTSP/1.0
          CSeq: 3
          Transport: RTP/AVP;unicast;client_port=8002-8003
          Session: 12345678

    M->C: RTSP/1.0 200 OK
          CSeq: 3
          Transport: RTP/AVP;unicast;client_port=8002-8003;
                     server_port=9004-9005
          Session: 12345678

    C->M: PLAY rtsp://foo/twister RTSP/1.0
          CSeq: 4
          Range: npt=0-
          Session: 12345678



Schulzrinne, et. al.        Standards Track                    [Page 66]

RFC 2326              Real Time Streaming Protocol            April 1998


    M->C: RTSP/1.0 200 OK
          CSeq: 4
          Session: 12345678
          RTP-Info: url=rtsp://foo/twister/video;
            seq=9810092;rtptime=3450012

    C->M: PAUSE rtsp://foo/twister/video RTSP/1.0
          CSeq: 5
          Session: 12345678

    M->C: RTSP/1.0 460 Only aggregate operation allowed
          CSeq: 5

    C->M: PAUSE rtsp://foo/twister RTSP/1.0
          CSeq: 6
          Session: 12345678

    M->C: RTSP/1.0 200 OK
          CSeq: 6
          Session: 12345678

    C->M: SETUP rtsp://foo/twister RTSP/1.0
          CSeq: 7
          Transport: RTP/AVP;unicast;client_port=10000

    M->C: RTSP/1.0 459 Aggregate operation not allowed
          CSeq: 7


  In the first instance of failure, the client tries to pause one
  stream (in this case video) of the presentation. This is disallowed
  for that presentation by the server. In the second instance, the
  aggregate URL may not be used for SETUP and one control message is
  required per stream to set up transport parameters.

    This keeps the syntax of the Transport header simple and allows
    easy parsing of transport information by firewalls.

14.3 Single Stream Container Files

  Some RTSP servers may treat all files as though they are "container
  files", yet other servers may not support such a concept. Because of
  this, clients SHOULD use the rules set forth in the session
  description for request URLs, rather than assuming that a consistent
  URL may always be used throughout. Here's an example of how a multi-
  stream server might expect a single-stream file to be served:

         Accept: application/x-rtsp-mh, application/sdp



Schulzrinne, et. al.        Standards Track                    [Page 67]

RFC 2326              Real Time Streaming Protocol            April 1998


         CSeq: 1

   S->C  RTSP/1.0 200 OK
         CSeq: 1
         Content-base: rtsp://foo.com/test.wav/
         Content-type: application/sdp
         Content-length: 48

         v=0
         o=- 872653257 872653257 IN IP4 172.16.2.187
         s=mu-law wave file
         i=audio test
         t=0 0
         m=audio 0 RTP/AVP 0
         a=control:streamid=0

   C->S  SETUP rtsp://foo.com/test.wav/streamid=0 RTSP/1.0
         Transport: RTP/AVP/UDP;unicast;
                    client_port=6970-6971;mode=play
         CSeq: 2

   S->C  RTSP/1.0 200 OK
         Transport: RTP/AVP/UDP;unicast;client_port=6970-6971;
                    server_port=6970-6971;mode=play
         CSeq: 2
         Session: 2034820394

   C->S  PLAY rtsp://foo.com/test.wav RTSP/1.0
         CSeq: 3
         Session: 2034820394

   S->C  RTSP/1.0 200 OK
         CSeq: 3
         Session: 2034820394
         RTP-Info: url=rtsp://foo.com/test.wav/streamid=0;
           seq=981888;rtptime=3781123

  Note the different URL in the SETUP command, and then the switch back
  to the aggregate URL in the PLAY command. This makes complete sense
  when there are multiple streams with aggregate control, but is less
  than intuitive in the special case where the number of streams is
  one.

  In this special case, it is recommended that servers be forgiving of
  implementations that send:

   C->S  PLAY rtsp://foo.com/test.wav/streamid=0 RTSP/1.0
         CSeq: 3



Schulzrinne, et. al.        Standards Track                    [Page 68]

RFC 2326              Real Time Streaming Protocol            April 1998


  In the worst case, servers should send back:

   S->C  RTSP/1.0 460 Only aggregate operation allowed
         CSeq: 3

  One would also hope that server implementations are also forgiving of
  the following:

   C->S  SETUP rtsp://foo.com/test.wav RTSP/1.0
         Transport: rtp/avp/udp;client_port=6970-6971;mode=play
         CSeq: 2

  Since there is only a single stream in this file, it's not ambiguous
  what this means.

14.4 Live Media Presentation Using Multicast

  The media server M chooses the multicast address and port. Here, we
  assume that the web server only contains a pointer to the full
  description, while the media server M maintains the full description.

