Network Working Group                                       K. Murakami
Request for Comments: 2171                                  M. Maruyama
Category: Informational                                NTT Laboratories
                                                             June 1997

      MAPOS - Multiple Access Protocol over SONET/SDH  Version 1

Status of this Memo

  This memo provides information for the Internet community.  This memo
  does not specify an Internet standard of any kind.  Distribution of
  this memo is unlimited.

Authors' Note

  This memo documents a multiple access protocol for transmission of
  network-protocol datagrams, encapsulated in High-Level Data Link
  Control (HDLC) frames, over SONET/SDH.  This document is NOT the
  product of an IETF working group nor is it a standards track
  document.  It has not necessarily benefited from the widespread and
  in depth community review that standards track documents receive.

Abstract

  This document describes the protocol MAPOS, Multiple Access Protocol
  over SONET/SDH, for transmitting network-protocol datagrams over
  SONET/SDH.  It focuses on the core protocol -- other documents listed
  in the bibliography may be referenced in conjunction with this
  document to provide support and services for protocols at higher
  layers.

1. Introduction

1.1 SONET/SDH

  The Synchronous Optical Network/Synchronous Digital Hierarchy
  (SONET/SDH) [1][2][3][4] family of ITU-T standard protocols are
  designed to provide common, simple, and flexible interface for
  broadband optical fiber transmission systems.  It enables direct
  octet-synchronous multiplexing of lower rate tributaries.
  SONET/SDH-compliant transmission systems are widely deployed by
  telephone carriers world wide.

  This document defines the MAPOS protocol -- a method for transmitting
  HDLC frames over SONET/SDH. The protocol provides multiple access
  capability to SONET/SDH, an inherently point-to-point link. This
  enables construction of seamless networking environment using
  SONET/SDH as transmission media for both LAN and WAN.



Murakami & Maruyama          Informational                      [Page 1]

RFC 2171                         MAPOS                         June 1997


1.2 Possible Configurations

  The MAPOS protocol provides multiple access, broadcast / multicast-
  capable switched LAN environment using SONET/SDH lines as
  transmission media.  Possible configurations of MAPOS system are
  shown in the following diagrams.  In (a), two end nodes are connected
  to each other.  Figure (b) shows a star-topology "SONET-LAN" where
  multiple end nodes are connected to an HDLC frame switch. The frame
  switch forwards packets between nodes and provides multiple access
  capability. In (c), multiple frame switches are linked together,
  creating a switching cluster.


          +------+                                +------+
          | Node +--------------------------------+ Node |
          +------+                                +------+

                   (a) Point-to-Point configuration

































Murakami & Maruyama          Informational                      [Page 2]

RFC 2171                         MAPOS                         June 1997


          +------+                                +---------------+
          | Node +--------------------------------+               |
          +------+                                |               |
                                                  |               |
          +------+                                |               |
          | Node +--------------------------------+               |
          +------+                                |               |
                                                  | Frame Switch  |
          +------+                                |               |
          | Node +--------------------------------+               |
          +------+                                |               |
                                                  |               |
          +------+                                |               |
          | Node +--------------------------------+               |
          +------+                                +---------------+

                (b) Point-to-Multipoint configuration


          +--------+                      +--------+
          | Frame  +----------------------+ Frame  |
          | Switch +--------+    +--------+ Switch |
          +--+-----+      +-+----+-+      +--------+
             |            | Frame  |                      +--------+
          +--+-----+      | Switch |      +--------+      | Frame  |
          | Frame  |      +-----+--+      | Frame  +------+ Switch |
          | Switch |            +---------+ Switch |      ++-------+
          +-------++                      +--------+       |
                  |________________________________________|

                 (c) Switching cluster configuration

                  Figure 1. Possible configurations

  Each port on a switch has an unique identifier within the switch. A
  node connected to a switch port must inherit the address of the port.
  That is, the node address is equal to the port identifier and is
  unique within the switch.

  In a switch cluster, a node address is subnetted. The high-order
  bits, the part where the corresponding bits in the "subnet mask" are
  1, indicate the switch address.  The remaining low-order bits
  indicate the unique node address within the switch. The two fields
  form an unique address for a given node.

  In either case, the address may be configured manually into a node
  interface, or automatically by the address assignment mechanism
  described in [5].



Murakami & Maruyama          Informational                      [Page 3]

RFC 2171                         MAPOS                         June 1997


  Note that any two components may be connected either directly, or via
  a long-haul SONET/SDH leased line.

1.3 Packet Transmission

  The protocol is connection-less -- when a node wish to communicate
  with some other node, it simply fills-in the destination address of
  an HDLC frame, places it in one or more SONET/SDH payloads, and sends
  it over a SONET/SDH link.

  The switch forwards the frame to its destination based on the
  destination address. In a switch cluster, the frame may be forwarded
  by multiple switches and is eventually delivered to the specified
  node.  Broadcast and multicast are also supported. Frames with an
  invalid destination address are silently discarded.