    C->W: GET /concert.sdp HTTP/1.1
          Host: www.example.com

    W->C: HTTP/1.1 200 OK
          Content-Type: application/x-rtsl

          <session>
            <track src="rtsp://live.example.com/concert/audio">
          </session>

    C->M: DESCRIBE rtsp://live.example.com/concert/audio RTSP/1.0
          CSeq: 1

    M->C: RTSP/1.0 200 OK
          CSeq: 1
          Content-Type: application/sdp
          Content-Length: 44

          v=0
          o=- 2890844526 2890842807 IN IP4 192.16.24.202
          s=RTSP Session
          m=audio 3456 RTP/AVP 0
          a=control:rtsp://live.example.com/concert/audio
          c=IN IP4 224.2.0.1/16

    C->M: SETUP rtsp://live.example.com/concert/audio RTSP/1.0
          CSeq: 2



Schulzrinne, et. al.        Standards Track                    [Page 69]

RFC 2326              Real Time Streaming Protocol            April 1998


          Transport: RTP/AVP;multicast

    M->C: RTSP/1.0 200 OK
          CSeq: 2
          Transport: RTP/AVP;multicast;destination=224.2.0.1;
                     port=3456-3457;ttl=16
          Session: 0456804596

    C->M: PLAY rtsp://live.example.com/concert/audio RTSP/1.0
          CSeq: 3
          Session: 0456804596

    M->C: RTSP/1.0 200 OK
          CSeq: 3
          Session: 0456804596

14.5 Playing media into an existing session

  A conference participant C wants to have the media server M play back
  a demo tape into an existing conference. C indicates to the media
  server that the network addresses and encryption keys are already
  given by the conference, so they should not be chosen by the server.
  The example omits the simple ACK responses.

    C->M: DESCRIBE rtsp://server.example.com/demo/548/sound RTSP/1.0
          CSeq: 1
          Accept: application/sdp

    M->C: RTSP/1.0 200 1 OK
          Content-type: application/sdp
          Content-Length: 44

          v=0
          o=- 2890844526 2890842807 IN IP4 192.16.24.202
          s=RTSP Session
          i=See above
          t=0 0
          m=audio 0 RTP/AVP 0

    C->M: SETUP rtsp://server.example.com/demo/548/sound RTSP/1.0
          CSeq: 2
          Transport: RTP/AVP;multicast;destination=225.219.201.15;
                     port=7000-7001;ttl=127
          Conference: [email protected]%20Starr

    M->C: RTSP/1.0 200 OK
          CSeq: 2
          Transport: RTP/AVP;multicast;destination=225.219.201.15;



Schulzrinne, et. al.        Standards Track                    [Page 70]

RFC 2326              Real Time Streaming Protocol            April 1998


                     port=7000-7001;ttl=127
          Session: 91389234234
          Conference: [email protected]%20Starr

    C->M: PLAY rtsp://server.example.com/demo/548/sound RTSP/1.0
          CSeq: 3
          Session: 91389234234

    M->C: RTSP/1.0 200 OK
          CSeq: 3

14.6 Recording

  The conference participant client C asks the media server M to record
  the audio and video portions of a meeting. The client uses the
  ANNOUNCE method to provide meta-information about the recorded
  session to the server.

    C->M: ANNOUNCE rtsp://server.example.com/meeting RTSP/1.0
          CSeq: 90
          Content-Type: application/sdp
          Content-Length: 121

          v=0
          o=camera1 3080117314 3080118787 IN IP4 195.27.192.36
          s=IETF Meeting, Munich - 1
          i=The thirty-ninth IETF meeting will be held in Munich, Germany
          u=http://www.ietf.org/meetings/Munich.html
          e=IETF Channel 1 <[email protected]>
          p=IETF Channel 1 +49-172-2312 451
          c=IN IP4 224.0.1.11/127
          t=3080271600 3080703600
          a=tool:sdr v2.4a6
          a=type:test
          m=audio 21010 RTP/AVP 5
          c=IN IP4 224.0.1.11/127
          a=ptime:40
          m=video 61010 RTP/AVP 31
          c=IN IP4 224.0.1.12/127

    M->C: RTSP/1.0 200 OK
          CSeq: 90

    C->M: SETUP rtsp://server.example.com/meeting/audiotrack RTSP/1.0
          CSeq: 91
          Transport: RTP/AVP;multicast;destination=224.0.1.11;
                     port=21010-21011;mode=record;ttl=127




Schulzrinne, et. al.        Standards Track                    [Page 71]

RFC 2326              Real Time Streaming Protocol            April 1998


    M->C: RTSP/1.0 200 OK
          CSeq: 91
          Session: 50887676
          Transport: RTP/AVP;multicast;destination=224.0.1.11;
                     port=21010-21011;mode=record;ttl=127

    C->M: SETUP rtsp://server.example.com/meeting/videotrack RTSP/1.0
          CSeq: 92
          Session: 50887676
          Transport: RTP/AVP;multicast;destination=224.0.1.12;
                     port=61010-61011;mode=record;ttl=127

    M->C: RTSP/1.0 200 OK
          CSeq: 92
          Transport: RTP/AVP;multicast;destination=224.0.1.12;
                     port=61010-61011;mode=record;ttl=127

    C->M: RECORD rtsp://server.example.com/meeting RTSP/1.0
          CSeq: 93
          Session: 50887676
          Range: clock=19961110T1925-19961110T2015

    M->C: RTSP/1.0 200 OK
          CSeq: 93

15 Syntax

  The RTSP syntax is described in an augmented Backus-Naur form (BNF)
  as used in RFC 2068 [2].

15.1 Base Syntax

  OCTET              =      <any 8-bit sequence of data>
  CHAR               =      <any US-ASCII character (octets 0 - 127)>
  UPALPHA            =      <any US-ASCII uppercase letter "A".."Z">
  LOALPHA            =      <any US-ASCII lowercase letter "a".."z">
  ALPHA              =      UPALPHA | LOALPHA

  DIGIT              =      <any US-ASCII digit "0".."9">
  CTL                =      <any US-ASCII control character
                             (octets 0 - 31) and DEL (127)>
  CR                 =      <US-ASCII CR, carriage return (13)>
  LF                 =      <US-ASCII LF, linefeed (10)>

  SP                 =      <US-ASCII SP, space (32)>
  HT                 =      <US-ASCII HT, horizontal-tab (9)>
  <">                =      <US-ASCII double-quote mark (34)>
  CRLF               =      CR LF



Schulzrinne, et. al.        Standards Track                    [Page 72]

RFC 2326              Real Time Streaming Protocol            April 1998


  LWS                =      [CRLF] 1*( SP | HT )
  TEXT               =      <any OCTET except CTLs>
  tspecials          =      "(" | ")" | "<" | ">" | "@"
                     |       "," | ";" | ":" | "\" | <">
                     |       "/" | "[" | "]" | "?" | "="
                     |       "{" | "}" | SP | HT

  token              =      1*<any CHAR except CTLs or tspecials>
  quoted-string      =      ( <"> *(qdtext) <"> )
  qdtext             =      <any TEXT except <">>
  quoted-pair        =      "\" CHAR

  message-header     =      field-name ":" [ field-value ] CRLF
  field-name         =      token
  field-value        =      *( field-content | LWS )
  field-content      =      <the OCTETs making up the field-value and
                             consisting of either *TEXT or
                             combinations of token, tspecials, and
                             quoted-string>

  safe               =  "\$" | "-" | "_" | "." | "+"
  extra              =  "!" | "*" | "$'$" | "(" | ")" | ","

  hex                =  DIGIT | "A" | "B" | "C" | "D" | "E" | "F" |
                       "a" | "b" | "c" | "d" | "e" | "f"
  escape             =  "\%" hex hex
  reserved           =  ";" | "/" | "?" | ":" | "@" | "&" | "="

  unreserved         =  alpha | digit | safe | extra
  xchar              =  unreserved | reserved | escape

16 Security Considerations

  Because of the similarity in syntax and usage between RTSP servers
  and HTTP servers, the security considerations outlined in [H15]
  apply.  Specifically, please note the following:

  Authentication Mechanisms:
         RTSP and HTTP share common authentication schemes, and thus
         should follow the same prescriptions with regards to
         authentication. See [H15.1] for client authentication issues,
         and [H15.2] for issues regarding support for multiple
         authentication mechanisms.

  Abuse of Server Log Information:
         RTSP and HTTP servers will presumably have similar logging
         mechanisms, and thus should be equally guarded in protecting
         the contents of those logs, thus protecting the privacy of the



Schulzrinne, et. al.        Standards Track                    [Page 73]

RFC 2326              Real Time Streaming Protocol            April 1998


         users of the servers. See [H15.3] for HTTP server
         recommendations regarding server logs.

  Transfer of Sensitive Information:
         There is no reason to believe that information transferred via
         RTSP may be any less sensitive than that normally transmitted
         via HTTP. Therefore, all of the precautions regarding the
         protection of data privacy and user privacy apply to
         implementors of RTSP clients, servers, and proxies. See
         [H15.4] for further details.

  Attacks Based On File and Path Names:
         Though RTSP URLs are opaque handles that do not necessarily
         have file system semantics, it is anticipated that many
         implementations will translate portions of the request URLs
         directly to file system calls. In such cases, file systems
         SHOULD follow the precautions outlined in [H15.5], such as
         checking for ".." in path components.

  Personal Information:
         RTSP clients are often privy to the same information that HTTP
         clients are (user name, location, etc.) and thus should be
         equally. See [H15.6] for further recommendations.

  Privacy Issues Connected to Accept Headers:
         Since may of the same "Accept" headers exist in RTSP as in
         HTTP, the same caveats outlined in [H15.7] with regards to
         their use should be followed.

  DNS Spoofing:
         Presumably, given the longer connection times typically
         associated to RTSP sessions relative to HTTP sessions, RTSP
         client DNS optimizations should be less prevalent.
         Nonetheless, the recommendations provided in [H15.8] are still
         relevant to any implementation which attempts to rely on a
         DNS-to-IP mapping to hold beyond a single use of the mapping.

  Location Headers and Spoofing:
         If a single server supports multiple organizations that do not
         trust one another, then it must check the values of Location
         and Content-Location headers in responses that are generated
         under control of said organizations to make sure that they do
         not attempt to invalidate resources over which they have no
         authority. ([H15.9])

  In addition to the recommendations in the current HTTP specification
  (RFC 2068 [2], as of this writing), future HTTP specifications may
  provide additional guidance on security issues.



Schulzrinne, et. al.        Standards Track                    [Page 74]

RFC 2326              Real Time Streaming Protocol            April 1998


  The following are added considerations for RTSP implementations.

  Concentrated denial-of-service attack:
         The protocol offers the opportunity for a remote-controlled
         denial-of-service attack. The attacker may initiate traffic
         flows to one or more IP addresses by specifying them as the
         destination in SETUP requests. While the attacker's IP address
         may be known in this case, this is not always useful in
         prevention of more attacks or ascertaining the attackers
         identity. Thus, an RTSP server SHOULD only allow client-
         specified destinations for RTSP-initiated traffic flows if the
         server has verified the client's identity, either against a
         database of known users using RTSP authentication mechanisms
         (preferably digest authentication or stronger), or other
         secure means.

  Session hijacking:
         Since there is no relation between a transport layer
         connection and an RTSP session, it is possible for a malicious
         client to issue requests with random session identifiers which
         would affect unsuspecting clients. The server SHOULD use a
         large, random and non-sequential session identifier to
         minimize the possibility of this kind of attack.