  Like ethernet, the multiple access capability is provided by a switch
  or a switch cluster. Since MAPOS is a link layer protocol, it is
  independent of the upper layer protocols. That is, it can support any
  network layer protocols such as IP. MAPOS IPv4 support is described
  in [6].

2. Physical Layer

  This protocol treats the underlying end-to-end SONET/SDH transmission
  link as if it was a plain, transparent channel.  It sends HDLC frames
  in SONET/SDH payloads, and expects them to arrive at the other end
  unaltered.

  Each node and switch should terminate SONET/SDH overhead such as
  section overhead, line overhead, and path overhead according to the
  specification of SONET/SDH. Unfortunately, SONET and SDH overhead
  interpretations are not identical. In addition, some SONET/SDH
  implementations utilize some overhead bytes in proprietary manner.

  The detail of the interpretation is beyond the scope of this
  document.  Appendix A describes some of the most significant
  differences among SONET, SDH, and their implementations that often
  causes interoperability problems.  Implementors of SONET/SDH
  interfaces are strongly encouraged to be aware of such differences,
  and provide workaround options in their products.










Murakami & Maruyama          Informational                      [Page 4]

RFC 2171                         MAPOS                         June 1997


3. Data Link Layer

3.1 HDLC Frame Format

  MAPOS uses the same HDLC-like framing as used in PPP-over-SONET,
  described in RFC-1662[7].  Figure 2 shows the frame format.  Logical
  Link Control (LLC), and Sublayer/Sub-Network Access Protocol (SNAP)
  are not used.  It does not include the bytes for transparency.  The
  fields are transmitted from left to right.

          +----------+----------+----------+----------+
          |          |          |          |          |
          |   Flag   | Address  | Control  | Protocol |
          | 01111110 |  8bits   | 00000011 |  16 bits |
          +----------+----------+----------+----------+
             +-------------+------------+----------+-----------
             |             |            |          | Inter-frame
             | Information |    FCS     |   Flag   | fill or next
             |             | 16/32 bits | 01111110 | address
             +-------------+------------+----------+------------

                       Figure 2.  Frame format

    Flag Sequence

    Flag sequence is used for frame synchronization.  Each frame begins
    and ends with a flag sequence 01111110 (0x7E).  If a frame
    immediately follows another, one flag sequence may be treated as
    the end of the preceding frame and the beginning of the immediately
    following frame.  When the line is idle, the flag sequence is to be
    transmitted continuously on the line.

    Address

    The address field contains the destination HDLC address.  A frame
    is forwarded by a switch based on this field.  It is 8 bits wide.
    The LSB indicates the end of this field, and must always be 1.  The
    MSB is used to indicate if the frame is a unicast or a multicast
    frame.  The MSB of 0 means unicast, with the remaining six bits
    indicating the destination node address. MSB of 1 means multicast,
    with the remaining six bits indicating the group address.  The
    address 11111111 (0xFF) means that the frame is a broadcast frame.
    The address 00000001 (0x01) is reserved to identify the control
    processor inside a switch.  Frames with an invalid address should
    be silently discarded.






Murakami & Maruyama          Informational                      [Page 5]

RFC 2171                         MAPOS                         June 1997


            +-------------+-+
            | | | | | | | | |
            | | node addr |1|
            +-+-----------+-+
             ^             ^
             |             |
             |             +------- EA bit (always 1)
             |
             1 : broadcast, multicast
             0 : unicast

                       Figure 3 Address format

    Control

    The control field contains single octet 00000011 (0x03) which, in
    HDLC nomenclature, means that the frame is an Unnumbered
    Information (UI) with the Poll/Final (P/F) bit set to zero.  Frames
    with any other control field values should be silently discarded.

    Protocol

    The protocol field indicates the protocol to which the datagram
    encapsulated in the information field belongs.  It conforms to the
    ISO 3309 extension mechanism, and the value for this field may be
    obtained from the most recent "Assigned Numbers" [8] and "MAPOS
    Version 1 Assigned Numbers" [9].

    Information

    The information field contains the datagram for the protocol
    specified in the protocol field.  The length of this field may
    vary, but shall not exceed 65,280 (64K - 256) octets.

    Frame Check Sequence (FCS)

    By default, the frame check sequence (FCS) field is 16-bits long.
    Optionally, 32 bit FCS may be used instead.  The FCS is calculated
    over all bits of the address, control, protocol, and information
    fields prior to escape conversions.  The least significant octet of
    the result is transmitted first as it contains the coefficient of
    the highest term.

    Inter-frame fill

    A sending station must continuously transmit the flag sequence as
    inter-frame fill after the FCS field.  The inter-frame flag
    sequences must be silently discarded by the receiving station.