  Authentication:
         Servers SHOULD implement both basic and digest [8]
         authentication. In environments requiring tighter security for
         the control messages, the RTSP control stream may be
         encrypted.

  Stream issues:
         RTSP only provides for stream control. Stream delivery issues
         are not covered in this section, nor in the rest of this memo.
         RTSP implementations will most likely rely on other protocols
         such as RTP, IP multicast, RSVP and IGMP, and should address
         security considerations brought up in those and other
         applicable specifications.

  Persistently suspicious behavior:
         RTSP servers SHOULD return error code 403 (Forbidden) upon
         receiving a single instance of behavior which is deemed a
         security risk. RTSP servers SHOULD also be aware of attempts
         to probe the server for weaknesses and entry points and MAY
         arbitrarily disconnect and ignore further requests clients
         which are deemed to be in violation of local security policy.






Schulzrinne, et. al.        Standards Track                    [Page 75]

RFC 2326              Real Time Streaming Protocol            April 1998


Appendix A: RTSP Protocol State Machines

  The RTSP client and server state machines describe the behavior of
  the protocol from RTSP session initialization through RTSP session
  termination.

  State is defined on a per object basis. An object is uniquely
  identified by the stream URL and the RTSP session identifier. Any
  request/reply using aggregate URLs denoting RTSP presentations
  composed of multiple streams will have an effect on the individual
  states of all the streams. For example, if the presentation /movie
  contains two streams, /movie/audio and /movie/video, then the
  following command:

    PLAY rtsp://foo.com/movie RTSP/1.0
    CSeq: 559
    Session: 12345678

  will have an effect on the states of movie/audio and movie/video.

    This example does not imply a standard way to represent streams in
    URLs or a relation to the filesystem. See Section 3.2.

  The requests OPTIONS, ANNOUNCE, DESCRIBE, GET_PARAMETER,
  SET_PARAMETER do not have any effect on client or server state and
  are therefore not listed in the state tables.

A.1 Client State Machine

  The client can assume the following states:

  Init:
         SETUP has been sent, waiting for reply.

  Ready:
         SETUP reply received or PAUSE reply received while in Playing
         state.

  Playing:
         PLAY reply received

  Recording:
         RECORD reply received

  In general, the client changes state on receipt of replies to
  requests. Note that some requests are effective at a future time or
  position (such as a PAUSE), and state also changes accordingly. If no
  explicit SETUP is required for the object (for example, it is



Schulzrinne, et. al.        Standards Track                    [Page 76]

RFC 2326              Real Time Streaming Protocol            April 1998


  available via a multicast group), state begins at Ready. In this
  case, there are only two states, Ready and Playing. The client also
  changes state from Playing/Recording to Ready when the end of the
  requested range is reached.

  The "next state" column indicates the state assumed after receiving a
  success response (2xx). If a request yields a status code of 3xx, the
  state becomes Init, and a status code of 4xx yields no change in
  state. Messages not listed for each state MUST NOT be issued by the
  client in that state, with the exception of messages not affecting
  state, as listed above. Receiving a REDIRECT from the server is
  equivalent to receiving a 3xx redirect status from the server.


  state       message sent     next state after response
  Init        SETUP            Ready
              TEARDOWN         Init
  Ready       PLAY             Playing
              RECORD           Recording
              TEARDOWN         Init
              SETUP            Ready
  Playing     PAUSE            Ready
              TEARDOWN         Init
              PLAY             Playing
              SETUP            Playing (changed transport)
  Recording   PAUSE            Ready
              TEARDOWN         Init
              RECORD           Recording
              SETUP            Recording (changed transport)

A.2 Server State Machine

  The server can assume the following states:

  Init:
         The initial state, no valid SETUP has been received yet.

  Ready:
         Last SETUP received was successful, reply sent or after
         playing, last PAUSE received was successful, reply sent.

  Playing:
         Last PLAY received was successful, reply sent. Data is being
         sent.

  Recording:
         The server is recording media data.




Schulzrinne, et. al.        Standards Track                    [Page 77]

RFC 2326              Real Time Streaming Protocol            April 1998


  In general, the server changes state on receiving requests. If the
  server is in state Playing or Recording and in unicast mode, it MAY
  revert to Init and tear down the RTSP session if it has not received
  "wellness" information, such as RTCP reports or RTSP commands, from
  the client for a defined interval, with a default of one minute. The
  server can declare another timeout value in the Session response
  header (Section 12.37). If the server is in state Ready, it MAY
  revert to Init if it does not receive an RTSP request for an interval
  of more than one minute. Note that some requests (such as PAUSE) may
  be effective at a future time or position, and server state changes
  at the appropriate time. The server reverts from state Playing or
  Recording to state Ready at the end of the range requested by the
  client.

  The REDIRECT message, when sent, is effective immediately unless it
  has a Range header specifying when the redirect is effective. In such
  a case, server state will also change at the appropriate time.

  If no explicit SETUP is required for the object, the state starts at
  Ready and there are only two states, Ready and Playing.

  The "next state" column indicates the state assumed after sending a
  success response (2xx). If a request results in a status code of 3xx,
  the state becomes Init. A status code of 4xx results in no change.

    state           message received  next state
    Init            SETUP             Ready
                    TEARDOWN          Init
    Ready           PLAY              Playing
                    SETUP             Ready
                    TEARDOWN          Init
                    RECORD            Recording
    Playing         PLAY              Playing
                    PAUSE             Ready
                    TEARDOWN          Init
                    SETUP             Playing
    Recording       RECORD            Recording
                    PAUSE             Ready
                    TEARDOWN          Init
                    SETUP             Recording











Schulzrinne, et. al.        Standards Track                    [Page 78]

RFC 2326              Real Time Streaming Protocol            April 1998


Appendix B: Interaction with RTP

  RTSP allows media clients to control selected, non-contiguous
  sections of media presentations, rendering those streams with an RTP
  media layer[24]. The media layer rendering the RTP stream should not
  be affected by jumps in NPT. Thus, both RTP sequence numbers and RTP
  timestamps MUST be continuous and monotonic across jumps of NPT.

  As an example, assume a clock frequency of 8000 Hz, a packetization
  interval of 100 ms and an initial sequence number and timestamp of
  zero. First we play NPT 10 through 15, then skip ahead and play NPT
  18 through 20. The first segment is presented as RTP packets with
  sequence numbers 0 through 49 and timestamp 0 through 39,200. The
  second segment consists of RTP packets with sequence number 50
  through 69, with timestamps 40,000 through 55,200.

    We cannot assume that the RTSP client can communicate with the RTP
    media agent, as the two may be independent processes. If the RTP
    timestamp shows the same gap as the NPT, the media agent will
    assume that there is a pause in the presentation. If the jump in
    NPT is large enough, the RTP timestamp may roll over and the media
    agent may believe later packets to be duplicates of packets just
    played out.

    For certain datatypes, tight integration between the RTSP layer and
    the RTP layer will be necessary. This by no means precludes the
    above restriction. Combined RTSP/RTP media clients should use the
    RTP-Info field to determine whether incoming RTP packets were sent
    before or after a seek.

  For continuous audio, the server SHOULD set the RTP marker bit at the
  beginning of serving a new PLAY request. This allows the client to
  perform playout delay adaptation.

  For scaling (see Section 12.34), RTP timestamps should correspond to
  the playback timing. For example, when playing video recorded at 30
  frames/second at a scale of two and speed (Section 12.35) of one, the
  server would drop every second frame to maintain and deliver video
  packets with the normal timestamp spacing of 3,000 per frame, but NPT
  would increase by 1/15 second for each video frame.

  The client can maintain a correct display of NPT by noting the RTP
  timestamp value of the first packet arriving after repositioning. The
  sequence parameter of the RTP-Info (Section 12.33) header provides
  the first sequence number of the next segment.






Schulzrinne, et. al.        Standards Track                    [Page 79]

RFC 2326              Real Time Streaming Protocol            April 1998


Appendix C: Use of SDP for RTSP Session Descriptions

  The Session Description Protocol (SDP, RFC 2327 [6]) may be used to
  describe streams or presentations in RTSP. Such usage is limited to
  specifying means of access and encoding(s) for:

  aggregate control:
         A presentation composed of streams from one or more servers
         that are not available for aggregate control. Such a
         description is typically retrieved by HTTP or other non-RTSP
         means. However, they may be received with ANNOUNCE methods.

  non-aggregate control:
         A presentation composed of multiple streams from a single
         server that are available for aggregate control. Such a
         description is typically returned in reply to a DESCRIBE
         request on a URL, or received in an ANNOUNCE method.

  This appendix describes how an SDP file, retrieved, for example,
  through HTTP, determines the operation of an RTSP session. It also
  describes how a client should interpret SDP content returned in reply
  to a DESCRIBE request. SDP provides no mechanism by which a client
  can distinguish, without human guidance, between several media
  streams to be rendered simultaneously and a set of alternatives
  (e.g., two audio streams spoken in different languages).

C.1 Definitions

  The terms "session-level", "media-level" and other key/attribute
  names and values used in this appendix are to be used as defined in
  SDP (RFC 2327 [6]):

C.1.1 Control URL

  The "a=control:" attribute is used to convey the control URL. This
  attribute is used both for the session and media descriptions. If
  used for individual media, it indicates the URL to be used for
  controlling that particular media stream. If found at the session
  level, the attribute indicates the URL for aggregate control.

  Example:
    a=control:rtsp://example.com/foo

  This attribute may contain either relative and absolute URLs,
  following the rules and conventions set out in RFC 1808 [25].
  Implementations should look for a base URL in the following order:





Schulzrinne, et. al.        Standards Track                    [Page 80]

RFC 2326              Real Time Streaming Protocol            April 1998


  1.     The RTSP Content-Base field
  2.     The RTSP Content-Location field
  3.     The RTSP request URL

  If this attribute contains only an asterisk (*), then the URL is
  treated as if it were an empty embedded URL, and thus inherits the
  entire base URL.

C.1.2 Media streams

  The "m=" field is used to enumerate the streams. It is expected that
  all the specified streams will be rendered with appropriate
  synchronization. If the session is unicast, the port number serves as
  a recommendation from the server to the client; the client still has
  to include it in its SETUP request and may ignore this
  recommendation.  If the server has no preference, it SHOULD set the
  port number value to zero.

  Example:
    m=audio 0 RTP/AVP 31

C.1.3 Payload type(s)

  The payload type(s) are specified in the "m=" field. In case the
  payload type is a static payload type from RFC 1890 [1], no other
  information is required. In case it is a dynamic payload type, the
  media attribute "rtpmap" is used to specify what the media is. The
  "encoding name" within the "rtpmap" attribute may be one of those
  specified in RFC 1890 (Sections 5 and 6), or an experimental encoding
  with a "X-" prefix as specified in SDP (RFC 2327 [6]).  Codec-
  specific parameters are not specified in this field, but rather in
  the "fmtp" attribute described below. Implementors seeking to
  register new encodings should follow the procedure in RFC 1890 [1].
  If the media type is not suited to the RTP AV profile, then it is
  recommended that a new profile be created and the appropriate profile
  name be used in lieu of "RTP/AVP" in the "m=" field.