Murakami & Maruyama          Informational                      [Page 6]

RFC 2171                         MAPOS                         June 1997


    When an under-run occurs during DMA in the sending station, it must
    abort the frame transfer and continuously send the flag sequence to
    indicate the error.

3.2 Octet-Synchronous Framing

  MAPOS uses an octet stuffing procedure because it treats SONET/SDH as
  a byte-oriented synchronous link.  Since SONET/SDH provides
  transparency, Async-Control-Character-Map (ACCM) is not used.  HDLC
  frames are mapped into the SONET/SDH payload as follows.

  Each HDLC frame is separated from another frame by one or more flag
  sequence, 01111110 (0x7E).  An escape sequence is defined to escape
  the flag sequence and itself.  Prior to sending the frame, but after
  the FCS computation, every occurrence of 01111110 (0x7E) other than
  the flags is to be converted to the sequence 01111101 01011110 (0x7D
  0x5E), and the sequence 01111101 (0x7D) is to be converted to the
  sequence 01111101 01011101 (0x7D 0x5D).  Upon receiving a frame, this
  conversion must be reversed prior to FCS computation.

4. Further Reading

  To fully utilize MAPOS protocol, it is useful to reference other
  documents[5][6][9][10] in conjunction with this document.

5. Security Considerations

  Security issues are not discussed in this memo.

References

  [1]  CCITT Recommendation G.707: Synchronous Digital Hierarchy Bit
       Rates (1990).

  [2]  CCITT Recommendation G.708: Network Node Interface for
       Synchronous Digital Hierarchy (1990).

  [3]  CCITT Recommendation G.709: Synchronous Multiplexing Structure
       (1990).

  [4]  American National Standard for Telecommunications - Digital
       Hierarchy - Optical Interface Rates and Formats Specification,
       ANSI T1.105-1991.

  [5]  Murakami, K. and M. Maruyama, "A MAPOS version 1 Extension -
       Node Switch Protocol," RFC2173, June, 1997.





Murakami & Maruyama          Informational                      [Page 7]

RFC 2171                         MAPOS                         June 1997


  [6]  Murakami, K. and M. Maruyama, "IPv4 over MAPOS Version 1,"
       RFC2176, June, 1997.

  [7]  Simpson, W., editor, "PPP in HDLC-like Framing," RFC1662, July
       1994.

  [8]  IANA, "IANA-Assignments,"
       http://www.iana.org/iana/assignments.html

  [9]  Maruyama, M. and K. Murakami, "MAPOS Version 1 Assigned
       Numbers," RFC2172, June 1997.

  [10] Murakami, K. and M. Maruyama, "A MAPOS version 1 Extension -
       Switch Switch Protocol," RFC2174, June, 1997.

Acknowledgements

  The authors would like to acknowledge the contributions and
  thoughtful suggestions of John P. Mullaney, Clark Bremer, Masayuki
  Kobayashi, Paul Francis, Toshiaki Yoshida, and Takahiro Sajima.

Author's Address

            Ken Murakami
            NTT Software Laboratories
            3-9-11, Midori-cho
            Musashino-shi
            Tokyo-180, Japan
            E-mail: [email protected]

            Mitsuru Maruyama
            NTT Software Laboratories
            3-9-11, Midori-cho
            Musashino-shi
            Tokyo-180, Japan
            E-mail: [email protected]















Murakami & Maruyama          Informational                      [Page 8]

RFC 2171                         MAPOS                         June 1997


APPENDIX A.  Differences among SONET, SDH, and their Implementations

  This section briefly describes the major differences among SONET
  which is an ANSI standard, SDH, an ITU-T standard, and their
  implementations.

    AU pointer (H1, H2, H3)

    The AU pointer consists of bytes H1, H2, and H3. The bits 5 and 6
    of the H1 byte are called "SS bits," and are used to indicate the
    offset into the payload where the beginning of a SPE is located.
    (Note that "SPE" is a SONET term -- SDH calls it "VC.")  In the
    case of OC-3c, SONET sets the SS bits of the second and the third
    H1 bytes to 0, whereas SDH sets them to 10 for AU-4, and 01 for
    AU-31.  Although the SS bits may be ignored at the receiving
    station, some transmission systems discards SONET/SDH frames with
    SS bits that it doesn't expect -- the sending station should be
    aware of this, and include a configuration option to handle it.

    Z1 and Z2

    The Z bytes are reserved in SONET/SDH.  Some transmission systems,
    however, use them in a proprietary manner.  SONET uses Z1 for Line
    Error Monitoring.  NTT, a carrier in Japan, utilized Z1 for
    Automatic Protection Switching (APS.)

    DCC Bytes

    The D bytes are called the Data Communication channel (DCC), and
    are defined for maintenance and operations.  However, some carriers
    and vendors use them in a proprietary manner.  For example, NTT's
    STM-1 UNI uses the D4, D5, and D6 bytes to transfer section and
    path maintenance information.


















Murakami & Maruyama          Informational                      [Page 9]