C.1.4 Format-specific parameters

  Format-specific parameters are conveyed using the "fmtp" media
  attribute. The syntax of the "fmtp" attribute is specific to the
  encoding(s) that the attribute refers to. Note that the packetization
  interval is conveyed using the "ptime" attribute.








Schulzrinne, et. al.        Standards Track                    [Page 81]

RFC 2326              Real Time Streaming Protocol            April 1998


C.1.5 Range of presentation

  The "a=range" attribute defines the total time range of the stored
  session. (The length of live sessions can be deduced from the "t" and
  "r" parameters.) Unless the presentation contains media streams of
  different durations, the range attribute is a session-level
  attribute. The unit is specified first, followed by the value range.
  The units and their values are as defined in Section 3.5, 3.6 and
  3.7.

  Examples:
    a=range:npt=0-34.4368
    a=range:clock=19971113T2115-19971113T2203

C.1.6 Time of availability

  The "t=" field MUST contain suitable values for the start and stop
  times for both aggregate and non-aggregate stream control. With
  aggregate control, the server SHOULD indicate a stop time value for
  which it guarantees the description to be valid, and a start time
  that is equal to or before the time at which the DESCRIBE request was
  received. It MAY also indicate start and stop times of 0, meaning
  that the session is always available. With non-aggregate control, the
  values should reflect the actual period for which the session is
  available in keeping with SDP semantics, and not depend on other
  means (such as the life of the web page containing the description)
  for this purpose.

C.1.7 Connection Information

  In SDP, the "c=" field contains the destination address for the media
  stream. However, for on-demand unicast streams and some multicast
  streams, the destination address is specified by the client via the
  SETUP request. Unless the media content has a fixed destination
  address, the "c=" field is to be set to a suitable null value. For
  addresses of type "IP4", this value is "0.0.0.0".

 C.1.8 Entity Tag

  The optional "a=etag" attribute identifies a version of the session
  description. It is opaque to the client. SETUP requests may include
  this identifier in the If-Match field (see section 12.22) to only
  allow session establishment if this attribute value still corresponds
  to that of the current description. The attribute value is opaque and
  may contain any character allowed within SDP attribute values.

  Example:
    a=etag:158bb3e7c7fd62ce67f12b533f06b83a



Schulzrinne, et. al.        Standards Track                    [Page 82]

RFC 2326              Real Time Streaming Protocol            April 1998


    One could argue that the "o=" field provides identical
    functionality. However, it does so in a manner that would put
    constraints on servers that need to support multiple session
    description types other than SDP for the same piece of media
    content.

C.2 Aggregate Control Not Available

  If a presentation does not support aggregate control and multiple
  media sections are specified, each section MUST have the control URL
  specified via the "a=control:" attribute.

  Example:
    v=0
    o=- 2890844256 2890842807 IN IP4 204.34.34.32
    s=I came from a web page
    t=0 0
    c=IN IP4 0.0.0.0
    m=video 8002 RTP/AVP 31
    a=control:rtsp://audio.com/movie.aud
    m=audio 8004 RTP/AVP 3
    a=control:rtsp://video.com/movie.vid

  Note that the position of the control URL in the description implies
  that the client establishes separate RTSP control sessions to the
  servers audio.com and video.com.

  It is recommended that an SDP file contains the complete media
  initialization information even if it is delivered to the media
  client through non-RTSP means. This is necessary as there is no
  mechanism to indicate that the client should request more detailed
  media stream information via DESCRIBE.

C.3 Aggregate Control Available

  In this scenario, the server has multiple streams that can be
  controlled as a whole. In this case, there are both media-level
  "a=control:" attributes, which are used to specify the stream URLs,
  and a session-level "a=control:" attribute which is used as the
  request URL for aggregate control. If the media-level URL is
  relative, it is resolved to absolute URLs according to Section C.1.1
  above.

  If the presentation comprises only a single stream, the media-level
  "a=control:" attribute may be omitted altogether. However, if the
  presentation contains more than one stream, each media stream section
  MUST contain its own "a=control" attribute.




Schulzrinne, et. al.        Standards Track                    [Page 83]

RFC 2326              Real Time Streaming Protocol            April 1998


  Example:
    v=0
    o=- 2890844256 2890842807 IN IP4 204.34.34.32
    s=I contain
    i=<more info>
    t=0 0
    c=IN IP4 0.0.0.0
    a=control:rtsp://example.com/movie/
    m=video 8002 RTP/AVP 31
    a=control:trackID=1
    m=audio 8004 RTP/AVP 3
    a=control:trackID=2

  In this example, the client is required to establish a single RTSP
  session to the server, and uses the URLs
  rtsp://example.com/movie/trackID=1 and
  rtsp://example.com/movie/trackID=2 to set up the video and audio
  streams, respectively. The URL rtsp://example.com/movie/ controls the
  whole movie.
































Schulzrinne, et. al.        Standards Track                    [Page 84]

RFC 2326              Real Time Streaming Protocol            April 1998


Appendix D: Minimal RTSP implementation

D.1 Client

  A client implementation MUST be able to do the following :

    * Generate the following requests: SETUP, TEARDOWN, and one of PLAY
      (i.e., a minimal playback client) or RECORD (i.e., a minimal
      recording client). If RECORD is implemented, ANNOUNCE must be
      implemented as well.
    * Include the following headers in requests: CSeq, Connection,
      Session, Transport. If ANNOUNCE is implemented, the capability to
      include headers Content-Language, Content-Encoding, Content-
      Length, and Content-Type should be as well.
    * Parse and understand the following headers in responses: CSeq,
      Connection, Session, Transport, Content-Language, Content-
      Encoding, Content-Length, Content-Type. If RECORD is implemented,
      the Location header must be understood as well.  RTP-compliant
      implementations should also implement RTP-Info.
    * Understand the class of each error code received and notify the
      end-user, if one is present, of error codes in classes 4xx and
      5xx. The notification requirement may be relaxed if the end-user
      explicitly does not want it for one or all status codes.
    * Expect and respond to asynchronous requests from the server, such
      as ANNOUNCE. This does not necessarily mean that it should
      implement the ANNOUNCE method, merely that it MUST respond
      positively or negatively to any request received from the server.

  Though not required, the following are highly recommended at the time
  of publication for practical interoperability with initial
  implementations and/or to be a "good citizen".

    * Implement RTP/AVP/UDP as a valid transport.
    * Inclusion of the User-Agent header.
    * Understand SDP session descriptions as defined in Appendix C
    * Accept media initialization formats (such as SDP) from standard
      input, command line, or other means appropriate to the operating
      environment to act as a "helper application" for other
      applications (such as web browsers).

    There may be RTSP applications different from those initially
    envisioned by the contributors to the RTSP specification for which
    the requirements above do not make sense. Therefore, the
    recommendations above serve only as guidelines instead of strict
    requirements.






Schulzrinne, et. al.        Standards Track                    [Page 85]

RFC 2326              Real Time Streaming Protocol            April 1998


D.1.1 Basic Playback

  To support on-demand playback of media streams, the client MUST
  additionally be able to do the following:
    * generate the PAUSE request;
    * implement the REDIRECT method, and the Location header.

D.1.2 Authentication-enabled

  In order to access media presentations from RTSP servers that require
  authentication, the client MUST additionally be able to do the
  following:
    * recognize the 401 status code;
    * parse and include the WWW-Authenticate header;
    * implement Basic Authentication and Digest Authentication.

D.2 Server

  A minimal server implementation MUST be able to do the following:

    * Implement the following methods: SETUP, TEARDOWN, OPTIONS and
      either PLAY (for a minimal playback server) or RECORD (for a
      minimal recording server).  If RECORD is implemented, ANNOUNCE
      should be implemented as well.
    * Include the following headers in responses: Connection,
      Content-Length, Content-Type, Content-Language, Content-Encoding,
      Transport, Public. The capability to include the Location header
      should be implemented if the RECORD method is. RTP-compliant
      implementations should also implement the RTP-Info field.
    * Parse and respond appropriately to the following headers in
      requests: Connection, Session, Transport, Require.

  Though not required, the following are highly recommended at the time
  of publication for practical interoperability with initial
  implementations and/or to be a "good citizen".

    * Implement RTP/AVP/UDP as a valid transport.
    * Inclusion of the Server header.
    * Implement the DESCRIBE method.
    * Generate SDP session descriptions as defined in Appendix C

    There may be RTSP applications different from those initially
    envisioned by the contributors to the RTSP specification for which
    the requirements above do not make sense. Therefore, the
    recommendations above serve only as guidelines instead of strict
    requirements.





Schulzrinne, et. al.        Standards Track                    [Page 86]

RFC 2326              Real Time Streaming Protocol            April 1998


D.2.1 Basic Playback

  To support on-demand playback of media streams, the server MUST
  additionally be able to do the following:

    * Recognize the Range header, and return an error if seeking is not
      supported.
    * Implement the PAUSE method.

  In addition, in order to support commonly-accepted user interface
  features, the following are highly recommended for on-demand media
  servers:

    * Include and parse the Range header, with NPT units.
      Implementation of SMPTE units is recommended.
    * Include the length of the media presentation in the media
      initialization information.
    * Include mappings from data-specific timestamps to NPT. When RTP
      is used, the rtptime portion of the RTP-Info field may be used to
      map RTP timestamps to NPT.

    Client implementations may use the presence of length information
    to determine if the clip is seekable, and visibly disable seeking
    features for clips for which the length information is unavailable.
    A common use of the presentation length is to implement a "slider
    bar" which serves as both a progress indicator and a timeline
    positioning tool.

    Mappings from RTP timestamps to NPT are necessary to ensure correct
    positioning of the slider bar.

D.2.2 Authentication-enabled

  In order to correctly handle client authentication, the server MUST
  additionally be able to do the following:

    * Generate the 401 status code when authentication is required for
      the resource.
    * Parse and include the WWW-Authenticate header
    * Implement Basic Authentication and Digest Authentication











Schulzrinne, et. al.        Standards Track                    [Page 87]

RFC 2326              Real Time Streaming Protocol            April 1998


Appendix E: Authors' Addresses

  Henning Schulzrinne
  Dept. of Computer Science
  Columbia University
  1214 Amsterdam Avenue
  New York, NY 10027
  USA

  EMail: [email protected]


  Anup Rao
  Netscape Communications Corp.
  501 E. Middlefield Road
  Mountain View, CA 94043
  USA

  EMail: [email protected]


  Robert Lanphier
  RealNetworks
  1111 Third Avenue Suite 2900
  Seattle, WA 98101
  USA

  EMail: [email protected]























Schulzrinne, et. al.        Standards Track                    [Page 88]

RFC 2326              Real Time Streaming Protocol            April 1998


Appendix F: Acknowledgements

  This memo is based on the functionality of the original RTSP document
  submitted in October 96. It also borrows format and descriptions from
  HTTP/1.1.

  This document has benefited greatly from the comments of all those
  participating in the MMUSIC-WG. In addition to those already
  mentioned, the following individuals have contributed to this
  specification:

  Rahul Agarwal, Torsten Braun, Brent Browning, Bruce Butterfield,
  Steve Casner, Francisco Cortes, Kelly Djahandari, Martin Dunsmuir,
  Eric Fleischman, Jay Geagan, Andy Grignon, V. Guruprasad, Peter
  Haight, Mark Handley, Brad Hefta-Gaub, John K. Ho, Philipp Hoschka,
  Anne Jones, Anders Klemets, Ruth Lang, Stephanie Leif, Jonathan
  Lennox, Eduardo F. Llach, Rob McCool, David Oran, Maria Papadopouli,
  Sujal Patel, Ema Patki, Alagu Periyannan, Igor Plotnikov, Pinaki
  Shah, David Singer, Jeff Smith, Alexander Sokolsky, Dale Stammen, and
  John Francis Stracke.































Schulzrinne, et. al.        Standards Track                    [Page 89]

RFC 2326              Real Time Streaming Protocol            April 1998


References

  1      Schulzrinne, H., "RTP profile for audio and video conferences
         with minimal control", RFC 1890, January 1996.

  2      Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T.
         Berners-Lee, "Hypertext transfer protocol - HTTP/1.1", RFC
         2068, January 1997.

  3      Yergeau, F., Nicol, G., Adams, G., and M. Duerst,
         "Internationalization of the hypertext markup language", RFC
         2070, January 1997.

  4      Bradner, S., "Key words for use in RFCs to indicate
         requirement levels", BCP 14, RFC 2119, March 1997.

  5      ISO/IEC, "Information technology - generic coding of moving
         pictures and associated audio information - part 6: extension
         for digital storage media and control," Draft International
         Standard ISO 13818-6, International Organization for
         Standardization ISO/IEC JTC1/SC29/WG11, Geneva, Switzerland,
         Nov. 1995.

  6      Handley, M., and V. Jacobson, "SDP: Session Description
         Protocol", RFC 2327, April 1998.

  7      Franks, J., Hallam-Baker, P., and J. Hostetler, "An extension to
         HTTP: digest access authentication", RFC 2069, January 1997.

  8      Postel, J., "User Datagram Protocol", STD 6, RFC 768, August
         1980.

  9      Hinden, B. and C. Partridge, "Version 2 of the reliable data
         protocol (RDP)", RFC 1151, April 1990.

  10     Postel, J., "Transmission control protocol", STD 7, RFC 793,
         September 1981.

  11     H. Schulzrinne, "A comprehensive multimedia control
         architecture for the Internet," in Proc. International
         Workshop on Network and Operating System Support for Digital
         Audio and Video (NOSSDAV), (St. Louis, Missouri), May 1997.

  12     International Telecommunication Union, "Visual telephone
         systems and equipment for local area networks which provide a
         non-guaranteed quality of service," Recommendation H.323,
         Telecommunication Standardization Sector of ITU, Geneva,
         Switzerland, May 1996.



Schulzrinne, et. al.        Standards Track                    [Page 90]

RFC 2326              Real Time Streaming Protocol            April 1998


  13     McMahon, P., "GSS-API authentication method for SOCKS version
         5", RFC 1961, June 1996.

  14     J. Miller, P. Resnick, and D. Singer, "Rating services and
         rating systems (and their machine readable descriptions),"
         Recommendation REC-PICS-services-961031, W3C (World Wide Web
         Consortium), Boston, Massachusetts, Oct. 1996.

  15     J. Miller, T. Krauskopf, P. Resnick, and W. Treese, "PICS
         label distribution label syntax and communication protocols,"
         Recommendation REC-PICS-labels-961031, W3C (World Wide Web
         Consortium), Boston, Massachusetts, Oct. 1996.

  16     Crocker, D. and P. Overell, "Augmented BNF for syntax
         specifications: ABNF", RFC 2234, November 1997.

  17     Braden, B., "Requirements for internet hosts - application and
         support", STD 3, RFC 1123, October 1989.

  18     Elz, R., "A compact representation of IPv6 addresses", RFC
         1924, April 1996.

  19     Berners-Lee, T., Masinter, L. and M. McCahill, "Uniform
         resource locators (URL)", RFC 1738, December 1994.

  20     Yergeau, F., "UTF-8, a transformation format of ISO 10646",
         RFC 2279, January 1998.

  22     Braden, B., "T/TCP - TCP extensions for transactions
         functional specification", RFC 1644, July 1994.

  22     W. R. Stevens, TCP/IP illustrated: the implementation, vol. 2.
         Reading, Massachusetts: Addison-Wesley, 1994.

  23     Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
         "RTP: a transport protocol for real-time applications", RFC
         1889, January 1996.

  24     Fielding, R., "Relative uniform resource locators", RFC 1808,
         June 1995.











Schulzrinne, et. al.        Standards Track                    [Page 91]

RFC 2326              Real Time Streaming Protocol            April 1998


Full Copyright Statement

  Copyright (C) The Internet Society (1998). All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works. However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























Schulzrinne, et. al.        Standards Track                    [Page 92]